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Abstract: The accurate simulation of anatomical joint models is important for both medical diagnosis and 
realistic animation applications.  Quaternion algebra has been increasingly applied to model rotations providing a 
compact representation while avoiding singularities.  This paper describes the application of artificial neural 
networks topologically evolved using genetic algorithms to model joint constraints directly in quaternion space.  
These networks are trained (using resilient back propagation) to model discontinuous vector fields that act as 
corrective functions ensuring invalid joint configurations are accurately corrected.  The results show that 
complex quaternion-based joint constraints can be learned without resorting to reduced coordinate models or 
iterative techniques used in other quaternion based joint constraint approaches. 
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1. INTRODUCTION 
 
Joint systems are important constituents of 
anatomical models, they are used in simulation to 
retain anatomically correct movement and ensure 
limbs do not separate or intersect. Current 
techniques are limited by their underlying 
representation or their abstraction of the joint 
function. Demand is increasing for anatomically 
correct joints for applications in animation and 
medicine [1, 2].  However in current applications 
increasing accuracy incurs additional complexity 
and therefore computational cost [3-5].  
 
Dynamics solutions can be used to produce realistic 
behaviour based on input, contact and constraint 
forces [6].  Depending on the complexity of the 
simulation, the outcome of dynamics-based 
behaviour can be difficult to predict.  Inverse-
Kinematics (IK) based approaches however allow 
the precise placement of end effectors as constraints 
[3].  IK solvers attempt to resolve constraints within 
a constraint system, a problem compounded by the 
existence of zero or more solutions [3]. 
 
Kinematics based solvers can be classified as 
analytical, often resorting to reduced coordinate 
formalisms, or numerical, using iterative approaches 
to solve a system of constraints.  An important 
aspect of this is how the constraint is represented.  
This work builds on previous work in joint 
constraint modelling by extending quaternion 
abstractions of phenomenological joints (whose 

behaviour can be modelled without reference to the 
underlying joint anatomy).  Artificial Neural 
Network (ANN) techniques are used to learn vector 
field functions that describe the joint’s behaviour 
and correct invalid joint configurations directly in 
quaternion space without resorting to iterative 
approaches.   
 
1.1 Previous work 
 
Primitive joint constraints have been parameterised 
using Euler angles [7-9]. However inter-dimensional 
dependencies are not represented [10] and 
singularities or “Gimbal Lock” are encountered [11]. 
Inter-dimensional dependencies between Euler angle 
components can be expressed using equations [12], 
such equations can provide mathematical 
descriptions of rotational constraint boundaries. 
Here geometric functions are fitted to a given 
dataset, examples include spherical [13] and conical 
polygons [1, 14]. 
 
Approaches such as special orthogonal matrices 
have been used to overcome the problem of 
singularities [2, 15].  More recent research has 
focused on the use of quaternions to model rotations 
and joint constraints. Quaternion algebra allows 
rotational models to be represented without the 
presence of Gimbal Lock [11].  Quaternions are an 
extension of complex numbers, composed of 1 real 
and 3 imaginary components where q = <s, i, j, k>.  
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Multiplying complex numbers results in rotation in 
the complex plane, giving rise to the complex 
identity i^2 = -1.  This is extended in a subset of 
quaternion space, where all quaternions are of unit 
length, to i^2 = j^2 = k^2 = -1. Cyclic-coordinate-
decent, a IK technique popular in real time 
applications, was implemented with a set of simple 
quaternion based constraints by Lee [16].  
 
Lee [16]  decomposes a single quaternion into two 
quaternions each representing rotation in a single 
plane (effectively swing and twist for conic and 
axial constraints). In each case the centre of the 
constraint is known, a quaternion describing the 
swing of the joint can be created based on the angle 
between the centre and its image rotated by the 
subject quaternion and the axis calculated from the 
cross product of the constraint centre and its rotated 
image. The second quaternion representing the 
rotation around the axis can then be calculated by 
calculating the twist alone, (removing the swing 
component) the axis and angle of this quaternion can 
then be calculated. Conic, axial and revolute 
constraints are defined and can be used to model 
basic constraints, more complex constraints can be 
defined with a union of these basic types.  
Interrogation of these shapes (to ascertain the 
validity of a joint configuration,) is presented, but no 
method of calculating a correction to the nearest 
valid orientation is defined.  
 
Liu and Prakash [17] build on Lee’s work.  Using a 
sampled boundary they create a function to constrain 
the decomposed quaternion that can be used for both 
constraint validation and clamping to the boundary. 
 
In the quaternion iso-surface approach of Herda et al 
[3, 18] limb rotations were recorded and represented 
in quaternion space.  A set of four-dimensional unit 
quaternions describing the valid joint rotations are 
projected to a cloud of points in three-dimensions. 
This overcomes the problem of ambiguity in 
quaternion space and allows the creation of an iso-
surface surrounding the cloud of valid points 
defining the boundary between valid and invalid 
rotations. An iterative approach can then be 
employed to resolve invalid joint configurations. 
 
Johnson [19] also reduced the dimensionality of the 
quaternion by projecting one half of the unit 
quaternion hyper-sphere onto a three-dimensional 
tangent space.  A set of quaternions expressing valid 
joint and pose constraints are then generated. 
Constraints are based on the maximum deviation 
from the mean of the collected data and corrections 
implemented by recursively moving an invalid point 
closer to the mean. 
 
Artificial Neural Networks (ANNs) have been 
applied to IK and some approaches have included 

joint constraint using both recurrent [20-26] neural 
networks with unsupervised learning and feed 
forward [27, 28] neural networks with supervised 
learning.  Feed-forward network architectures such 
as that of the Multi-layer Perception have been 
popular since their resurgence in the mid eighties 
[29].   These are trained to give certain outputs in 
response to given inputs by repeatedly adjusting the 
strengths of the interconnections between neurons.  
This optimises a boundary delineating regions 
within a multi-dimensional feature space.   
 
Though ANNs have been successfully applied to 
various problems, no analytical rule has been 
developed governing the optimal topology of the 
network [30].  Large neural networks with high 
connectivity show improved approximation but poor 
generalization while smaller ANNs with low 
connectivity show better generalization capabilities 
but poor approximation.  
 
Huber, Mayer and  Schwaiger [30] attempted to 
solve to this problem by means of Evolutionary 
Algorithms (EA) which search for a problem-
adapted neural network topology. EA are used to 
evolve the topology while traditional a traditional 
supervised training is used on each of the networks 
in the evolved population. 
 
The paper is structured as follows.  Section 2 
provides a description of our methodology with 
reference to the techniques employed.  Section 3 
outlines the experiments carried out and their results 
while Section 4 discusses and draws conclusions 
from these results.  
 
 
2. METHODOLOGY 
 
2.1  Constraint Modelling  
 
This work extends our previous work by modelling 
discontinuous vector fields in quaternion space [31, 
32].  In this scheme, a joint is modelled as a single 
unit-length quaternion that describes the relative 
rotation between the joint's constituent components.  
The constraint behaviour is learned using 
evolutionary ANN techniques from data-sets that 
describe the rotational extrema of the joint to be 
modelled. 
 
The behaviour of the joint constraint is modelled as 
a vector field in 4ℜ  that maps invalid rotations to 
the nearest valid rotation, as illustrated in Fig. 1. 
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Fig. 1 – Constraint boundary modelling in quaternion space. 

 
 
2.2 Evolutionary Algorithms 
 
NetJEN is a Java based implementation of NetGEN 
[30, 33, 34] developed by researchers at the 
University of Salzburg.  NetJEN [35] boasts several 
impressive features and provides an intuitive user 
interface in addition to reporting tools and other 
useful functionality. A brief outline of the system 
they developed follows based on published work 
[30, 33-40].  
 
Before GA techniques can be applied to topological 
evolution the ANNs underlying structure, the 
phenotype, must be considered as a genotype (a blue 
print for the construction of the network.) This must 
be encoded such that GA techniques can be applied. 
There are two common approaches; Indirect 
Encoding encodes a set of constraints that govern 
the construction of individual neural networks 
within the population. These constraints are evolved 
indirectly impacting on the neural networks 
generated.  In NetJEN Direct Encoding is used, a 
network topology is created and encoded minimising 
the decoding effort to map between the genotype 
and corresponding phenotype. The encoding scheme 
used is called the Modified Miller Matrix, an 
extension of the Miller Matrix [41].  
 
The genome structure comprises Learn Parameters, 
which describe the values required to train the neural 
network. Activation Function Template Parameters 
are used to describe one or more activation functions 
present in the network. Neuron Parameters indicate 
the type of neuron and Structure Parameters 
explicitly specify each connection within the 
network [34]. Markers (binary inhibitors) are used to 
regulate the expression of wild-type genes, for 

example hidden neurons, while other problem 
dependent genes such as output neurons are fixed 
[34].  As a result the bit string includes some non-
coding regions (Introns), these have been shown to 
reduce the effects of crossover and are common in 
biological systems [38-40]. 
 
The structure and neuron parameters are represented 
by a linearized binary adjacency matrix [34] as 
shown in Fig. 2. As the network architectures are 
feed-forward the triangle above the main diagonal 
must be zero, the main diagonal is used to represent 
the activation function index (zero if not expressed) 
[34].  The maximum size of the network is set in 
advance and so the size of the structures does not 
change during evolution.  The activation function 
template parameters and activation functions were 
not evolved during the following experiments but 
are included in descriptions of the genome for 
completeness 
 

 
Fig. 2 - The Genotype/Phenotype mapping, here the presence of a 
one in indicates a forward connection from the node identified by 
the row number to the node identified by the column number. As 
there are no links from a node to itself the main diagonal 
represents the Activation Function (AF) Index is the index of the 
activation function of a given neuron. The above figure shows all 
the notes of the system node 4 however despite having an 
activation function is not part of the generated phenotype is not 
represented in the genotype as it has no input connections. The 
image reproduced from Mayer and Schwaiger [34] with their 
permission. 

 
The system comprises of a Simple Genetic 
Algorithm (or SGA), the Genotype Phenotype 
Mapping and the Neural Network Manager.  The 
Neural Network Manager (NNM) in NetGEN was 
the Stuttgart Neural Network Simulator (SNNS) [42], 
and the SGA from Smith et al [43] an 
implementation of previous work by Goldberg [44]. 
In the Java implementation the NNM used is 
BOONE, developed by August Mayer at the 
University of Salzburg.  
 
The SGA generates blueprints for a random 
population of ANNs which are validated and passed 
to the NNM where they are constructed and trained 
using Resilient Back-propagation [45].  The SGA 
then assigns fitness values to each network using a 
fitness function.  This Composite Fitness Function 
comprises a measurement of the networks 
performance (Model Fitness) and a complexity 
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regularization term (Complexity Fitness,) as 
expressed in equation 1. 
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In equation 1, F is the fitness of the neural network 
εm is the Model Error (Sum Squared Error or SSE) 
and εc the complexity regularization term. εc = 
|Ctotal| with Ctotal being the total set of neural network 
connections. The regularization weight (α2) has 
been shown to be most effective in the range 0.001 
to 0.01 to guide the evolution towards networks of 
low complexity [34].  The error weight (α1) is 
derived from regularization weight (α2). 
 
The SGA uses Binary Tournament Selection to 
select the best networks of the population to breed, n 
individuals (typically two) are selected and the 
individual with the highest fitness is placed in the 
breeding pool.  The selection itself is weighted, the 
higher an individuals fitness the more likely it is to 
be chosen [46].  Binary Tournament Selection has 
been found to be superior to Proportional Selection 
methods [39]. 
 
An entirely new generation of individuals is created 
through crossover and mutation of the fittest 
individuals selected from the last generation.  This 
completes the evolutionary cycle that continues for a 
specified number of generations. It should be noted 
that the fittest individuals of the last generation will 
appear in the breeding pool more than once and 
inbreed generating identical offspring in the new 
generation [46]. This ensures that the best genetic 
patterns are passed on to the next generation.  
Crossover and mutation are implemented on a 
linearized Modified Miller Matrix allowing standard 
two-point crossover, this has a more global effect on 
the bit string than the exchange of rows and columns 
used in the original Miller Matrix approach [38-40].   
 
2.3 Vector Field Modelling 
 
A vector field is defined as a mapping that assigns 
each input to an output via some vector function 
[47]. Dynamic behaviour (such as that exhibited in 
joint constraints) can be described as a change in 
state that is determined by a function dependent on 
the current state. There is clear similarity between 

the mappings required for vector fields and those 
involved in the description of the kinematic 
behaviour of joint constraints [48]. 
 
Feed forward [48, 49] and Adjoint [50, 51] ANNs 
have been used to approximate continuous two 
dimensional vector fields and have been successfully 
used to reconstruct continuous vector fields in three 
dimensions [52]. 
 
Neural networks have been utilised for physics 
based animation by Grzeszczuk, Terzopoulos and 
Hinton [53]. In their approach complex forward 
dynamics equations required for physics based 
animation were replaced with neural networks, 
predicting the complex vector mapping from the 
current state to a future state based on the current 
state, the applied force and external forces. 
 
In earlier work the authors successfully used 
topologically evolved neural networks to 
approximate discontinuous vector fields representing 
corrective constraints with inter-dimensional 
dependencies in one, two and three dimensions [32].  
 
2.4 Neural Network Configuration and Training 
 
The neural networks that were evolved during 
training consisted of three layers, an input layer, 
hidden layer and output layer.  The nodes of the 
hidden layer have sigmoidal functions, while those 
of the output layer have linear functions. The 
number of hidden nodes and connection topology 
are initially randomised then evolved using EA.  The 
weights of the interconnections are also initially 
randomised then updated using the resilient back-
propagation algorithm.  
 
The input and output layers contained four nodes 
representing the four components of a unit 
quaternion. The input quaternion describes the 
current joint configuration while the output 
quaternion response is dependent on the validity of 
the input orientation with respect to the learned 
constraint model. If the input quaternion is 
recognized as being invalid, the network response 
represents a quaternion rotation to correct the input 
quaternion to the nearest valid quaternion rotation.   
However, if the input quaternion is valid, the 
network outputs the identity quaternion, which 
represents no rotation.  In effect, the network learns 
an implicit boundary between valid and invalid joint 
configurations.    
 
The number of generations, training epochs and 
hidden nodes were restricted to reduce training 
times. Each experiment was repeated five times to 
ensure the consistency of the results. The 
regularization weight was chosen based on 
publications by the systems authors [34], as was the 
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learning rate [39], the stopping MSE for the 
networks was identified though experimentation.  
The size of the population, number of generations 
and the number of training patterns were suggested 
by a co-author of the NetJEN system Dr. Helmut 
Mayer in private correspondence. The evolution and 
training parameters were configured as shown in 
TABLE I  

TABLE I  
EVOLUTION AND TRAINING SETTINGS 

Parameter Description Value 
Regularization 
function 

Secondary fitness 
function.  

Number of 
links 

Hidden Nodes Maximum no. of 
hidden nodes. 

20 

Number of 
Generations 

No. of generations 
over which the 
ANN were 
evolved. 

50 

Population 
Size 

Size of the 
populations 
evolved. 

20 

Fitness 
Function 

Primary fitness 
function.  

Inverse SSE 
 

Regularization 
Weight 

Regularization 
weight (α2) this 
term controls the 
effect network size 
on the fitness 
function.  

0.01 

Evolve 
number of 
Links 

Networks are 
pruned down from 
fully connected 
networks.  

On 

Evolve 
number of 
Hidden Nodes 

Evolves the no. of 
hidden nodes.  

On 

Evolve 
number of 
epochs 

Evolves the no. of 
training epochs 

On 

Learning Rate Learning rate used 
when training the 
ANN.  

0.1 

Stopping Error MSE at which the 
ANN are stopped.  

0.001 

Training 
Function 

Training function 
used to train the 
weights of the 
ANN.  

Resilient 
back-
propagation 

Max Epochs Maximum number 
of training epochs 

500 

 
 
Through experimentation, it was determined neural 
networks with sigmoid activation functions in the 
hidden layer and linear activation functions in the 
output layer produced good results.  This 
distribution of activation functions was used 
throughout these experiments a similar distribution 
were employed for vector field approximation by 

Grzeszczuk et al [53], linear output layers have also 
been used with bi-polar sigmoid hidden layers [48, 
49]. Each experiment was repeated five times to 
ensure the consistency of the results. 
 
3. RESULTS  
 
3.1  Regular Constraint Boundaries 
 
Neural networks were successfully evolved and 
trained to model discontinuous vector fields 
representing regular (spherical) constraints. This is 
reflected both by the low Mean Squared Error 
(MSE) values and the structure of the neural 
networks - indicated by the number of hidden nodes 
as shown Fig. 3.  The number of hidden nodes was 
limited to reduce training times (as indicated in 
TABLE I,) and the size of the hidden layer for each 
trained network was close to this maximum 
throughout.  The number of hidden nodes appears to 
increase with the MSE (as shown in Fig. 3).  This 
indicates that more complex networks were required 
for the given constraint ranges and that the high 
error is contributed to by the restriction on network 
size. 
 

 

Fig. 3 – Graph showing the effect of range variation on MSE and 
network complexity (hidden nodes). 

 
The increase in MSE between a 20° and 90° 
constraint radius does not correspond to changes in 
the constraint size.  To understand this behaviour 
further, correlations are sought with respect to the 
distribution of training patterns in quaternion space.  
Principle Component Analysis (PCA) gives a set of 
eigenvectors that describe the principle directions of 
variation while the eigenvalues describe the 
contribution of each vector to the overall variation of 
the dataset.  The eigenvectors produced were 
compared to the identity quaternion and the change 
in rotation between them noted. The fourth principle 
component has an eigenvalue of zero and is thus 
ignored.  
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Fig. 4 – Graph showing the effect of range variation on the MSE 
and the change in orientation of the principle component. 

 
MSE is a holistic measurement of error masking 
regional variations in the error over the vector field.  
To quantify these errors, we observe the behaviour 
of a virtual joint constrained by the trained neural 
networks.  The l2norm (Pythagorean distance) 
between the ideally corrected and neural network 
corrected endpoint of a virtual limb is observed.  
This more direct comparison demonstrates that the 
error is highest around the boundary separating the 
valid and invalid regions, as shown in Fig. 5.  
 

 

Fig. 5 – Plot showing the four-dimensional Pythagorean error 
between the ideal quaternion correction and the corresponding 
neural network output. 

 
Fig. 6 illustrates the ideal and actual correction 
vectors for a virtual limb constrained by a regular 
boundary constraint.  The dark dashed line shows 
the result of the corrections from the training data 
while the solid line shows the results of the neural 
network corrections, both lines lighten from their 
initial positions to their corrected positions.  The 
boundary can be clearly identified and it is noted 
that all corrected rotations reside on or close to the 
constraint boundary.  
 

 
Fig. 6 – Ideal and neural network corrected rotations.  Ideal 
corrections are shown as dark dashed lines; neural network 
corrections (for each pattern) are shown as light solid lines. 

 
The network’s behaviour can be further understood 
by looking at the distribution of training patterns.  
Fig. 7 shows the test inputs for a regular constraint 
with 20° radius.  The input rotations of the test set 
are shaded according to their error when corrected 
by the neural network (compared to the ideal 
corrections of the test set).  The darker points 
represent lower error and lighter points represent 
higher error.  Salient regions of higher error are 
those around the constraint boundary and in the 
region diametrically opposite the constrained region 
on unit sphere.  
 

 
Fig. 7 - Test patterns shaded to represent the l2 norm (i.e. error) of 
the relative neural network output. The darker patterns represent 
low error and the lighter ones high error. 
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Overlaying the patterns used in training (‘x’) and 
evolution (‘+’) of the neural network it is observed 
that regions of sparse training data correspond to 
regions of high error.  In Fig. 7 the camera is placed 
inside the same sphere of points shown in Fig. 6.  
High error points are observed in an area where 
there are few training set points.  Low error points 
are observed in regions well populated with training 
points.  The validation set points (‘+’), used to 
assess network fitness, have less effect. 
 

 
Fig. 8 - Regions displaying poor performance.  Dark squares 
depict low error and light spots high error. Training patterns (‘x’) 
and validation patterns (‘+’) are overlaid. 

 
Experiments were carried out to ascertain the effect 
of aligning the constraint centre of the virtual limb 
with each of the principle axes in 3D space.  The 
variations in the effects of the principle components 
are indicated by their eigenvalues, where smaller 
values indicate a more evenly distributed dataset.  
When considered in relation to the average 
Pythagorean error there is a strong indication that 
the performance of a neural network is linked to the 
distribution of training patterns in quaternion space 
(as shown in Table II). 
 

TABLE II  

EFFECT OF EIGENVALUE VARIANCE ON MSE 

Limb 
Start 
Alignment 

Variance of 
Eigenvector 
Contributions 

Average 
MSE 

Average 
Pythagorean 
Error 

Y 310.9959 5.61E-04 0.023673 
Z 311.4465 4.60E-04 0.02448747 
X 317.2301 4.88E-04 0.0257511 

 
The results show that the networks performance 
(indicated by the average Pythagorean error for all 
patterns) increases as the variation in eigenvalues 
increases, i.e. as the dataset becomes less evenly 
distributed in quaternion space.  

 
The quaternion representation on which the neural 
networks are trained is inherently redundant.  
Quaternions occupy an S3 hyper-sphere in four-
dimensional space, representing 4π rotations, so 
quaternions on opposite sides of the S3 hyper-sphere 
(q and –q) represent identical rotations [3].  There is 
ambiguity between the position in quaternion space 
and the rotation represented. 
 
The datasets used to train the neural networks 
consist of valid and invalid quaternions created from 
a simulation of a 3D virtual joint.  In mapping the 
joint’s valid and invalid positions to quaternion 
space, multiple regions may be created due to the 
inherent redundancy of the quaternion 
representation.  This is turn may result in multiple 
constraint boundaries on the quaternion sphere.  
 
Experiments were undertaken to ascertain the effect 
of these factors on neural network approximation.  It 
was postulated that mapping quaternions to one side 
of the hyper-sphere would simplify the four-
dimensional vector field and improve training.  We 
refer to quaternions that are not mapped as 
ambiguous (AMB) and those that are mapped as 
non-ambiguous (non-AMB).   
 
The results summarised in Fig. 9 indicate that 
mapping quaternions to one side of the hyper-sphere 
increases the error on larger constraint ranges.  To 
help interpret these results, PCA was performed on 
ambiguous and non-ambiguous datasets over the 
tested ranges.  The results show that below 90° no 
points were mapped and the PCA gave identical 
eigenvectors and eigenvalues.  However above 90°, 
an increase in mapped points results in an increase in 
network error and an increase in the difference 
between principle components.   
 

 
Fig. 9 - A comparison of the MSE recorded over various ranges 
for ambiguous (AMB) and non-ambiguous (non-AMB) results, 
plotted against the length of the difference quaternion between the 
principle components of each. 
 
The length of a four-dimensional vector representing 
the difference between the principle component 
matrices (4 x 4) for each set (ambiguous and non-
ambiguous) is used as a metric.  In Fig. 9 a clear 
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correlation can be observed between the increasing 
difference in the distribution of patterns in 
quaternion space and the increase in error.   
 
To further understand how the patterns in quaternion 
space are changing, the orientation (with respect to a 
static unit vector) and influence of the principle 
components for a constraint radius was investigated.  
Fig. 10 and Fig. 11 show the difference in the 
orientation of the principle components and their 
contribution compared to the average MSE of the 
ambiguous and non-ambiguous datasets. That is, the 
percentage of the variation that can be attributed to 
the component. 
 
 

 

Fig. 10 -The difference in the orientation of principle components 
plotted against the average MSE for the ambiguous (AMB) 
dataset (with quaternions on both sides of the hyper-sphere,) and 
the non-ambiguous (non-AMB) dataset (with all quaternions on 
one side of the hyper-sphere.)  

 
Mapping quaternions to one side of the hyper-sphere 
has a major effect on the orientation of the third 
principle component.  There is initially no difference 
in the distribution of the datasets, however above 45 
degrees the error on the ambiguous and non-
ambiguous datasets diverges, (as shown in Fig. 10) 
At the same point the orientation of the third 
principle component and to a lesser extent the first 
and second principle components begins to change.  
 

 

Fig. 11 -The difference in principle components contribution 
plotted against the average MSE for the ambiguous (AMB) 
dataset (with quaternions on both sides of the hyper-sphere and 
the non-ambiguous (non-AMB) dataset (with all quaternions on 
one side of the hyper-sphere.) 

 
There are also changes in the contribution of the 
principle components once again at the same point 
that the plots of error on the ambiguous and non-
ambiguous datasets diverge, (as shown in Fig. 11). 
Changes in the principle component direction and 
the contribution of the principle components indicate 
that the distribution of the data in quaternion space 
changes.    
 
3.2 Irregular Constraint Boundaries 
 
In human anatomy most of the rotational boundaries 
encountered are irregular. Therefore the 
performance of our technique on such boundaries is 
an important consideration. In the following 
experiments irregular boundaries designed to test the 
capabilities of our constraint modelling approach are 
implemented.   
 
Experiments using an ambiguous dataset, where 
invalid rotations were corrected to the closer of two 
boundaries (one on either side of the quaternion 
hyper-sphere), did not train successfully. Based on 
the results of earlier experiments the valid 
quaternion and the boundary to which invalid 
quaternion were corrected were forced to inhabit the 
same side of the quaternion hyper-sphere.  Invalid 
quaternions from both hyper-spheres are corrected to 
the same boundary giving a continuous vector field 
in this region.  
 
The results show the neural network was able to 
learn the irregular boundary, though the error was 
higher and the networks evolved subsequently more 
complex than in the regular boundary case (as 
shown in Table IV).  
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TABLE  III 

 COMPARATIVE PERFORMANCE ON TEST DATA 

 Min / Max 
Error  

Avg. 
Error 

Avg. 
Hidden 
Nodes 

Avg. 
Pythag. 
Error 

Regular 4.79E-05 / 
7.86E-04 

3.31E-04 16 0.0197 

Irregular 9.41E-03 / 
1.41E-03 

1.24E-03 18.4 0.0430 

 
 
Visualisation of the error demonstrates similarities 
with the regular boundary case, where errors are 
clustered in regions of sparse training data and 
around the constraint boundary.  An additional 
region of high error is also present where rotations 
are corrected towards the concave region of the 
boundary (as shown in Fig. 12). 
 

 
Fig. 12 - Visualisation of error distribution. Test patterns depicted 
as squares graded according to their error (darker points represent 
higher error). Overlaid by training patterns (x) and test patterns 
(+). 

  
 
4.  DISCUSSION & CONCLUSIONS 
 
The results show that artificial neural networks 
trained with evolutionary genetic algorithms are 
capable of learning vector field models that can be 
applied to joint constraint problems.  This has the 
advantage that constraints can be described and 
corrected with neural network models using 
quaternion representations directly, without resorting 
to reducing the dimensionality of (or otherwise pre-
processing,) the quaternion as in Herda et al [18, 
54], Lee [16] and Johnson [19].  Unlike Lee [16] a 
method for correcting to a valid orientation is 
presented while avoiding the need for iterative 
methods as used by Herda et al [18, 54] and Johnson 
[19]. 
 

The results indicate that the distribution of the vector 
field in quaternion space has a significant effect on 
the complexity of the mapping and therefore the 
success of neural networks training.  PCA indicates 
that the fluctuations in error as the radii of the 
modelled regular constraint increases are the result 
of changes in orientation of the principle 
components and hence changes in the distribution of 
the data in quaternion space as shown in Fig. 4.  
Furthermore initial limb orientation results suggest 
that a more regular distribution (lower variance in 
the contributions of principle components) may 
results in improved quaternion learning (as shown in 
TABLE II). 
 
The regional continuity of the mapping has a 
significant effect on the complexity of the vector 
field.  The failure of experiments that implemented 
boundaries on both halves of the quaternion hyper-
sphere indicates that the addition of ambiguity and 
additional discontinuities in quaternion space 
increase the complexity of the mapping.  Forcing all 
quaternions to one side of the quaternion hyper-
sphere produce poor results as the radii of the 
constrained region increased (as shown in Fig. 9). 
The PCA of these datasets shows a change in their 
distribution coinciding with the increase in MSE 
suggesting that discontinuity or ambiguity have been 
introduced to the dataset (again shown in Fig. 10).   
 
In both the regular and irregular boundary 
experiments significantly improved results were 
obtained when quaternions on either side of the 
hyper-sphere were corrected to a single boundary.  
This preserves the continuity of the distinct regions 
and produces superior results.   In conclusion 
evolved neural networks are capable of learning 
discontinuous vector fields in quaternion space 
provided the dataset is appropriately distributed and 
regional continuity is maintained.   
 
This work has implications in a number of areas 
where accurate anatomical joint models are required. 
In animation for example where character specific 
models are required to reduce animation effort (in 
avoiding unnatural limb orientations) and to 
maintain consistency with live action characters 
(where motion is limited due to clothing, age or 
injury).  
 
The neural network approach was in the regular 
boundary case slower than the dataset generation 
program due in part to the simplicity of the dataset 
generator and more importantly to the design of 
BOONE (Basic Object Orientated Network 
Evaluator) a part of NetJEN.  BOONE (the NNM) 
sequentially fires nodes until there are no further 
changes in any nodes output to allow the creation, 
evolution and evaluation of recurrent networks.  
However BOONE is significantly faster than the 
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corresponding dataset generator in the case of the 
irregular boundaries, indicating that the technique 
may have significant advantages in anatomical 
applications were simplistic geometric constraints 
are not sufficient.  
 
In future work we will continue to address the neural 
network modelling of discontinuous vector fields in 
quaternion space for anatomical joint constraint 
focusing on the creation of appropriately distributed 
datasets.  
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