Code Reviews to Improve Solo Programming

Dr. Glenn L. Jenkins

2011
Introduction

• Programming difficult for students
 - High attrition rates (Hundhausen et al., 2009, Trytten, 2005)

• Research into pedagogical techniques
 - Collaborative learning approaches (Huggins, 2009, Hundhausen et al., 2009, Sheard et al., 2009)
 - Pair programming (McDowell et al., 2002, McDowell et al., 2006, Williams and Upchurch, 2001)

• Common Problems
 - Pair/Group breakups and their effect on retention (Jacobson and Schaefer, 2008),
 - Contribution of individual students to joint assignments (McDowell et al., 2006)
 - The effect on progression (Simon and Hanks, 2008)
Code Reviews in Pedagogy

• Software Inspections / Peer Code Reviews
 - Are “reviews whose objective is program defect detection” (Sommerville, 2007b).
 - Provide a static test of the code

• Use in Pedagogy
 - Peer Code reviews
 • Trytten (2005) - peer code review
 • Wang et al. (2008) - a loose implementation of formal inspections
 • Hundhausen et al. (2009) - pedagogical code reviews
 - Individual code reviews
 • Turner et al. (2008) - individual code reviews
 • Humphrey - code reviews as part of the Personal Software Process or PSP (Humphrey, 1997)
Methodology

• Introduction to Programming
 - Year 1 (BSc/HND) Software Engineering and (BSc) Games Development
 - Assignment 1 (term 1 - to Christmas) divided into 4 worksheets

• Pair Programming (2 of 4 worksheets)
 - Introduced last year
 - Improvements in retention but not average marks
 - Possibly similar to that observed by McDowell et al (2006)

• Individual Code Reviews
 - Introduced this year
 - Marks associated with code review to encourage students (5%)
 - Code review constructed alongside module and part of tutorials
Results

<table>
<thead>
<tr>
<th></th>
<th>Year 2008</th>
<th>Year 2009</th>
<th>Year 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term 1 Average</td>
<td>61.40</td>
<td>64.12</td>
<td>63.71</td>
</tr>
<tr>
<td>Term 1 Std. Dev.</td>
<td>21.88</td>
<td>15.95</td>
<td>11.57</td>
</tr>
<tr>
<td>Term 1 Retention</td>
<td>58.33</td>
<td>73.17</td>
<td>88.24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Worksheet</th>
<th>No Code Review</th>
<th>Code Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worksheet 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>54.57</td>
<td>69.07</td>
</tr>
<tr>
<td>No of Students</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Worksheet 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>52.57</td>
<td>64.36</td>
</tr>
<tr>
<td>No of Students</td>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>
Results 2

• Summary of Survey Results
 - Improved quality of program (Agree - 75%)
 - Understood content (65%) and terminology (66%)
 - Liked best
 • Provided opportunity to strategically check for errors (41%)
 • Reminded them of things forgotten (33%)
 - Liked least
 • Time required to undertake the process (65%)
 • Understanding terminology (33%)
Results 3

• Summary of Survey Results continued ...
 - Top reason for not undertaking
 • Focused on assignment (47%)
 • Did not understand (36%)
 - Would use again (90%)
 - Consider code reviews useful (95%)
Conclusions and Future Work

• Improved Programming
 – Observed an increase in code quality
 – Some evidence of an increase in retention
 – Sensitivity of Marking Scheme

• Future work
 – Evaluate the application of this technique at the end of the year
 – Standardize and minimise documentation
 – Apply these techniques to a larger sample