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Abstract 

Identifying and mitigating the difficulties experienced by novice programmers is an active 
area of research that has embraced a number of research areas. The aim of this research 
was to perform a holistic study into the causes of poor performance in novice 
programmers and to develop teaching approaches to mitigate them. A grounded action 
methodology was adopted to enable the primary concepts of programming cognitive 
psychology and their relationships to be established, in a systematic and formal manner. 
To further investigate novice programmer behaviour, two sub-studies were conducted 
into programming performance and ability. 

The first sub-study was a novel application of the FP-Tree algorithm to determine if 
novice programmers demonstrated predictable patterns of behaviour. This was the first 
study to data mine programming behavioural characteristics rather than the learner’s 
background information such as age and gender. Using the algorithm, patterns of 
behaviour were generated and associated with the students’ ability. No patterns of 
behaviour were identified and it was not possible to predict student results using this 
method. This suggests that novice programmers demonstrate no set patterns of 
programming behaviour that can be used determine their ability, although problem 
solving was found to be an important characteristic. Therefore, there was no evidence 
that performance could be improved by adopting pedagogies to promote simple changes 
in programming behaviour beyond the provision of specific problem solving instruction. 

A second sub-study was conducted using Raven’s Matrices which determined that 
cognitive psychology, specifically working memory, played an important role in novice 
programmer ability. The implication was that programming pedagogies must take into 
consideration the cognitive psychology of programming and the cognitive load imposed 
on learners. 

Abstracted Construct Instruction was developed based on these findings and forms a new 
pedagogy for teaching programming that promotes the recall of abstract patterns while 
reducing the cognitive demands associated with developing code. Cognitive load is 
determined by the student’s ability to ignore irrelevant surface features of the written 
problem and to cross-reference between the problem domain and their mental program 
model. The former is dealt with by producing tersely written exercises to eliminate 
distractors, while for the latter the teaching of problem solving should be delayed until 
the student’s program model is formed. While this does delay the development of 
problem solving skills, the problem solving abilities of students taught using this pedagogy 
were found to be comparable with students taught using a more traditional approach. 
Furthermore, monitoring students’ understanding of these patterns enabled micro-
management of the learning process, and hence explanations were provided for novice 
behaviour such as difficulties using arrays, inert knowledge and “code thrashing”. 

For teaching more complex problem solving, scaffolding of practice was investigated 
through a program framework that could be developed in stages by the students. 
However, personalising the level of scaffolding required was complicated and found to be 
difficult to achieve in practice. 

In both cases, these new teaching approaches evolved as part of a grounded theory study 
and a clear progression of teaching practice was demonstrated with appropriate 
evaluation at each stage in accordance with action research. 
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1 Introduction 

As Sheared, et al. [1] have observed: 

“Programming is clearly a difficult topic for many students, and is understandably a 
key area of computing education research.”  

An important starting point in grounded theory study is maintaining an open mind and 

avoid imposing preconceptions on the development of the theory while “…ensuring that 

the knowledge and experience you possess is used effectively…”[2]. A researcher must 

begin by acknowledging their existing assumptions, experience and knowledge of the 

area as an “effective mechanism for establishing where you stand in relation to your 

proposed study”[3]. In the author’s experience over a number of years of teaching 

programming to first year undergraduate students the bimodal nature of student results 

has been quite notable. This reflects the similar experiences of many teachers across 

many courses across institutions, and in research studies[4]. For a significant percentage 

of students the art of programming proves overly challenging. The problems of high 

failure rate was the subject of a detailed investigation in 2001 by the McCracken working 

group in what has become the most cited paper [5] in the SIGCSE section in the ACM 

library [6]. In this paper, the McCracken working group assessed the programming ability 

of a large number of first year computer science students across four universities. The 

students were required to write programs that parsed and evaluated arithmetic 

operations. Most of the students performed poorly, with the average student score being 

21%. They concluded that the majority of programming students failed to gain even the 

most rudimentary skills required to get a program ready to run. Furthermore, the results 

were independent of country and education system. Although this study was unable to 

identify specifically why these students struggled, they did note that the students were 

weak in problem solving skills i.e. following the five step iterative process: 

1. Abstract the problem from its description. 

2. Generate sub-problems 

3. Transform sub-problems into sub-solutions 

4. Re-compose 

5. Evaluate and iterate 
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Programming requires abstraction of a problem into a form suitable for conversion into a 

program. As Lui, et al [7] observes: 

“Computer programming is all fabricated and finds few parallels in the physical 
world…” 

The abstract nature of programming has been the subject of a number of research papers 

[8, 9]. There is broad agreement that abstract thinking is a core component of 

programming and a difficult skill for novice programmers to develop.  

But, how do we define abstract thinking in the context of programming? To investigate 

this, we have to consider the role of cognitive psychology [10], working memory [11], 

fluid intelligence (gF) [12] and the mental models constructed by programmers [13]. 

The questions posed are: 

 Is success or failure predictable? If so can those identified as being at risk of failure 

be given additional assistance? 

 Is it possible that these students may have benefited from a different teaching 

approach? 

Research such as that conducted by the McCracken working group[5], has found no single 

explanation for the difficulties experienced by novice programmers. Thus, the research 

contained in this thesis started with no preconceived ideas that a “silver bullet”[14] would 

be found to solve all novice programmers’ problems.  A more holistic viewpoint was 

taken, and as such a broad overview of the research area was conducted using a 

grounded theory approach. Originally, grounded theory espoused the idea that the 

research problem itself must “emerge” from the research [15]. However, a more middle 

ground approach is to “state your research question broadly and in terms that reflect a 

problem-centered perspective of those experiencing or living the phenomenon to be 

studied”[3].  The “general” aim of the research presented in this thesis was to conduct a 

study into the process of learning to program, and to determine whether any factors or 

patterns of behaviour were associated with or indicative of success. 

Grounded research allows us to create theories that may help explain the poor 

performance of students. These theories can be further explored, confirmed and if 

validated form the basis of approaches to mitigate the underlying causes of the problems. 

The action research methodology addresses the process by which an individual’s practice 
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(or work), is modified and the effects of these changes are evaluated. Applying a mixed 

methodological approach, the changes to be made are driven by the theories generated 

from the grounded action research. In the context of the research presented here, this 

involved studying the problem(s) encountered in teaching programming through 

grounded research and determining the actions to be taken to try to improve the 

teaching approach (practice). Thus, the rationale for change was developed and 

documented during the grounded  theory phase, while the actions taken as a result of this 

research and the effects of those changes were documented to form the action research 

[16].  The aim and objectives of the research presented here, have been refined as a 

result of the research itself.  

The aim of this study is to investigate the causes of poor novice programmer performance 

and develop approaches to mitigate them. To meet this aim, three objectives had to be 

met: 

1. To develop a systematic understanding of the cognitive psychology associated 

with learning to program and to review current pedagogy to identify limitations in 

the current approaches. 

2. To analyse the factors associated with poor performance and to develop an 

understanding of how these relate to cognitive psychology and how they impact 

on the student learning experience. 

3. To change current teaching practice by applying principles and concepts from the 

cognitive psychology and to critically evaluate the effectiveness of the new 

approaches adopted. 

In Chapter 2, the Literature Review begins by investigating existing background research 

to set the context for this study. It contains discussion of research into abstraction, 

cognitive psychology, software comprehension, problem solving and pedagogy.  The 

structure of this review reflects the results of the grounded theory research, since this is 

the most appropriate way of exploring those results. Hence, a number of concepts and 

their relationships are illustrated by figures generated from that research. 

Chapter 3 discusses the research methodology used for the research undertaken and 

presented in this thesis. In this case, a mixed methodology was “selected” and this 

chapter presents arguments for this approach. Perhaps a more accurate description is 

that the work was inspired by this methodology since some modifications were made. 
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One implication of the selected approach was that notes or memos were made as 

secondary data sources were analysed.  These have been written into the literature 

review, but in-line with grounded theory these notes were first coded and classified. The 

primary research contains a number of experiments that were performed to obtain more 

data in order to refine the analysis. In grounded theory terms this process is referred to as 

theoretical sampling, and provides support for the theories generated. These experiments 

are documented in Chapters 5 and 6. 

Chapter 4 describes the grounded research process employed and a new approach to 

visualizing the incident data gathered using an edge-weighted graph. An overview of the 

results of the grounded research is provided and the resultant research phases are 

introduced. 

Chapter 5 identifies a number of metrics to assess student performance and analyses 

their effectiveness in measuring and predicting student difficulties. The research involved 

using data mining pattern analysis to determine whether specific patterns of behaviour 

could be associated with good student performance. 

Chapter 6 evaluates the role of working memory in programming, by using code and 

Raven Matrices tests to determine if there is a correlation between the results. A 

correlation would suggest that some students have an inherent advantage in problem 

solving within a programming context.  

Chapter 7 and Chapter 8 apply the grounded research findings to the development of 

teaching approaches aimed at overcoming the constraining factors affecting student 

performance. In the first instance, by abstracting the teaching of software constructs and 

concentrating on building the student’s mental model of them. The problems presented 

at this level, were very short and basic with an emphasis on repetition to aid recall. While 

in Chapter 8, the focus switches to the more advanced problem solving required for more 

real-world problems and the provision of appropriate scaffolding to support this learning. 

Chapter 9 outlines the stages of development of teaching practice and the research that 

influenced and motivated these changes. This chapter also suggests a course structure for 

teaching programming based on the action research conducted.  
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Chapter 10  provides an overview of the results, overall conclusions and describes areas 

where future research should be conducted to expand upon the findings presented in this 

thesis.  

The contributions to knowledge are summarised below: 

 Problem solving is the key indicator of good novice programmer performance, and 

no other patterns of behaviour, as measured by common performance metrics, 

are associated with or are predictors of coding ability. 

 A correlation is demonstrated between Fluid intelligence (gF) (and working 

memory) to programming ability, providing evidence of both the importance of 

problem solving skills in programming and also offering an explanation for the 

bimodal distribution of marks often seen at the completion of programming 

courses aimed at novice programmers. An interesting conclusion being that some 

novice programmers have an initial inherent disadvantage that must be overcome. 

 A new Abstracted Construction Instruction pedagogy can be used to teach 

software constructs as patterns, supporting a more gradual learning of 

programming skills based on an analysis of software comprehension in the 

development of expertise. This research also investigated the teaching of problem 

solving skills in programming, and found that a key aspect of novice difficulties is 

the failure to recognise the difference between coding and problem solving, with 

many issues arising due to poor mapping between the problem definition (or 

domain) and the student’s mental model of the solution. 

 A new Structured Problem Solving pedagogy can be used to promote the 

development of advanced problem solving, by developing software frameworks to 

support scaffolding for practice. A clear motivational advantage of this approach is 

the creation of an environment within which problems emerge and can be 

identified by the students themselves. However, some limitations of the 

scaffolding for practice were also identified. 

In universities it is common to refer to the course being studied by a student as the 

“programme” and the individual units of study within it as “modules”. Thus a student may 

be enrolled on a Computer Science degree programme as part of which they are studying 

a module of introductory programming. For other institutions or educational sectors 

these terms may be alien. Given this thesis only considers the study of programming, any 
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potential confusion will be avoided by only using the term “course” and defining it as a 

unit of study forming part of the students’ overall studies. 
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2 Literature Review 

The literature review presented here is divided broadly into two halves. The first half is 

structured to reflect the grounded theory analysis and explores the relationships between 

the identified concepts. As illustrated in Figure 2-1 code abstraction was the most 

commonly occurring theme and is discussed in Section 2.1. Two concepts that are directly 

related to abstraction are software comprehension and problem solving skills i.e. mental 

models [17] , plans [18] and program goals [13, 19]. These are covered in Sections 2.4 and 

2.6 respectively. The nature of expertise and a comparison of novice and expert 

programmer behaviour is the subject of Section 2.4.6. Figure 2-1 also illustrates that there 

are different characteristics associated with novice and expert programmers. There is a 

relationship between expertise, the mental picture of the code and the background 

knowledge acquired through solving similar problems or from working in a similar 

context. Novices are more associated with weak problem solving skills and fixating on 

unnecessary details that prevent them from seeing the generic abstract solution.  

Memory, domain specific knowledge, the impact of surface features in problem solving 

and the effect of loading working memory when solving problems, are all topics related to 

cognitive psychology and are described in Section 2.2. 

 

Figure 2-1 Overview of Concepts 
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The second half of the literature review (starting at Section 2.7) discusses programming 

methodologies and teaching approaches, and investigates possible approaches to address 

the issues raised in the grounded theory analysis.  

2.1 Abstraction in Programming 

The importance of abstraction to programming is summed up by Dijkstra in his Turing 

Award lecture “The Humble Programmer”  [20]: 

“It has been suggested that there is some law of nature telling us that the amount of 
intellectual effort needed grows with the square of program length. But, thank 
goodness, no one has been able to prove this law. And this is because it need not be 
true. We all know that the only mental tool by means of which a very finite piece of 
reasoning can cover a myriad of cases is called “abstraction”; as a result the 
effective exploitation of his powers of abstraction must be regarded as one of the 
most vital activities of a competent programmer.” 

Abstraction allows programmers to develop solutions to a multitude of problems, and 

makes programs short and efficient to write. The challenge is to convert real-world 

problems into abstract solutions that can be executed as a program. By using abstraction 

a complicated problem can be reduced to a simpler concept which succinctly 

encapsulates the essential details of the problem. Being able to identify the key 

requirements of a solution is a difficult skill that requires practice [21].  

“Understanding that computation is merely symbol manipulation, and that the 
power of computers is predicated on a tremendous amount of abstraction, is crucial 
in understanding what computers can, and cannot, do.” [21] 

Unfortunately, as Ben-Ari [22] points out: 

“Abstraction is essential as a way of ‘forgetting’ detail, and software development 
would be impossible without it, but it seems to me that there must be an object 
oriented paradox: how is it possible to forget detail that you never knew or even 
imagined?” 

It seems reasonable to argue that Object Oriented Programming should be taught after 

standard procedural programming. Often introductory programming courses make use of 

GUI libraries, but this suggests a potential problem [22]. If students are struggling to build 

viable mental models for simple concepts such as variables, how will they build viable 

mental models for objects like radio buttons [22]. Furthermore, when abstraction is 

taught, it must not be assumed that the student will construct the same mental model 

the instructor has [22]. 
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Adelson [23] found that when recalling code, expert programmers used abstract 

representations while novices focused on the syntax of the code. The participants were 

asked to recall 16 random lines of code using a Multitrial Free Recall (MTFR) procedure. 

The code they were shown could be organised either conceptually into three programs or 

syntactically into five categories according to the key words that they contained. In the 

trial, experts clustered the lines into programs while the novices clustered them according 

to syntactic categories. 

 “With increasing expertise , there is a gradual change in people’s focus of attention 
from aspects that are not relevant to the solution to those that are” [24] 

Corritore et al [25] observed that novices develop concrete mental representations of 

program text, while more advanced novices use more abstract concepts. Hence, an 

important aspect of learning to program is the ability to apply abstract thinking to real-

world problems. Research by Koppleman et al [26], found that experienced programmers 

were able to separate and concentrate on individual levels of abstraction e.g. by creating 

separate functions to handle different aspects of the problem. However, novice 

programmers are unlikely to come up with these abstract solutions because they will 

“see” the concrete solutions first [26]. The difficultly novices have in seeing abstract 

solutions is related to their inability to see beyond the concrete surface features of the 

problem (Figure 2-1) [27, 28]. Indeed, many textbooks reinforce this idea by asking 

students to solve a problem “by hand”. Often when teaching programming the flow of 

control of the program is emphasized, typically accompanied by flow charting exercises. 

Flow charting is simply an alternative approach to simulating the flow of a program “by 

hand”. Therefore, students need to be taught abstraction because forces exist to prevent 

them spontaneously developing abstract solutions [26]. 

“More generally, there is a gap between the way introductory programming is 
taught and mastering the skills of abstraction.” [26] 

For example, students should be taught that a function call is not only a way of sub-

dividing code by transferring flow of control to a separate code segment but also a way of 

suppressing irrelevant detail. They should resist the inclination to determine how a 

function works and instead concentrate on the effect of the function call [26]. 

This process of subdivision of code is identical to the process of subdividing problems into 

smaller sub-problems using a divide and conquer approach [5, 29]. Functions in essence 
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are just “smaller” problems to solve. Unsurprisingly then, there is significant evidence 

that problem solving skills are an important factor [30-34] in learning to program (Figure 

2-1), including new research presented in this thesis. 

Koppleman et al [26] made three recommendations: 

1. Teach abstraction early using simple problems.  

2. Teach abstraction consciously. Instructors must highlight where abstraction is 

being used and illustrate it with a concrete example. 

3. Stress the benefits of abstraction. Many students see abstraction as hard and 

obscure, so instructors must demonstrate the benefits that it brings and that it 

makes life easier once mastered. 

Mostrom et al [35] asked the question “How is abstraction manifested in students’ 

transformative experiences?”. Students were asked to write a description (a biography) of 

how a computing concept had transformed the way they saw or experienced computing. 

The study included 86 students from five institutions across three countries. Of these 

students, 47 discussed topics related to abstraction. The general areas of these topics 

were Modularity, Data Abstraction, Object Oriented Concepts, Code Reuse, Design 

Patterns and Complexity. Although abstraction per se may not be an indicator of likely 

success, this research suggests that these topic areas exhibit the characteristics of such 

indicators. In terms of abstraction, many of the students in the study developed an 

appreciation of abstraction as their programs became larger or more complex.  

“….they were unable to deal with the complexity of programming without the 
concept, and applying the concept makes the complexity manageable.” [35] 

In cognitive development terms we would say they moved from “late concrete 

operational” to “formal operational” stage [36]. Other students discussed learning an 

abstract concept but having to implement it concretely in order to gain a full 

understanding of it. In fact, all of the students discussed “Applying” the concept 

concretely. This suggests that many of the students learnt gradually about abstraction by 

applying it in concrete examples [26]. The process of extracting a generic or abstract 

solution by reviewing or developing solutions to a number of problems requiring a similar 

solution is related to analogous transfer of knowledge [37]. However, the implication 

from this particular study is that students will only develop an understanding of 
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abstraction when the scale and the complexity of programs become too great to solve in 

simpler ways. 

“… students were transformed after facing a level of complexity where their normal 
practices no longer were effective. Finding approaches that did not require this level 
of failure could be less frustrating and more efficient” [35] 

Unfortunately, the results of attempting to measure the effectiveness of directly teaching 

abstraction have been mixed. Starting with the hypothesis “General abstraction ability 

has a positive impact on learning computer science”, Bennedsen et al [38] conducted a 

number of tests and found hardly any correlation between cognitive development 

(abstraction ability) and the final grades obtained by the students. They repeated this 

study over three years and again found hardly any correlation [39]. Their conclusion was 

that “abstraction” in a computer science context is very hard to define, and that further 

research is required into how it can be measured. 

Clearly abstract thinking is a critical element of programming, but it is primarily developed 

by practice through solving larger problems that demand more generic solutions. This 

leads to the chicken and the egg causality dilemma: to learn abstraction the student 

needs to be able to solve fairly large programming problems, but to program the student 

needs to be able to learn to create abstract solutions. Overcoming this issue requires the 

development of a more effective teaching methods that must take into consider the role 

of cognitive psychology and software comprehension in the creation of a programmer’s 

abstract mental model. 

2.2 Cognitive Psychology 

During the 1940s, Craik and Bartlett [10] proposed that theoretical models for human 

memory could be developed and modelled in a computer (which were analogue at the 

time). This led to a new approach in psychology based on the computer metaphor, and 

during the 1950s and 60s this information processing approach to psychology became 

very influential [40] and was summarised by Ulric Neisser[41] in his book “Cognitive 

Psychology” which gave its name to this field of research. The fundamental concept is 

that any memory system requires the ability to encode (enter information into the 

system), the capacity to store it and the ability to retrieve it [40]. Although these are 

distinct stages, they do interact. Typical of these models was the modal model  [42]. 

Broadly this model assumed that we experience the world through our senses involving 
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sensory memory, through which information is passed into temporary short term memory 

(STM) before being stored in long term memory (LTM).  

“Short-term memory consists of the information that is maintained at the surface 
level of coding within the grasp of immediate consciousness or the focus of 
attention. Thus, short-term memory is a subset of working memory, which in turn is 
a subset of long-term memory” [43] 

The latest research [44] suggests that memories are actually simultaneously formed in 

both short and long term memory. Over time, the short term memories decay while the 

long term memories become stronger. 

Based on the assumption that learning and reasoning depend on a mental work space, 

working memory (WM) is related to STM and provides storage for information used for 

performing complex tasks [40]. It is also thought to be related to attention and is able to 

draw on resources from both short term and long term memory [40]. LTM stores data 

over long periods of time and consists of both explicit and implicit memory [40]. Implicit 

memory is associated with skills such as riding a bike. Explicit memory is involved in the 

remembering of facts or information, and it is sub-divided into both episodic and 

semantic memory. Semantic memory stores general knowledge or real-world facts while 

episodic memory allows us to remember single episodes or events [40]. For example, if 

you hear that a friend has won the lottery that information becomes part of your 

semantic memory but where and when you heard the news becomes part of your 

episodic memory. Hence, the event (the lottery being won) becomes part of both types of 

memory. One possible explanation for this relationship is that information enters 

semantic memory as a result of one or more episodic events [40]. Learning the same 

information through multiple events or sources reinforces the memory of that 

information. 

2.2.1 Short Term Memory (STM) 

Short term memory (STM) is a subset of working memory [43] and is an active area of 

research  with a number of competing theories [40]. A simple test for short term memory 

is the digit span test [40]. This test involves remembering short sequences of numbers of 

increasing length until the test subject fails to accurately recall the numbers. Increasing 

the number of items to be recalled also increases the total time required to rehearse 

them, which in turn increases the chance of them fading before recall. The longest 

sequence of numbers that can be recalled is the memory span for that individual and for 
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most people this span is about six or seven [40]. This was first described by Miller in his 

1956 article “The Magical Number Seven, Plus or Minus Two: Some Limits on Our 

Capacity for Processing Information” [45] , which hypothesized that there is a fixed 

capacity for the information received by the human brain i.e. the brain can only receive a 

certain amount of information per unit time. Miller termed this the “channel capacity” 

which is a kind of mental bandwidth [17]. He [46] suggested that our capacity to 

remember is based not on the number of items but the number of chunks to be recalled.  

The generic definition of a memory chunk is “a collection of elements having strong 

associations with one another, but weak association with elements within other chunks” 

[47]. For example, splitting numbers into groups of threes [48] makes them easier to 

remember, probably because we are familiar with this from the natural flow of speech.  

This is also true for letters [40], for example CONTRAPOSTABLE is much easier to 

remember than ECTPANRSLBOTPO even though the letters are identical. Given the role 

that STM plays in natural language processing, we may conclude that it must play a 

similar role programming. For example, spaces are not allowed in variable names leading 

to quite cryptic but hopefully descriptive names that are meaningful to the programmer. 

Using meaningful names is important for program comprehension, especially for novice 

programmers [49]. 

2.2.2 Working Memory (WM) 

Baddeley et al [11] modelled working memory as three components (Figure 2-2) 

consisting of a phonological loop, a visual-spatial sketchpad and a central executive. 

However, only the central executive is of interest to us.  

Central Executive

Visuo-spatial 

Sketchpad

Phonological 

Loop

 

Figure 2-2 The Baddeley and Hitch Working Memory Model 

A major function of the Central Executive is focus or concentration. The executive 

provides two modes of control, an automatic mode and a second mode that depends on 

a Supervisory Attentional System [50]. People tend to perform many tasks either 
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automatically or semi-automatically. During a semi-automatic task, actions are performed 

unconsciously requiring little attention until something out of the ordinary occurs, at 

which point the executive can resolve the issue through learned procedures. 

Alternatively, when people are unable to make an automatic unconscious decision or they 

are faced with a novel situation or problem then they have to pay attention to it and a 

Supervisory Attentional System [50] has to intervene to make a conscious decision or 

select a strategy for finding an alternative solution.  

As Clarke [51] puts it: 

“Attention is the gateway to our brain. That’s why gaining and sustaining attention 
is an early and ongoing central consideration in any learning event”  

If we want to understand the limitations on complex mental challenges we need to 

understand how attention is controlled. There is much discussion in psychology of how 

attention works [51] and there are a number of mental models [17]. Hidi [52] refers to 

early attention as responsible for automatic detection and prioritization, while late 

attention is responsible for focused effort devoted to learning [51]. A simplified model is 

described by Klingberg [17] and consists of controlled attention, stimulus-driven attention 

and arousal. Stimulus-driven attention describes the involuntary attraction to an 

unexpected event, while controlled attention requires conscious focus. Controlled 

attention in related research [53] is also referred to as selective or goal-driven attention.  

As the load on working memory increases people become more easily distracted [54, 55]. 

People with higher working memory are more able distinguish between relevant and 

irrelevant information [56]. In effect, the distractors get stored in working memory 

instead of the relevant information [17], resulting in people with lower working memory 

being more easily distracted [57, 58] i.e. higher working memory makes it easier to ignore 

distractions [56]. 

The importance of working memory in education must not be underestimated. As 

Kirschner et al [59] note: 

“Any instructional theory that ignores the limits of working memory when dealing 
with novel information or ignores the disappearance of those limits when dealing 
with familiar information is unlikely to be effective.”  

Kyllonen et al [60] compared working memory tests with a number of tests taken from 

standard IQ tests and found a high correlation. Engle et al found a similar result [12] when 
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studying fluid intelligence (gF), because the ability to solve problems also depends 

significantly on the amount of information that can be stored in working memory. He 

found that the correlation was usually between 0.6 and 0.8 [61] a similar result was 

obtained through latent variable analysis [62]. Thus, when comparing people who are 

good at solving problems against those who are not, half the variance can be attributed 

to working memory capacity [17]. Halford et al [63] also hypothesise that working 

memory and intelligence share a common capacity constraint. This constraint is 

determined either by the working memory span or by the “number of interrelationships 

between elements in a reasoning task” [64]. The common capacity constraint is thought 

to arise because of a common demand for attention that is required when forming 

representations in reasoning tasks [63].  

“At present, working memory capacity is the best predictor of intelligence that has 
yet been derived from theories and research on human cognition” [65] 

Although this research will not enter into the debate about measurement of intelligence, 

it is generally accepted that there are two types crystallized (gC) and fluid (gF) [66] with 

evidence that they exist being found in studies involving university students [67] and 

when using MR scanners to monitor brain activity [68]. The term “g” was first described 

by Spearman [69] who believed that there was one central intellectual ability “g” and 

numerous specific abilities [69]. “g” is a numerical score-factor (general factor) that was 

generated after performing factor analysis to examine a number of mental aptitude tests 

i.e. it refers “to the determinants of shared variance among tests of intellectual ability” 

[70].  However, it should be noted that there is a strong relationship between crystallized 

and fluid intelligence, and consequently they are not mutually exclusive [71] 

It might be expected that programming could enhance students’ general cognitive ability, 

given that it is a skill that requires characteristics such as rigorousness, systematicity, the 

usage of problem sub-division (i.e. a divide and conquer strategy) and the 

diagnosis/debugging of problems. [72]. Programming languages may indeed promote 

procedural thinking and reveal more about how the mind works [72]. However, there are 

a  number of studies that have shown that programming produces little cognitive 

enhancement [73, 74]. Although, Mayer et al [75] noted that learning to program can 

lead to improvement in a specific aspect of fluid intelligence: 

“...learning a programming language – even a language with as many critics as 
BASIC has – can result in changes in thinking skills. The improvement appears to be 
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limited to thinking skills that are specifically tied to specific concepts underlying 
BASIC, however, and there is no evidence of any enhancement of intellectual ability 
in general” [75] 

Given the complexity of the process of programming, is there a relationship between 

working memory and programming? Shute [76]  investigated the relationship between 

programming skills acquisition and a number of measurements of individual abilities 

including prior knowledge and cognitive skills, the ability to decompose problems into 

constituent parts and learning styles (e.g. the priming required in the form of hints). This 

study looked at teaching Pascal programming using a tutorial application, to determine if 

learning programming skills could be predicted from measures of specific problem solving 

abilities which were assumed to be: 

i. understanding: of the problem and being able to identify the basic elements.

Establishing the initial and final state then hypothesizing the operations

required to achieve the solution.

ii. method-finding:  decomposing and sequencing the problem elements into an

outline solution to a programming problem that identifies and arranges the

relevant operators of commands.

iii. coding:  translate the natural language solution from the previous stages into

code.

Two sets of data were used to assess prior knowledge. Firstly general vocabulary and 

mathematical ability was assessed using the Armed Services Vocational Aptitude Battery 

(ASVAB) tests. Secondly cognitive processes including working memory capacity and 

information processing speed were measured using computerized tests developed in the 

Learning Abilities Measurement Program (LAMP) by the US Air Force. An algebra word 

problem test battery was used to estimate problem solving abilities. A statistical approach 

was used to determine if there was anything unique to the problem solving as estimated 

from this test, that would predict who would succeed in learning to program. 

The study consisted of 260 test subjects who had no prior Pascal programming 

experience. A Pascal programming intelligent tutoring system (Pascal ITS) was used to 

assess programming ability and the test consisted of 25 questions of increasing difficulty. 

There were 3 learning phases associated with each question, firstly to generate a natural 

language solution to problem, secondly to convert it into a program implementation plan 

and flowchart then finally to translate the solution to Pascal code. Subjects could ask for 
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unlimited hints from the tutor, and there were three levels of hints which became more 

specific and less abstract. Three progressively more complex programming post-tests 

consisting of 12 problems per test, were used to assess the subjects programming 

abilities.  

After factor analysis (principal axis with varimax rotation) was conducted working 

memory was found to be the best predictor of Pascal programming skill acquisition. 

Similar results were also obtained for a course on logic gates [77]. A limitation of this 

study is that it did not use the more formally recognised Raven Matrices tests when 

measuring performance. However, a similar study conducted in this thesis using these 

matrices also found similar results (Chapter 6). 

We conclude that there is a relationship between working memory and programming. 

Poor working memory is likely to limit the learning of novice programmers when the 

working memory load increases. Furthermore, the relationship between working 

memory, gF and problem solving [60] may also explain why low problem solving skills are 

also associated with poor programming performance. Through grounded theory analysis, 

an overview of working memory and related concepts is shown in Figure 2-3. This figure 

also suggests that there is a relationship between working memory to both memory 

chunking [46] which is the ability to memorise patterns, and the related concept of 

recognising software keywords or function names known as “Code Beacons” [78]. These 

concepts will be discussed later. 

Expert

Problem Solving 
Skills

Memory 
Chunking

Novice

Code Beacons

Lack of

Working Memory

High Working 
Memory Load

Lack of

Code Abstraction

Edge Support Threshold = 3

Figure 2-3 Overview of Working Memory Concepts 
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2.2.2.1 Testing Working Memory 

A classic problem solving test used by psychologists to measure general intellectual ability 

is Raven Progressive Matrices test. The test subject is presented with a 3x3 matrix of 

symbols one of which is missing and the subject must deduce the rules required and 

specify the missing symbol. Thus, each matrix represents a visual analogy problem [70]. 

An example question is shown in Figure 2-4. 

?
Answer

 

Figure 2-4 Example of a Raven Matrix with Answer 

This test relies on working memory [17], since solving a matrix requires retaining and 

manipulating visual information in working memory while also remembering the 

instructions. These matrices have been found to be strongly correlated with gF [17] and 

that they measure processes that are central to analytical thinking [70]. Individual 

differences in the Raven test have been found to highly correlate with those found in 

other complex cognitive tests [70]. More difficult Raven test tend to involve more 

abstract rules, and the level of abstraction also appears to differentiate tests intended for 

children from those intended for adults [70]. In studying the test subjects Carpenter et al  

[70] found that all the test subjects processed the matrices in the same way, by breaking 

it into progressively smaller sub-problems and then proceeding to solve each sub-

problem. The induction of the rules was incremental in two respects, firstly each rule was 

induced one at a time and secondly the induction of each rule required a number of small 

steps generated by a pair-wise comparison of elements of adjoining entities. During the 

pair-wise comparison, the subjects were encoding some of the figural elements and 

comparing their attributes in an attempt to identify the “rule tokens” i.e. differences that 

might contribute to a new rule. The error rate was found to increase with the number of 

“rule tokens” in a problem, suggesting that the test subject’s ability to keep track of the 

figural attributes and rules accounted for their individual performance. Here “keeping 
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track” means creating new sub-goals in working memory and remembering when they 

have been attained.  Schraw et al [67], also showed that these matrices loaded the verbal 

crystallized ability of subjects confirming the findings of Prabhakaran et al [68].  Actually, 

Prabhakaran et al [68] also studied the brain activity of students while they were 

performing Raven tests. They concluded that these matrices reflected the status of many 

working memory systems because they activated many of the domain-dependent and 

domain-independent working memory systems [68]. This explains the strong correlation 

between these matrices with working memory and their ability to predict performance in 

many other tasks [68]. It may be common for the performance of many tasks to rely on 

multiple working memory systems [68] or a core cognitive ability that spans fluid and 

crystallized intelligence [67]. 

A study comparing coding performance to Raven test results was conducted and is 

included in this thesis (Chapter 6). 

2.2.3 Episodic Memory (Long Term Memory) 

Tulving [79] defines episodic memory as: 

 “Episodic memory is recently evolved, late-developing, and early-deteriorating past-
oriented memory system ...... It makes possible mental time travel through 
subjective time, from the present to the past, thus allowing one to re-experience, 
through autoneotic awareness, one’s own previous experiences”  

Of most interest is the relationship between episodic memory, semantic memory and 

learning. The episodic details learned during a task eventually form the semantic 

structures (or schema) of expertise and an understanding of episodic memory may help 

improve how experts are trained [80]. There is thought to be an Episodic Buffer [40, 81] in 

working memory that links together short term, working, episodic and semantic memory. 

A detailed understanding of this process is not required for this study, but it is an area of 

active research. 

Expertise is developed by repeated exposure programming through a series of programs 

over long periods of time, months, years or decades [82]. When reading source code a 

programmer may come across a familiar code fragment which may trigger a memory e.g. 

of a previous mistake or when modifying code they will remember the file and last 

modification made yesterday. Furthermore, programmers may “associate development 
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activities with actions and episodic events that may take place outside the world of the 

text editor or debugger” [82]. 

2.2.4 Semantic Memory (Long Term Memory) 

Semantic memory stores concepts of various kinds. The spreading activation model [83] 

describes how concepts are organised in semantic memory and assumes that semantic 

memory is organized based on semantic relatedness or semantic distance i.e. how closely 

related concepts are.  

More complex concepts may also be stored in semantic memory as large structures in 

what are known as schema. A schema is a well-integrated chunk of knowledge about the 

world, events, people or actions [40] and includes scripts and frames. Scripts contain 

knowledge of events and consequences of events e.g. actions/events in a restaurant such 

as sitting down, ordering and eating. Frames have knowledge of structures e.g. buildings 

have floors and walls. Events which do not conform to the schema are unexpected so 

become distinctive and memorable. This of course relates back to episodic memory.  

For Anderson [84], cognition depends on the knowledge encoded and the effective 

deployment of that encoded knowledge. In the Adaptive Character of Thought (ACT-R) 

theory [84], complex cognition arises from the interaction of two types of long-term 

knowledge [84, 85], procedural and declarative. Procedural knowledge is represented by 

production rules and declarative knowledge is represented by chunks. These chunks are 

initially simple encoding of objects in the environment (or facts) while production rules 

are encodings of transformation in the environment (how things should be done) that can 

transform previously stored chunks. In transforming these chunks, new declarative 

structures (i.e. chunks) may be created  [84]. 

“All there is to intelligence is the simple accrual and tuning of many small units of 
knowledge that in total produce complex cognition. The whole is no more than the 
sum of its parts, but it has a lot of parts”  [84] 

This is the process by which learning from worked examples occurs, thus allowing related 

problems to be solved [84]. This knowledge acquisition process is very simple as it just 

requires “modest inferences about the rules underlying the transformations” from 

chunk(s) to chunk [84].  
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“To get behaviour, general interpretative productions must convert this [declarative] 
knowledge into behaviour....problems arise because of this indirection through these 
interpretative productions” [86] 

Learning then is just a matter of slowly acquiring more and more production plans and 

declarative knowledge [84]. Current research [84, 86, 87] does not specifically describe 

how this long-term knowledge is stored in semantic memory or the role of episodic 

memory. However, the most likely scenario is that as production rules are reinforced by 

repeated exposure (e.g. by multiple worked examples [88]) and they are transferred from 

episodic memory to semantic memory. Likewise, declarative knowledge starts as chunks 

in working memory but some must be transferred to semantic memory to allow later 

recall of production rules. Some support for these assumptions is provided by Anderson’s 

own description of how ACT-R would account for the learning of the letter “H” [84]. On 

seeing “H” it is encoded in a chunk as shown in Figure 2-5. 

object 
isa H 
left-vertical bar1 
right-vertical bar2 
horizontal bar3 

Figure 2-5 ACT-R Encoding of the Letter H [84] 

This chunk assumes that another chunk describing what a “bar” is, already exists or as 

Anderson puts it: 

“We assume that before the recognition of the object, these features (the bars) are 
available as parts of the object but that the object itself is not recognized” [84]. 

Therefore, it seems reasonable to assume that the declarative structure defining “bar” 

must be stored in long-term memory i.e. semantic memory. 

Interestingly, Anderson goes on to say that: 

“A basic assumption is that the process of recognizing a visual pattern from a set of 
features is identical to the process of categorizing an object given a set of features” 
[84] 

Clearly, this provides support for the role of perceptual learning in which perceptual 

chunks are used to recognize incoming stimuli that then develop to allow experts to 

quickly recognize patterns. 

Cheng et al [89]proposed reasoning involves clusters of generalized abstract rules defined 

with respect to classes of goals and types of relationships known as pragmatic reasoning 
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schemata [90]. Errors in reasoning can be induced by manipulating the semantic features 

of a problem and corrected by presenting the problem based on an abstract description 

of a situation that mapped to a schema [90]. Thus, the number of errors that occur 

depend on the mapping between the pragmatic schema and the concrete situation, and 

the degree to which the schema rules allow inferences to be made that conform to the 

standard logic [90].  

In programming the relationship between episodic and semantic is neatly captured by 

Kolodner  [91]: 

“...even if a novice and an expert had the same semantic memory..., the expert’s 
experience would have allowed him to build up better episodic definitions of how to 
use it.” 

Through experience and practice the expert programmer builds up the episodic 

knowledge of how to program [92].  

2.3 Cognitive Psychology and Programming 

It is now possible to begin to see how programming is related to cognitive psychology and 

Figure 2-6 summarises the steps by which programming is learnt [30]: 

(a) The programmer reads the code which represents a new stimulus to which they 

must pay attention 

(b) Appropriate pre-requisite concepts must be found from Long Term Memory (LTM) 

and the new information is then assimilated. 

(c) Actively using this pre-requisite knowledge causes the new information to be 

associated with it. 

STM(a)Stimulus Response

LTM

(b
)

(c
)

 

Figure 2-6 Information Processing [30] 

Although not specified, it can be inferred that this pre-requisite knowledge [30] is gained 

firstly through offline activities such as programming manuals [30], training materials and 

software design and secondly by analysis of software through reading and writing code.  
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Information is encoded into episodic memory within LTM as an episodic event [80].  

These events may be hours, days or week apart, each event adding new nodes or cues to 

semantic memory storing and reinforcing long term memory of that knowledge. For 

example, a student may attend a lecture during which the definition of a variable is 

explained and days later read a book describing the same concept reinforcing and 

supplementing it. Eventually, the lecture and the book may both be forgotten but the 

concept remains in semantic memory [93]. Code is inherently abstract [21], so each 

episodic event enables the programmer to infer more about the abstract coding 

constructs and principles they are learning. These must be encoded in semantic memory 

as schema [13] to allow them to be applied in solving future programming problems. 

Episodic memory also allows programmers to remember previous code and which file 

contained it [94]. Working memory plays a role in both allowing the student to focus on 

the required details [56] and in the fluid intelligence required to extract the abstract 

principle [12].  

In reading and writing code, learning progresses in a similar way through worked 

examples or the student’s own code. However, as the tasks become more complex two 

additional constraints arise [80]. Firstly as the complexity increases so does the quantity 

and diversity of information that must be stored, demanding a less selective approach to 

the storage of information. In addition, a continual encoding process is required because 

any item processed may become important to remember later. By implication: 

“...memory contains vast amounts of information, much of which is never retrieved, 
but any of which could be retrieved and could critically affect the course of 
behaviour” [80] 

Secondly the retrieval of information for a complex task may involve a problem solving 

search or a dynamic environment in which any item can be required at any time. 

Encoding specificity suggests that the more time spent elaborating on an item the better 

the chance of recalling it [95]. Unfortunately, expert problem solving generally affords 

little time for such elaboration limiting the storage of item cues that are critical to 

retrieving details about the task.  

These constraints were identified by Altman [80], who proposed a variation of the 

traditional model of memory that used a construct called “near-term memory”  that was 

developed using computational behavioural simulation of a programmer at work. Altman 

was interested in the cognitive processes a programmer uses when browsing, scrolling 
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and reading through code i.e. how a programmer tries to make sense of code by stepping 

through it in detail [80]. Near-term memory combined the analytical goals of long-term 

working memory with real-world studies of memory and cognitive simulation. It describes 

a component of memory that bridges the gap between large quantities of episodic detail 

and semantic memory, by providing links that allowed critical items to be retrieved as 

required when the cues existed.  One finding of this research was that the success of 

building mental models depends on the success of adding the right cues to working 

memory at the right time.  

“In the model a stream of internal episodic symbols or event tags is produced 
automatically by the cognitive system ..... Then, when the attention process adds 
some new item to WM in service of the current comprehension goal, it automatically 
associated the current tag with the attended item....to link the tag and the item 
together in memory, forming an episodic trace whose cue is the item itself.” [80] 

The primary focus of Altman’s simulation was the chunking of knowledge associated with 

expert behaviour and this was simulated using event, perceptual and semantic chunks 

[80].  

Event chunks [80] were recorded each time an object was read from the source code to 

indicate that it had been “attended to” providing a cue that mapped it to the semantics of 

the item. If this item was encountered again then the event chunk was fired. By 

implication, the non-existence of such an event indicated that the item was novel and it 

was selected in preference to any older items. This is similar if not identical to goal-

oriented chunking [47] which occurs as a result of conscious selective attention where the 

individual concentrates on remembering the stimulus e.g. the variable name being read 

from the source code [47]. 

Perceptual chunks [80] were used to map externally displayed features in the source code 

and various internal cues in working memory to the associated internal representation of 

those features. They were created each time cues in the working memory identified a 

novel external feature (from the source code) that was required to allow a goal to be 

comprehended. That is, the cues brought the new feature to the attention of the 

simulation. This process mimics selective attention in humans, and is necessary because 

when a large number of stimuli are presented simultaneously only a limited subset of the 

available information can be processed. Perceptual chunking is an automatic and 
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continuous process, as incoming stimuli arrive they are evaluated against existing chunks 

in short term memory or information from semantic memory (schema) [47]. 

“The concept of selective attention [in humans] is intimately related to that of 
limited capacity. If our capacity to process, decide about, and remember information 
were not limited, then selective attention would serve no purpose. It is because 
processing capacity is overloaded in numerous situations that a subset of the 
information arriving must be given special attention. Any selective-attention deficit, 
therefore, implies a corresponding capacity limitation”  [96] 

Using perceptual chunks alleviates this cognitive bottleneck by caching the features. If the 

same feature is identified using the same cues then the cached chunk provides a direct 

link to the internal representation allowing it to be loaded immediately into working 

memory [80].  This approach efficiently handles concepts such as nested data structures 

and nested code, where the comprehension goal might change [80]. Other simulations 

[47] have also recognized the importance of perceptual chunking.  

There is evidence that the human brain does optimize in this way. For example, in the 

way incremental interpretation occurs when semantic interpretations are developed on 

an almost word-by-word basis as the text is read [97]. This allows aspects of language 

comprehension to be performed very rapidly [97]. There is considerable evidence that 

programmers understanding of code is also “chunked”, which is briefly discussed here but 

is covered in more detail in Section 2.4. McKeithen et al [98] described an experiment 

where novice, intermediate and expert programmers were shown one of two versions of 

an ALOGOL W  program: a normal version or a randomly scrambled version that 

preserved the indentation. They were then asked to recall each line of code and its 

position in the program.  53 subjects were tested across the all skill levels. This 

experiment showed that the level of recall for the normal version correlated to the skill 

levels of the participants. However, no such distinction was evident for the scrambled 

versions, demonstrating that experienced and novice programmers remember normal 

programs differently. On closer inspection, it could be seen that expert programmers 

were recognizing the lines as chunks, such as counting loops. In a similar experiment, 

Guerin et al [99] demonstrated that expert programmers had better semantic knowledge 

than novices by asking the test subjects to write a summary of each program and how 

that purpose was achieved. They found that recall of the programs highly correlated with 

software comprehension and the experts were always better than novices. As before, 

when the program lines were randomized the experts advantage over novices 
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disappeared because the experts could no longer apply their semantic knowledge. This 

effect does not extend to well-ordered programs that are more or less meaningful (typical 

and atypical), where experts always do better [92]. In fact, for atypical programs the 

difference between expert and novice programmer performance actually increases 

[100]). Widowski [100] found evidence that experts do use plans (as described by 

Pennington [101]) for stereotypical programs , “with a significant interaction between 

expertise and semantic complexity” [92]. But on atypical programs, experts shifted to 

different strategies while novices did not [100]. Experts adopted two strategies, control-

structure oriented and variable-oriented [100]. Experts consistently used the variable-

oriented strategy more than novices, and varied the control-structure oriented processing 

according to the complexity of the program  [92, 100]. 

Expert programmers “chunk” the information they learn differently to novices. Simon 

[102] estimates that to become an expert in a domain requires about 50000 chunks of 

domain-specific information. An expert might encode the code segment given in Figure 

2-7 as “Calculate the sum of the array” [30]. 

int[] numberArray = new int[10]; 
int sum = 0; 
int i; 
for(i = 0; i < 10; i++) 
{ 
    sum = sum + numberArray [i]; 
} 

Figure 2-7 Example Code for Sum of Array 

“Wiedenbeck [103] empirically verified that recognizable patterns with the source 
code, which serve as indicators of a stereotypical structures or operations, can be 
considered beacons. … Experienced programmers tend to rely more on code pattern 
beacons rather than naming style when comprehending a program’s source code” 
[49] 

The central role that the concept of memory chunking plays in the way programmers 

develop schema to interpret code is reflected in the grounded theory analysis conducted 

as shown in Figure 2-8. For programmers the mental models and schemata created in 

their memory are directly derived from and influenced by this process. In particular, by 

the ability to spot important cues or “code beacons” [78] in the code. The way 

programmers develop a mental mode or schema is a subject much discussed in research 

into software comprehension, since it represents the programmer’s expertise acquired 

through experience. These schema contain static elements such as text structure 
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knowledge, plans, and hypotheses with which they create higher level abstractions [104]. 

To reflect the more specialised nature of many of the “memory chunks” involved in 

programming, we begin referring to coding “plans” [101]. Figure 2-8 also illustrates the 

role that working memory plays in potentially limiting the learning of these plans and how 

practice can improve memory [40, 105]. 

Expert

Plans

Mental Model

Memory Chunking

PracticeSchema Code Beacons

Working Memory

 

Figure 2-8 Overview of Memory Chunking and Related Concepts 

2.3.1 Perceptual Learning and Teaching 

Using pre-existing schema, any novel stimuli can be encoded into a new chunk which can 

then be used to improve the recognition of future stimuli. Generally termed perceptual 

learning, this process continually alters the perception of the problem or task, allowing 

attention to focus on the new and novel. Schemata in long term memory allow us to “fill 

in the gaps” and enhance our understanding [40] of what we read or hear i.e. they allow 

us to make “calculated guesses”. Thus, these schemata form our understanding of natural 

language syntax. Alternatively, if a schema is incorrect then it may distort our memory or 

understanding [40]. A number of successful studies have found that receiving teaching to 

underpin this memory chunking process has enabled students to learn a “solution plan” 

mimicking expert behavior [106-108]. 

Given the potential importance of perceptual learning in programming, we need to 

develop a clearer understanding of the nature of the programmer “chunking” 

mechanisms, and this leads us into a discussion of software comprehension.  
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2.4 Software Comprehension 

The study of how programmers build mental models of the software they are developing 

or maintaining is known as program or software comprehension and is defined as: 

“a process whereby a software practitioner understands a software artifact using 
both knowledge of the domain and/or semantic and syntactic knowledge, to build a 
mental model of its relation to the situation” [109] 

There are numerous cognition models that attempt to explain this process, but the 

essentials are found in Letovsky’s model [13] which consists of an external 

representation, existing knowledge, an assimilation process and a mental model (Figure 

2-9) 

External Representation Assimilation

Existing Knowledge

Mental Model

Static

Dynamic

General

Software Specific

Understanding of code

Strategies

Hypothesis

Abandon, revise, 

resolve

Partial Mental Model

 

Figure 2-9 Generic Software Comprehension Model 

A programmer’s accumulated existing knowledge includes programming language syntax, 

software constructs,  programming principles, concepts, techniques, algorithms and 

domain specific knowledge [13]. If the programmer has worked with the same code 

previously then they may also have a partial mental model of it [13].  By “External 

Representation”, we mean any external information that is available and can be read by 

the programmer including the code itself, any system documentation, manuals, expert 

advice and other pertinent sources of information. [13, 109]. Assimilation involves the 

understanding of the code using a top-down or a bottom-up process, using various 

cognition strategies to formulate hypotheses that can then be resolved, revised or 

abandoned [104]. This process is opportunistic and programmers will change strategies 
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with ease depending on external cues and the approach that will yield the highest gain in 

knowledge [104, 109]. There are three major types of hypotheses [104]: 

 why conjectures hypothesize the purpose of a function or design choice 

 how conjectures hypothesize the method for accomplishing a program goal 

 what conjectures hypothesize classification e.g. concepts such as a variable or a 

function. 

“Hypotheses drive the direction of further investigation. Generating hypotheses 
about code and investigating whether they hold or must be rejected is an important 
facet of code understanding” [104] 

For Brook [110], the mental model is developed in a top-down process where hypotheses 

are iteratively refined by passing through a number of knowledge domains e.g. 

accounting, mathematics and programming, until they match either the code or related 

documentation [104]. Hypotheses are checked against the External Representation to 

seek support [104] for them. The programmer starts with a general hypothesis about 

what the program does which is formulated from a number of sources (excluding the 

source code) that document the programs purpose [49]. These sources include source 

code headers, inline source code comments, user manuals and API reference texts. [49]. 

This initial hypothesis guides the programmer when they read the code, because Brooks 

[110] believes they do not read the code line-by-line instead they scan it for ‘beacons’ 

which they use to “elaborate their current hypothesis by forming more specific, sub-

hypothesis” [49]. Slowly a hierarchical structure of hypotheses is developed, starting from 

the initial hypothesis and leading to the lower-level subsidiary hypothesis which are 

“more closely bound to specific parts of the programs source code” [49]. The larger this 

hierarchical structure the better the programmer understands the source code [49]. The 

concept of code beacons is further discussed in Section 2.4.4. 

While a detailed description of the of the many cognition models is beyond the scope of 

this research, a brief summary is justified. In the Letovsky model [13], the mental model 

has three layers: a specification, implementation and an annotation layer. The program 

goals are described by the specification layer (highest abstraction level), while the 

implementation layer (lowest abstraction level) provides abstractions of data structures 

and functions. Finally, the annotation layer links these goals with their realization in the 

implementation layer. The implications of program goals are described in Section 2.4.3. 
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For the Shneiderman and Mayer model  [111] the programmer chunks the program while 

reading it and these chunks are held in a number of levels of abstraction in working 

memory. A mental model is stored in long term memory as syntactic or semantic 

knowledge. Like working memory, the semantic knowledge is layered and incorporates 

high-level concepts and low-level details [104]. While the syntactic knowledge is program 

language specific, the semantic knowledge is abstract and applicable across many 

problems.  

Soloway, Anderson and Ehrlich [18] looked more closely at the memory chunking process 

and developed the concept of plans and defined a program as a set of plans [112] which 

when merged together in the correct way achieve the goal of the program [19]. If a plan is 

common, the  program code for the plan can be abstracted and stored as a schema or a 

“chunk” of knowledge [19]. A program can therefore be considered to have a plan 

structure consisting of basic plans or “canned solutions” that have been created from 

previously learnt plan schemata [19]. 

 “… understanding a program is finding a set of underlying plans such that parts of 
the program match the roles in the hypothesized plans. Comprehension of a 
program, under this view, would proceed by partial pattern matches activating 
candidate plans, causing programmers to search for further evidence to instantiate 
a plan. According to this concept of comprehension the program is mentally 
represented as a set of linked descriptions, like blue prints, rather than a set of 
instructions to be executed.” [101] 

 For example, a sort algorithm would be represented by a microstructure containing all 

the instructions in the specific programming language while the macrostructure is an 

abstraction of the concept which is just labeled “sort” [104]. In short, programmers often 

just remember the purpose of a piece of code or a function and identify it by some label 

or name e.g. “it sorts values, so it is a sort function”.  

Higher level chunks can contain lower level chunks building up the knowledge of the 

structure of the program [104]. It is also worth noting that unlike normal text, in program 

text there is implicit information “in the text” that gives meaning to the program [101], 

such as the sequence of statements and certain program language keywords provide 

information about the sequence in which program statements will be executed.  
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Pennington [101]  suggested that programmers maintain two mental models [104]: a 

program model that represents the source code and a situation model that takes into 

consideration the problem domain. 

2.4.1 Pennington’s Program Model: Programming Plan Knowledge 

To explain program model development, Pennington [101] used the concepts of text 

structure knowledge and programming plan knowledge. 

2.4.1.1 Text Structure Knowledge 

Programs can be described by a limited number of control flow constructs including 

sequence, loop constructs, branch constructs, variable definitions, function call 

hierarchies and function parameter definitions. [104]. These units are known as 

structured programming units [101] or alternatively as prime programs [101] because 

programs can be decomposed into them in the same way a number can be decomposed 

into prime factors. Prime programs are the lowest level of decomposition and can be 

aggregated into a higher level sequence, such as a branch or loop construct, so that “the 

entire program text can be represented as a hierarchy of prime units” [101]. Soloway, 

Anderson and Ehrlich [18, 104] refer to these as implementation plans. A programmer’s 

knowledge of these prime programs or constructs is their text structure knowledge [101]. 

Proponents of structured programming  hypothesize that strict use of these constructs 

makes code easier to understand because it corresponds to programmer’s mental 

organization [113]. Furthermore, the process of understanding a program is similar to 

decomposing a program into prime programs [101, 114]. Considerable evidence exists 

that suggests text structure knowledge does play an important role in software 

comprehension [98]. Alluding to episodic memory, Pennington indicates that structured 

programming or prime program units may be considered to be a kind of “episode” for 

programs [101].  

2.4.1.2 Plan Structure Knowledge 

Plan structure knowledge [101] emphasizes that “programmers’ understanding that 

patterns of program instructions ‘go to together’ to accomplish certain functions” and 

corresponds to an intermediate level of programming concepts such as searching, 

summing, hashing, and counting. Higher level concepts may involve algorithms and data 

structures. These plan structure representations of a program are primarily based on data 

flow relations and function (purpose) [101].   
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2.4.1.3 Slot Types and Fillers 

Von Mayrhauser [104, 115] proposed that plans are schemata (or frames) which consist 

of two parts: slot types (templates) and slot fillers. A slot filler is developed specifically to 

solve a particular problem, using a slot type which is an abstraction of multiple slot fillers. 

Therefore, slot types which are sometimes just referred to as “slots”, can be considered 

templates that can be applied to a number of problems. Examples of slot types include 

data structures such as lists or trees [104]. These structures are linked by either a Kind-of 

or an Is-a relationship.  

Thus, the concept of “frames” suggests that programmers abstract a generic “textual 

pattern” with elements i.e. “placeholders” where specific changes must be made to craft 

a working solution. For example, the pattern for declaring a variable might read: 

type variablename; 

Variables are declared with an appropriate type, the allowed types have to be memorized 

and written at the start of the declaration. The variable name follows the type and must 

follow certain variable naming rules. Finally, the instruction statement must end with 

semicolon. Thus, perceptual learning in the context of programming may, at least in some 

part, involve software constructs being taught as “abstract programming plans” rather 

than a learning through examples approach. 

2.4.1.4 Supporting Evidence for Plan Knowledge 

In examining the psychology of learning BASIC [116], Mayer refers to “levels of 

knowledge” when considering what is learnt when programming and these seem closely 

related to the concepts of plans. For example, a “mandatory chunk” consists of two or 

more statements that must occur in some configuration [116] while a program is a set of 

chunks and statements. 

“As a learner gains more experience, the size and number of chunks(or 
‘superstatements’) he/she knows will grow” [116] 

As a result, Mayer [116] recommended teaching programming by explicitly “presenting” 

the chunking process at various levels and emphasizing techniques for generating 

subroutines and structured programming to help the novice programmer to develop 

additional chunks[116].  
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Ebrahimi [32] in a study of 80 novice programmers demonstrated that there is a strong 

correlation between plans and software constructs stating “Language constructs are used 

as building blocks to form a plan” and that “…programmers that make more plan 

composition errors also tend to make more language construct errors and vice-versa”.  

A class of bugs that novice programmers often encounter are plan composition problems, 

which occur as a result of the difficulty they experience in putting groups of plans or parts 

of plans together correctly [117]. 

A surprising demonstration of the importance of developing and consistently applying a 

mental program model may have “accidentally” been provided by Dehandi [118]. It was 

discovered that some students were able to determine or imply a mechanistic sequential 

code execution process despite receiving no programming instruction. The most 

successful programming students that later emerged were those that were initially able 

to create some internal model of the process themselves and then apply it consistently 

[119]. Dehandi referred to these students as “programming sheep” [118].  The implication 

being that the students were spotting patterns and execution rules and were therefore 

employing untrained chunking behaviour. A subsequent meta-analysis including an 

improved version of the test [119], demonstrated that this effect did indeed exist. Thus, 

we can conclude that two vital components in learning to program are extracting the 

“rules” for writing code (in software comprehension these are the “plans” [18]) and 

developing a systematic approach to applying them consistently. 

2.4.2 Pennington’s Situation Model: Domain Plan Knowledge 

Pennington [104] proposed that programmers construct a situation model for addressing 

the problem domain based on the concept of domain plan knowledge.  

“By inferences and additional domain knowledge, a situation model is also 
constructed which includes comprehension of the function, the goals and purposes 
of the program” [120] 

Domain plans incorporate the non-code related knowledge about the problem and 

concrete real-world objects [104] (i.e. the problem domain specific knowledge) which is 

crucial for understanding program functionality. These plans exclude the implementation 

detail, such as the code or the low-level algorithms required [104]. For example, the code 

“cost = cost + productPrice” would be described in the situation model as “increase the 
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cost by the price of the product purchased”. The concept of plans relates directly to work 

of Soloway, Anderson and Ehrlich [18]. 

2.4.3 Program Goals 

Spohrer et al [117] make two important points about the relationship between goals and 

plans: 

i) a goal decomposes into subgoals, and plans organize the subgoals of a goal;

ii) there are usually many different plans for achieving the same goal.

Building on the work of Soloway[112], Rist looked at schema creation in programming 

[121, 122] and software design [19, 123]. For Rist, the creation of a basic plan involves 

setting a goal and working backwards from it one action at a time until the plan is 

complete [19]. Likewise, complex plans are created by merging basic plans together 

working backwards from the goal [19]. A plan schema consists of a surface structure 

which is the actions (lines of code) executed in program order forming a linear structure 

and a plan structure which is the set of data and control flow dependencies (i.e. actions 

later in the plan are supported by earlier actions) traced backward from the goal 

producing a non-linear structure [19, 123]. A plan is a branch of a plan structure, so plans 

appear at many levels of composition [123] i.e. there can be many compound plans. For 

example, suppose we want to calculate the average rainfall for a month [19]. Working 

backwards from the goal, to calculate the average we need the total rainfall for the 

month. Each daily rainfall must be added to the total, for this code to work each days 

rainfall value must be entered in a loop and running total must be kept. Before a running 

total can be kept it must be initialized to zero. The plan structure is thus defined by 

working backwards from the goal which was to calculate the average. One plan structure 

can generate multiple different surface structures depending on the choices made in 

constructing the plan from the goal and how the plan structure is coded [123].  

If a programmer has no previous experience of the programming problem, the solution is 

typically constructed by focal expansion [121] using a bottom-up or backward design 

approach. As a programmer gains knowledge, they develop the program design using a 

top-down and forward design approach [121]. This effect is also seen in the way experts 

read normal and abnormal programs [124]. Three levels of expertise can be defined, 

novice, advanced novice and competent [122, 123]. A novice knows the syntax and 

general programming principles and usually solves a problem by backward design [123]. 
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An advanced novice possesses a small set of schema and can apply these to new 

problems as well as developing their own schemata. They also have a set of design rules 

but apply these with some difficulty [123]. A competent designer has a large set of 

abstract schema that they can apply in multiple languages and construct complete 

algorithms. They can easily apply design rules to select the best solution [123]. 

“Only a rank novice working on a new problems shows pure bottom-up design, and 
only an expert working in a familiar domain shows pure top-down design” [123] 

Rist [123] promotes the teaching of many variations of these plans over presenting a 

single solution. By planning code, the student is forced to address the initial focus of each 

plan and build backwards from it (the typical approach when faced with a novel problem). 

It emphasizes that the plan structure contains the fundamental solution and not the code, 

since the same plan can be implemented in many ways. Students are forced to “chunk” 

the solution making the small re-usable plans easier to remember, reducing the cognitive 

load imposed in attempting to remember a complete solution. Since plans can be 

implemented in many ways, the student “sees” that the same solution can be coded in a 

number of ways and the act of choosing is made explicit. Finally, the approach is 

systematic and forces the student to identify the essential details of the design. 

Rist [122] uses the concept of “slots” [104, 115]  as previously discussed (Section 2.4.1.3) 

to replace variable names when translating the basic  plan structures to a concrete code 

solution (surface plan). 

2.4.4 Cues or Code Beacons 

A beacon can be text, a component or other knowledge that invokes a particular mental 

schema. For example, a function name “sort” is an obvious beacon for a sorting 

procedure but just the presence of a swap statement inside a loop may actually be 

enough [78] to trigger the same connection.  Evidence exists to support this concept of 

“beacons”. Gellenbeck et al [78], studied the importance of procedure and variable 

names as beacons.  Short Pascal procedures for searching and sorting were presented to 

96 computer science students for one minute and then they had to produce a written 

description of the function of each procedure. They found that meaningful procedure and 

variable names served as beacons of high-level comprehension [78] but in some cases the 

presences of strong code beacons [78], such as a swap in a sort procedure, were  more 

significant than the procedure name for high-level comprehension [78] i.e. the 
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programmers were able to infer the behaviour of the procedure even when the 

procedure name was deliberately misleading  [78]. Pennington [101] also found that 

when the code is completely new to a programmer they build up their understanding of a 

program from the bottom-up using code beacons [104, 110]. 

In order to improve software development tools, Ko et al [125]  investigated how 

programmers modified existing code. The study used 31 Java developers of different 

abilities and required them to complete 5 maintenance tasks over a 70 minute period 

during which they would be interrupted a number of times. For 10 of the more 

experienced developers their actions were recorded and analysed in further detail.  From 

the results of this study, a new model of software comprehension emerged (Figure 2-10) 

that describes a process of searching, relating and collecting relevant information. it 

involves forming perceptions of relevance from cues in the programming environment 

[125] . 

Search
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Figure 2-10 Model of Program Understanding in which Developers Search, Relate and 
Collect Information. [125] 

In this model, two factors about the development environment were found to be 

important [125]. Firstly it must provide clear and representative cues to allow developers 

to judge the relevance of the information, and secondly it must provide a way to collect 

information so that they do not have to retrace their steps to locate information that has 

already been found. An important point this study raised was that the visual 

representation of code is an important influence in software comprehension [125] i.e. 

visual stimulus plays an important role. 

Central to the development of this model was information foraging theory [126], which 

theorizes that people adapt their strategies and their environment to maximise extraction 

of relevant information per unit cost. This adaption process uses a concept known as 
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information scent  which is the imperfect “perception of the value, cost, or access path of 

information sources obtained from a proximal cue” [126]. 

In the software development environment, cues included names of source-code entities, 

comments and source file names. [125]. The model predicted that the assimilation 

strategy chosen [125] e.g. top-down, depended on the cues in the environment. 

Other research [94] [125] also recognizes that reading source code involves visual 

stimulus in the form of the spatial cues/beacons that alert the programmer to important 

aspects of the code. The speed at which these spatial beacons are identified strongly 

supports the findings of Altman’s [80] simulation and the role that perceptual chunks play 

in reading code. It is therefore possible to conclude that perceptual learning plays an 

important part in gaining programming expertise as previously discussed in Section 2.3.1 

and in Section 2.7.3. 

2.4.5 Cognitive Strategies used to Read and Write Code 

The mental model  can be said to contain static and dynamic entities [104], where the 

static entities represent the remembered information and the dynamic entities are the 

strategies and reasoning process by which the programmer assimilates information from 

the source code [120].  If the goal is to understand a block of code, the strategy may be to 

systematically read and understand each line of code while building an increasingly 

abstract mental representation [104]. A top-down strategy is used when the programmer 

takes knowledge from the problem domain and maps it to the microstructure of the code 

[120]. Alternatively, this can be viewed as a process of taking programming plans and the 

rules of discourse to decompose plans into lower level plans [120, 127]. A bottom-up 

strategy is where the programmer takes the code statements and chunks or groups them 

into abstractions, then these abstractions are further chunked and grouped at 

successively higher levels of abstraction until the mental representation of the program is 

complete [120]. Finally, an opportunistic strategy views the programmer as being an 

“opportunistic processor” able select the appropriate strategy as required [13, 120]. 

The strongly supported view [101] is that when reading code the abstract knowledge of 

program text structures plays the initial organisational role but control flow and 

procedural relations dominate in the macrostructure representation i.e. text structure 

knowledge theory dominates in practice (implementation plans). Pennington [101] found 

that when reading code experts do not apply a kind of mental library of plans to 
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understand programs from the top-down as suggested by Soloway et al [18] and that plan 

structure knowledge (as opposed to text structure knowledge i.e. implementation plans) 

does not form the organizing principle for “memory structures” [101]. When the code is 

completely new to a programmer they construct a program from the bottom-up [101]  

using cues from the code (beacons) [104, 110]. Since they were using a bottom-up 

strategy (Figure 2-11) Pennington also concluded that the programmers analyzed code 

first by developing a program model and then subsequently the situation model [120] i.e. 

first they learnt how the code worked then they related it to the problem being solved. 

“… the understanding of program control flow and procedures precedes 
understanding of program functions [purpose or goals]” [101] 

 

Figure 2-11 Cognitive Strategy for Reading Code 

However, the reading strategies of novice and expert programmers differ. Novice 

programmers tend to read a program sequentially [128, 129], line-by-line, as if they are 

reading a book. As a result they fail to connect the “pieces in terms of hierarchical 

structure, dynamic behaviour, interactions and purpose” [130]. Thus, a novice 

programmer’s strategy is more bottom-up concentrating on details first and general 

structure last [130]. By contrast experienced programmers use the control flow method 

of reading a program, in a top-down fashion following the flow of control of the executing 

program [130]. For example, they will step into a procedure when they encounter it and 
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when it returns they will continue to read from the location from which it was called 

[130]. 

Actually Pennington introduced the situation model in response to a second study that 

required the programmers to modify code. After the modification task there was an 

observable shift to increased comprehension of program function and data flow (Figure 

2-12) but at the expense of control flow knowledge [101]. This suggested that 

programmers cross-referenced the source code with the real-world problem entities. In 

short, they understood the purpose of code and the data being passed, rather than 

focusing on an execution sequence of the instruction statements. 

 

Figure 2-12 Cognitive Strategy Concentrating on Data Flow when Writing Code 

As in the program model, when modifying code the situation model is created bottom-up. 

The situation model is matched with the program model and used to build high-order 

plans in the program model [104].  Cross-referencing [131] is required to relate 

abstraction levels to each other “by mapping parts to functional descriptions” [104]. For 

example, by identifying the purpose of a code segment (control-flow) and hence clarifying 

some aspect of the functionality (goal/functional abstraction) of the program. Pennington 

puts it more succinctly as: 

“…construction of the situation model depends on construction of the textbase 
[program model] in the sense that the textbase defines the actions and events that 
need explaining” [101] 
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Cross-referencing is essential to build a mental representation across abstraction levels 

[104] and must also be related to information foraging [126]. Thus, the situation model

relates entities and functions in the problem domain to source language entities [120]. 

Given that plan knowledge bridges the gap between the problem and program domain, it 

must play an important role in the cross-referencing strategy [92] during software 

modification (Figure 2-13). A high level of comprehension was observed when 

programmers cross-referenced frequently between the program and situation models 

[120]. The mapping from problem to solution often requires analogical thinking [132]. 

Figure 2-13 Cognitive Strategy for Modifying Code Showing Cross-Referencing 
Behaviour 

This cross-referencing process causes an increased cognitive load that depends on the 

“cognitive fit between the mental representations and the external representation” [133]. 

Green et al [133] also observed that, if a programmer has a mental model of the control 

flow of a problem then the data flow will be harder to follow; likewise if they are thinking 

iteratively then recursion will be harder [133]. Unsurprisingly, for novice programmers 

this “close tracking” process is an issue [31].  
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The need for different strategies when reading and writing code, may account for the 

mixed results obtained when trying to correlate the ability to read code with the ability to 

write it. For example, a study by Sheard et al [134] using 79 undergraduate and 41 

postgraduate programming exam scripts, showed that there was a correlation between 

ability to read code and the ability to write code. A correlation between reading, tracing 

and writing code has also been demonstrated by Lopez [135], while other studies have 

found none[136]. The BRACElet project [137] suggested that: 

“...students who cannot read a short piece of code and describe it in relational terms 
are not intellectually well equipped to write similar code. We are not advocating 
that students must first be taught to read code ..... but we do advocate a mix of 
reading and writing tasks” [137] 

Given that writing code clearly involves a higher cognitive load, Lister et al [4] even 

suggest that the demands placed on novice programmers should be tailored so that the 

ability to write programs should only be required of “A” grade students whereas “C” 

grade students should focus on reading code. This implies that the mental load required 

to develop a situation model from a problem domain and to cross-reference it with the 

code being written is too much for some learners. Although reading and understanding 

code is an important aspect of the learning process, teaching only higher grade students 

to write code would significantly delay the development of programming skills of many 

members of the class. A far better approach would be to provide exercises that gradually 

increase in difficulty and the required cognitive load.  

Evidence also suggests that novices [120, 138] have a limited program model focus, that 

prevents them from  “seeing the forest for the trees” [137]. Soloway [139] even found 

that the cognitive load imposed by a complex problem may interfere with learning, even 

when a solution is eventually achieved. 

Von Mayrhauser et al [140] found that programmers switch between a number of these 

comprehension models and therefore proposed an integrated code comprehension 

model known as the Integrated Metamodel. As an example, a programmer may recognize 

a beacon for a sorting algorithm, which leads to the hypothesis that something is being 

sorted causing a jump to the top-down model. They generate sub-goals and search for 

evidence to support them, but if they find unrecognized code they return to program 

model building using a bottom-up approach. Similarly, Gilmore concludes: 
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 “… the evidence suggests that a programmer’s choice of strategy is influenced by 
his/her knowledge, the programming task, the program representation and the 
program’s complexity ” [92] 

However, we can conclude that evidence points to there being two processes required to 

successfully program. Firstly, program implementation plans related to Pennington’s text-

based knowledge allow programmers to “see” simple generic software constructs when 

reading code and provide a kind of mental template when writing code. Thus we can 

conclude that building up knowledge of these implementation plans is fundamental to 

learning to program. Mayer [116] recommends a similar process and identifies different 

types of “memory chunks” required to teach BASIC. Secondly, an understanding of the 

problem domain must be developed and cross-referenced with the code (text base). This 

cross-referencing load is significantly higher when writing code, as the programmer must 

constantly ensure the code being written meets the requirements of the problem. This 

confirms the importance of good problem solving skills, but the importance of cross-

referencing supports the argument for the involvement of an “intermediary” skill that 

enables a programmer to translate a problem solution to code by recognizing how 

elements of the problem may be implemented i.e. Pennington’s plan structure 

knowledge. For example, recognizing that storing a set number of values requires an 

array, while an arbitrary number of values may be stored in a list. 

From the grounded theory analysis conducted, Figure 2-14 shows the importance of 

perceptual learning through the “memory chunking process” and how the “mental plans” 

memorized by programmers become their understanding of how the code works i.e. they 

construct a “program model” to recognize code and write code using a “template” like 

approach. However, the task of reading code and the task of solving a problem and 

writing the code for the solution are different skills. The latter relies on an understanding 

of the problem and being able to infer a solution that can be coded. This requires the 

ability to develop an understanding of the problem domain (the situation model), and the 

ability to continually cross–reference between it and the program domain i.e. between 

the program and situation models. This cross-referencing process increases the cognitive 

load on the programmer. For learning it is important to adjust this cognitive load until the 

students develop the appropriate knowledge to reduce the problem search process. For 

most learning activities, this is typically achieved by providing appropriate examples and 

is known as the worked example effect [141, 142]. 
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Figure 2-14 Overview of Software Comprehension Concepts 

2.4.6 The Nature of Expertise 

The differences between novices and experts can be explained in terms of increased 

knowledge in a particular domain. 

“… peoples level of expertise in such domains, be it in chess, mathematics or physics 
plays a crucial role in how they represent problems and search for solutions” [24] 

Experts are able to ignore surface dissimilarities and concentrate on structural similarities 

allowing them to quickly identify a solution. In other words, they have a knowledge that is 

highly organized around domain principles so they can rapidly extract the solution 

relevant structure. Whereas novices tend to be bound to surface features of the problems 

that may be irrelevant to the solution [24]. It appears that experts are able to “chunk” 

information into meaningful blocks which they can quickly recall and apply later [24] 

known as perceptual learning. This difference has been found in numerous domains 

including chess [143] and computer programming [98]. 

“In effect, experts often see the solutions that novices have yet to compute” [24]  

Experts concentrate on the purpose of the code (what it does) and form abstract 

representations, while novice programmers focus on how the code works and form 

concrete representations [137, 144]. An expert uses larger more abstract chunks than a 

novice and their schemata are larger and better connected [122]. Given novice 

programmers have fewer, smaller, more concrete and fragile schemata than experts 

[122], they are not as effective or may not evaluate their code as it is being implemented 

because they have fewer choices and fewer design rules to draw on [122]. 
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Fix et al [145] looked at the difference between the mental representations of code 

developed by novices and experts . In this study 20 expert programmers were asked 11 

questions designed to assess their comprehension of a Pascal program. The conclusion 

was that experts’ knowledge exhibits five abstract characteristics not seen in novice 

programmers, which are: 

1. It is hierarchical and multilayer:  When debugging, experts read the code in order

of execution, starting with the main program, then the procedures called by the

main program, then the procedures called by the procedures and so on until the

last procedure is read. [128]. Thus, they build a hierarchical understanding of the

program [128].  Experts are more able to build this hierarchical structure [145].

2. It contains explicit mappings between the layers: Experts are better able link

specific segments of the source code to the program goals.

3. It is founded on the recognition of basic patterns: Experts are better at using

complex programming plans [101] in developing code than novices who are

restricted to simpler plans.

4. It is well connected internally: Code for implementing a plan or goal may be

spread throughout the program, so experts tend to pay special attention to this

code e.g. by designing good interfaces between modules. Experts tend to

concentrate on and remember this detail more than novices.

5. It is well grounded in the program text: Experts are better able to recall locations

of code and finding information they have seen before e.g. when debugging [128].

2.4.6.1 The Worked Example Effect 

Learners who study worked-examples always perform better than those who have been 

required to learn by solving problems [59]. Termed the worked-example effect, this 

phenomenon was first demonstrated by Sweller and Cooper [141, 142] but has 

subsequently been demonstrated repeatedly for a variety of learners [146-148], a variety 

of materials [59] and especially in domains where algorithmic solutions are applied [149] 

e.g. programming.  Empirical evidence has demonstrated that this is most important

during the initial skill acquisition stages [150]. 

“For novices, studying worked examples seems invariably superior to discovering or 
constructing a solution to a problem” [59] 
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For example, Sweller et al [151] conducted research into the role of worked examples in 

practice-based problem solving and found that students presented with practical 

exercises used novice approaches such as trial and error. However, if the students were 

given worked examples prior to such problem solving exercises then they used more 

efficient strategies and focused more on the structural aspects of the problems.  

Studying worked examples reduces the cognitive load on working memory by limiting the 

scope of the problem and effectively directing attention (i.e. working memory resources) 

to the understanding of the rules and structure of the solution [59].  This is the basis of 

acquiring problem solving schema [152]. Obviously it is assumed that these worked 

examples do not require heavy cognitive load [59], and are designed to reduce intrinsic 

and extraneous cognitive loads to allow the learner to concentrate on activities that 

develop schemata [153] i.e. maximize  the germane cognitive load [154]. Although, 

studies [154-156] have shown learners do not spontaneously develop such germane 

cognitive activities simply by reducing extraneous cognitive load. 

As a learner gains expertise the advantages of worked examples diminish [59] because 

they have to integrate and cross-reference redundant information with their existing 

knowledge schemata [157]. 

“…when learners are sufficiently experienced so that studying a worked example is, 
for them, a redundant activity that increases working memory load compared to 
generating a known solution” [59] 

This reduction in cognitive load as expertise increases is known as the expertise reversal 

effect [157]. It has also been shown that this reversal effect is due to the learner’s 

cognitive load differences rather than any overall motivation differences [158]. Since 

novice programmers lack the necessary knowledge to prevent unproductive problem 

solving searching, they require more guidance to reduce this cognitive load to give them 

time to develop the required knowledge and understanding. An interesting result of this 

research is that the level of guidance provided should be tailored to the level of expertise 

of the learner [157], which suggests that it should be reduced as the learner’s expertise 

increases. This reduction of the support provided to the learner is known as fading [159] 

and is integral to scaffolded learning which is discussed in Section 2.8.4. 



46 

2.5 Problem Solving Skills 

Gestalt psychologists investigated problem representation while Newell and Simon 

conducted research with various collaborators into how searching in the problem space 

may work [24]. It is now recognized that problem solving and insight is an integration of 

the ideas of Gestalt and Newell & Simon’s [24]. These areas of research are too large for a 

detailed study to be included but a brief discussion of some of the concepts is warranted 

as programming problems are still “problems” that must be solved.  

Newell and Simon [160] developed theories of problem solving based on the parallels 

between human and artificial intelligence. The solver’s representation of the task is 

known as the “problem space”, and the problem is solved by searching for a path through 

it that joins the initial state to the goal state [24].  

This problem space consists of “1. A set of knowledge states (the initial state, the goal 

state, and all possible intermediate states), 2. A set of operators that allow movement 

from one knowledge state to another, 3. A set of constraints and 4. Local information 

about the path one is taking through the space (e.g. the current knowledge state and how 

one got there) “ [24] 

They discovered that solver’s reduced the search process by relying on a number of 

heuristic strategies. Of these heuristics, the most important was mean-end analysis [24] 

which describes the process by which people devise a solution to a problem by 

establishing sub-goals to achieve the final goal [24]. Unfortunately, these heuristics are 

very specialized and people only rely on them until they gain experience and/or sufficient 

knowledge [24]. Therefore, we will focus on the work of Gestalt. 

As an example of a Gestalt phenomenon, functional fixedness refers to the tendency to 

see an object as being used to fulfill a particular purpose and ignoring the properties that 

might allow it to be used for a dissimilar purpose. This problem has been noted in 

mathematics [161], programming [31, 162] and software design [163]. In McCaffrey’s 

opinion [164], functional fixedness presents an enormous barrier to coming up with new 

ideas. Wertheimer [161] contrasted students that displayed “reproductive thinking” with 

those that displayed “productive thinking” and the ability to deduce the general principle 

and apply it in a different scenario. This is the basis of abstract thinking. The cognitive 

process by which a person learns information about one particular object or scenario and 
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then applies it to another is known as “analogy” [165]. Gick et al [37] studied the use of 

analogous transfer of knowledge, that is, the use of analogy to teach abstract thinking in 

solving problems. In psychology, the failure to transfer the general principle as described 

above, is known as “inert knowledge” [51]. The direct use of analogy in teaching has been 

applied to both the teaching of mathematics [166, 167], the “notional machine” behind 

the execution of code [168] [30, 169], parallel programming [170], algorithms [165] and 

variables [171] with some success. As Muller [28] notes: 

“Analogical reasoning is an essential practice in the computer science domain; 
software solutions for recurring algorithmic and design problems are developed and 
utilized in various contexts. Therefore, realizing similarities between problems and 
reuse of previously solved problems are mandatory” 

One potential problem was the difficulty of providing suitably familiar analogies that the 

students can identify with [171, 172]. Lui et al [7] also note that: 

“Computer programming is all fabricated that finds few parallels in the physical 
world and we believe that most analogies could potentially cause problems in some 
students” 

They do not specifically provide evidence for this claim, but instead of analogy their 

solution is to use multiple examples to refine and test the students’ mental models [7]. 

Another note of caution has to be raised, analogous transfer allows abstract concepts to 

be taught through concrete examples making formal reasoning easier, but it is not a 

replacement for a rigorous formal approach to teaching programming [165]. 

Before continuing, a number of other terms used in psychology need to be defined. The 

“source problem” is an example previously seen by the solver and the problem to be 

solved is known as the “target problem”. Mapping refers to finding corresponding 

components of one body of knowledge with components of another [173].  This mapping 

may take place between components (concepts) at the same level of abstraction i.e. 

when comparing the human heart with a water pump [173] or between a concrete 

component (concept) and a general schema (mental model built by the solver) i.e. the 

human heart and the abstract concept of a pump [173]. It may also occur during 

induction of schemata from examples i.e. learning the abstract sense of a pump by 

comparing an example of a heart and a water pump [173]. The source problem may also 

be referred to as a concrete problem/example [90], to signify the specific nature of the 

problem as opposed to the abstract solution required. 
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Holyoak [174] characterized analogous (analogical) problem solving as having four basic 

steps: 

1. Constructing mental representations of the source and the target problems 

2. Selecting the source as a potentially relevant analog to the target 

3. Mapping the components of the source and target 

4. Extending the mapping to generate a solution to the target 

These steps may interact in many ways and it is not a strictly linear process, so some 

preliminary mapping might be required before selection. Mapping is also referred to as 

establishing a structural alignment [175] between the source and target problems by 

which inferences can be made [176]. The resulting alignment consists of an explicit set of 

correspondences between the sets of components (representational elements) of the 

analogs, with an emphasis on matching relational predicates (or relations) e.g. the goal. 

Once aligned, candidate inferences can be made between the implicit schema extracted 

from the source (also known as the base [175]) and the target problem. 

In this sense, programming worked examples are intended to provide the novice 

programmer with the opportunity to learn the abstract principle from a number of 

concrete examples of its application. 

Gick et al [173] found that the best approach to ensuring that the learner was able to 

abstract the underlying principle or schema (mental model) was to present at least two 

analogs. Induction of the schema could also be significantly improved by explicitly 

presenting the abstract solution. Often programming is taught by presenting a number of 

worked examples that require the use of one or more software constructs, with the 

assumption that the construct will be learnt and that knowledge will be transferred to 

other problems. For example, it is common for a “for loop” to be presented as a code 

snippet as shown in Figure 2-15. 

 

Figure 2-15 Code Snippet for a for-loop 
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If we take the view that analogous transfer of knowledge is just the process of learning an 

abstract principle, then the work of Gick et al [173] suggests that the process of 

presenting a single example of using a software construct may not be sufficient. 

In teaching by analogy, Spencer et al [177] identified a potential problem. If there is a 

delay or a change of context between the presentation of the examples and the problem 

to be solved then the learner may fail to induce the abstract principle. By implication 

[174], the test subjects established a relationship between the example and the problem 

simply because one was immediately followed by the other (known as the demand 

characteristic). However, these findings have been contradicted [174].  

When completing examples or solving problems, the common abstract principle must be 

identified and applied. To determine the abstraction, differences between the worked 

examples or between the worked examples and the target problem must be ignored. In 

this context, there are two types of differences, “surface dissimilarity” and “structural 

dissimilarity” [174]. The term “structure” is a reference to underlying abstract principle. 

Therefore, structural dissimilarity refers to the differences between the contexts of the 

examples which seems to imply that a different principle is involved (“an alteration in the 

causal relations in the two situations” [174]) giving rise to a structure-violating difference 

[37]. For example, displaying the names of five people and displaying a user specified 

number of product names may suggest two different types of loop. Whereas, the term 

“surface” refers to the more superficial specific wording of the problem statement itself 

[37]. Thus, surface dissimilarity describes a difference that has no effect on the 

application of the principle (“a change in a feature that does not influence goal 

attainment” [174]) and is a structure-preserving difference [37]. For example, counting 

five people and counting five products both suggest a for-loop with a fixed count of five. 

Knowledge transfer can be significantly impaired if either the surface or the structural 

similarity are reduced [174]. Good surface similarity leads to moderately to highly 

elaborate solutions while surface dissimilarity typically leads to poorly elaborated 

solutions [178]. A number of studies have shown that learners tend to focus on the 

superficial details of a problem i.e. structure dissimilarity [179-181].  Some research [176] 

has shown that “undeleted” [182] surface dissimilarities are sometimes used to recall a 

previously learned solution and may support or compete with structural similarity. 

Mistakes are made when mismatches in superficial surface aspects win over solution-
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relevant structural similarities. Without hints, the transfer of knowledge can be limited 

[183]. Although hints can be provided to improve surface similarity, they have no effect 

on improving structural similarity [174]. Therefore, it is very important to ensure strong 

structural similarity when constructing analogs [183] i.e. structural isomorphism [174].  

Chi et al [180] investigated the role of self-generated explanation in “good” and “poor” 

students studying worked examples in mechanics. They discovered that the students: 

 “….. representations of the principles and other declarative knowledge introduced in 
the text will differ depending on the degree to which their understanding of the 
principles is enhanced during their studying of examples ….”  

In other words, the “good” students were able to focus on structural rather than surface 

features of the examples. That is to say, for well-structured domains like mathematics 

and physics learning from worked examples is very important but only for students that 

can explain the rationale for each step in the solution, the “self-explanation effect”. [180, 

184] 

In a teaching context, the similarity between the learning and target contexts is defined 

as near and far transfer  [185]. Near transfer refers to the use of knowledge in a context 

which is quite similar to the learning context. Far transfer occurs between contexts which 

are quite different [186]. The difficulties of transferring knowledge may be caused simply 

because skill and knowledge are specialised or localised to a particular context [74]. For 

example, Soloway et al [127] found that expert programmers had “strong expectations 

about what a program should look like” and when these expectations were not met, even 

in quite innocuous ways, their performance dropped drastically. This transfer of 

knowledge is often particularly difficult for novice programmers, their knowledge of 

program instructions (e.g. if and while) can remain inert during programming even when 

there is hardly any gap to transfer across [31]. Dunbar concluded that learners must be 

given extensive training, examples or hints [179]. Thus we can conclude that to teach 

abstract concepts a “scaffolded learning” approach is required.  

Perkins et al [74] emphasized the classification of the transfer process itself [187]. They 

[74] defined two types of knowledge transfer known as “low-road” and “high-road” that 

roughly equate to the transfer of skill versus the transfer of knowledge from one context 

to another. Low-road transfer reflects the automatic triggering of well-practiced routines 

where there is a great deal of perceptual similarity between the learning context and the 
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problem context [74]. High-road transfer requires conscious reflective thinking to abstract 

the skill or knowledge from the learning context to allow it to be applied in another [74]. 

Thus, surface and structural similarities are sought [74, 188]. For students, identifying the 

abstract principle is difficult [37]. Low-road knowledge transfer problems arise when 

there is little surface similarity between the contexts to allow the relationship to be 

automatically recognized. As for high-road transfer, when comparing contexts, the 

student may be neither able to determine the abstract principle nor apply it because they 

are unable to break the “patterns free of their accidental associations” [74]. For example, 

in programming, the novice programmer starts with little programming experience so it is 

not a natural or automatic skill [74]. High-road transfer requires the abstraction of 

general problem solving principles from a programming context and relating them to the 

“real-world” problem at hand [74]. However, most programming courses focus on 

building programming skill and make little effort to build bridges between the 

programming and problem domain [74]. 

Perkins et al [74] suggest two techniques for enabling transfer, “hugging” and “bridging”. 

“Hugging” means teaching low-road transfer by minimizing the surface dissimilarities 

between the learning and initial problem contexts. “Bridging” means providing conditions 

that help to mediate the process of abstraction and connection between contexts, so that 

the student is not required to spontaneously achieve transfer. 

Bassock et al [182] investigated the role that interpretation plays in analogy and problem 

solving. They discovered that people have an interpretive bias, and they concluded that 

structural inferences triggered by object attributes are quite common in problem solving 

and are likely to affect transfer.  

“In general , our claim is that when people are presented with a problem involving 
several entities, they reason about the situation described in the problem using 
knowledge about the way in which these entities typically interact with each other 
(e.g. children eat cakes, cakes do not each children). As a result, they abstract 
interpreted structures that include the reasons why certain entities play certain 
structural roles.” [182] 

Interestingly, they also noted a similar bias in a mathematical problem generation study 

[189], and that the process of “semantic alignment” leads to selective and sensible 

application of abstract formal knowledge e.g. dividing apples among baskets makes more 

sense than dividing baskets among apples. However, they also note: 
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“….our results strongly suggest that when application of formal rules conflicts with 
people’s semantic and pragmatic knowledge, people who have good understanding 
of formal rules may prefer arriving at logically invalid but reasonable conclusions to 
arriving at valid but anomalous conclusions” [189] 

Chrysikou [190] describes another possible mechanism by which a solver’s domain 

specific knowledge may be brought to bear on the solution through ad-hoc 

categorization. In this context, a category is a set of entities or examples from the solver’s 

own experience that can be selected by concept. A concept refers to the information in 

working memory that is used to represent a category during the analysis of a problem. 

Chrysikou hypothesized that when faced with a problem, a solver categorizes the problem 

elements then constructs a set of goal-derived categories. These goal-derived categories 

may be either well-established from previous experience or ad-hoc. “Ad-hoc” in the sense 

that these categories are dynamically created “on the spot”, from a combination of 

elements from well-established or taxonomic categories learned from exemplars from 

previous experience. By training solvers to spot alternative goal-derived categories, 

solvers can overcome the tendency to avoid transferring strategies from one task to 

another without additional explicit instruction. Chrysikou proposes that by putting the 

subjects into the right state of mind for creative problem solving, this method can 

overcome functional fixedness and thus boost creativity [191].   

2.6 The Relationship between Problem Solving and Programming 

From the grounded theory analysis, the relationship between problem solving skills and 

programming is shown in Figure 2-16. Drawing on the previous discussion of software 

comprehension, the four key concepts are abstraction, domain specific knowledge, 

plans/memory chunking (perceptual learning) and the need to continually cross reference 

between these concepts. This figure also illustrates that a characteristic of expertise is the 

development of domain specific knowledge that novice programmers initially lack and the 

problems that novice programmers often face when analyzing a problem statement. 

Namely, being fixated by the concrete surface dissimilarities instead of focusing on the 

structural similarities of the abstract principle required to solve the problem. Novice 

programmers also need to learn the prime programs [101] (software constructs) until 

they become automatic and almost unconsciously recognized (perceptual learning) when 

reading and writing code, minimizing the cognitive load imposed in constructing the 

program model and allowing more attention to be spent on cross referencing when 

writing code.  
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“The tendency to focus on details such as the syntax structure manipulation when 
writing programs is a hindering factor in schema formation.  Often, the 
implementation of an algorithm takes attention away from the special ideas that 
one should learn from an algorithm development process and may prevent the 
formation of a schema”[28] 
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Figure 2-16 Overview of Problem Solving Skills and Software Comprehension Concepts 

When defining problem solving in the context of programming, it is often described as the 

process of taking a mental plan which is in familiar terms and converting it into a program 

[192], that is to say there is a mapping between the problem domain and the program 

domain [110, 133]. Green et al [133] define a powerful corollary: 

“...it is not easy to deal with entities in the program domain that do not have 
corresponding entities in the problem domain.” 

Pane et al [192] studied the language and structure of non-programmers’ solutions to 

programming problems and noted that the “mismatch between the way programmers 
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think about a solution and the way it must be expressed in a programming language” 

[192]  creates difficulties for both novice and experienced programmers alike [192]. 

In reviewing the work of Hoc et al [193] and Green et al [133], Pane et al [192] note that 

many bugs and misunderstandings are caused by a poor “closeness of mapping” between 

these domains i.e. when the distance between these domains is too great. There are a 

number of separate and distinct issues that may define this mapping process including 

the notional machine, the interpretation of the problem statement and the nature of 

problem solving in a programming context. 

2.6.1 The Notional Machine 

Ben-Ari [22] suggests that a first year computer science student has no effective model of 

a computer, at best this model is “is limited to the grossly anthropomorphic ‘giant brain’” 

[22] or the idea that there is a ‘hidden mind’ within a programming language that has 

some intelligence [194].   

Sleeman et al [195] found “even after a full semester of Pascal students' knowledge of the 

conceptual machine underlying Pascal can be very fuzzy” [22]. 

For example, the concept of a variable can be difficult for students to learn [195]. Unlike 

mathematical variables, programming variables have a type and misunderstandings arise 

when novices attempt to treat program variables like algebraic variables [171, 196]. In 

addition, novice programmers find it difficult to identify the type from a value given in a 

natural language problem [197]. 

Although an understanding of the machine level i.e. the actual hardware of the computer, 

is not required by a novice programmer [116] a misunderstanding of the limitations it 

imposes on code execution can be a source of confusion. Thus, an abstract model of the 

general functions and features of a computer is required, which Schulte et al termed the 

notional machine [120]. Mayer[116] refers to this as the “transaction level” of knowledge, 

where a transaction represents some program “operation” that is applied to an “object” 

at a some “general location”. Here, operations include MOVE, FIND, CREATE and 

DESTROY, and are applied to an “object” specified as a number, pointer or program line at 

a ”general location” such as a memory address, a file or the screen. Knowledge of the 

notional machine can be taught by analogy [116], or by simplifying the notional machine 

and making its processes and “parts” more visible through some form of simulation [168] 
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[198]. However, care must be taken when teaching by analogy. For example, to teach 

variables we may use the box metaphor to help visualise the concept, but students may 

come to believe that a variable can simultaneously contain two values [22]. The students 

have constructed a consistent concept, it just happens to be non-viable for successful 

programming [22]. 

2.6.2 The Situation Model and the Problem Statement 

Perhaps the greatest problems faced by novice programmers is building the situation 

model i.e. extracting the pertinent information required from the problem statement 

written in natural language.  

What can be said about the relative difficulty of natural language problems? This is 

obviously a difficult question to answer, but if the challenge of a problem is in “building a 

picture” of the potential solution then perhaps the difficulty is reflected in the mental 

model required. Johnson-Laird [199] investigated people’s competence in deductive 

reasoning and proposed that building a mental model took three steps: 

1. They construct a mental model assuming the premises of their argument are true

2. They develop an informative conclusion that is true based on the model they have

constructed

3. They check for an alternative model where the same conclusion is generally found

to be false. If no alternative model is found then the conclusion is accepted.

In a later investigation [200], it was found that the harder the task was the greater the 

number of such models that needed to be constructed in order to obtain the correct 

conclusion. Thus, in solving a programming task the more mental models that a 

programmer has to construct then the more difficult it can be said to complete [201]. 
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In reading a problem statement, two difficulties faced by novice programmers are [193]: 

1. A shift from value to variable processing 

2. Elaboration of a representation of the procedure control structures of which 

beginners are not necessarily aware in usual problem solving situations. Mayer et 

al [75] identified two key skills: 

a. translate a word problem into an equation or answer (problem translation) 

b. predict the outcome of a procedure or set of directions that are stated in 

English (procedural comprehension) 

When developing a code, the programmer must identify any quantities or equations 

required from the natural language description of the problem which can be difficult [75] 

and these quantities need to be represented as variables [193].  Secondly, a procedure 

expressed as a natural language statement must be identified from the text and 

translated to a programmable form that can be executed. Essentially, programming 

requires the execution of a series of instructions that implement such a procedure. Mayer 

et al [75] demonstrated that a related skill is procedural comprehension, the ability to 

follow a series of steps in natural language to determine their outcome. To demonstrate 

its importance in learning to program, they conducted an experiment using two groups of 

23 randomly selected students, in which only one group was initially given pre-training of 

skills consisting of predicting the output of 60 problems stated in English e.g. 

1. Put the number 3 in Box A 

2. Add 5 to the number in Box A; put the result in Box B 

3. Write down the number from Box B 

4. Stop working on this. 

Both groups were then asked to read a manual on BASIC programming and to predict the 

output of 100 BASIC example problems. For example, a typical problem might read: 

10 LET A = 3 

20 LET B =  A + 5 

30 PRINT B 

40 END 

It was found that the students that received the initial training learned BASIC faster than 

those that did not. 
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“A straightforward conclusion is that procedure comprehension is a component skill 
in learning BASIC, and this skill can be taught to novices” [75] 

Novice programmers face a range of additional problems including failing to recognise the 

important elements of the problem statement by trying to directly translate text from a 

natural language into a programming language [202]. They introduce distortions in their 

programming syntax when their programming knowledge is lacking [193], and these 

errors reveal semantic difficulties in “transforming well-known contents into quite 

different contents expressible in the new language” [193]. This phenomenon is also seen 

in translation between natural languages [193]. Likewise, they will often attempt to use 

natural language semantics when translating natural language specifications into a 

programming language [192, 203]. However, a programming language defines constructs 

in ways that are not compatible with natural language constructs [192]. For example, 

‘then’ is interpreted as ‘afterwards’ instead of ‘in these conditions’ [204].  

Another area where natural language can give rise to problems is in Boolean logic. Pane 

et al [192] found that novice programmers tended to create mutually exclusive sets of 

rules or used a general case  followed by an exception. The Boolean AND was used 

instead of OR and NOT was treated with lower precedence. Spohrer et al [117] also noted 

that natural language lead to novice programmers into making mistakes. For example, an 

English statement such as “Retry action if event is not A, B or C” may be interpreted as 

using a Boolean OR but the “not” here should convert this into an AND operation. Novices 

find the intended scope of the NOT operator to be ambiguous [205]. A study was also 

conducted to investigate logical thinking and formal reasoning [206], based on the work 

of Epp [207]  and Herman et al [208]. In natural language OR is used exclusively or 

inclusively but in mathematics it is always used inclusively [207]. A similar issue arises 

when using if-then and quantified statements [207]. Herman et al [208] noted that: 

“...the ability to translate natural language specification to Boolean expressions...is 
both important and difficult for students to learn” 

2.6.3 The Program Model and Problem Solving 

Perkins et al [209] define the term fragile knowledge to describe the incomplete or 

fragmented knowledge a student possesses that is not sufficient to allow them to 

produce a complete solution  [31]. They subdivide fragile knowledge into partial, inert 

[51], misplaced and conglomerated knowledge [31]. Partial knowledge refers to 

fragmented information caused either by the student having never been given the 
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opportunity to learn the missing information or because they have forgotten it [31].  Inert 

knowledge is information the student already possesses but fails to recall [31, 51]. 

Misplaced knowledge designates “circumstances where a student imports command 

structures appropriate to some contexts into a line of code where they do not belong” 

[31]. Conglomerated knowledge signifies situations where students  join disparate 

elements together in the code in a “syntactically or semantically anomalous way in an 

attempt to provide the computer with the information it needs” [31]. Perkins et al [31] 

concluded that novice programmers difficulties were characterized by a “fragile 

knowledge exacerbating a shortfall in elementary problem solving strategies”. Therefore, 

programming should not be viewed as an opportunity to develop general problem solving 

skills since these skills are required to program [92]. 

In programming, inert knowledge is in part reflected by a failure by the student to apply a 

“critical filter” to eliminate candidate solutions [31] and mistaken strategies [92]. A typical 

novice programmer’s mistaken strategy is to insist on using syntactic features taught 

recently when simpler structures taught in the past would suffice [92]. This results in a 

"neglected strategy"  [31] i.e. a failure to apply a known general problem solving strategy.  

However, it must also be recognised that novice programmers encounter problems when 

the solution requires the use of programming constructs that they have never seen [193]. 

A programmer must read a program to determine what it is doing while modifying it, 

known as “close tracking” [31], to apply a critical filter to the code and identify the 

required strategy  [31]. A novice programmer’s fragile knowledge can prevent this 

process [31] resulting in inert knowledge [92]. When a student gains a skill it tends to be 

bound to the initial learning context and they are unlikely to transfer it to a new context 

on their own [31] i.e. novices tend to be bound to surface features of the problems that 

may be irrelevant to the solution [24]. Clearly this relates to structural similarity [174] and 

analogous transfer of knowledge [37]. One technique to enable this transfer is for the 

student to use self-monitoring strategies [31]. Students can also learn to deploy skills and 

knowledge if they are explicitly supported or “scaffolded” [210] i.e. scaffolded learning. 

2.6.4 Divide and Conquer 

In solving a large problem one approach is to decompose it into a set of sub-problems 

[211]. The term decomposition refers to two different concepts, the process of sub-

dividing the problem into more “manageable units” [211] and the product of this process. 

For example, a programmer may hack the code without following any structured 
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programming methods and then re-arrange it so that it looks like it was developed by 

following structured design principles. In this case, the product (the program) may be 

properly decomposed but an undesirable decomposition process [211] was used. For 

Berendsen et al [211], every sub-problem has a specific goal and a number of standard 

solutions or plans that can be used to solve it. The plans they refer to are clearly program 

implementation plans [18, 104] as they “consist of lines of code which belong together to 

achieve a particular goal”. 

2.7 Taxonomies of learning behaviours 

2.7.1 Bloom’s Taxonomy 

Educational psychologists succeed in classifying the thought process in a number of 

dynamic levels (or categories) referred to as the “Cognitive Domain of Bloom’s taxonomy 

of Educational Objectives” [212] as summarized in Table 2-1. 

 KNOWLEDGE To acquire, to recall, to identify, to recognize (knowledge; of specifics, of 
dealing with specifics)(knowledge of universals and abstractions) 

COMPREHENSION Translation, interpretation, extrapolation 

APPLICATION To apply, to relate, to transfer, to use 

ANALYSIS To discriminate, to distinguish, to organize 

SYNTHESIS To constitute, to combine, to specify, to propose 

EVALUATION To validate, to argue, to appraise, to reconsider 

Table 2-1 Blooms Taxonomy 

The complexity increases and becomes more abstract [213] as the learner progresses 

through the levels from gaining Knowledge to being able to evaluate that knowledge. In 

2001, the taxonomy was revised [42] by a team of cognitive psychologists and a number 

of changes were made to the original model. These changes were made to provide a 

better fit to learning outcomes which are now framed in terms of subject matter and a 

description of what will be achieved with or by modifying that content [213].  

In the revised taxonomy, the noun and verb aspects were divided into a knowledge 

dimension and the verbs formed the basis of a cognitive dimension. The cognitive 

dimension table is very similar to the original taxonomy table, but with the levels 

renamed using verbs so “Comprehension” becomes “Understanding”. “Synthesis” was 

renamed “Creating” and exchanged places with “Evaluating”. 

Table 2-2 illustrates this revised taxonomy, including relevant quotations [42] and 

characteristics.  
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REMEMBERING “retrieving relevant knowledge from long-term memory” 
Recognizing, Recalling 

UNDERSTANDING “determining the meaning of instructional messages, including oral, written 
and graphic communication” 
Interpreting, Exemplifying, Classifying, Summarizing, Inferring, Comparing, 
Explaining 

APPLYING “carrying out or using a procedure in a given situation” 
Executing, Implementing 

ANALYZING “breaking material into its constituent parts and determining how the parts 
relate to one another and to an overall structure or purpose” 
Differentiating, Organizing, Attributing 

EVALUATING “making judgements based on criteria and standards” 
Checking, Critiquing 

CREATING “putting elements together to form a coherent or functional whole; 
reorganizing elements into a new pattern or structure” 
Generating, Planning, Producing 

Table 2-2 Revised Blooms Taxonomy 

In general, as in the original taxonomy, the layers increases in complexity as you move 

from “Remembering” to “Creating”, although in the revised taxonomy there is some 

overlap as the scope of some categories has increased [213]. It should be noted that there 

is a sequential progression between the levels, from remembering to understanding, to 

applying, to analysing, to evaluating and finally to creating. If you are unable to remember 

any information there is nothing to understand and without understanding there can be 

no effective application of that knowledge to obtain the desired result. With no results 

there is nothing to analyse or evaluate and since nothing of consequence is learnt it 

becomes impossible to create new ideas or solutions. The levels are heavily interrelated 

and interdependent in this way.  

Applying this to programming, a learner is required to “Remember” the software 

constructs and the programming keywords (syntax) and “Understand” how they can be 

used to “Create” a program. Scott [214] investigated using Bloom’s taxonomy for 

constructing programming tests, but hypothesized that many problems experienced by 

students are caused by programming being taught through demonstration which is a 

comprehension level activity i.e. the lecturer provides an example that the student 

copies. A program assignment that requires a student to write a program, he argues, is a 

synthesis level activity that falls under the top two most complex levels of the taxonomy. 

Thus, the bimodal (or double bump) distribution often seen in the frequency versus test 

scores graph is caused because many students can answer questions at the lower levels 

of taxonomy while only a smaller percentage are able to answer them successfully at the 
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higher levels. He therefore recommends that instruction should start at the lower level 

before moving on to the higher level. 

“In most learning there are “novices” and “experts” as well as the spectrum in-
between. The critical differences between the expert and novice, given the same 
innate ability, is knowledge base, the operational level of cognition and the 
transition time from one level of cognition to the other.” [215]  

However, research by Lahtinen [216] suggests that students may perform quite well at 

high levels of the taxonomy even when they have problems at the lower levels. Thus, for 

programming the sequential progression between the Bloom’s levels may not hold true. 

Although the final objective of teaching programming is that all students will be able to 

write programs, Scott [214] recommends that tests be structured to assess all the levels 

of the taxonomy. Students that progress faster should be given credit for doing so, but 

well-structured tests allow the lecturer to monitor the progress of all students. Lister et al 

[4] go even further and suggest that programming assignments should not be marked 

according to a norm-referenced marking scheme but according to a criterion-referenced 

grading scheme where each grade is associated with explicit criteria based on Bloom’s 

taxonomy. This would prevent weaker students that do not necessarily reach a 

competent programming standard from failing too soon and may prevent stronger 

students from feeling insufficiently challenged. Although these approaches may reduce initial 

failure rates, they fail to address the fundamental problem which is providing sufficient graduated 

exercises to nurture and support the development of programming skills. In effect, changing the 

marking scheme can be seen as a way of disguising or hiding the learning difficulties, rather than 

improving teaching to better support learning. 
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2.7.2 Structure of Observed Learning Outcomes (SOLO) Taxonomy 

An alternative to Bloom’s taxonomy is the Structure of Observed Learning Outcomes 

(SOLO) taxonomy [217], which “represents a more qualitative way to classify cognitive 

processes” [218]. It defines five levels (Table 2-3) and as in Bloom’s, the cognitive load 

increases as one level builds on another. Depending on the course, the students may only 

need to complete a certain number of the stages. 

Prestructural students are simply acquiring elements of unconnected information, which 
have no organisation and make no sense 

Unistructural obvious connections are made, but their significance is not grasped 

Multistructural a number of connections may be made, but the meta-connections between 
them are missed, as is their significance for the whole 

Relational the student is now able to appreciate the significance of the parts in relation to 
the whole 

Extended 
Abstract Level 

the student is making connections not only within the given subject area, but 
also beyond it, able to generalise and transfer the principles and ideas 
underlying the specific instance 

Table 2-3 The SOLO Taxonomy 

As the student progresses through these levels  [217, 219], their cognitive capacity 

increases so that more information must be extracted and applied. There is an increasing 

need for the student to relate the content to the intended results and it becomes more 

important to reach consistent conclusions that bring the results to a closure. Originally, 

the levels of SOLO were based on the age of the learner with the lowest level for the 

youngest learner. However, Shuhidan et al [218] argue that since all learning is about 

acquiring new knowledge, the levels of cognition can be used to describe this process 

regardless of age.  

The SOLO taxonomy is not a model of cognitive development [137], but it can be used to 

analyse or develop assessment strategies that advocate a mix of assessment exercises 

[137]. SOLO represents a more qualitative way to classify cognitive processes [218]. As 

part of the BRACElet project [137], 108 students from two institutions were asked to 

explain “in plain English” a sample of code (Figure 2-17) and their responses were 

classified by the BRACElet group members according to the first four levels of the SOLO 

taxonomy. 
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In plain English, explain what the following 

segment of Java code does:

bool bValid = true;

for (int i = 0; i < iMAX-1; i++)

{

        if (iNumbers[i] > iNumbers[i+1])

                bValid = false;

}

 

Figure 2-17 An “explain in plain English” Question [137] 

To be classified as a relational response a student had to understand that the code checks 

whether the array has been sorted and to be classified as a multistructural response they 

had to describe how the code worked (often line-by-line) without recognizing its purpose 

was to check the sort. If students gave answers which fell into both categories i.e. they 

described the function of each line and the overall purpose of the code, then the answer 

was classified as a relational response. Students seeking an abstract representation of the 

concrete code would find it natural to give a relation response (what the code does), 

while others would focus on the individual lines of code (how the code works) and not the 

relationship between them. However, the BRACElet group [220] also found that when 

applied to classifying exam responses of 14 students, the SOLO ratings could only be 

applied with moderate levels of consistency. 

When classifying programming students’ results against SOLO [134, 218, 220], it has often 

proven necessary to supplement the original SOLO levels as shown in Table 2-4. These 

additional sub-levels might aid consistency in categorization of student work [220], but 

they add a level of complexity that was not in the original taxonomy. 
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Not attempted or totally wrong 
[218] 

The answer is blank or totally wrong 

Prestructural Substantially lacks knowledge of programming constructs or is 
unrelated to the question [220] 

Unistructural Provides a description for one portion of the code [220] 

Multistructural A line by line description is provided of all the code (the 
individual “trees”) [220] 

Multistructural Error [220] A line by line description is provided for most of the code, but 
with some minor errors 

Multistructural Omission  [220] A line by line description is provided for most of the code, but 
with some detail omitted. 

Relational Provides a summary of what the code does in terms of the 
codes purpose (the “forest”) [220] 

Relational with Extra [134] Additional information provided 

Relational Error  [220] Provides a summary of what the code does in terms of the 
code’s purpose, but with some minor error. 

Extended Abstract Level Novices able to make connections beyond the scope of the 
question and able to transfer knowledge to a new situation 
[218] 

Table 2-4 SOLO Levels with Additional Sub-Levels 

 

2.7.3 Software Comprehension, Perceptual Learning and Teaching 

Given that neither the Bloom’s nor the SOLO taxonomies adequately model the process 

of learning to program, we need to reconsider the role of software comprehension and 

perceptual learning in light of these limitations. Understanding how programmers build 

mental models of the software they are developing should enable learning material and 

teaching approaches to be adjusted to take advantage of this knowledge. However, as 

Gilmore [92] explains, the main issue with such knowledge-based theory of expertise is 

that the focus of these theories is the process of acquiring knowledge about 

programming, not knowledge about how to program. Learning to program is not just 

about building semantic knowledge about programming, but also requires practice to 

develop episodic memories of how to apply it [91, 92]. 
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In evaluating the software comprehension models, Schulte et al  [120] derived goals and 

content that could be applied to teaching and learning programming. The goals were: 

1. Develop unconscious / automated chunking strategies or skills (perceptual 

learning). 

2. Skills to effectively navigate the mental representation, and to be able to map it 

and navigate to the corresponding external representation [145]. 

3. Skills in reading program code. Most software comprehension models emphasize 

the importance of understanding the program based on the program code (i.e. 

reading). Perhaps it should be explicitly emphasized in education as well. 

4. Ability to extract different types of information from program text. 

5. Ability to develop holistic understanding. 

6. Ability to cross-reference different key elements 

Furthermore, from the analysis the following content was suggested: 

1. General orientation: What programs are for and why they are important. 

2. The notional machine: an abstract model of the machine executing the code. 

[Note, this has already been studied by Mayer [116] who developed a layer 

between assembler and BASIC that represented the building blocks from which 

programming statements could be made.] 

3. Notation: Syntax and semantics 

4. Structures:  Abstract solutions to standard problems including plans, beacons, 

discourse rules and patterns. 

5. Pragmatics: Skills of planning, developing, testing and debugging. 

Table 2-5 also presents a summary of the most interesting conclusions derived from the 

software comprehension models themselves. 
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Experts perform better when programs are built using plans i.e. structured programming 

Experts use cross-referencing between the program and situation models, while novices focus on 
one or the other 

Expertise requires a developed knowledge base 

Experts are more likely to map aspects of function (goals) and execution to concrete code 

Finding ways of being more explicit about the domain may perhaps help novices to more naturally 
draw the linkages between top-down programming and situation models. 

A read-to-recall task caused novices to focus on the program model, while a read-to-use task that 
required novices to modify and re-use code enabled them to eventually develop a situation 
model. This observation was based on advanced students who were novice object oriented 
programmers [221]. 

In teaching and learning program execution sequence, micro-sequences focus on comprehending 
a program as individual examples e.g. implementing a sort algorithm. Macro-sequences focus on a 
course. 

Table 2-5 Observations based on the Software Comprehension Models from the work of 
Schulte et al  [120] 

Schulte analyzed the models of software comprehension and constructed an educational 

model entitled the Block model [222]. This work was based on the earlier work by Kintsch 

[223] on text comprehension, who described a cyclical process [223] where 

comprehension begins by reading the text and identifying the atoms from which program 

statements are recognized thus forming the blocks. Inferences are then made about the 

relations between those blocks within the holistic macrostructure [120]. The Block Model 

consists of a matrix where columns represent the dimensions of software comprehension 

and rows represent the hierarchical levels of comprehension (Figure 2-18). 
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Figure 2-18 The Block Model [222] 

Schulte et al revised the Block model [120] to incorporate knowledge base, including 

semantics, goals, plans, efficiency knowledge, domain knowledge and discourse rules. 

However, this revised model left open the question of how this knowledge could be 

taught. 

In the Block model, when the capacity of the short term memory is reached at the end of 

a line of text or “perceived program block”, the information (program statement) needs 

to be transferred and integrated into working memory  so  that  short-term-memory is 

freed for the next cycle [120]. Hence, short term memory is used to store the information 

recently acquired from the code and working memory to integrate it with appropriate 

information previously learnt [120]. The abstract mental representation of the program is 

created stepwise from the perceived material as each perceived program block is read 

[120]. Each level of comprehension becomes more abstract and “independent of the 
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perceived information” requiring more conscious attention and organization [120, 223]. 

The Block model distinguishes between three general types of knowledge: 

 Text Surface, a representation of the actual code being read [120]. 

 Program Execution distinguishing program text from standard text [120] and the 

understanding of execution is important for learning to program [222]. In studying 

how experts and novices debug code, studies [128, 129] have shown that experts 

read the program in order of execution while novices read it from beginning to 

end like a piece of prose [129]. 

 Function, the purpose or goals of the program [120, 222]. 

The three dimensions are split between structure and function, resembling the separation 

of the program model and the situation model and reflecting the dual nature that source 

code plays in comprehension [120]. 

“By inferences and additional domain knowledge, a situation model is also 
constructed which includes comprehension of the function, the goals and purposes 
of the program” [120] 

Understanding the goals relies on inferences and on knowledge extracted from the code 

[120]. In teaching programming, the problem is balancing the teaching of structure and 

function [120]. Schulte [120, 222] recommends avoiding detaching the teaching of 

function from the teaching of structure and vice-versa. As comprehension increases it is 

assumed that the reader makes fewer errors in extracting information, integrating it and 

activating relevant prior knowledge [120, 222]. Experts are able to perform more of these 

processes: 

“…automatically or unconsciously so that cognitive resources are freed for more 
complex and intentional processing [223] ” [120] 

This implies that perceptual learning plays a significant role in developing coding ability. 

The term program block implies a memory chunk of some kind, and expertise can thus be 

defined as the unconscious activity of recognizing and applying the previously learnt 

atoms and blocks. 

The Block model allows different learning paths to be taken through it by selecting, 

rearranging and omitting the cells in the matrix as required [120], although the core 

issues must still be taught. Thus, it does not directly define a pedagogical approach for 

teaching programming. 
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2.8 Teaching Approaches 

Pedagogical study is a very active research field and a large volume of data has been 

accumulated over a number of years. In the area of teaching programming, a number of 

approaches have been attempted with mixed results [1, 7, 118]. An analysis of the 

benefits and drawbacks of these approaches is important, to determine if any potential 

modifications may be made and studied.  

2.8.1 Constructivism 

Students are more likely to transfer thinking skills if they are motivated to use them i.e. if, 

the rewards are clear and they can apply them in their own lives [188]. The idea that 

students will be more motivated and gain a sense of ownership of a problem the more 

realistic the scenario it depicts, is termed authentic learning [224]. Traditional teaching 

tends to simplify learning material to make memorisation of the content easier, at the 

cost of removing the inherent complexity associated with authenticity and denying the 

student the opportunity to develop “associations between concepts and reflective mega-

cognitive processes” [224, 225]. This “cognitive authenticity” [226] is one of the central 

tenets of constructivist learning theory. Situated cognition [227] implies “knowledge and 

conditions of its use are inextricably linked” [224]. Constructivism essentially theorizes 

that an individual’s knowledge is actively constructed and learning is an adaptive process 

[224] that results in the formation of mental models [228]. Effective learning in 

constructivism requires the construction of viable schema (mental models) that can 

correctly explain reality [7]. Learners actively construct knowledge while striving to make 

sense of the world, but this knowledge is based on personal experiences, goals and 

beliefs. 

“It is the individual who imposes meaning on the world, rather than the meaning 
being imposed on the individual” [224] 

Thus, constructivism suggests that knowledge cannot simply be transferred from the 

teacher to the learner “we can teach, even well, without having students learn” [224], and 

instead promotes the active development of student knowledge over passive absorption 

from textbooks and lectures [228].  The theory also proposes that knowledge 

construction exists at many levels of abstraction [229], the first being sensory-motor 

experience (or perceptual experience) [229] with external objects and consequent 

abstraction of properties from them [230]. There is a continuum of levels of 

abstractions[229], abstractions built on abstractions starting with sensory-motor 
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experiences [229], where abstract concepts are learnt as a result of the operations 

performed [224]. 

Traditionally, learning material is pre-specified and sub-divided or modularized for 

delivery, whereas constructivists prefer teaching environments in which knowledge and 

skills emerge naturally [224]. Students are empowered to select what and how they learn, 

thus allowing different students to study different things [224]. Greater emphasis is put 

on the students’ prior knowledge and self-reflection [224, 231]. To achieve the best 

transfer of knowledge a concept must be addressed from a wide range of learning 

contexts [224]. 

In constructivism, teaching involves striving to understand the student’s mental model 

and then attempting to guide them to the correct theory [22]. However, since each 

student builds recursively on their own knowledge, they will each develop a slightly 

different understanding of the concepts. Given these mental models are individual to 

each student, it is not uncommon for a student to create a consistent model that is at 

variance with the correct model i.e. they have developed an alternative framework [22]. 

These variances from the accepted standard knowledge are known as misconceptions.  

“A constructivist would view a misconception not as a mistake, but as a logical 
construction based on consistent, though non-standard concepts, held by the 
student. Misconceptions form the prior knowledge that is essential to the 
construction of new knowledge” [22] 

Constructivism requires instructional environments that aid the student’s reflection by 

challenging the student’s misconceptions [224]. Thus, teachers are interested in 

developing students’ reflection skills rather than their recall of teaching material [224]. A 

student’s ability to explain and defend decisions is important for the development of 

meta-cognitive skills and self-reflection [224]. Hence, assessment takes the form of 

evaluation and discussion of learning activities [224, 232]. Constructivist instructional 

environments should be: 

“…student-centered, student-derived, collaborative, supported with teacher 
scaffolding, and authentic tasks and based on ideas of situation cognition, cognitive 
apprenticeship, anchored instruction and co-operative learning ”[224] 

A second tenet of constructivism is that meaningful learning occurs when the student 

develops strategies to solve problems.  This is related to active learning since the student 

is encouraged to be active in the learning process instead of passively absorbing the 
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learning material. Constructivists provide problems that can be solved in multiple ways 

and leave students define their own problems even if they may struggle to solve them 

[224, 229]. 

Obviously, the main issue with constructivism is that it is a learning theory not an 

instructional-design theory [224]. If constructivism avoids settings learning outcomes 

then the teacher cannot ensure that a common set of outcomes are met [224, 233] nor 

plan instructional activities nor predict how learners will learn [224]. Without defined 

outcomes it becomes difficult to make students accountable for their work [224] and set 

standards to assess the meaningfulness of the learning [224]. However, traditional 

instructional-design theories can fail to recognize that the goals of the learner will 

determine what is learnt not the learning outcomes [234]. This  failure to engage the 

learner, too often resulting in the focus being on “passing the test or putting in their time” 

[234].  

A pure discovery learning approach advocated by constructivism, leaves students free to 

construct the wrong knowledge and develop the wrong skills [224, 235]. Other students 

may demand more structured learning [224, 235] and not all students benefit from such a 

free approach to learning [224, 236]. The assumption that pure discovery learning with 

minimum guidance is an effective teaching approach has been repeatedly shown to be 

flawed [237]. A number of research papers have been published in teaching LOGO 

programming using pure discovery learning [238-240], all have shown that guided 

discovery learning produces the best results. An explanation for this phenomenon is 

suggested by Kirschner et al [59], who considered the role of cognitive psychology in 

constructivist learning activities and concluded that they engaged the learner in 

considerable searching of problem spaces for problem-relevant information [59]. Such 

search activities place a heavy load on working memory but do not promote the 

accumulation of knowledge in long term memory [59]. Even over extended periods of 

time searching can produce little alteration of the long term memory [241]. In discussing 

cognitive load theory, Paas et al [153] define three types of cognitive load: intrinsic, 

extraneous and germane. Intrinsic cognitive load is related to the difficulty of the material 

being studied [154] and was originally viewed as a base load that was irreducible by 

instructional design. Extraneous cognitive load is imposed by the instructional material 

and interferes with learning [153]. Many conventional instructional procedures impose 
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this load, because they are designed without taking into consideration cognitive load 

[153] e.g. searching the problem space for problem-relevant information [153]. Germane 

cognitive load is the result of cognitive activities that are relevant to schema acquisition 

and automation [153]. This load enhances learning and is influenced by instructional 

design. All three loads are additive and cannot exceed the working memory capacity of 

the learner [153]. An instructional design that reduces extraneous cognitive load should 

increase learning by allowing more cognitive resources to be dedicated to germane 

cognitive activities [153]. 

Cognitive load theory suggests that [59]: 

“…free exploration of a highly complex environment may generate a heavy working 
memory load” 

As a result of high cognitive load, discovery based learning can produce poorer results 

than worked-examples practice [242].  



73 

2.8.2 Moderate Constructivism 

The problem with traditional non-constructivist approaches to teaching is their failure to 

recognize that for a number of subject areas, including computer science, teaching static 

bodies of knowledge fails to deal with the fluidity and dynamism of these disciplines [33]. 

Is there a compromise between guided and unguided learning? Loosely there are two 

forms of constructivism: radical constructivists suggest that every reality is unique to the 

individual, while non-radical/moderate constructivists suggest that there is a shared 

reality based on social constraints placed on the individual [224]. This second, more 

moderate form of constructivism is more pragmatic and opens up the possibility for a 

clearer instructional-content design [224]. Karagiorgi et al [224], describe the following 

assumptions: 

 Mental models are constructed as the result of experience

 Each individual’s mental model may be different but the structure is the same

 Knowledge can be pre-defined yet still be applicable across multiple domains

 Teaching authentic tasks is desirable but de-contextualized abstraction should also

be taught

 Instruction strategy and learning material are somewhat independent

 Fundamental instructional transactions can be adapted for a diverse number of

contexts

 There are strategies which are applicable to all students

 Learning should be active but not always collaborative

 Testing can be integrated with learning objectives but separate assessment of

achievement is also possible

Technology also opens up the possibilities of exploring a freer learning approach: 

“Multimedia and the Internet are also alternatives to the linear structure and 
facilitate data gathering techniques, supportive of constructivist learning 
principles…microworlds and virtual reality simulations could simulate authentic 
learning while the Internet in general and Web Quests as innovative teaching 
strategies in particular could offer multiple representations of reality ” [224] 

However, care must be taken not to confuse active learning with active teaching [237]. It 

is easy to fall into the trap of labeling different forms of teaching strategy as either 

passive or active. Activities such as reading books and attending lectures, become viewed 

as passive, whilst activities such as group discussions, and interactive games, are seen as 
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active forms of learning [237]. The constructivist teaching fallacy is to assume that 

constructivist learning can only be achieved through active teaching methods [237]. 

2.8.2.1 Action Learning 

The main proponent of action learning is Revans [243], and it was originally developed for 

organizational learning. Action Learning primarily focuses on increasing the ability of a 

participant to solve problems, by increasing their and their organisation’s ability to learn 

in a rapidly changing environment.  

“In any epoch of rapid change, those organizations unable to adapt are soon in 
trouble, and adaptation is achieved only by learning – namely, by being able to do 
tomorrow that which might have been unnecessary today, or to be able to do today 
what was unnecessary last week. On the basis of the assumption that managers 
learn best by taking action and reflecting on the action, the following method of 
learning can be put forward.”[243] 

However,  a number of researches have adapted this approach for education [244, 245]. 

Vat [245] used this approach with software engineering undergraduates, who were 

arranged into informal study groups to investigate e-Commerce. Translating Revan’s work 

for his students with interpretations from problem-based learning,  

Vat developed the following guidelines: 

a. Students should be encouraged to see themselves as managers able to plan their 

time and judge the complexity of the problems that can be handled 

b. They should be made aware that they do not possess enough prior information to 

solve the problems at the start of the project 

c. They should be challenged to find solutions to often ill-structured problems 

d. Students must identify, locate and use appropriate resources, and ask questions 

“learning issues” about various issues related to the problem(s). “These learning 

issues help the students realize the knowledge they require, and thus focus their 

learning efforts and establish a means for integrating the information they 

require.”[245] 

A formula that is frequently quoted for action learning [245] is: 

𝐿 =  𝑃 +  𝑄 +  𝑅  

Learning = Programmed Instruction + Questioning + Reflection 
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Programmed instruction includes the text books, lectures and other learning material 

from which the participant/student obtains knowledge. Through questioning (or 

feedback), new insight can be obtained in to what is not yet known. By questioning it is 

possible to determine whether information already exists or is relevant. Reflection 

implies making sense of the facts obtained and trying to understand the problems. Hence, 

the equation can be interpreted as planning the actions based on constant feedback and 

reflection as the learning process continues. 

For example, Vat [245] often confronts students with unfamiliar problems forcing them to 

ask questions and “unfreeze” their underlying assumptions. As the students modify their 

assumptions, they begin to create new mental models causing them to reassess the 

learning material they possess (Programmed instruction), to question and to gain new 

insight. 

Peterson [244], used action learning to see if it could help university students taking a 

course in Systems Analysis and Design for Business Professionals, to bridge the gap 

between the skills learned in the classroom and the skills demonstrated in employment.  

“...the application of action learning concepts to information technology education 
seems particularly appropriate as a means of demonstrating to students that the 
intent of the application of technology is to solve business problems, not to create 
technical solutions that are in search of a problem.”[244] 

The objectives of Peterson’s [244] research were two fold, to provide a hands-on learning 

experience to make students better at systems analysis and to create partnerships 

between them and other interested third parties (i.e. employers, in this case non-profit 

institutions). The approach taken provided a live, performance-impacted experience of 

the problems as they occurred in the “real-world”. To assess the course, the students 

were given a number of work steps and deliverables that they had to meet. Regular 

meetings were held to discuss performance, deliverables and to plan activities for the 

following week. All of the teams were able to complete the work but the reports 

produced reflected the difficulties that were encountered and were less “clean” than 

those produced from simulated scenarios. However, action learning may not always be as 

motivational as expected. As part of Peterson’s [244] study the students were required to 

conduct a number of interviews to develop a set of requirements. Although some 

students recognized the benefits of this approach, others retained a less professional 
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approach seeing it as just another form of assessment. In particular, these students 

continued to leave work to the last minute. 

“Apparently, the traditional educational model has fostered an attitude of passivity 
that will not easily be overcome.”[244] 

2.8.3 Constructivism and Programming 

In applying constructivism, Lui et al [7] identified two hazards that novices face when 

learning to program. Firstly, constructing new knowledge relies on existing knowledge 

that the student may not have already correctly constructed and secondly the student 

may have used incorrect knowledge as the basis for constructing new knowledge. 

Furthermore, weak students may also lack abstract thinking and the abilities to build 

schema from abstract ideas [7].  

Many novice programmers have no appreciation of the notional machine executing their 

code [22], and the lack of an effective consistent model is a major problem. For without, 

it there are no misconceptions from which new knowledge can be constructed [22]. The 

computer forms an accessible ontological reality i.e. a correct answer is easily accessible 

and successful performance depends on a “normative model of this reality [being] 

constructed” [22]. Errors in the student’s mental model can demotivate them, since 

programming gives immediate and “brutal feedback” [22] i.e. “alternative frameworks 

cause bugs”. Programming pedagogies must consider concepts and techniques that can 

minimize or alleviate harsh or terse feedback. 

Ben-Ari [22] describes a number of phenomena that occur in computer science that may 

be explained by constructivism (Table 2-6). 

The construction of CS concepts is haphazard because sensory data from class must be integrated 
into a student’s existing framework that is too superficial. 

Frustration and perception that computer science is hard is due to the fact that models must be 
self-constructed from the ground up. 

Autodidactic programming experience is not necessarily correlated with success in academic CS 
studies. These students, like physics students, probably come with firmly held constructions that 
are not viable for academic studies. 

The reality feedback [brutal feedback] obtained by working on a computer can be discouraging to 
students who prefer a more reflective or social style of learning. 

Table 2-6 Ben-Ari’s Phenomena of Computer Science Education [22] 

A number of conclusions may be reached from this analysis. Courses, help files and 

tutorials must focus on the mental model and not limit themselves to “behaviorist 

practices of the form ‘to do X, follow these steps’” [22]. The model of the computer must 
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be explicitly taught including CPU, memory and I/O peripherals, although it may also be 

taught as a model computer [246] or notional machine [202]. Programming exercises 

should be delayed until the student has developed a mental model of the computer [22]. 

Premature attempts to program produce a “try it and see what happens” approach which 

delays the development of the correct mental model [22]. Delaying the use of 

programming exercises reduces the time available for practice. A more viable approach 

would be to introduce the notional machine concepts during programming instruction, 

and enable the relationship between both the machine and program mental models to be 

established in the same context: one reinforcing the other for maximum retention and 

refinement. Group work should be used to develop social interaction and to reduce the 

brutality of human-computer interaction, with a focus on student reflection [22]. 

However, group working may give rise to other problems, since programming is 

essentially an individual process rather than a social process. 

2.8.4 Scaffolding 

The term scaffolding comes from the work of Bruner [159] who believed that teachers or 

more capable peers should provide conceptual, procedural, strategic and metacognitive 

support to students [247]. For example, children learning a language require a social 

interaction framework [248] where the teacher provides content that pushes the child to 

just beyond their current limits (Vgotskii’s Zone of Proximal Development (ZPD) [249])  

but in a very well-known context with predictable routines. The predictable routines, such 

as the teacher reading a book together with the child, provide a structure within which 

expectations can be continually raised [250]. The approach is equivalent to an 

apprenticeship where the master craftsman provides a scaffold to enable the apprentice 

to perform the task and facilitate the apprentice’s learning when the master is not 

available [251]. Collins et al [252] coined the term “cognitive apprenticeship” where the 

skills being scaffolded have a more cognitive nature. In synthesizing the descriptions of 

this apprentice scaffolding, Guzdial [253] identified 3 types of required support: the 

master communicates a process to the apprentice, the master watches the apprentice 

and provides feedback and finally the master occasionally requires the apprentice to 

articulate key concepts.  Yelland et al [254] caution that the scaffold must be modified to 

accommodate the learner’s perspective. Applebee et al [255, 256] described five criteria 

for effective instructional scaffolding: ownership of the learning event, appropriateness of 
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the instructional task, supportive instruction, shared responsibility and internalization 

[250] Table 2-7. 

Ownership of the 
learning event 

The instructional task must permit the student to make their own 
contribution as the activity progresses. Although the task may be 
initiated by the teacher, the student must be allowed to develop the 
topic as an independent researcher [257]. 

Appropriateness of 
the instructional task 

A task must build upon the student’s knowledge but must ask questions 
that cannot be solved without further help [257].  

Supportive instruction 
(Structured Learning 
Environment) 

The student should be motivated but requires additional skills to 
complete the task that are just beyond their current knowledge (ZPD). 
Instructional conversation [258] may be the most effective approach, 
which may include the student creating a blog [257]. A structured 
learning environment will provide a natural context for the activity 
chosen by the student[256], not in the context of schooling but one that 
is meaningful to the student while presenting them with useful 
strategies and approaches to the task [250]. Scaffolding strategies 
include [247]: 
eliciting student interest in the task 
maintaining student direction 
reducing complexity 
highlighting important problem features 
helping student’s to manage frustration 
modelling expert processes 
eliciting student articulation 

Shared responsibility Tasks are solved jointly between the student and the teacher, so the 
teacher’s role becomes more collaborative than evaluative [250]. The 
teacher’s role changes “from testing prior knowledge to assisting in 
developing new understanding. The teacher is no longer waiting 
passively for the project to be completed and handed in” [257] . 

Internalization 
(Transfer of Control) 

As the student learns they internalize the procedures, routines and 
patterns of learning [250] and the amount of interaction with the 
student may increase [250]. The teacher must recognize this and 
replace the initial scaffolding (i.e. they should be faded out) with 
different scaffolds and a different type of teacher involvement [257]. 
For Applebee et al [255], the learning process consists of a gradual 
internalization of routines and procedures from the social and cultural 
context of the learner [250]. 

Table 2-7 The Five Criteria for Effective Instructional Scaffolding 

To promote transfer of responsibility, it is argued that [159] scaffolds must be faded (i.e. 

removed) as the students gain the skills they require. Identical arguments have also been 

made for computer-based scaffolding [259]. However, there is some evidence [247] that 

such fading on a fixed schedule produces worse results than using scaffolding that did not 

fade. If students learn less when fixed fading is used then it is not possible to be sure that 

transfer of responsibility has occurred, which makes the use of such fading less relevant 

[247]. Although, for computer-based learning user controlled fading might have some 

advantages [247]. Jackson et al [260] found that high school students did indeed turn off 
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supportive content as they developed their expertise. These two types of fading are 

termed adaptive scaffolding (internal decision based) and adaptable scaffolding (user 

controlled) respectively [253]. If students are fading the scaffolding themselves, it is 

important that the teacher understands how students are using this feature [259]. 

Computer tools can provide supportive scaffolding through hints which may be “passive” 

in that they are activated by help buttons [259]. Reflective scaffolding may also be 

supported by providing a notepad window where the students can enter their thoughts. 

Such computer-based systems can only be developed to aid predictable student 

difficulties, whereas a teacher can react to a variety of difficulties as they arise [247]. 

However, tools can allow for a more personalised learning experience that is more 

sensitive to the students demands [259] and may also “promote peer interactions” [259]. 

Examples of these systems include open learning environments (OLEs) [261], that focus 

on the individual’s learning experience and provide experience-based problem solving 

activities in the form of hands-on concrete realistic experiences relevant to the problems 

posed by the OLE [261]. Metacognition is also supported through ongoing assessment 

requiring learners to interpret and evaluate their answers [261]. By providing a diverse 

set of tools, on-line databases and other learning support features, OLEs promote inquiry 

and discovery [261]. The notion of scaffolding in tools tends to be extended to include the 

use of prompts or hints to aid student learning  [259].   

Shute conducted a study [76] that also looked at the effect of priming by providing a hint 

system built into an Intelligent Tutoring System. Initially the study concluded that hint-

asking was a sub-optimal behaviour but following regression analysis this was refuted. 

Instead, Shute found four categories of behaviour: 

i. Productive: Made few errors and asked for few hints. Benefited from working 

out the solution themselves. Higher outcomes. 

ii. Hint-abusers: Made few errors but asked for many hints. Lower outcomes. 

iii. Counter-productive: Made many errors but asked for few hints.  Floundering, 

did not understand but refused to ask questions. Lower outcomes. 

iv. Hint-users:  Made many errors and asked for many hints. Needed help and 

asked for it. Higher outcomes. 
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Thus, hint priming was found to be a benefit for those that clearly needed it and were 

prepared to use the hints. Those who, for some reason, chose not to use the hints did 

worse than any other category. 

The level of detail that should be provided by prompts (i.e. hints) given in middle school 

science was studied by Davis [262]. Davis found that in comparing generic and specific 

prompts, students displayed more reflection when the prompts were generic as opposed 

to directed prompts [259].  

However, it should be noted that there is some evidence that the use of such prompts or 

hints neglects the important features of scaffolding such as “ongoing diagnosis, calibrated 

support and fading” [259]. 

Scaffolding approaches have been used successfully to teach software design in 

introductory computer science courses [263]. On these courses, the students worked on 

three assignments, a small assignment that introduced the design concepts, a slightly 

larger assignment where they worked in pairs and finally as teams of three students 

assigned a difficult and unique project. These projects were examples of authentic 

assessment tasks which mimicked real-world situations. Care was taken to ensure intra-

group and inter-group cooperation while still allowing for individual accountability. The 

instructor took the role of a customer, allowing the students to elicit the requirements of 

the project, and also acted as the manager to keep the project on track. Version control 

software was used to foster team ownership and encourage frequent integration of the 

code. Instructors acted as coaches not lecturers and in setting the exercise care was taken 

not to lead the students too strongly towards a particular solution. 

“While a more traditional lecture-format course in software design can be effective, 
an open-ended cooperative learning framework more effectively promotes learning 
and the positive benefits of instructional scaffolding and authentic assessment” 
[263] 

However, scaffolding does not always yield the expected results. Thomas et al [264] 

investigated using object (instance) diagrams on paper as a scaffolding mechanism to help 

students trace code in multiple-choice questions. Although they found that students who 

drew diagrams were better able to understand the code and object referencing, it 

seemed neither to help them nor to encourage them to use the technique themselves 

[264]. These diagrams were influenced by the work of Hegarty [265] in cognitive modeling 
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of dynamic systems. The approach assumed that the students would have decomposed 

the system into simpler components, then they would create a static mental model by 

retrieving information and encoding spatial and semantic relationships for these 

components. Beginning with some initial conditions they would infer the behaviour of 

these components one-by-one in order of the “chain of causality or logic” to mentally 

animate the model. This animation process required prior knowledge (e.g. of the rules 

that govern the behaviour) and spatial visualization processes.  

Therefore, construction of the cognitive model required five stages which would not 

necessarily have been conducted sequentially:   

 Decomposition of the system into separate simpler components 

 Construction of a static mental model by making representational connections 

 Making of referential connections i.e. integrate information from different types 

of content e.g. text and diagrams. 

 Hypothesizing lines of action i.e. identify the chain of events 

 Construction of a dynamic mental model by mental animation by making 

appropriate inferences 

So why did Thomas et al [264] fail to produce a good scaffold for learning? They 

concluded that perhaps providing the object diagrams may have removed the first steps 

of Hegarty’s model instead of allowing the students to build the diagram and hence 

animate it themselves [264] and this “led to the conjecture that providing students with a 

specific diagrammatic abstraction of the code was not helpful because the self-

development of such abstractions is intrinsic to developing an understanding of code” 

[266] 

This illustrates the difficulty of determining an appropriate level of scaffolding. 

2.8.5 Problem-Based Learning 

Scaffolding is not a stand-alone practice, instead it is used to support instructional 

approaches such as problem-based learning [247] e.g. when scaffolding was originally 

applied to education it was to support children’s problem solving abilities [159]. The goals 

of problem-based learning are to promote deep content learning, problem solving 

abilities and self-directed learning abilities [267]. These goals are achieved by the explicit 

teaching of problem solving strategies using a hypothetical deductive method of 
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reasoning, and by presenting learning materials in an authentic context (authentic 

learning) [59]. However, Kirschner et al [59] found that there was no evidence to support 

the findings that problem-based learning produced any benefits because the high working 

memory load diminished the ability to learn the solution schemata. Hmelo-Silver et al 

[268], provided counter-arguments that using scaffolding with problem-based learning 

does indeed produce better results. Some caution must be taken when considering 

research in this area. In a meta-analysis, Belland et al [267] found that much of the 

research in this area failed to provide interpretable reliability and dependability 

coefficients. However, any improvement in a student’s problem solving skills should 

improve their grades and prepare them to succeed in future courses [33]. Before 

continuing, it should be noted that: 

“The real demonstration of understanding is application and retention. Thus being 
able to follow the analysis of the problem and design the solution is not indicative of 
being able to retain and apply required knowledge.” [33] 

There is a large body of supporting evidence showing that the most fundamental issue in 

learning to program is the need for good problem solving skills [30-34]. In most teaching 

the emphasis is on syntax and semantics, which creates an artificial separation of the 

problem solving activity and the translation of the solution to a programming language 

[34]. This approach is also reflected in programming textbooks that: 

“…present the subject from a language construct view, ignoring the fundamentals 
not only of design methodology but also of problem solving concepts” [34] 



83 
 

Deek et al [33] found that by changing the ordering of activities in  a programming class 

and making the class session problem-driven, produced significantly better results than a 

traditional method of teaching. A typical class session took the following form: 

1. Present the problem: the instructor presents a problem designed to require the 

use of the new course material to be studied 

2. Formulate the problem: Develop an initial understanding of the problem by 

verbalisation and visualisation e.g. make a drawing, talking or answering 

questions. “Developing a precise model of the problem is completed by elicitation 

and organization of all relevant information and the elimination of irrelevant 

information.” 

3. Plan solution: Develop an appropriate solution strategy with the aid of the 

instructor, subdivide goals into sub-goals. 

4. Design solution: Organise and refine components of solution strategy, and define 

specifications to be translated to code. 

5. Walkthrough the algorithm: Prepare to map the algorithmic solution to code by 

reviewing each line of the algorithm and selecting the exact language construct 

required. 

6. Present the syntax: Check that the solution meets the goal of the lesson 

7. Implement: Complete the program and execute it. 

8. Test: Provided tests to verify code for each algorithm and the overall solution 

More recent research by Rane-Sharma et al [269], adopted a similar approach by 

encouraging students to plan, design and translate in mandatory writing sessions before 

delivering the solution in a computer session. They concluded that the methodology was 

effective in improving student skills but found that their own approach lacked an explicit 

mechanism for helping students to “translate” a solution to a program.  

Deek [34] proposed a pedagogical framework to simultaneously teach both problem 

solving and programming known as the dual common model. This model consists of six 

stages comprising multiple tasks. This framework necessitated a change to the 

assessment based on three distinct categories: process, product and subjective evaluation 

[34]. Process includes the software development and cognitive skills, whilst the product is 

the solution as an outcome of the problem solving process. In this context, quizzes are 

also categorized as a product. Furthermore, additional assessment criteria were included 
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such as self-evaluation to allow for student reflection through the students’ observations 

and self-reporting.  Interestingly, they  [34] also assessed the students’ attitude and 

motivation through observation and maintenance of monitoring records including 

attendance, quality of coursework, and submission of homework on time. Deek found 

that this approach leads to better evaluation of student performance and to greater 

student satisfaction [34]. In addition, students were able to transfer learnt skills to other 

software design methodologies and across other knowledge domains [34]. 

2.9 Overview of Teaching Related Decisions 

As well as choosing an appropriate pedagogy, programming instructors also have a 

number of additional decisions to make related to the programming language and 

methodology required. Given that abstraction and working memory are two important 

components of programming, it is important to manage the number and scale of abstract 

mental models so they are learnt gradually and the “brutal feedback” [22] presented to 

the novice programmer is a little friendlier.  

It has been shown that the mental models required by object oriented languages are too 

difficult for novice programmers to learn. Ma et al [198] investigated the mental models 

constructed by students of object oriented programming. The students were given a 

program containing object variable declarations, instance creation, and object reference 

assignments, and were asked to describe it. In addition, the students were asked to 

complete a number of multiple choice questions where they were asked to predict the 

results of executing a set of small programs. The set of pre-defined answers mapped onto 

a number of possible mental models. While 63% of the students had a viable mental 

model of value assignment, only 17% held a viable mental model of object reference 

assignment. Even using a combination of visualization and cognitive conflict only 

improved this figure to 50% of the students. Object oriented programming is considerably 

more abstract than procedural programming [21], and an “object first” approach to 

teaching leads to higher cognitive load. 

Abstraction is essentially a way of forgetting ‘detail’ [22]. Object oriented programming is 

built on the premise that code can be more efficiently written by creating abstract 

solutions to problems. For example, software design patterns [270] often explicitly rely on 

concepts such as polymorphism and interfaces [21] to allow for the substitution of 

objects representing a variety of different ‘unknown’ or as yet unwritten future classes to 
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be incorporated. This level of abstraction is arguably only important when the scale of the 

problems to be solved demand it. For novice programmers, the problems they can 

reasonably solve are far simpler and the solutions required are far less sophisticated. 

Therefore, the power of the object oriented methodology is only truly expressed when 

the size or difficulty of the problem to be solved is beyond that of any learner. 

From a cognitive load perspective, novice programmers should be taught procedural 

programming first and then progress to object oriented programming once their 

programming and problem solving skills have developed sufficiently. This may also be 

reflected in the choice of programming language, a language such as Java “forces” 

advanced concepts to be learnt at too early a stage [271]. Scripting languages such as 

Python which have simpler syntax may be adopted as an alternative [272]. 

A similar argument arises when considering a hybrid teaching approach that incorporates 

elements of software design with learning to program. The ability to design software 

implies a level of programming knowledge that novice programmers lack. Formal design 

approaches are used by experienced programmers to express the architecture of a 

solution to a challenging or large scale problem. For novice programmers, these types of 

problems are not be suitable and would impose too great a cognitive load. 

Given that problem solving is a crucial skill, a better approach is to teach problem solving 

in a programming context. A number of fundamental problem solving techniques can be 

taught, with an emphasis on solving the problem before attempting to code it. One 

caveat: a common approach is to ask novice programmers to produce flow charts to 

describe their code. However, as previously discussed (Section 2.1), flow charting is just 

another expression of the flow of control in the program. Typically novice programmers 

use flow charting as a method of documenting existing code rather than as a method for 

solving problems. Instead, a less rigid and more informal approach is recommended. The 

divide and conquer principle should be given more emphasis with the focus on identifying 

and simplifying the problems that need to be solved. This may involve a top-down or a 

bottom-up analysis, but the aim is to simplify the problems that need to be addressed. In 

fact, a typical first problem might be identifying how to represent information. For 

example, in a game of Tic-Tac-Toe a fundamental problem is determining how to 

represent the symbols and the grid.  
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Once novice programmers have the skills required to solve problems using this approach, 

they are more equipped to progress to using formal approaches. The objective is to 

motivate and to support the development of novice programmers as they gradually learn 

to tackle larger problems and to build applications. 

2.10 Summary of Literature Review 

This literature review has been modified and restructured over a number of iterations to 

reflect the grounded theory approach undertaken. From this analysis, the main theme 

that emerged was abstraction and the central role that it plays in learning to program. 

Other important themes were problem solving and the mental models constructed by 

programmers. These mental models are stored in the programmer’s memory, and in 

considering cognitive psychology, the potential impact of working memory on the 

learning process was also identified. Further consideration of the structure of the mental 

models, expanded the investigation into the field of software comprehension and in 

particular the focus became the concept of “program model” as an abstract 

representation of the code and the relationship of “plans” to program goals. Effectively, 

expertise can be defined as the extent of the plans learnt, the inherent ability to identify 

those plans through the associated code beacons in the code text, possessing the 

problem domain knowledge required to construct a viable situation model and the ability 

to map the program model (text and plan structure knowledge) to this situation model.   

Problem solving skills became the second major theme to emerge, and its relationship 

with programming was analysed to determine the causes of difficulties experienced by 

novice programmers. Primarily, these difficulties were related to the inconsistencies in 

the situation model constructed by them from the natural language problem definitions 

and their own fragile knowledge inhibiting the mapping of this model to the plans and 

goals of the program. Again, these processes are related to creating abstractions of the 

“real-world” entities presented in the problem definition.  

Taking these themes into account, a number of teaching approaches were considered 

from the perspective of developing the mental abstractions required by programming and 

the development of good problem solving skills. Benefits and drawbacks of these 

approaches were identified and scaffolded learning was discussed. Principles from these 

pedagogies form the basis of the action research conducted and described in Chapters 7, 

8 and 9. 
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In the following Research Methodology chapter, the rationale for the research process is 

discussed and supporting arguments are provided. 
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3 Research Methodology 

Research methodology refers to the application of a set of research methods to a field of 

study [273] to provide structure and organisation to the process of knowledge discovery 

i.e. it is a procedural framework within which the investigation is conducted [274].  

“Essentially, the procedures by which researchers go about their work of describing, 
explaining and predicting phenomena are called [the] research methodology” [275] 

Research itself is divided into two types, secondary and primary research. Secondary 

Research is the study of the existing body of research and aims to categorize and analyse 

this research to inform and obtain supporting evidence for the primary research to be 

undertaken [276, 277]. Primary research in its most basic form is the collection and 

analysis of new data to discover new knowledge [276].  This type of research requires the 

data collection, data analysis and interpretation of results/findings to form a conclusion 

that advances the current body of research for a specific topic or area. This research 

addresses the difficulties higher education students face in learning computer 

programming, and will take the form of a series of experiments conducted through a 

number of tasks or assignments. 

3.1 Grounded Theory 

Grounded Theory is defined as theory which has been: 

“systematically obtained through social research and is grounded in data” [278] 

Grounded theory provides a systematic method applied over a number of stages, to 

“ground” the theory or relate it to the reality of the phenomena under consideration 

[279]. 

“Grounded theory methods are inherently logical, which is often a factor that many 
researchers find attractive”[3] 

In grounded theory, the data is first collected and then the ideas and concepts are 

extracted from an analysis of this data. Originally proposed by Glaser et al [15], the three 

key principles are emergence, constant comparative analysis and theoretical sampling 

[280]. Instead of starting with hypothesis, concepts or ideas, these should emerge from 

the data itself.  The constant comparison technique,  determines accuracy, establishes 

empirical generalization, specifies a concept, verifies theory and generates theory [15]. To 

determine accuracy, evidence of incidents (elements of data i.e. occurrence of a concept) 
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are compared with one another, by constant comparison e.g. by comparing an incident 

with data from other organizations. Thus, the limits of the general concept can be 

established and any variations from this general concept that exist may also be 

discovered [280]. This approach can identify data that confirms the existence of 

categories and propositions. In this context, a category is defined by multiple incidents 

which can be assigned a common meaning. 

“As concepts emerge and are named these are compared to other incidents in data, 
leading to the definition of properties of a category. As such, there is a constant 
iteration between naming and comparing data incident to data incident, and data 
incident to concepts, in the light of a category.”[280] 

Throughout this process, researchers should avoid pre-conceived ideas, and allow the 

analysis to produce the results: the theory should generate itself [15]. Theoretical 

sampling is defined as [15]: 

“the process of data collection for generating theory whereby the analyst jointly 
collects, codes and analyses data and decides what data to collect next and where 
to find them, in order to develop a theory as it emerges” 

Decisions such as when to sample the data should not be taken at the start of the 

research. Instead theoretical sampling is the process of “identifying and pursuing clues” 

[3] as the research progresses. Decisions such as when, how and the sizes of data samples 

that should be used, must be directed by the emerging theory and theoretical sampling 

should continue until each category is fully identified (i.e. saturation occurs, when a point 

of diminishing returns is reached) [280]. The sampled data can consist of field notes and 

memos generated from literature review, observations, interviews, and other forms of 

primarily qualitative data [3]. As discussed by Matavire [280], although often only 

associated with qualitative data, quantitative data may also be included in the process. 

Fundamentally, the approach is to maintain an archive or database of data. Often, this is 

in the form of field notes and memos [3] which are similar to diary entries, and identifying 

variables (categories, concepts and principles).  In Grounded Theory, “Codes” are 

shorthand used to identify repetitive occurrences and similarities in patterns extracted 

from the data [3] and are given a name or label. Categories are formed by grouping 

related codes that illustrate a higher level concept.  
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Analysis involves three distinct processes open, axial and selective coding, which although 

presented sequentially, overlap with the researcher moving between processes as 

dictated by their research. As stated by Glaser [281], coding is: 

“...the analytic process through which data are fractured, conceptualized and 
integrated to form theory” 

Open coding is the process of using the data to identify codes, properties, dimensions and 

categories. A property is a characteristic of a category which defines the category and 

“gives it meaning” [281]. Birks et al [3] give an example of a category “walking the dog” 

that demonstrates the idea of properties and categories: 

“Properties of this category might be ‘time’, ‘enjoyment’ and ‘energy’. Each of these 
properties can be dimensionalised; take for instance ‘time’. Participants might 
identify the time they take walking the dog varies from short to long and they are 
influenced by the weather in making this decision. ” 

The key activity in this process is the production of field notes and comparison of data. 

Given that theories are built from their constituent concepts, during this phase the 

analysis must identify and name these concepts. Through the constant comparison 

method, data incidents from various sources are compared and contrasted to reveal 

discrete nameable concepts. These names are derived from the data and are referred to 

as “in vivo” (within the living [data]) codes [281]. 

When categories are at a more advanced stage of development, the axial coding process 

looks for relationships (connections) between categories and sub-categories by 

investigating their properties and dimensions.  

 This is “axial” in the sense that the coding occurs around the axis of a main category.  A 

sub-category, attempts to answer questions like who, where, when, why and how about a 

main category [280, 281].  

For this analysis, Strauss [281] suggests a paradigm model (Figure 3-1), although it should 

be noted that there is some disagreement with this approach [282]. In the paradigm 

model, causal conditions (categories) influence or give rise to the main category (or 

phenomenon) which will result in certain consequences.  Glaser [282] defines a 

contextual condition as: 

“...a condition of the overriding scope, under which a set of related categories and 
properties occur”. 
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Intervening conditions serve to limit the impact of causal conditions, while actions and 

interactions arise as a result of the phenomenon. 

Causal Condition Phenomenon Context
Intervening 

Conditions

Action/Interaction 

Strategies
Consequences

 

Figure 3-1 The Paradigm Model [283] 

Selective coding seeks to identify a single core/central category to which all other 

categories can be related, and in most cases these categories should possess indicators 

pointing to it. The core category should be able to explain any variation and contradictory 

evidence [280, 281]. Naresh [283]  describes the process as creating a simple descriptive 

narrative about the central phenomenon of study and using this storyline as the core 

category. A final step [281] involves validation by a high-level comparative analysis, 

adding missing detail and trimming excess categories. The resultant theory is a set of 

propositions or a running theoretical discussion [15, 280]. 

It is worth noting that there are alternative grounded theory approaches, the two main 

ones being derived from the work of Glaser [282] and another from the approach defined 

by Strauss and Corbin [281]. For example, the axial coding procedure and paradigm model 

are all adopted by the Straussian approach, which also promotes defining a research 

question before entering into the research. 

3.2 Action Research 

The relationship between lecturer and student is one where the lecturer must try 

different teaching methods to nurture and develop the students’ abilities. A new teaching 

method is tried, the results evaluated and the lecturer reflects on the effects/success of 

the approach. 

Action research is the process by which the researcher/practitioner studies the problems 

they encounter in order to evaluate the decisions and actions they take. It involves an 

individual taking action to improve what they do in practice (i.e. their work), conducting 

research to evaluate whether  the actions they took improved their practice and 

documenting their actions and beliefs [16].  

There are different forms of action; of particular interest in this study are social action 

and educational action. An action taken to influence others demonstrates social intent 

and is known as social action [273]. This includes the actions that people take as a result 
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of how they perceive they are viewed by others. Educational action includes social action, 

and attempts to influence people’s thinking in order to improve their lives [273].  In the 

context of this research, this might include collaborative tasks where learners work 

together in pairs or groups with the social intent of fostering a positive attitude in their 

studies as they strive to meet some common goal. Learning becomes about developing a 

shared understanding of the concepts and ideas by bonding together through shared 

experience to develop skills and knowledge. 

The ‘research’ in action research, is about taking action and analysing the effects of that 

action. Why take an action, what was the effect of that action and what was the 

significance of the effect produced? In traditional research, the researcher investigates a 

research topic from a more remote perspective with a view to creating a general theory 

that can then be applied and replicated in other scenarios [273]. Action research is 

associated with specific situations/environments and the purpose is to increase 

knowledge in that specific area and share that knowledge.  Since the experiences are 

unique to the subjects of the research this may not be generalised or applicable 

elsewhere [273]. 

“Action research combines theory and practice (and researchers and practitioners) 
through change and reflection in an immediate problematic situation within a 
mutually acceptable ethical framework. Action research is an iterative process 
involving researchers and practitioners acting together on a particular cycle of 
activities, including problem diagnosis, action intervention, and reflective learning.” 
[16] 

By mutually acceptable framework, Avison et al [16] means an agreed framework that 

avoids conflict between researchers and practitioners or between practitioners and 

practitioners e.g. where somebody could lose their job or fail as a result of the research. 

As described by Avison et al [16], the framework proposed by Lau [284] consists of four 

dimensions: 

 The type of action research (such as action learning.). 

 The tradition and beliefs implied by its assumptions 

 Research process, role of researcher. 

 Style of presentation adopted 

“Action research is one of several qualitative research methods used in the field of 
information systems. Such qualitative research is important for studying complex, 
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multivariate, real-world phenomena that cannot be reduced for study with more 
positivist approaches.” [285] 

In action research, the researcher is encouraged to try out a theory on practitioners, 

evaluate the results, modify the theory and repeat the process [16]. Each new 

modification strengthens or corrects the theory, until it meets the needs of the 

practitioners. Action research may be proactive or reactive i.e. it may either seek to find 

problems to solve or it may be used to solve existing problems [286]. For example, this 

may involve proactively trying a new approach and measuring its effectiveness which may 

result in another approach. Alternatively, it may involve reacting to a problem, collecting 

data to diagnose it and creating a plan to improve the existing approach. 

“The key assumptions of the action researcher are that social settings cannot be 
reduced for study by outside investigators and that action brings understanding 
leading to insight. One must keep in mind that it is these key assumptions that make 
action research uniquely different in form and structure from more traditional 
research conducted for the sake of research alone...” [286] 

Action research may use a qualitative research approach, a quantitative research 

approach or a mixture of both depending on the research being conducted [286]. 

Unsurprisingly, this approach has become important in the study of teaching methods 

[287, 288]. 

“Data in the form of observations, classroom test scores, student artefacts, 
standardized test scores, discussion responses, and informal conversations are 
abundant, and all may inform practice.” [286] 

For example, a researcher who wishes to improve a course may collect data about 

student progress before and after implementing any changes in the form of test results. 

In addition, the researcher may wish to discover if students respond positively to the 

changes so the students may be asked to complete a survey that could then be 

statistically analysed. This would clearly be a quantitative study. A researcher may wish to 

establish whether the changes aided the teaching of the course, in this case the data may 

be interviews, discussions or recorded lectures. This is a qualitative approach but the 

research has similar goals. 

Craig [286] recommends the collection of at least three data sets to allow for 

triangulation i.e. enough data sets giving similar results to allow for confirmation of any 

findings. 
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In a review of information systems studies in 1997 [284], Lau identified four classes of 

action research: action research, action science, participatory action research and action 

learning. These can be summarized as: 

a. Action research focuses on the problems or issues from the practitioner’s view 

point and conducts experiments to resolve those problems i.e. a process of 

change and reflection. 

b. Action science emphasises the resolution of the conflicts between the theories 

espoused and applied by participants 

c. Participatory action research emphasises the participant’s collaboration in the 

research by involving them as both subjects and co-researchers. 

d. Action learning focuses on programmed instruction, questioning and reflection. 

Programmed instruction takes the form of activities such as reading textbooks and 

attending lectures. 

Baskerville [289] describes the action research cycle in five phases (Figure 3-2): 

Diagnosing

Action 

Planning

Action 

Taking
Evaluating

Specifying 

Learning

 

Figure 3-2 Five Stages of the Action Research Cycle 

During the diagnosis stage, the problems are identified, the problem domain is described 

and a working hypothesis is derived. Having identified the problems, a set of actions are 

drawn up in an action plan to attempt to resolve those problems/issues by determining 

the required state and the alterations required to achieve it. These actions are taken by 

both the participants and researchers. During this phase, a number of intervention 

strategies may be adopted.  On completion of the actions, the results are evaluated and 

their effects are evaluated to see if they solved the problems and/or if they met the 

theoretical expectations. Finally, as part of the ongoing learning process, the results are 
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analysed to determine what was learnt.  The knowledge gained can be used by three 

audiences [289]: 

 For “double loop” learning i.e. restructuring the organisational norms to reflect 

the new information obtained 

 As a foundation for diagnosis during the next loop 

 As important knowledge for the wider research community 

The researcher keeps looping around the action research cycle until the problems have 

been solved or it becomes clear that they cannot be resolved. 

Broadly speaking, most research is about proposing a theory, testing the validity of that 

theory through feedback (including experimental and observational results), analysis to 

determine its original contribution and a discussion of what has been achieved Figure 3-3. 

ConclusionTheory Test Analysis
 

Figure 3-3 Generalized Documentation of Research 

In action research, what the researcher learns about their practice is the result. 

“No one else does your practice, so no one else can claim they know it with the 
authority of your own experience. This is your original claim to knowledge. ....you 
will be judged on the quality of the action you took, whether you tried to enable 
others to learn for themselves. You will not be judged, however, on whether you 
succeeded.” [273] 

The focus of this research is not to demonstrate that practice has been improved but 

instead to demonstrate the validity of the claim to have improved practice through 

testing and to be able to show its significance. In traditional research, “theory” is seen as 

a set of propositions whereas in action research living theory is the personal theory of 

practice i.e. “You do and live your theory through your practice.” [273].  

McNiff’s [273] concept of a living theory transforms the way in which the research is 

performed and documented. McNiff talks about traditional research where the 

researcher stands outside the research field as E-theories (external) and the researcher 

studying their own practice as I-theories (individual). This extends to the documentation 

of the research, where tradition dictates the use of the passive voice whereas living 

theory requires the use of the first person voice in “I or we” stories to reflect the 

individuality of the work. It must be noted that, as computer scientists, the supervisors of 
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this project are strongly opposed to the use of first person voice and this practice will not 

be adopted for the research presented in this thesis. 

In education, such research can gain catalytic validity, by improving the learning ability of 

students though enabling practitioner researchers (lecturers) to improve the way that 

they teach.  An action research report makes a claim to knowledge, tests its personal and 

social validity, and demonstrates its significance by meeting standards from both 

practitioner and researcher perspectives. In action research the inclusion of personal 

validity means that the researcher must outline the values that they work by and how 

these have been met, as well as obtaining critical feedback from others (social validity). 

Such a report will be judged on the description of the actions taken, reflection on those 

actions and analysis of the results [273] (Figure 3-4). 

Action
What were the actions taken?

When were they taken?

Reflection
Why the actions were taken

What was hoped to be achieved?

Critical Analysis
What was the significance of 

results obtained?

 

Figure 3-4 Evaluating an Action Research Report 

An example of action research used in education, can be seen in research conducted in 

Israel [287] into the introduction of a new Computer Science curriculum to high schools. 

The approach was to encourage the teachers to conduct their own research, and share 

their research findings. It was felt to be important they had personal engagement with 

the actions taken instead of just reading the available research. Teachers were placed in 

teams and asked to produce final projects; two of the projects were presented in the 

paper. Team A retrospectively sought to classify the problems experienced by students in 

programming arrays. After identifying student difficulties, Team A produced a remedial 

task that sought to correct the student’s misconceptions. Team B set themselves two 

goals, to identify students’ beliefs about arrays for problem solving and to determine 

their understanding of the use of arrays through the use of a questionnaire. The 

conclusion from the final report was that teachers were able to integrate action research 

into their teaching effectively and that it proved to be a very valuable teaching tool. 

In a wider context, action research use has been growing in the field of software 

engineering as evidenced by an initial survey by Santos  et al [290] which saw an 

increasing number of papers being published in this area between 2005-2009. These 
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papers applied action research in a wide range of domains from management to software 

construction, although the largest grouping was in process implementation and change. 

The majority were qualitative in nature based on observation and interview, but a 

number were also quantitative using software metrics. Interestingly, the authors 

observed that 30% of these papers were inspired by the methodology but did not strictly 

follow it. 

“This means that there is a need to improve rigor in action research (AR) studies if 
we want that AR investigations form a solid ground for further research and 
industrial applications in software engineering (SE).”  [290] 

Given the rapid changes in technology, action research can be seen as an important 

methodology for studying information system development.  Teaching programming is 

clearly related to both education and IT, therefore action research provides a good 

methodology for both studying and modifying the practice of training programmers. 

However, as a methodology it tends not to promote the active development of new 

theories. What is required is some integration of grounded theory within action research 

to allow for the development of new hypotheses which can then be used to adapt the 

training provided. 

3.3 Grounded Action Research 

Baskerville and Pries-Heje [285] proposed a mixed method approach known as Grounded 

Action Research that improves theory development in standard action research. 

“In particular, we discovered that theory development is one area where action 
research methods can be made more powerful.  ... Our approach to improving this 
rigor involves merging some of the techniques of grounded research with the theory 
formulation steps in action research.” [285] 

They contend that despite the iterative nature of action theory, the theory development 

in each cycle is not well defined and could be better served by using techniques from 

grounded theory to allow an emergent theory to be developed. 

“The reason why the grounded theory units of analysis are particularly well suited 
for integration with action research is because they are suitable for holding data 
collection, analysis and theory formulation in a reciprocal relationship.” [285] 

However, they also note that action research with its emphasis on performing actions 

narrows the research field and prevents full use of the constant comparative technique. 

Typically, action research starts with an identified question/problem which suggests some 
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predefined concepts and categories. Grounded research in this context involves 

modifying or replacing these core concepts as the research progresses. Other techniques, 

such as theoretical sampling, are of limited use in action research. 

The five phases of the action research cycle: diagnosing, action planning, action taking, 

evaluating and specifying learning, now incorporate techniques from grounded theory 

[285]. During the diagnosis phase, field notes are gathered and analysed using open, axial 

and selective coding to identify the initial core category and hence define the working 

hypothesis from which actions can be planned. When planning actions, care is taken to 

ensure that the actions are designed to bring about the required aim(s). While the actions 

are being taken field notes are also made, particularly regarding the effects of each 

action. During the evaluation phase, these and the previous field notes are reconsidered 

to increase the understanding of the results obtained. Also, axial and selective coding of 

the old and new notes should determine a new category or storyline for the process. If 

the results are not as required, then the new storyline becomes the start of a new 

diagnosis phase and the cycle repeats. The cycle completes when the categories reach 

saturation. 

Multi-Grounded Action Research [291] is a related methodology that has been applied to 

information systems development method (ISDM) research. The fundamental difference 

is that the evolving theory is also used to direct the data collection and analysis, resulting 

in an internal, external and empirical grounding. Internal in that it reconstructs and 

describes the background research conducted, external in that it is concerned with the 

relationship of developed knowledge and other theoretical knowledge and finally 

empirical because it emphasises the importance of applying developed knowledge in 

practice. The application of knowledge may take the form of analysis, design and 

implementation or test and evaluation [291]. It is a ‘canonical’ action research method 

[292], thus the research takes place over a number of cycles of diagnosis, planning, action 

taking and reflection.  

3.4 The Research Process 

A Grounded Theory approach was undertaken to analyse what would normally be 

referred to as the “background research” to determine the main facilitative and inhibitory 

factors associated with programming performance. For this thesis, the project supervisors 

made the production of an initial literature review a formal requirement entailing 
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modification of the grounded theory approach undertaken. Producing a literature review 

pre-empts the research itself instead of allowing the research field to show itself 

repeatedly to the “neutral” researcher [293].  

“Tradition often dictates that there be a priori conceptualisations of the research 
problem through extensive literature review, and well-designed research designs 
before data gathering. This is especially true for post-graduate students who are 
required to produce a detailed literature review before research commences as a 
course deliverable. These traditions are at odds with the emergent nature of 
grounded theory methodology.” [280] 

However, there is some evidence [3, 293] that adopting a grounded research 

methodology and producing such a review are not necessarily incompatible. To take a 

holistic approach to a research field requires the researcher to read a significant quantity 

of cross-disciplinary literature [293]. The important aspect of grounded theory is to 

“maintain theoretical sensitivity through constant comparison” (e.g., constantly 

comparing incidents to incidents, incidents to concepts, and concept to concept) of this 

literature through memo writing [293].  In this sense, the literature review provides a 

motivation for the research [293]. In practice, the background research conducted and 

the development of the literature review itself were found to be effective in promoting 

the development of memos.  

One difficulty presented itself, which was how could the results of the methodology be 

presented in a meaningful way, without duplicating the content of the literature review in 

giving meaning to the emergent theories. A compromise was reached that involved 

restructuring the literature presented in this thesis to form a distillation of the whole 

research context. Thus, it demonstrates the hypotheses, concepts and ideas that finally 

emerged from the application of the methodology in situ with the discussion of the 

research sources from which they originated.  

Grounded Theory memos can take many forms and are considered dynamic documents 

[3], with ‘active’ memos being ‘closed’ as theories are constructed. In this study, memos 

were maintained in a series of text files containing comments, typically one or two lines in 

length, and associated references created during background research. Later, an 

alternative approach was adopted and these notes were written up in more detail in a 

Word document to allow the research papers to be referenced using EndNote. Where 

appropriate and relevant, these notes were then incorporated into the literature review. 
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To perform open coding, the “memo” text was transferred into an application called 

NVivo, using its memo database. In some cases, research papers were also directly 

imported into NVivo. Often these papers used different wording or phrasing that required 

interpretation, and in these cases it was easier to create memos than to import the 

papers directly. Sometimes importing the Adobe PDF files was not very useful (e.g. where 

papers had been photocopied) and they were effectively graphic images, making 

memoing the only option. This type of detailed memoing is to be anticipated [3]. In NVivo, 

coding involves identifying and naming “Nodes” which are then associated with the text 

in the memos and other external sources. The nodes themselves may be arranged in a 

tree structure to show their relationships (Figure 3-5), thus allowing initial themes to be 

developed providing a selective coding mechanism. 

 

Figure 3-5 A Fragment of the NVivo Tree Structure Arranged to Show the Node 
Relationships 

Traditionally in axial coding, dimensions would be established through analysis of 

common words/phrases or meanings from transcriptions of interviews or questionnaire 

data. As an alternative, NVivo also allows dimensions to be associated with the nodes 

previously identified. In this thesis, the dimensions were developed by reading the 

memos and identifying common impactors or implicators e.g. where problem solving was 

implicated as a benefit or causal factor, and associated with nodes. Primarily, these were 

Boolean dimensions chosen to reflect common concepts with the aim of identifying 

relationships between them. Typically, nodes were associated with both a number of 

memos and, as a consequence, to a number of these dimensions (Figure 3-6). This 

enabled a detailed and structured approach to be applied to the analysis of the research 

papers read throughout the course of the research process. 
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Figure 3-6 Dimensional Analysis in NVivo 

45 dimensions were produced through this analysis. Although, given that the quantity of 

research papers read was only in the hundreds, for statistical analysis purposes the 

support for each dimension was considered quite low. Data mining of a text base is often 

used in grounded theory to determine the categories and aid selection of the central 

category. NVivo offers a number of data mining tools including cluster analysis. However, 

cluster analysis tends to produce less meaningful results when the volume of data is low 

[294] and the data provided is highly multivariate [295] causing the data points to

becoming increasingly “sparse” (also known as the “the curse of dimensionality” [296]). 

In these cases, it is better to use simple graphical techniques [295]. An evaluation of the 

graphical approach employed is found in Chapter 4. 

In addressing how students learn to program, some of the techniques from action 

research were adopted to study how they learnt through a number of tasks and 

experiments. The action research cycle was clearly appropriate in this context, but with 

some reservations concerning the documentation approach required to apply this 

methodology rigorously (specifically the use of first person voice). As already stated, 

grounded theory has an advantage in terms of developing a theory of how people learn 

or think when programming and provided a strong structure in which to explore the 

research topic. Consequently, a mixed methodological approach was adopted including a 

mixture of quantitative and qualitative data collection techniques. Where possible, a 

quantitative approach was used to obtain data from software metrics relating to student 

performance. 



102 
 

Although the rigorous and systematic application of the methodologies is important, 

some compromises were accepted. The grounded theory methodology seeks to 

determine a central category or single resultant theory, but it was considered unlikely 

that a single principle or concept would emerge to explain all programming difficulties 

and that a single resultant solution would be found. Instead, the mixed methodology 

adopted would be more correctly described as a variable analysis, since the objective was 

to determine the driving variables that limited programming ability. In the end, the 

abstract nature of programming did emerge as the most dominant variable but it cannot 

be said that identifying a single specific concept was the initial overall aim. In line with 

grounded theory, a number of experiments were conducted to test and confirm aspects 

of the initial literature review. New teaching approaches were adopted based on the 

concepts that emerged. 
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4 Grounded Theory Analysis 

The data entered into NVivo consisted of 205 individual nodes and 45 dimensions, each 

specified using nominal values. The large number of dimensions produced was a by-

product of the memoing and coding process, which led to a number of possible variables 

that needed consideration. Grounded theory itself encourages a wide exploration of 

ideas. Given that the codes or “data instances” were produced by hand and not by 

automatic software collection, a small volume of data was to be expected. The final 

analysis produced 237 nodes. In developing concepts, classification using decision trees 

such as Automatic Interaction Detection (AID), Chi-Squared Automatic Interaction 

Detection (CHAID), Classification and Regression Tree (CART) may also be used, and 

methods exist for displaying these trees [297]. Tools such as Waikato Environment for 

Knowledge Analysis (WEKA) [298] also enable visualisation of decision trees. For example, 

visualisations of such trees have been presented in a health research [299]. For this 

thesis, the WEKA J48 tree (based on C4.5 [300]) was used to analyse the data, but even 

with cross-validation the results were poor (36% correctly classified instances) and the 

visual trees produced were difficult to interpret. In order to classify data decision trees 

effectively, the data is subdivided into small groups giving rise to sparse data points, and 

therefore it is reasonable to conclude that these results were affected by the same 

problems as seen in clustering [296] i.e. the “curse of dimensionality”. An alternative 

approach also considered was Graph-Based Data Mining [301] using the Subdue system, 

which uses a search guided by the Minimum Description Length (MDL) heuristic to  search 

iteratively for repeated patterns that can be compressed to produce more abstract 

patterns. This iterative approach can be used to cluster the input graph, with the patterns 

forming a cluster lattice with each pattern defined in terms of one or more previously 

discovered parent patterns.  For concept learning, SubdueCL [302] requires both positive 

and negative examples in a graph format. However, this algorithm again mines for 

patterns and is not specifically intended to visualise the relationships between nodes in 

the graph. Indeed, no tool could be found to visualise the data produced. 

Given that the data mining techniques used did not provide useful results and that there 

was a lack of a meaningful approach to visualise the concepts, an application was written 

to produce a graph that could be used to visualise the data. Two passes through the 

database were required. On the first pass the significance (frequency) of the dimension 

was calculated and these were ordered with the most frequent dimension first. The 
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algorithm defines a dimension as a name/value pair resulting in different values in the 

data being represented as separate dimensions e.g. “Impacted by Problem Solving YES” 

and “Impacted by Problem Solving NO” were treated as separate dimensions. 

Furthermore, an initial filtering process ignored the “Unspecified” value since this value 

was used to indicate that there was no significant link between the data record associated 

with the grounded theory code and the dimension. By ordering the dimensions, the least 

significant nodes in the graph appear at the bottom where there are fewer links to them 

and allow them to be culled more easily. Thus, the initial approach is closely related to 

that of the FP-Tree. Let 𝐷 =  {𝑑1, 𝑑2, … 𝑑𝑚} be a set of dimensions where each 

dimension is a unique name/value pair 𝑑𝑖 = 𝑑(𝑁𝑖, 𝑉𝑖), the database 𝐷𝐵 =

 {𝑅1, 𝑅2, … , 𝑅𝑛} is a list of database records and 𝑅𝑖(𝑖  [1. . 𝑛])  =  {𝑣1, 𝑣2, … 𝑣𝑚} is an 

instance of a database record consisting of the values for each dimension where 𝑛 =

|𝐷𝐵| and 𝑚 =  |𝐷|. Each value in the database is mapped to a dimension 𝑓: 𝑣𝑖 →

𝑑𝑖(𝑁𝑖, 𝑉𝑖), although unassigned values for the dimension can also be ignored. 

As a comparison, assume the database contains the following dimensions A, B, .. F given 

in the database shown in Table 4-1. 

Frequency Dimension (D) 

2 A 

5 A, B 

3 A, B, C 

3 A, B, D 

1 A, B, D, E 

4 A, C 

1 A, D 

1 A, D, E, F 

1 B, E 

2 C 

1 C, D 

1 C, D, E 

1 D, E 

Table 4-1 Example of Dimension in Records Contained in a Database 
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The first pass through the database produces the resultant dimension frequency table 

shown in Table 4-2. 

Dimension Overall Frequency 

A 20 

B 13 

C 11 

D 9 

E 5 

F 1 

Table 4-2 Dimension Frequency List 

Given DB, the Dimension Frequency List 𝐷𝐹𝐿𝑖𝑠𝑡 =  {𝑓1, 𝑓2, … 𝑓𝑚} where 𝑚 = |𝐷|, and 

𝑓𝑖  =  𝑓(𝑑𝑖, 𝑓𝑐𝑖) where 𝑓𝑐𝑖 is a frequency count associated with the dimension. The 

𝐷𝐹𝐿𝑖𝑠𝑡 is sorted such that 𝑓𝑖  >=  𝑓𝑖+1 given (𝑖  [1. . 𝑚 − 1]). 

During the second pass, the graph or tree (acyclic graph) was constructed by reading the 

dimensions from the most frequent to the least, matching them with data values from 

the database record and adding or updating the appropriate nodes in the graph. The 

application was constructed to visualise the data based on two hypotheses: 

1. The importance of a link within a branch relies on the significance of the nodes it 

links together 

2. The importance of a node relies on the significance of the link joining it to another 

node 

The first hypothesis was related to the Frequent Pattern (FP) Tree [303], and produced a 

wide shallow tree structure sometimes with multiple nodes representing the same 

dimension. In line with the FP-Tree approach, a frequency count was associated with each 

tree node and was incremented when a data line followed the same path through the 

tree. Having completed the second pass, all nodes below a set significance level were 

culled, in a similar fashion to the frequent pattern growth method [303]. Using the 

database shown in Table 4-1 and creating the tree with the support threshold    set to 3 

produces the result shown in Figure 4-1. The frequency count for the dimension is spread 

across nodes on multiple branches of the tree corresponding with the support for that 

“pattern” within each branch. Notice that the relationships B--C and D--E are culled 
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because neither is deemed frequent enough in any branch. As a result E is also culled 

despite its overall frequency in the tree suggesting it could be of interest. 

A:20

B:12 C:4 D:2

E:1C:3 D:4

E:1

C:4

D:2

E:1

ROOT

B:1

E:1

D:1

E:1

F:1

 

Figure 4-1 The FP-Tree (shaded nodes and edges fall below the threshold and are 
removed) 

Because of this “spread” of the incidences of a dimension across the tree, the significance 

(frequency) of the node tended to be very low and they were culled more aggressively 

than required. An alternative approach was also tested to reduce this aggressive culling. 

Instead of maintaining a frequency count for each node, because each node represented 

a dimension, the overall frequency of that dimension, calculated in the first pass through 

the database, was used to determine whether the node should be culled. For data 

visualisation purposes, we wish to see the relationships between the most significant 

dimensions that emerged from the research rather than to cull them from a branch 

because they are deemed less important in that particular context. Therefore, it is 

reasonable to allow the overall significance of the dimension represented by a node to 

outweigh its significance in a particular branch. As expected, this alternative approach did 

avoid the previously aggressive culling problems but did lead to another problem with 

orphaned nodes being created. The intention was to visually inspect the “patterns” 

produced by these graphs, to determine node relationships but the width of the graph 
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still made visualising the relationships unclear. Given these problems, the diagram 

produced was of limited use for cross-referencing but this approach was taken no further. 

Applying the second hypothesis, a graph was constructed between all the dimensions but 

only one instance of a dimension was added.  The use of nodes and edges to specify 

information is related to Semantic Networks [304] and semantic classification in natural 

language processing [305]. A frequency count was associated with each edge in the graph 

to enable the construction of a weighted graph which is commonly used to find the 

shortest path [306] between nodes. Where a database record duplicated a path through 

the graph, this edge frequency count was incremented. Thus an edge-weighted graph 

𝐺(𝑛, 𝑒) consisting of 𝑛𝑜𝑑𝑒𝑠(𝑛) and 𝑒𝑑𝑔𝑒𝑠(𝑒) was created, with each node being a 

unique representation of a dimension 𝑑, thus 𝑓: 𝑑𝑖 → 𝑛𝑖  where 𝑖 ∈ 1. . 𝑚 and 𝑚 = |𝐷| 

producing 𝑁 = {𝑛1, 𝑛2, 𝑛3 … 𝑛𝑚}.  Each edge represents a relationship between two 

nodes 𝑒(𝑛𝑖, 𝑛𝑗 , 𝑤) where 𝑖 ≠ 𝑗  and 𝑤 is the edge weighting. Duplicate paths through the 

graph follow the same nodes and edges, with the weight representing the number of 

incidents of the same edge being followed by those paths. Let 𝐸 be the set of these 

edges. Given n is the number of nodes, then the minimum and maximum number of 

edges is given by 𝑛 − 1 and 𝑛(𝑛 − 1) ∕ 2 respectively. A database record Ri represents a 

path Pi through the graph, where 𝑃𝑖(𝑛, 𝑒) ⊆ 𝐺 where 𝑖 ∈ 1. . 𝑝 and 𝑝 ≤ |𝐷|. Thus, the 

𝑁𝑜𝑑𝑒𝑠(𝑃𝑖) ⊆ 𝑁 while the 𝐸𝑑𝑔𝑒𝑠(𝑃𝑖) ⊆ 𝐸. Each database record 𝑅 in 𝐷𝐵 is mapped to 

one path 𝑃 in the graph, thus 𝑓: 𝑅 → 𝑃𝑖  where 𝑖 ≤ |𝐸|. In mapping, 𝑅 to 𝑃𝑖, the values of 

each dimension 𝑣  are sorted in 𝐷𝐹𝐿𝑖𝑠𝑡 order such that 

{𝑣𝑖: 𝑓𝑐𝑖, 𝑣𝑖+1: 𝑓𝑐𝑖+1, … 𝑣𝑚: 𝑓𝑐𝑚+1 } where 𝑓𝑐𝑖 ≥ 𝑓𝑐𝑖+1 ≥ ⋯ ≥ 𝑓𝑐𝑚+1.  Thus nodes with 

the least significant edges will be added at the “bottom” of the graph making it easier to 

read. No assumption can be made that the graph will be complete. 

Having constructed the graph, the edges that have frequencies that fall below a support 

threshold 𝜀 are removed. Therefore, 𝑃𝑖(𝜀) ⊂ 𝑃𝑖 where |𝑃𝑖(𝜀)| ≤ |𝐷| and the least 

significant edges and potentially the least significant nodes are removed. The graph 

produced is easier to read because it shows the relationships between nodes more clearly 

and better reflects the strength of those relationships. The result is also a narrower and 

deeper graph for visualisation purposes. It was never the intention to “mine” data from 

this graph, but to provide a means of visual inspection that allows human insight into the 

relationships between the codes discovered in grounded theory analysis. Taking the 
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database shown in Table 4-1 and constructing the graph with the support threshold    set 

to 3 creates the graph shown in Figure 4-2. The edges between A—D and E—F are culled 

but the relationships between B—C and D—E are still represented. This is important 

because there is clearly a relationship that needs to be shown between these nodes. The 

culled edges and nodes are not displayed, and the root node may also be excluded when 

displaying the graph Figure 4-2b. The relationship between A--B—D—E is now revealed. A 

similar relationship between A—B—D is also visible in Figure 4-1.  

A:20

B:13 C:11

12

4

2
3

4
D:9

E:5

4

2

ROOT

20

41

1
F:1

1

1

A:20

B:13 C:11

12 4

3

4

D:9

E:5

4

(a) (b)

 

Figure 4-2 Example Weighted Graph 

 

The graph produced does not strictly allow a relationship “between” edges to be 

visualised. For example, say three nodes X, Y and Z are joined by two edges X—Y and Y—

Z. It does not follow that a relationship between X and Z exists, since a data record X, Y 

and Z may never have existed. All that is required for such a graph to be drawn is two 

data records containing the pairs (X, Y) and (Y, Z) in some combination.  



109 
 

The original data and the FP-Tree results were consulted to confirm or to review multiple 

relationships such as these. In practice, for information analysis this is not typically a 

problem because of three mitigating factors: 

1. If the relationship X—Z without the occurrence of Y is significant, it will be 

represented separately in the graph. 

2. If the relationship X—Z only occurs in the presence of Y, then Y is a significant 

factor in establishing this relationship. In this case, since the edges are not 

directional, both relationships may be read from the perspective of the common 

node Y i.e. Y—X and Y—Z. 

3. The nodes are sorted by support (frequency), for example, let X be the highest and 

Z the least supported node. Nodes with higher significance are more common and 

generic than nodes with lower significance which are more unique and specific 

because they occur less often. The graph is drawn top-down starting with the 

most significant nodes. Therefore, the edge from X—Y may be read as the 

relationship between a main concept and sub concept, while the edge Y—Z may 

be read as Z being a specific trait or characteristic of Y. The use of taxonomic 

hierarchy in graphs is common and found, for example, in Knowledge Graphs 

based on the Simple Knowledge Organization System (SKOS) standard published 

by W3C [307, 308]. 

Each record in the database 𝑅 contained a field that contained the name of the grounded 

theory code to which it was associated. A modification to the diagram was tested to 

display these names. On creating of path 𝑃𝑖  a special code name node was attached to 

the last node in the path that allowed the name to be displayed. This resulted in a more 

cluttered diagram, but to some extent it did enable the relationships between nodes to 

be traced back to their origin (data record and associated Grounded Theory code).  

The data produced by memoing, not unexpectedly, produced fairly low frequency counts 

as can be seen in Figure 4-3. This figure shows the relationship between the dimension or 

node in the graph, its support (frequency of occurrence) and the edges associated with it 

(note all edges “from the root” are not included). The dimensions run along the X-axis 

with the support frequency on the Y-axis. For reference, two dimensions are highlighted, 

“Impacted by Abstraction” which has the highest support and “WM Load Implied” which 

has the lowest support. As can be seen from the figure, edges with higher support are 
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associated with the nodes with higher support, suggesting that common themes or 

concepts emerge from the left of the graph. In the mid-range, concepts are being 

developed and supported by a number of more specialised relationships so the number 

of edges increases but the support for the edges declines. To the far right there are very 

few if any relationships to consider. In the context of analysing memos, even edges that 

have a low significance may actually be important because they may have been well 

established by authoritative research sources. Therefore, changing the edge significance 

threshold was regarded as just a mechanism for viewing the graph at various levels of 

detail. 

Figure 4-3 The Node, Number of Edges and their Associated Support (frequency) 

In practice, for this thesis thresholds between 3 and 6 provided the best results. Figure 

4-4 shows the result of changing the edge support threshold. For illustration purposes,

the nodes remaining at a threshold value of 6 have been shaded grey, but the graph at 

this threshold is also shown in Figure 4-5(a). Raising the threshold removes links and 

nodes reducing and simplifying the graph produced, while the main concepts remain 

present. 
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Figure 4-4 Results of Changing Edge Support Threshold 

 

Figure 4-5 Graph produced with edge threshold value of 6 
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The main theme (or in grounded theory terms, the resultant theory) identified in Figure 

4-5(a) is that programming success is significantly related to code abstraction, and this 

figure also suggests abstraction is primarily associated with code plan knowledge and 

problem solving skills. These topics have already been discussed in more detail in the 

literature review (Chapter 2). Two other interesting observations are that novice 

programmers struggle with problem solving and fixate on concrete surface features of a 

problem. Briefly, Figure 4-5(a) suggests that novice programmers are unable to abstract 

the generic ideas and principles required to solve problems and are distracted by the 

“irrelevant” specific details of the problem. For example, they may fail to identify that a 

linked list is required when an arbitrary number of values must be stored. Experienced 

programmers are able to leverage the domain specific knowledge they have acquired and 

hence construct a more complete mental model of the solution. Code plan knowledge 

also plays a part in problem solving and experienced programmers have a better 

understanding of the programming constructs and techniques required to solve 

programming problems. A small sub-graph (Figure 4-5b) demonstrates that working 

memory also plays a significant role in novice learning and programming expertise. When 

constructing these graphs, the terse nature of the dimension naming process inevitably 

means that some interpretation is required. Note that the names of the nodes in the 

figures in this thesis have been renamed to simplify the presentation. 

Selective coding was achieved by reviewing the memos in light of the relationships 

identified in these graphs. The primary concept determined from this research was the 

role of abstraction in problem solving. As a result, the original literature review was 

rewritten and restructured to reflect the concepts and relationships identified using 

grounded theory with abstraction being the main theme running throughout. By cross-

referencing between graphs at different support thresholds, the primary concepts and 

relationships were extracted into separate graphs for the purpose of discussion.  

Abstract thinking encompasses many concepts in many fields of research including 

general problem solving through analogy, abstract thought, logic and pedagogy.  

Grounded theory analysis provided a framework within these concepts and their 

relationships could be approached in a holistic way without preconceived ideas.  
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4.1 Research Phases 

The research presented in this thesis was driven by the grounded theory analysis, and was 

conducted in three phases: initial exploration of potential factors that might be 

associated with and predict student performance, further exploration of concepts as they 

developed through the axial coding process and implementation of new teaching 

approaches addressing the concepts identified. 

The initial research was conducted over three years and involved first year programming 

students completing a number of worksheets (Chapter 5). Each worksheet was marked 

and scored against a number of metrics. The analysis of the metrics was conducted using 

a FP-Tree data mining approach to identify possible patterns of behaviour. The main 

conclusion from this research was that a lack of problem solving skills was the principal 

characteristic associated with poor programming performance.  

During the axial coding process, additional research was conducted into the role of 

working memory in programming (Chapter 6). In a two year study, students were tested 

using Raven Matrices to measure their working memory and given programming tests. 

The results showed that working memory did have an effect, especially in the initial phase 

of exposure to programming.  

In developing a new teaching approach, two dominant concepts were directly explorable. 

Firstly, given problem solving skills are important in developing programming ability, an 

approach was explored in which problems were presented in a coding framework using a 

scaffolded problem based learning approach (Chapter 8). This approach also sought to 

overcome the potential problems of lack of domain specific knowledge and motivation to 

solve more arbitrary problems by providing a context that led to solving larger and more 

meaningful problems. A different teaching style was also adopted that emphasised the 

“divide and conquer” principle. Secondly, the grounded research suggested that 

experienced programmers have better mental models and code implementation plans 

that novice programmers lack when developing code.  To address this issue, a 

“plan/prime program” based approach to teaching was adopted (Chapter 7). This 

involved sub-dividing each programming construct into its most fundamental structure 

and providing a series of exercises, reinforced by a number of tests, to enable students to 

build the required mental models and plans more efficiently. It was hoped that continual 
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testing would promote memorisation of the models/plans and potentially overcome 

working memory issues that might cause learning difficulties. 

  



115 
 

5 Identifying Common Indicators of Programming Success 

during Continuous Practice 

One of the fundamental issues with teaching programming is measuring and analysing a 

student’s performance. A number of papers [309-311] have been published identifying 

metrics that might be used to measure and hence monitor the students’ ability as they 

progress through a course. In analysing the quality of novice programmers’ work, Mengel 

et al [310] and Jackson [312] identified a number of features for analysing student 

programs in an automated way. These features were “Correctness” determined by the 

output of the program and how closely it conformed to the requirements set by the tutor. 

“Style” including module length, identifier length, comment lines and indentation. 

“Efficiency” was a measure of the CPU time taken by the student program compared to 

the tutor’s program and finally “Complexity” was measured by using McCabe’s Cyclomatic 

Complexity metric [313]. To simplify the marking, the meaning of efficiency was expanded 

to include programming skill and understanding. Programming skill was defined as the 

ability to approach a problem logically and for larger problems this was expanded to 

include a measure of the closeness of their solution to a “best” solution. Rohaida et al 

[314] as discussed in [315] , suggested a system of measuring complexity focusing on 

object oriented programming that selected the McCabe’s Cyclomatic Complexity [313], 

Number of Classes [316], Number of Properties [317], Attributes Complexity [318] and 

Operation Complexity of Classes [318] metrics. This approach was adopted for scoring the 

object oriented worksheets.  

There have been a number of studies aimed at determining the factors that differentiate 

successful students from failing students using data mining techniques. Examples include 

the collection of data about various student characteristics such as gender, age, study 

type, place of residency and the grade obtained, through questionnaires and applying 

decision trees to determine characteristics of successful students [319, 320]. When a web 

application acts as the medium by which the course is taught, another approach was to 

extract a number of online metrics for analysis. For example, one such study looked at the 

total correct answers (success rate), getting a problem right on the first attempt, total 

attempts, time spent on problem, student participation in communications versus 

working alone, reading the supporting material before attempting an exercise, submitting 

a lot of attempts without reading supporting material in between, giving up on a problem 
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and time of the first log on (i.e. when they started the exercise) [321]. The results were 

analysed using genetic algorithms and it was found that the two most important 

characteristics were the success rate and the total number of attempts. However, none of 

these data mining studies has addressed the possibility of predicting performance 

through analysis of potential coding performance indicators. 

5.1 Methodology 

To allow continuous assessment of student progress throughout the academic year, a first 

year programming course was taught through a series of six worksheets. This research 

consisted of a two year study consisting of 104 students and a confirmation trial 

consisting of 89 students. Each worksheet contained lecture notes covering a number of 

concepts. Concept was immediately followed by an associated tasks designed to assess 

the student’s understanding and ability to apply the concept. A number of metrics were 

identified that could act as indicators of programming ability. The worksheets were 

assessed against each of these metrics, with each metric given a Likert score: 0 for poor, 1 

for average and 2 for good. An exception was made when measuring complexity, any 

solution of high complexity was given the value 2 and during analysis this was considered 

a poor result. The students’ grades were also included in the data mining process. A set of 

results was produced for each student which could be analysed both per worksheet as 

well as across the entire academic year. 

Two studies were performed: the first collected data across two academic years and the 

second conducted across a third academic year was used as a confirmation study during 

which metrics were collected for just the first four worksheets. Before analysing the 

metrics, it was noted that the results obtained by 104 students over the course of a two 

year study, demonstrated the class polarization effect or bimodal distribution [4, 214] 

often seen in programming classes (Figure 5-1). 
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Figure 5-1 Overall End of Year Course Marks obtained by the Students 

The metrics across all the spreadsheets were grouped and analysed according to the final 

grades achieved by the students in each worksheet. The marks awarded to the students 

across all the worksheets is shown in Figure 5-2, and this illustrates the progress of the 

student body throughout the year i.e. all the students tended to achieve poorer marks as 

the course became more challenging. In terms of these results, two large groupings of 

students were awarded either a First (>=70%) or a 2.2 (>=50% and < 60%) with the 

remaining students distributed more evenly. Therefore, the primary analysis of the 

metrics focused around these two groupings which were statistically the most relevant.  

The analysis of the data for failing students is less reliable due to a number of factors. 

Firstly, the low number of failing students (Figure 5-2) significantly reduces the accuracy 

of the analysis. Secondly, the disparity between the good and poor students increases 

across the worksheets, thus the earlier worksheets produce results which are too similar 

to allow discrimination between the student types (Figure 5-3). Finally, a number of the 

poorer students withdrew before completing the course and as a consequence complete 

data was not obtained for these students. A significant student dropout rate starts 

around worksheet 4 (Figure 5-3), which was submitted in January following the Christmas 

holidays, and continues through worksheet 5 and 6, where principles of object oriented 

programming were introduced in the second semester. However, a similar dropout rate in 

January has also been observed when programming was not taught in the first semester 

indicating that there are other underlying issues related to general academic study and 

computing skills which contribute to this problem. Nonetheless, the results show that an 

issue does appear to exist when considering students obtaining average marks, of around 
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2.2 (Figure 5-2), when moving on from the most basic concepts of object oriented 

programming to the more challenging and abstract concepts covered in worksheet 6. 

Identifying the cause(s) of these difficulties and formulating methods for overcoming 

them requires further study. Comparing Figure 5-1 and Figure 5-2, there appears to be an 

anomaly given the significant failure rate in the course and the low failure rate in the 

worksheets. The main cause of this phenomenon was non-submission of worksheets, as 

the distribution of the grades across the worksheets only varies slightly (Figure 5-3). In 

other words, the results demonstrate a filtering effect as the weaker students drop out 

throughout the academic year reducing the number of poor results in the later 

worksheets. This is evidence of the lower persistence of novice programmers [322], and 

may also be related to the “brutal feedback” associated with programming [22]. 

 

Figure 5-2 Grades Awarded to Students for Each Worksheet 
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Figure 5-3 Student Numbers across Worksheets 

5.2 The Worksheets 

The implementation of the worksheets followed the Programming-First Model and 

Imperative-First approach as described in [323] i.e. with a focus on programming syntax 

and semantics.  The programming fundamentals were divided into six key topics each 

with its own worksheet: 

 Understanding Variables covering declaration, naming and data types 

 Branch Statements including if, else and switch statements 

 Iteration including the for and while loop statements, and the use of arrays and 

loops 

 Functions including declaration and calling 

 Classes covering the basics of object oriented programming 

 Inheritance including the basics of polymorphic behaviour 

Thus the course was divided approximately into procedural programming in the first 

semester and object oriented programming in the second.  Each topic was taught over a  

number of weeks depending on the nature and complexity of the concepts, for example,  

the use of variables was covered over a three week period to allow significant emphasis 

to be placed on naming and data types. Both lectures and tutorials were delivered in a 

computer laboratory, to enable students to put into practice the principles being taught. 

The content of the worksheets was subdivided to follow the pattern of the lectures and it 

was intended that students would complete tasks associated with each lecture on a 
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weekly basis (see Figure 5-4). The worksheets were submitted at regular intervals 

throughout the academic year so that students were given feedback on their progress as 

early as possible. 

W2W1

L1 L2

T1 T2

L3 L4 L5

T1 T2 T3

MARK
W1

MARK
W2

W:  Week
L:    Lecture
T:    Tutorial

 

Figure 5-4 Relationship between Lectures, Tasks and Worksheets (derived from [324]) 

The tasks were chosen to be small and focused to make the marking effort manageable 

while providing an opportunity to provide sufficient feedback [325]. Langrich et al [324] 

investigated the types of tasks  that are normally set given the significant marking load 

generated by providing frequent exercises. They concluded that exercises must be 

solvable, verifiable and manageable in terms of the effort for both the student and the 

tutor, and reasonable in the sense they “must  be sufficient to train the student in the 

necessary programming competencies” [326]. Furthermore, they found that in comparing 

typical tasks set in Computer Science 101 Programming Fundamentals courses taken from 

textbooks or exercise units the “…similarity between the tasks and the aim to train typical 

tasks of a programmer was remarkable” [324] 

Tasks could be classified from the tutor’s view and the student’s view. From the tutor’s 

perspective they are divided into atomic or aggregate tasks. Atomic tasks consist of Open-

Value tasks where the student has to apply a function to obtain a result for some given 

data, Close-Value tasks that consist of multiple choice questions, Specification tasks 

where an implementation must meet some set of requirements (the specification) which 

could be checked by automatic testing, and Tutor-Reviewed tasks which can only 

reasonably be checked by the tutor. Aggregate tasks consist of Complex tasks solved by a 

number of atomic tasks with no dependencies between them and Step tasks where the 

dependences between the atomic tasks require that they must be solved in a specific 

sequence. 
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From the student’s viewpoint, tasks are categorised as Implementation/Correction of a 

solution to meet a given specification, Calculation of a result given some input or output 

value(s), Testing of a provided implementation and the declaration of functions to meet 

some specification. 

In choosing the tasks for the worksheets, a variety of approaches were taken, such as flow 

charts and variable tables, but primarily the focus was on Specification tasks where the 

student was asked to implement a solution to a given problem.  For example, a Console 

application where the user can select a menu option that will invoke a function to 

perform some required action as shown in Figure 5-5. 

A client needs an application that displays a menu with the options: 

1. Say hello 

2. Say goodbye 

3. Say hello again 

4. Quit 

However, the client wants the user to be able to type “one”, “two” and “three” instead of 

the numbers 1, 2 and 3. Anything not matching these words should cause the program to 

quit  

Figure 5-5 A Typical Worksheet Exercise 

Wherever code was implemented, the student was required to provide the full source 

code and evidence that the code was working, which usually took the form of screen 

shots. 

However, not all tasks required code to be implemented. In some cases, it was felt that 

the students would develop a deeper understanding through exercises that required 

them to develop related skills. For example, in considering variables, the students were 

required to identify the values they considered to vary from a written specification. To 

reinforce the process of identifying variables, their types, initial values and assigning 

appropriate variable names, the concept of a Variable Table was introduced (Figure 5-6).  

Name Type Initial Value Multiplicity Description 

productPrice double 0 1 The price of each product 

totalCost double 0 1 The total cost of the products in the 

shopping basket 

Figure 5-6  An Example of a Variable Table 

Other tasks required the students to familiarise themselves with the flow of control by 

tracing the execution of code and documenting the changes in the variable values using a 

Trace Chart. On introducing branch statements, flow diagrams were used to enable the 
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students to visualize the change in the flow of control when conditions are introduced. In 

the first academic year that worksheets were introduced, tasks often required the 

students to provide a combination of a variable table, flow chart and code for the 

solution. However, in studying the student work, it was found flow charts added little to 

the students understanding of the code as they served only as a method of documenting 

the flow of control, a result also noted by Koppelman [26].  The work involved often 

proved a very onerous exercise for both the students’ and the tutor. Thus, their use 

became more constrained later in the research. 

The tasks themselves offered different levels of difficulty, becoming more challenging as 

the student progressed from one worksheet to another. Care was taken to ensure that 

simple tasks were always provided to introduce a new concept to the student. For 

example, when functions were introduced, the first task simply required the student to 

write the functions to solve some very simple problems Figure 5-7. 

Write the following functions and write a test program to demonstrate how they are used. 

1. SayHello: just displays a “Hello World” message, has no return 

2. SayHelloToUser: passed the name of user and displays “Hello user”, has no return 

3. Sum: passed two numbers, sums them and returns the result  

4. AddToTotal: passed two parameters the first being the current total, the second the new 

value to add to it and returns the new total 

5. Average: passed current total, the number of values added to the total to calculate the 

average and returns the average value 

Figure 5-7 A Task Introducing Function Declaration 

This gradual approach to increasing the difficulty of tasks was important so that the 

students felt challenged but could still solve them [316]. 

In order to supplement the worksheets, the students were also required to investigate a 

number of the concepts covered in lectures and provide their own examples to illustrate 

those concepts.  The objective of this assessment component was to require them to 

perform additional reading and attempt new approaches to applying the concepts. This 

also served to alleviate the problem of more advanced students being slowed down and 

becoming frustrated [324], because they were able to be more creative and develop code 

that interested them. 

5.3 The Performance Metrics 

A number of possible performance metrics were identified, some of which were object 

oriented specific. However, the initial range of worksheets covered only procedural 
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programming and to simplify the marking it was decided to apply the same set of metrics 

across all of the worksheets excluding the object oriented metrics as necessary. For 

novice programmers’ work, it was felt that the Cyclomatic Complexity metric would be a 

sufficient measure of complexity for both procedural and object oriented exercises. Table 

5-1 shows a series of metrics that were identified to analyse a student’s ability across all 

the worksheets. Although mostly drawn from the metrics previously discussed, some 

were added by extrapolation from  software analysis [326] or from pedagogical research  

[325]. 

Correctness Code correctness The number of errors in the student’s program. 
Code completeness How much of the task was completed or how many 

of the requirements were met? 
Testing completeness How thorough was the student’s test coverage. 
Testing validity How appropriate were the student’s tests? 

 Syntax How syntactically correct was the student’s 
program(s)? 

Style Annotation How descriptively and accurately has the student 
documented their code? 

Adherence to 
conventions 

How strictly did the student adhere to the coding 
standards taught by the tutor? 

Efficiency Performance How well does the program perform in terms of 
CPU cycles? If the task was too simplistic this 
measure was not used. 

Best Solution How close to a good solution was the student’s 
work? If the tasks were too short this metric was 
not used. 

Understanding How well has the student demonstrated their 
understanding of the concepts and techniques? 
This was measured using both coding and/or a 
written analysis. 

Problem Solving How logically has the student approached the 
problem? 

Complexity McCabe’s Complexity 
Analysis 

How complex was the program? Only used when 
the program size would justify it and was used to 
determine if the student had over complicated a 
solution. Low complexity was considered good. 

Table 5-1 Programming Features and Metrics 

5.4 Analysis of Metrics 

Figure 5-8 shows the results obtained across all the metrics for students gaining both 

good and average marks, which have been normalised to account for slight variations in 

student numbers due to withdrawals and non-submissions. What becomes immediately 

clear is the larger diversity of issues present in the profile of the average student 

compared to the good student. Also, for average students, the number of incidents of 

poor metric values is far higher across the majority of the metrics. By the final worksheet, 
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incidents of poor code correctness and completeness are insignificant for the good 

students but remain persistent problems for the average student.  Other areas of concern 

for average students are the understanding of coding principles, the ability to produce an 

implementation that approximates to the “best solution” and problem solving skills 

(Figure 5-9).                                                                    . 
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Figure 5-8 Analysis of the Metrics for Good and Average Students 
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Figure 5-9 Analysis of the Best Solution and Problem Solving Metrics 
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Analysing the best solution and problem solving metrics in more detail (Figure 5-9), we 

see that for the average students the lack of problem solving skills seems to be an issue 

throughout the academic year. Unsurprisingly, when it comes to developing a good 

solution they also lag behind their more able peers and have far more difficulty in 

producing working complete code as the course progresses. (Figure 5-10). 

 

Figure 5-10 The Average Students Coding Performance 

5.5 Seeking Common Success or Failure Factors Using Pattern 

Analysis 

Having identified a number of metrics associated with programming performance and 

used them to obtain a dataset from the worksheets, it was possible to mine the data in an 

attempt to determine whether a common set of factors was associated with successful 

student performance.  Pattern Analysis was chosen to seek sequences of metric values 

(patterns of items) that had statistical significance and might allow early prediction of a 

student who may have problems. 

Typically, this form of data mining occurs in Market Basket Analysis where customers’ 

purchasing habits are analysed by developing association rules based on the products 

they placed in their “shopping basket”. An association rule takes the form “A1  …  Am  

B1  …  Bn” where Ai (for i {1, …, m}) and Bj (for j  { 1, …, n}) are attribute-value pairs. 

Usually, this is written as X  Y and has the meaning “the database tuples (i.e. rows) that 

satisfy the conditions in X will probably satisfy Y”. Large quantities of rules are generated 

and a number of interestingness measures are applied to eliminate those which are 

considered to be uninteresting. A common measure is support (or prevalence). Given that 
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A and B are sets of items and D is a set of transactions then P(A  B) the probability of 

both itemsets A and B occurring in set D can be written as a percentage of the 

transactions in the database (Equation 1):  

Dintuplesoftotal

BandAbothcontainingtuples
BA

_____#

______#
)(support   (1) 

The problem of deriving association rules is formally described [327] as follows: -Let J = { 

I1, I2, …., Im } be a set of results. Each result tuple T in D is a set of results such that T  J. A 

result tuple T is said to contain A if and only if A  T. Association rules take the form X  

Y, where X  J, Y  J, and X  Y = . In this research, an item became a metric value , for 

example, “Code Completeness [Good]” became an item as did “Code Completeness 

[Poor]”. For mining purposes, the typical technique is to convert each item to a 

corresponding unique ID with a support count.  

Common approaches for analysing this type of data include those based on the Apriori 

algorithm [328] or those based on tree algorithms such as the Frequent Pattern (FP) Tree 

algorithm [303] which forms the basis of this research. Both these methods apply 

constraints to remove itemsets considered to be uninteresting. A constraint CAM is said to 

be anti-monotone if for every itemset that satisfies CAM, every one of its subsets also 

satisfies CAM. Given an itemset X, a constraint CAM is anti-monotone if 

)()(: YCXCXY AMAM   (2) 

If CAM holds for X then it also holds for any subset of X. In its simplest form, an anti-

monotone constraint is a support count that counts the number of occurrences of a given 

itemset against some threshold value. 

A significant disadvantage of Apriori based algorithms is the generation of large numbers 

of candidate itemsets that must be eliminated. The advantage of the FP Tree algorithm is 

the generation of frequent itemsets without candidate generation. However, it requires 

two passes of the database. Firstly the database is scanned to construct a list of frequent 

1- itemsets (i.e. a set containing one item) that are ordered in terms of frequency from 

highest to lowest. A second scan orders the items in each item tuple accordingly, each 

item becomes a tree node and branches of the tree are built so that items with the 

highest frequency appear at the top of the tree. 



129 
 

Formally, let I = {a1, a2, …., am } be a set of items and DB = { T1, T2, …., Tn } be a database of 

item tuples where Ti(i  [1..n]) is an item tuple which contains a set of items in I. The 

support of a pattern (or itemset) A is the number of item tuples containing A in DB. Given 

a predefined minimum support threshold  then A is a frequent pattern if its support is no 

less than . In the FP tree, each node consists of an itemid, count and node-link. The 

itemid identifies the item the node represents, count is the number of item tuples used to 

add (or support) this node and the node-link links to the next node of the same itemid or 

null. 

Having constructed the FP-tree, it must be mined to generate all the frequent patterns 

using the FP-growth algorithm. FP-growth takes each node in the tree and searches for 

patterns containing that node which conforms to the anti-monotone constraint that takes 

the form of a support threshold. For analysis and prediction purposes, these frequent 

patterns or n-itemsets (i.e. a set containing n items) can be compared with future item 

tuples to identify matching itemsets.  

To make predictions, for example the pattern of behaviour associated with high grade 

students, separate trees were generated for each grade value. This required a scan 

through the item tuples looking for tuples containing the required grade and then passing 

the matching tuples to the FP-Tree and Growth algorithms.  

Data mining usually requires many thousands of records to build up statistical confidence 

in the results being mined by the algorithms. A clear limitation of this study, and indeed 

of any application of data mining as a pedagogical tool, is the lack of such large quantities 

of data. Given the limited dataset, this research should be seen as a pilot study intended 

to determine if this approach could lead to identifying different patterns of behaviour 

between students at different grade levels. However, given that the factors being 

measured need some interpretation, it was argued that any observed patterns could be 

determined at lower levels of data because more human analysis was required i.e. a 

much smaller number of “interesting” patterns are important since we are not 

attempting to find sub-patterns in large itemsets. Even with relatively small amounts of 

data, the number of patterns generated ran into hundreds and support thresholds had to 

be modified accordingly to remove the less supported/less interesting itemsets.  
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5.6 Results of Mining Worksheet Data 

When comparing the itemsets generated by students gaining good, average and poor 

marks for each worksheet, an important distinction must be made, students obtaining a 

high overall final grade, such as a First, could still obtain a poor result for an individual 

worksheet. Thus the analysis was not based on the student’s final grade but on the 

individual results for each worksheet. The support counts for the itemsets generated for 

students achieving good grades were significantly higher than for those achieving lower 

grades. Since the majority of students would be expected to pass a course, the patterns 

produced were overwhelmingly positive i.e. predictors of success rather than failure, and 

this made analysis of the causes of failure less predictable.  Hence, the “fail” results need 

be treated with some caution. The cause of failure could of course also be predicted by 

the lack of the success predictors. To improve the analysis of the results, the 5-itemsets 

were studied alone because the support for 6-itemsets became much lower and sufficient 

interesting metrics were generated at this point. Care was taken to ensure that the 5-

itemsets reflected the values seen in the 2, 3 and 4-itemsets which in any case would 

have been combinations extractable from the 5-itemsets. Furthermore, the support 

threshold () was adjusted for each grade (awarded for each worksheet) to eliminate less 

supportable itemsets. The threshold had to be reduced to study assessment 

marks/grades at the lower end of the scale due to the reduction in the data available, 

since assessments are intended to enable students to learn and not to fail them 

unnecessarily. 

The study analysed the worksheet data from two perspectives. Firstly, by comparing the 

metric scores obtained by all the students across the worksheets to determine the 

difference between good and poor performance in completing the tasks (Figure 5-11). 

Secondly, the data was subdivided based on the student’s overall final grade to reveal 

differences in overall performance since it was anticipated that student’s performance 

was likely to vary across the worksheets i.e. the later worksheets covered concepts that 

were likely to be challenging for more of the students (Figure 5-12). Not all the metrics 

appeared in the mined itemsets because the itemsets in which they occurred had lower 

support values, and had been culled when they failed to meet the support threshold i.e. 

they were not considered significant predictors of performance.  
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5.6.1 Analysis of Results 

Figure 5-11(a) shows the results of analysing the data across the worksheets without 

reference to the final grade obtained by the student. The results show that students 

achieving good marks for a worksheet, wrote more complete and correct code than the 

other students who produced poor code and often failed to complete it. The same is true 

for testing completeness and validity.   

However, it is also true that problems with code syntax are insignificant, from Figure 

5-11(c) we can see that this in itself was not a predictor of poor performance. This 

suggests that students across all the grades are able to correctly apply the syntax but 

their main difficulty appears to have been related to obtaining a solution in a form that 

could be coded. We can conclude that if a student understood the problem and its 

solution then they were capable of writing the code.  To determine the quality of the 

code produced, although somewhat subjectively, the closeness of the code produced by 

the student was compared to the solution(s) that the lecturer considered to be the “best” 

solution. It was found that poor students were unable to produce code of a good 

standard because they lacked the skills to produce well thought-out code, but the metric 

itself was not a predictor of good performance. We can conclude that not all students 

achieving good grades produce good code, they just produced more working code. 

Likewise, code complexity was also not a predictor of performance. 

There is some evidence that annotation of code may be a predictor of performance, with 

poorer annotation being produced by both the average and poor student. Good 

commenting should be emphasised, otherwise students often fixate on the code and 

treat documentation as an afterthought. This may also be related to a good 

understanding of the solution, given it is likely that students are more able to document 

their code when they have a thorough understanding of it. A related metric measured the 

ability of the student to abide by a specified coding convention, but this was found not to 

be a predictor of poor performance. Essentially, a number of the poor students were able 

to follow a convention even though their code was poor.  

Figure 5-11 clearly demonstrates that while the students gaining good marks mainly show 

good/average problem solving skills, lack of problem solving skills was a clear indicator of 

poor performance. The students were asked to provide written reports describing the 

concepts discussed in class and to provide their own examples to illustrate these ideas. 
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However, another key indicator of poor performance was the lack of understanding, and 

this included documenting the concepts and ideas covered in class. This form of 

assessment in itself now appears to play less of a role in supporting the development of 

the weaker students’ programming skills than first thought. 

The students obtaining average marks were of interest because they were capable of 

producing complete and correct code, but also often demonstrated a number of issues 

with applying algorithms and logic to a new task. Even providing a formal structured 

design approach using variable tables, code trace charts, flow diagrams and UML class 

diagrams did little to resolve these problems.  

5.6.2 Relationship between Final Grade and Worksheet Metrics 

To associate the worksheet results with the final grades achieved by each student during 

the mining process, extra items were added to the worksheet data representing the 

grades First, 2.1, 2.2, Pass and Fail that they obtained. Figure 5-12 shows the results of 

mining data for students with respect to their overall grades. Between students achieving 

a good grade and an average grade, these results show a significant drop in correct and 

complete code with rises in metrics including poor annotation and variance from the best 

solution, but the most significant change is a large spike in problem solving difficulties i.e. 

problem solving is a significant predictor of coding difficulties. As previously noted, the 

data obtained for poor students is less statistically relevant. Therefore, the analysis of 

their results is for illustration and comparison purposes only, but Figure 5-12(b) and (c) do 

seem to confirm that annotation and problem solving difficulties are predictors of coding 

problems. The overall conclusion from this analysis appears to be that the dominant 

predictor of poor performance in coding is poor problem solving skills.  
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Figure 5-11 Comparison of Metric Frequency Counts within Itemsets at K=5 for Students 
Gaining Good, Average and Poor Grades in a Worksheet 
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Figure 5-12 Comparison of Metric Frequency Counts within Itemsets at K=5 for Students 
Obtaining Good, Average and Poor Final Grades 
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5.7 Confirmation Trial 

A confirmation trial was conducted consisting of 89 first year students. The course was 

taught in the same way with the same worksheets but given the problems previously 

noted with dropout rates, only the first four procedural coding worksheets were used in 

this study. Figure 5-13 and Figure 5-14 show that both the final results obtained by the 

students and the grades awarded for each worksheet are broadly in line with those 

obtained in the main study. The same polarization of results can be seen and the marks 

awarded for the worksheets show preponderance around the First and 2.2 levels. Figure 

5-14 also shows that only a relatively small amount of data is available to study failing 

students, again making specific analysis of these students much less statistically relevant. 

 

Figure 5-13 Overall End of Year Course Marks Obtained by the Students in Confirmation 
Trial 

 

Figure 5-14 Grades Awarded to Students for Each Worksheet in Confirmation Trial 
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Similarly, the differentiation in problem solving skills between the good and average 

student can also be seen in the analysis of the results (Figure 5-15). It is therefore possible 

to conclude that the main study and the confirmation trial produced similar results.  

Figure 5-15 Analysis of the Problem Solving Metric in Confirmation Trial 

The FP-Tree data created in the main study was used to mine the corresponding frequent 

patterns using a Market Basket Analysis approach. The objective was to determine if the 

pattern matches obtained in the main study i.e. the predictions, corresponded to those 

obtained for each grade in the confirmation trial. Each student profile (set of metrics) for 

each worksheet was analysed to obtain a set of matches. A large number of matches 

were obtained, and the longest matching patterns (K = 5) with sufficient statistical 

support were chosen for review. Due to the variety of matches produced, this approach 

was not found to be suitable for predicting a student’s final grade with any accuracy.  

5.8 Conclusions 

The three purposes of this research were to promote continuous practice through a set of 

worksheets containing a variety of exercises, to investigate whether metrics for analysing 

student code could be used to predict good or poor student behaviours, and to determine 

whether such behaviours could be used to predict student performance. Given the 

bimodal distribution of the students’ final results it seems that carefully structuring the 

course content and providing associated exercises in the form of worksheets, does not in 

itself give novice programmers adequate support and fails to overcome the inherently 

unforgiving nature of programming. In analysing the metrics, market basket analysis was 

applied to obtain patterns of metric values associated with students at different grade 
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levels. Although the patterns of behaviour between grade levels did look different, no 

specific patterns of behaviour were found to be associated with good or poor student 

performance. A result that was also confirmed in a separate trial that demonstrated that 

the approach had no significant predictive power. The items (metric values) in each 

pattern were counted to produce summaries showing the most significant metric values 

associated with each grade level i.e. the metric values associated with the most patterns 

(or common behaviours).  Using these summaries, the students’ behavioural differences 

could be reviewed between grade levels at both the individual worksheets stage (Figure 

5-11) and the overall final marks stage (Figure 5-12). This analysis revealed that the key 

metric associated with programming success was problem solving. 

Although both the main study and the results from confirmation trial demonstrated that 

problem solving was one of the main causes of programming difficulties, neither 

suggested the root cause of poor problem solving abilities in the context of programming.  

It may be related to a lack of deductive, logical reasoning ability or fluid intelligence (gF). 

Alternatively, it may just be a problem of lack of practice or student motivation to learn 

programming. Should a lower gF measurement be associated with poorer programming 

ability, then it would be possible to measure this at the beginning of a programming 

course and potentially identify students that are likely to struggle. 
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6 Predicting Potential Programming Success 

A study was conducted to determine if programming success could be underpinned and 

predicted by providing an accelerated learning course in computational thinking prior to 

the start of the academic year, at the conclusion of which a number of tests were 

performed. The study involved 168 students entering the first year of their programmes 

of study and 4 members of academic staff over two years. These students were of a 

mixed range of ages and drawn from the full range of computing programmes offered by 

the School. The aim of the computational thinking course was to focus on problem solving 

skills, in the context of creating Python programs to solve a range of problems. 

On completion of the computational thinking course, the students were required to 

complete a programming test and a Raven Advanced Progressive Matrices (APM) Set II 

test. The APM test was chosen instead of the Standard Progressive Matrices, since APM is 

targeted at adults of a higher-level educational ability [329]. There is also some 

unpublished evidence referred to by Raven [329], that the APM test administered without 

a time limit is a good predictor of computer programming success. This might be due to 

the need for similar levels of attention to detail, checking and persistence required for 

success [329].There is a strong correlation between APM and fluid intelligence gF [70], 

and gF is related to problem solving skills [12],[62],[63],[17]. Since the deficiency of 

problem solving skills has been identified as a key factor in programming success, the 

relationship between gF and programming skills needed further investigation. Therefore, 

this study sought to determine whether the Raven test results could be used to predict 

student programming performance. 

6.1 The Testing Methodology 

The programming test took the form of a two hour time restricted test (see Appendix 1) 

and was subdivided into four sections consisting of (i) the analysis of a natural language 

problem and conversion to procedural steps, (ii) appreciation of code design, (iii) 

understanding of programming logic and (iv) the ability to write code. Question 1 was a 

variation of the classic “Making a Cup of Tea” exercise (Figure 6-1) and was used to assess 

the student’s ability to interpret a natural language problem.  
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Produce program for a new robot intended to create hot drinks.  The robot is capable of 

following simple, tea and coffee-oriented commands precisely, but has no understanding either 

of the process, or the fundamental principles which underpin it (e.g. that a kettle requires 

power).  The robot has access to the following items: 

• Kettle (initially unplugged) 

• Tea bags 

• Jar of ground instant coffee 

• 1L carton of milk 

• Unopened bag of sugar 

• 1 metal tea spoon 

• 1 large mug 

• Access to a sink for water and an electrical socket for power 

Figure 6-1 Assessment of Natural Language Reasoning and Structured Logical Thinking 

The instructions specified that the student should produce a set of instructions for the 

robot to successfully make a cup of milky coffee with one teaspoon of sugar. Further 

guidance stated that each instruction should be on a new line, written in a logical order 

with no steps missed. An additional component of this exercise allowed a user to specify 

the required drink option before the robot made it. It was intended that this exercise 

would test the ability to logically define the steps required to solve the problem, and 

determine the student’s ability to think procedurally and logically. There was no 

requirement for the student use any formal language in detailing the solutions. 

Question 2 was a flow chart exercise (Figure 6-2) used to assess the student’s 

appreciation of code design. Although there were some reservations in using flow 

charting [26], it was felt that  determining the students’ understanding of “flow of 

control” was sufficiently important to overcome any objection and any disadvantages 

could be reduced by simplifying the exercise.  

a) Says “Hello” to the user at the start. 

b) Asks the user how many addition operations they would like to perform. 

c) Loops the number of times requested by the user. 

d) For each loop, takes two new numbers from the user, adds them together and 

outputs the result 

Figure 6-2 Extract from Question 2 Flow Chart Requirements Presented to Student 
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Question 3 was designed to test the student’s ability to interpret requirements and 

develop the logic for a program. The students were allowed to skip elements of the 

problem they found too challenging and the answers could be provided in Python, 

pseudocode or simply outlined in English. The objective was to determine the mental 

model constructed by the student and their ability to express it in a logical manner. They 

were told not to concern themselves with implementing a complete solution, as 

explained in the statement shown in Figure 6-3. 

“You should aim to implement as many of these requirements as possible within your 

Python solution.  Focus on the logic of the program, and do not worry unduly about 

syntax.  If you feel a requirement will be too difficult to implement, ignore it and focus 

on the others.” 

Figure 6-3 Extract from Question 3 

Finally, Question 4 was a coding exercise provided to assess coding ability, by requiring 

students to write programs in Python to draw various shapes using Turtle.  This was 

subdivided into 3 component parts that involved increasing levels of difficulty, with the 

level of difficulty stated in the exercise. 

The answers to these tests were subdivided between the academic staff members and 

marked separately to avoid any marking bias and were cross checked to confirm 

consistency in marking. 

In addition to the coding test, the marks awarded at the end of the academic year for 

programming assignments completed by these students were also obtained. Since these 

students were studying a range of programmes taught by a number of members of staff, 

the coding related assignments were taught using a range of different approaches and 

languages. Where multiple assignment results were obtained for a student, the mean was 

taken to produce an overall assessment grade. Hence, any bias that might have occurred 

by teaching using a specific language, approach or marking scheme was negated. 

The APM test was conducted following the procedure outlined in Raven Manual 4 [330]. 

The student group were told in advance that they would be required to complete the 

test. APM Set I was used to familiarise them with the thought process required to solve 

the problems. The first two items of the Set I test were used as examples to ensure 

familiarity with the test procedure. The students were then given unlimited time to 
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complete the remaining tests in Set I followed by the tests in APM Set II. After scoring the 

tests, the results were compared with the UK reference norms Tables APM 12, APM 13 

and 14 [330]. 

6.2 Results of Programming and Raven Tests 

The results of these tests are shown in Table 6-1 and Figure 6-4, and have been 

subdivided into data bins covering different score ranges. Excluding Question 1, which 

required an interpretation of a natural language problem statement, these results show 

that a significant number of students were awarded marks under 40% across all the 

remaining questions and the Raven test.   However, this analysis does not reveal whether 

a specific group of students gained poor marks across all the tests. Variations in the 

student counts shown in Table 6-1 are due to students not answering those particular 

questions. Furthermore, a lower number of assignment results were available for study 

due to reasons that included students leaving their studies, changing course or failing to 

submit.  

  Student Totals in Each Score Range  

Marks 
Raven Full 
Test Result 

Code Test Results Assignment 
Result Q1 Q2 Q3 Q4  Result  

Over 90% 13 18 25 22 38 9 0 

80-89% 32 35 18 14 33 22 21 

70-79% 16 36 13 23 5 22 18 

60-69% 23 37 19 26 18 31 16 

50-59% 17 24 11 11 8 25 27 

40-49% 4 11 27 8 15 18 22 

Under 
40% 

61 6 55 64 51 44 15 

Table 6-1 Results of Coding and Raven Test (Final Assignment Mark also shown) 
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Figure 6-4 Distribution of Test Scores 

In a typical programming course, results would be normally classified as first class in the 

range 70% or over, 2.1 in the range 60% to 69%, 2.2 in the range 50 to 59, 3rd in the 

range 40 to 49 and fail at below 40%. Binning the test scores according to these 

classifications gives Figure 6-5, which demonstrates the familiar bimodal distribution. 

These results are particularly evident in questions 3 and 4 which dealt specifically with the 

coding of a solution. Thus, the scores from these questions alone may have been the 

major contributors to the effectiveness of the testing that was conducted. 

 

Figure 6-5 Distribution of Test Scores using Larger Bin Size 
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6.2.1 A Comparison of Code Test Results with Final Assignment Marks 

Although the coding test was time restricted, the assignment was completed by the 

students over the duration of the academic year and this gave them an opportunity for 

self-study and practice. An analysis was performed to determine whether there was any 

significant change in the participants’ performance after a year of study. Since assignment 

marks were not available for all students, the sample size had to be reduced to 118 pairs 

where both the code test and the corresponding assignment marks were available. To 

identify which matched pair tests could be performed, it was necessary to assess whether 

the distributions of both these sets of marks followed a normal distribution. SPSS 

provides two tests for normality, the Shapiro-Wilk and the Kolmogorov-Smirnov tests. The 

Kolmogorov-Smirnov test has been found to be less powerful [331] and will be ignored. 

Furthermore, the SPSS documentation recommends that these tests are only applied 

when the sample size is less than 50 [332, 333]. Normality should therefore be assessed 

visually [331]. Inspection of the results suggests that neither the distribution of the code 

test marks (Figure 6-6 and Figure 6-7) nor the distribution of the assignment marks 

(Figure 6-8 and Figure 6-9) appear to be normally distributed. Indeed, the plots suggest a 

normal distribution around 60% with a bimodal distribution with peaks around the 40% 

and 90% marks. Therefore, some caution must be exercised in any discussion of statistical 

results reliant on a normal distribution. 

 
Figure 6-6 Distribution of Overall Code Test Results 
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Figure 6-7 Normal Q-Q Plot of Overall Code Test Results 

 

 

 

 

 

 
Figure 6-8 Distribution of Assignment Marks (Excluding Zeroes) 
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Figure 6-9 Q-Q Plot of Assignment Results (Excluding Zeroes) 
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For completeness, the Shapiro-Wilk test results were also recorded as: 

 Statistic Degrees of Freedom 
(df) 

Significance (p) 

Overall Code Test Results 0.970 118 0.010 

Assignment Results 0.971 118 0.011 

 

The Shapiro-Wilk test gives a p value below 0.05 that enables us to reject the null 

hypothesis that the values are normally distributed and confirms the original visual 

observation. Again, it must be noted that the Shapiro-Wilk test is considered to be more 

appropriate for small sample sizes (N <=50, in their seminal paper [332], Shapiro and Wilk 

only simulated data with a maximum N of 50).  

Table 6-2 shows the comparative statistics for both these distributions, and it is clear 

from these results that the mean, median and standard deviations are very close. The 

Skewness and Kurtosis values show that both curves have the data slightly skewed to the 

left (the left tail of the distribution is slight longer) and are slightly flatter than the normal 

distribution. Therefore, the results do show very similar characteristics.  

Distribution Mean Median Std Dev Skewness 
Kurtosis 
(excess) 

Code Results 
59.06 
Std Err: 
2.05 

61 22.336 -0.284 
Std Err: 
0.223 

-0.662 
Std Err: 
0.442 

Assignment 
Results 

(Excl. Zeroes) 

58.63 
Std Err: 
1.739 

56.5 18.89 -0.296 
Std Err: 
0.223 

-0.532 
Std Err: 
0.442 

Table 6-2 Comparison of Distributions of Code and Assignment Results 

Skewness and Kurtosis values of -0.284 (std err of 0.223) and -0.662 (std err of 0.442) 

respectively, giving z-scores of 1.27 and 1.5 respectively, both of which are less than 

±1.96 suggesting the distribution is normal [334]. However an alternative approach 

suggests that a normal distribution requires Skewness and Kurtosis values to be within 

the ±1 range and less than three times the associated standard errors. Both of which are 

also true in our case. Similar results are obtained for the distribution of the assignment 

marks, with Skewness and Kurtosis values of -0.296 (std err of 0.223) and -0.532 (std err 

of 0.442), giving z-scores of 1.33 and 1.2 respectively. Therefore, although there is some 

evidence of normal distribution of marks, the safest conclusion must be that both these 

distributions are not normally distributed and the most appropriate methods for analysis 

must be non-parametric. 
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The distribution of the differences between the two related groups (Figure 6-10) is quite 

symmetrical in shape but there are a number of outliers at the extremes. This potentially 

rules out the possibility of using the Wilcoxon matched pairs signed rank test (although 

the result of this test was Z=-0.113 with p=0.910).  

 
Figure 6-10 Distribution of the Differences between Overall Code Test and Assignment 

Results 

Therefore the sign-test was chosen, a test that does not rely on the data following a 

normal distribution. The result of this test (Table 6-3) were Z=-0.093 and p=0.926 

indicating that there was not a statistically significant change in the results post teaching 

of programming.  57 students did worse than the test suggested and 59 did better, with a 

mean of 0.43 and a standard deviation of 24. This suggests that the overall code test 

marks mirror the performance of the students over the academic year. 

Assignment - 
OverallTest 

Negative 
Differencesa 

57 

Positive 
Differencesb 

59 

Tiesc 2 

Total 118 
a Assignment < OverallTest 
b Assignment > OverallTest 
c Assignment = OverallTest 

Table 6-3 Sign Test Results 

In analysing the individual results for each question in the test, the sample size needed to 

be varied. Not all the students completed the coding questions and some also failed to 

attempt the Raven test (Table 6-4). Little information can be gained from considering 

students that did not attempt both these tests, and they were therefore excluded. The 

sample size used when comparing coding tests and the Raven test was adjusted 

accordingly.  
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Total student in study 171 

Non-Attempts at Coding or Raven Tests 

Q3 16 

Q4 8 

Q3 and Q4 16 

Assignment 51 

Raven 1 

Sample Size Adjustments 

Q3 Excluding non-attempts 139 

Q4 Excluding non-attempts 147 

Assignment Sample Size 120 

Table 6-4 Non Attempts and Effect on Sample Sizes 

To further evaluate the effectiveness of the code test in predicting the programming 

ability of the students, a k-Means Cluster Analysis was performed (Figure 6-11), and was 

found to produce 5 clusters (k=5) with the centroid values shown in Table 6-5. 

 

Figure 6-11 Cluster Analysis of Code Test and Assignment Results 
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 Centroid Cluster 
Size 

 

 Q Overall Assign  

Cluster 1 74 33 15 Performed worse than predicted 

Cluster 2 57 48 26 Average performance in both 

Cluster 3 17 44 4 Performed poorly in both 

Cluster 4 41 61 21 
Performed better than 
predicted 

Cluster 5 79 78 38 Performed well in both 

Table 6-5 Centroid Values from the Cluster Analysis of the Overall Code Test Results 
With Respect to the Final Assignment Marks Obtained 

Cluster 5 shows that students gaining high code test marks also gained high assignment 

marks. Cluster 3 shows that students achieving lower marks in the code test were also 

achieving lower assignment marks, although this is a very small cluster most likely due to 

norm-referenced assessment. The remaining clusters, Cluster 1, Cluster 2 and Cluster 4, 

represent the average student and show students performing below, in-line with and 

above expectations respectively. In terms of size, Cluster 5 is the most significant and this 

indicates that these students maintain their advantage, followed by Cluster 2 showing 

average performance in both tests. Together, these account for 62% of all students. This 

analysis suggests that the code test is able to most accurately predict performance for 

students that gained good or average test results. 

6.2.2 A Comparison of Code Test and Raven Matrices Test Results 

The inclusion of Raven Matrices tests in this study, allowed further analysis of the code 

test results.  Firstly, Figure 6-5 shows that the distribution of Raven scores is broadly in 

agreement with the test scores obtained. However, this figure does not specifically 

demonstrate the relationship between each student’s results and their Raven APM 

scores. This relationship is shown in Figure 6-12, generated using the APM 14 Norms, and 

again this appears to show that there is a correlation between the Raven test scores and 

mean code test and end of-course assignment marks i.e. they have a monotonic 

relationship, with higher Raven scores being associated with good coding ability. The data 

binning seen is due to the Raven scoring methodology (see Table APM13 and 14[330]). 

Applying linear regression to the means of the data bins gives a coefficient of 

determination (R2) value of 0.6743 and 0.6012 indicating moderate significance.  
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Figure 6-12 Comparison of Raven APM Scores to Student Results using APM 14 Norms 

However, by applying the APM 13 Norms we obtain a less finely detailed scoring method 

which reduces the number of data bins produced and the effect of the outliers. These 

results (Figure 6-13) show a much stronger correlation between the Raven Matrices test 

scores and student results. Again, analysing the linear regression of the mean values of 

these data bins we get the R2 values of 0.9794 and 0.8202. Thus, we can conclude that 

Figure 6-12 and Figure 6-13 both show some correlation between code results and Raven 

test results. However, Figure 6-13 (a) shows this relationship becomes more linear when 

the size of the data bins is increased and the effect of outliers on their mean values is 
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reduced. The slight reduction in correlation observed when comparing Raven’s test 

results with assignment marks may be explained by: 

1. the lower number of students submitting assignments 

2. students rewriting their code over an extended period of time giving them the 

opportunity to obtain a result, although with a less efficient working process 

Despite these factors the results still demonstrate a correlation: indicating that students with a 

high Raven’s test score retain their advantage. However, the use of Raven’s for predicting an 

individual student’s future assignment marks may be affected by the amount of time and effort 

they are willing to commit to overcome their working memory limitations. 
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Figure 6-13 Comparison of Raven APM Scores to Student Results using APM 13 Norms 

Neither of these APM tests produced a normal distribution (Figure 6-14). Therefore, tests 

using this data must be non-parametric. 
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Figure 6-14 Normal Q-Q Plots form Raven APM13 and APM14 Tests 

To determine the effectiveness of Ravens APM13 in predicting coding ability, the overall 

code marks (excluding zeroes) were categorized from Under 40% to Over 90% as shown 

in Table 6-6. Using the chi squared test, to compare the overall code test result with the 

Raven score for each student gave Pearson Chi-Square value of 66.954 with a significance 

p=0.001 with sample size N=164, where the number of degrees of freedom (df) is 36. The 

results produced by this test are shown in Table 6-6 and a graphical representation of this 

table is shown in Figure 6-15 (see Table APM13 and 14[330] for Raven scoring). 

Raven APM13 Score % 

Test Marks 5.00 10.00 25.00 50.00 75.00 90.00 95.00 

Under 40% 3 9 11 12 4 0 1 

40-49% 2 3 3 4 5 0 0 

50-59% 0 2 8 8 6 0 0 

60-69% 1 4 10 8 5 0 3 

70-79% 0 0 5 9 3 1 3 

80-89% 0 1 0 9 9 1 2 

Over 90% 0 0 0 1 4 0 4 

Sample 
Percentage 

3.7% 11.6% 22.6% 31.10% 22.0% 1.2% 7.9% 

Table 6-6 Table Produced by Two Way Chi Squared Test 
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Figure 6-15 Graphical Representation of Table Produced by the Two Way Chi-Squared 

Test 

The Phi and Cramer's V test results gave values of φ=0.639 and V=0.261 respectively with 

the identical significance value of p=0.001. However, the Phi (φ) test value is only suitable 

for situations where both the variables under consideration (i.e. test result and Raven 

score) have exactly two possible values resulting in a table with the dimensions 2x2 (or 

df=1). By contrast, the Cramer’s V test is suitable for variables that produce more than 

two possible values (as in Table 6-6) and an unequal number of values, resulting in tables 

of varying dimensions (including unequal rows and columns).  The Cramer’s V value 

indicates the strength of the relationship as follows: 

“A small effect size is one that is greater than 0.1 but not more than 0.3, a medium 
effect size is one that is greater than 0.3 but not more than 0.5 and a large effect 
size is greater than 0.5. “ [335] 

It should be noted that these values are widely cited [336] and derived from Cohen’s 

work [337] but there is some dispute over the categorization of the effect into small, 

medium and large [338]. Furthermore, the value of df for the Chi-Square test and df for 

Cramer's V are different. For Cramer’s V it is referred to as df*= min(rows-1, columns-1) 

giving df* =  (7-1) = 6 and this value reduces these limits [339]. Although no table data 

could be found for df*=6 the values for df*=3 are small=0.06, medium=0.17 and 
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large=0.29 [339] (Table 6-7). Thus, the Cramer’s V result of V=0.261 suggests a medium 

strength relationship exists between these variables.  

df* Small Medium Large 

1 0.10 0.30 0.50 

2 0.07 0.21 0.35 

3 0.06 0.17 0.29 

Table 6-7 Effect Sizes for Cramer’s V [339] 

However, there are two caveats. Firstly the relatively small sample size and the 

distribution of the students across the Chi-Squared table produces a low number of 

students in each cell (often less than 5), which limits the reliability of the test. Secondly, 

some sources [340] indicate that the larger the dimensions of the table, the lower the 

reliability of the Cramer’s V test, as an artefact of the type of variable used.  To resolve 

these problems, the marks and APM scores were re-categorised into 3 simple categories 

below 50%, 50 to 69% and over 70% for the marks, and below 50%, 50-74% and over 75% 

for the APM scores (reflecting the APM13 norms  [330]). Repeating the chi squared test, 

to compare the overall code test results (excluding zeroes) with the Raven score for each 

student, gave a Pearson Chi-Square value of 26.403 with a significance p=0.000 and a 

degrees of freedom (df) value of 4. The Cramer's V test result gave a value of V=0.284 and 

a significance value of p=0.000. With df*=(3-1)=2. From Table 6-7 we see that V is greater 

than 0.21 and can again conclude that we have a medium association between the code 

marks and the Raven scores. Figure 6-16 shows the same bimodal performance often 

seen in coding assignments and tests, with lower Ravens scores associated with poorer 

performance and the opposite for higher Raven scores. Students obtaining Ravens scores 

in the mid-range (50-75%) obtained a broad range of test marks suggesting that other 

factors determined their success or failure in coding. 
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Figure 6-16 Graphical Representation of Table Produced by the Two Way Chi-Squared 

Test for Reduced Categories 

As shown in Figure 6-17, this bimodal distribution can also been seen by comparing the 

Raven Matrices scores with the overall code test results, and offers a potential 

explanation for this effect seen in many programming courses. Given the relationship 

between working memory and programming has now been established, it seems 

probable that students with poor working memory begin their programming studies with 

an inherent disadvantage over those with a better working memory. As a result, the 

cause of many weaker student’s problems manifests itself in the form of poor problem 

solving skills, a characteristic much less associated with good programming students.  

 

Figure 6-17 Comparison of Bimodal Distributions of Raven vs Code Test 
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6.2.3 Analysis of Individual Questions 

The individual test results for each question and the correlation of the individual 

questions in the code test to the Raven Matrices scores for the students (APM13 Norms) 

is shown in Table 6-8. 

 Correlation R2 

Q1 0.7078 

Q2 0.9672 

Q3 0.8392 

Q4 0.9184 

Table 6-8 Correlations Obtained for Individual Questions in Code Test 

Question 2 and 4 show the highest correlations. Question 2 required a greater 

understanding of the flow of control of a program and the production of a flow chart, and 

gave the clearest discrimination of participants’ reasoning ability with an R2 value of 

0.9672, while in question 4 the focus was primarily on coding and gave an R2 value of 

0.9184. When seeking to discriminate between participants based on their programming 

ability, the flow charting and pure programming tests provided the clearest predictors. 

Furthermore, as shown in Figure 6-18, for question 4 the ranges of marks awarded 

decreased as the Raven scores of the students increased indicating that higher working 

memory capacity becomes more strongly correlated with higher coding ability. Students 

with lower working memory capacity, produce a larger variety of results suggesting that, 

at least for some students, this inherent weakness can be overcome and that it does not 

necessarily preclude them from successfully programming. 

 

Figure 6-18 Results for Question 4 in Code Test Correlated Against Raven Matrices 
Scores 

Overall, we can conclude that the individual questions from the code test have 

successfully measured student performance, and a number of component parts 

comprising the “programming thought process” have been tested. However, not all of 

these parts are equally important and future testing could be more targeted. 
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6.3 Conclusions 

Undergraduate students studying computing took a short course on Computational 

Thinking prior to starting their main studies. In a previous study (Chapter 5), an analysis of 

programming metrics established that problem solving was a key discriminator of 

programming success. To further investigate the role of problem solving in learning to 

program, a measurement of students’ fluid intelligence (gF) was taken using Raven 

Matrices and compared with the results of a coding test. A correlation between these 

results was established, confirming that Raven Matrices were a predictor of initial 

programming success. This result has significant implications. Firstly, both the code test 

results and the Raven Matrices scores showed the familiar bimodal distribution. 

Therefore, at least to some degree, problem solving and coding skills are inherent and a 

lower Raven Matrices score implies that these students will initially have more difficulties 

learning to program. A longer term study may show that these difficulties can be 

overcome through practice and by gaining more programming experience. A second 

important observation was that Raven Matrices themselves are primarily a measure of 

working memory, consequently this result also supports the relationship between 

working memory, problem solving and programming established in the grounded theory 

analysis. Finally, the Computational Thinking course was intended to provide an 

accelerated learning and motivational experience for students to underpin their first year 

of study.  Although it might have succeeded in motivating students, the academic results 

were not improved by the course. Therefore, the benefits of running such a course in the 

future would be in enabling prediction of the students that are most likely to experience 

difficulties. This may allow ongoing support to be better targeted at weaker students. 
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7 Pattern-Based Learning in Programming 

The grounded theory analysis indicates that one of the key skills required to be able to 

successfully program is the ability to deal with abstraction. One way we may choose to 

view abstraction, is through software comprehension [19, 123] and the associated mental 

patterns or “plans” required. 

In software design, the use of patterns has become well established following the 

publication of the seminal work “Design Patterns: Elements of Reusable Object-Oriented 

Software” [270]. The authors of this work are often referred to as the Gang of Four (GoF). 

A number of books have covered these patterns but two stand out by attempting to 

present these patterns in a novel fashion. Freeman et al [341], presents each pattern 

through a series of simple design steps using sketches and quick quizzes to reinforce the 

ideas behind each pattern. Each chapter covers a single pattern and has to be worked 

through systematically to fully appreciate it. Laraman’s book [342], is more formal and 

emphasises that the reader must learn both General Responsibility Assignment Software 

Patterns (GRASP) and the GoF patterns. These ideas are presented by ongoing case 

studies that are followed throughout the book. While Freeman focuses specifically on the 

patterns, why and how they are used, Laraman is more concerned with identifying when 

the patterns should be applied. For Laraman, developers “build up a repertoire of both 

principles and idiomatic solutions” which when identified as providing a solution to a 

problem are then named, and may be called a pattern [342].  

“It [naming] supports chunking and incorporating that concept into our 
understanding and memory” [342] 

Naming the pattern is very important. Inexperienced programmers lack the knowledge to 

name the principles they are using, making it harder for them to communicate what they 

are doing and to learn new ideas.  

“Software development is a young field. Young fields lack well-established names for 
their principles – and that makes communication and education difficult” [342] 

A number of approaches have been taken to teaching design patterns, examples include 

Warren [343] and Astrachan et al [344]. Warren is interesting because he suggests that 

design patterns should be taught as part of problem-based learning since the patterns 

must be learnt and applied in solving a real problem. Learning a pattern in isolation is 

ineffective because students lack the design experience to see its importance. On the 
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other hand, Astrachan et al [344] emphasizes learning good design through using patterns 

and learning to implement them through a number of exercises (the Applied 

Apprenticeship Approach [345]). They observed that the majority of introductory 

textbooks: 

“…are driven by the syntactic details of a specific language rather than general 
methods for solving problems and designing programs” [344] 

Patterns expand the students’ design and development vocabulary. The “strength, 

purpose and abstractness” of design patterns that makes them effective also serves to 

reduce their accessibility. This can be particularly problematic for new learners [344]. 

However, they did advocate teaching simpler programming patterns based on the work of 

Wallingford [346].  

Although the use of patterns is common in software design, it is not as common in 

teaching programming. Rist demonstrated that novice programmers tended to work 

backwards from the program goal through code to the solution plan, while experienced 

programmers tended to work top-down i.e. they develop a solution plan first [121]. Thus, 

Wallingford reasoned, if students are taught suitable plans as abstractions they would 

have the required schema to work in a more top-down manner [346]. To reduce the 

abstraction, he defined a set of programming patterns. Five such patterns were identified, 

as shown in Table 7-1. 

He also investigated creating similar patterns in an object oriented programming [346]. 

The course was taught with an emphasis on patterns over syntax and semantics. An 

example, from Wallingford’s revised course outline one topic read: 

“Alternative-actions: implementation options; embedding alternative actions in the 
process-all-items-pattern; choosing between the selection patterns” [347] 
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Process-One-Item 

 Get data to be processed 

 Process the data 

 Output the results 

Process-All-Items 

 Prepare for processing 

 Loop over (process-one-item): 

o Get next item 

o Process the item 

o Prepare for next item 

 Perform closing action 

Guarded-Action 

 If guard-condition is satisfied 

o Take action 

Process-Items-Until-Done 

 Prepare for processing 

 Loop until done: 

o Get next item 

o If appropriate 

 Take action 

o Prepare for next item 

 If needed 

o Process last or found item 

Alternative-Actions 

 Select appropriately from the 

following 

o Condition1, take action 1 

o …. 

o Condition n, take action n 

Table 7-1 Wallingford’s Programming Patterns [347] 

An example of a Counting pattern is shown in Figure 7-1. 

Pattern Counting 

Problem Need to count the number of items in a collection of values 

Algorithm Initialise counter to 0 
While there are more items, 
      Process the item 
      Increment the counter 

Code count:=0; 
/* Get the first value */ 
while(value <> STOPPER) 
{ 
     /* Process the value */     
     count := count + 1; 
     /* Get the next value */     
} 

Figure 7-1 The Counting Pattern 

Using patterns in this way guided the novice programmers’ use of the language constructs 

and encouraged the reuse of software components [346]. When faced with a problem, 

weaker students can recognise the need for a pattern and start working with a “chunk” of 

meaningful code [346]. 
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In related work, Haberman et al [27], developed pattern oriented instruction (POI) as a 

pedagogical approach with the main goal of developing algorithmic problem solving skills. 

Patterns (schema) are examples of “expert solutions” that can be applied to create 

algorithms to solve problems. In POI, students learn to program by solving problems that 

are organised around patterns rather than programming constructs. The complexity of 

the problems is gradually increased to enhance “assimilation and formation of cognitive 

schema.”[27]. POI involves three main processes: Pattern Recognition, Black-Boxing and 

Structure Identification. Pattern recognition involves abstracting the pattern from the 

context of the problems i.e. it “… relates to the realization of similarities between 

analogical problems.” [27]. Black-Boxing or chunking, is concerned with encapsulating 

code so that it can be reused within a number of problems. Structure Identification 

involves subdividing a problem and requires high level abstraction and the development 

of a solution plan. POI stresses abstraction processes, not “abstraction products” the 

simple following of recipes for solutions [27]. Muller [28] looked at the relationship 

between analogous transfer of knowledge and POI. A course was developed that 

embraced the concept of abstracting a pattern from various examples. His results showed 

that the students were more able to subdivide problems and that they tended to 

remember patterns rather than look them up. However, in analysing their results, 

Haberman et al [27] noted three difficulties experienced by the students: 

 Although they obtained the correct solution they also wrote more unnecessary 

code. 

 They found moving between abstraction levels difficult when problem solving 

 They failed to recognise how the component parts of the solution could be 

integrated to complete the solution. (However, Muller’s [28] work in analogical 

reasoning suggests a solution.) 

An interesting problem recognised by Muller [28], was that all the tested students were 

distracted by irrelevant surface features in the problems description which were often 

caused by incorrect comparison of the current exercise against a previously completed 

exercise. The surface features made it harder to recall the solution from memory [348], 

although the more competent the solver the quicker they recovered from this error [348]. 

However, Muller [28] found that students taught through POI tended to be able to 

recover more quickly from these errors. 
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Wallingford [346] noted that teaching patterns may limit the students’ ability to create 

their own unique solutions i.e. it may “…inhibit the better students’ development of their 

own problem solving schema”. He thought this might be alleviated by providing a wide 

enough range of exercises, that allowed students to modify and combine patterns [346]. 

However, could creative problem solving and pattern based pedagogy be made 

compatible by adopting this approach in the teaching of programming constructs? 

7.1 The Proposed Abstracted Construct Instruction Pedagogy 

Both Pennington [101] and Rist [19, 123] suggest that programmers construct a series of 

plans that allow them to negotiate their way through code and latterly make necessary 

modifications. These plans are remembered in memory “chunks”, and expertise is 

therefore obtained by learning numerous such abstract chunks which can then be applied 

across a range of problems. In POI these chunks are taught as patterns which tend to 

consist of a number of steps, they provide a procedure for solving a simple problem and 

moves away from the more software construct oriented approach of teaching 

programming. This is consistent with Pennington’s concept of plan structure knowledge 

[101]. In the following proposed Abstracted Construct Instruction (ACI) pedagogy, the 

emphasis is on Pennington’s prime programs [101] or software constructs and the 

“instruction” focuses on abstractions of these. These abstractions will be referred to as 

abstracted construct patterns (ACPs), and they are more aligned with Pennington’s 

concept of text structure knowledge [101]. The text and plan structure knowledge 

together form the programmer’s knowledge of the source code, so there is some overlap 

in these concepts and consequently between POI and ACI. 

In discussing plans, Rist [122] uses the concept of “slots” [104, 115] when translating 

these plans to concrete code. Understanding what these “slots” represent is crucial in this 

translation process and is the concept that underpins ACI. Naming of an ACP is important, 

to ensure that there is an established point of reference between the student and 

teacher. Multiple exercises are required to reinforce both the memory of the ACP and the 

understanding of the purpose and correct usage of each “slot”. This is a significant 

distinguishing feature of ACI over other approaches. It is never assumed that completing 

one or more examples using a construct means that students will learn its appropriate 

usage. Instead, the abstraction is taught and simple exercises focus on appropriate 

elements of the pattern allowing the students time to deduce the semantics for 
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themselves. Thus, ACI adopts the principles of Analogous Transfer of Knowledge [37] i.e. 

learning a concept through multiple applications of it while minimizing structural 

dissimilarity. 

The overall structure of the course was constructed around the development of ACPs and 

is shown in Table 7-2. 

Abstracted Construct Patterns Additional Instruction 

C
o

n
ce

p
t 

Variables  Variable Declaration Pattern

 Variable Assignment Pattern

Notional machine 
Quantities to variable name 
association 

I/O  Input Text Pattern

Output Text Pattern

 Input Number Pattern

Variable 
Calculations 

 Variable Assignment Pattern

(with focus on assigning variables to

variables)

Variable identification from 
problem statement 
BODMAS 

Branches  Branch Pattern

 Branch with Alternative Pattern

Notional machine 
Word to branch condition 
association 
Implied logic 
Logic order 

Nested If Pattern

 AND Condition Pattern

OR Condition Pattern

Number line 

 Switch Pattern

Loops  Conditional Loop Pattern

 Counting Loop Pattern

Arrays  Array Creation Pattern

 Array Write Pattern

 Array Read Pattern

Notional machine 

 Array Counting Loop Pattern Mixing Patterns: Array Counting 
Loop and If Patterns 

Multidimensional Array Declaration

Pattern

Multidimensional Array Write

Pattern

Multidimensional Array Read

Pattern



165 
 

 Multidimensional Array Counting 

Loop Pattern 

Functions  Generic Function Pattern 

 Procedure Call Pattern 

 Procedure Declaration Pattern 

 Procedure Declaration Pattern 

(with arguments) 

 Function Call Pattern 

 Function Declaration Pattern 

 Function Declaration Pattern (with 

arguments) 

 

 Nested Function Call Pattern Basic problem solving techniques 

Table 7-2 Course Outline based on ACI 

ACI does not disregard all other teaching techniques, such as promoting an understanding 

of the notional machine [120] that is executing the code. On the contrary, understanding 

the basic operation of the “machine” makes the abstractions in the ACPs easier to accept 

and understand. 

The core principles of ACI are: 

1. Teach software constructs as abstract patterns. 

For example, declaring and initializing a variable are taught as two separate ACPs Figure 

7-2. 

Variable Declaration Pattern Variable Assignment Pattern 

 type variablename; 

 

 type 

o int 

o double 

o string 

o bool 

 variablename = value; 

 

 value: 

o Whole numbers -2,-1,0,1,2…etc  (int) 

o Floating point numbers -2.1,-1.3,0.0,1.33,2.45, etc (double) 

o Strings “Hello”, “Goodbye”, “1”, etc (string) 

o Boolean true, false (bool) 

o variablename 

 

variablename = any name following variable naming rules 

Figure 7-2 The Abstract Construct Patterns for Variables 
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Both the ACPs are given names, “Variable Declaration” and “Variable Assignment”, 

followed by the abstract pattern itself and examples of values that can be provided for 

the “slots” or variable parts of the pattern. A deliberately pared down selection of values 

was provided to limit the amount of information that needed to be remembered. To 

allow the students to infer how these ACPs could be used, a series of examples were 

provided. For example, the first set of exercises are shown in Figure 7-3. 

type name; 

name = “fred”; 

type flag; 

flag= false; 

type number1; 

number22 = 22; 

type number3; 

number3 = 4.57; 

type number2; 

number2 = 2.34; 

type address; 

address= “22 Oak St”; 

Figure 7-3 Initial Exercises in Variable Declaration and Initialisation 

These problems require the student to deduce the variable type from the given variable 

name and the value being provided. Hence, the student forms their own understanding of 

the meaning of “type”. The principle of reinforcing the development of mental schema by 

constant repetition by use of multiple examples is based on the work of Lui et al [7]. 

2. The simplest forms of abstract patterns should be used 

When teaching constructs, there is a tendency to present its use and hence fail to help 

the learner construct a mental model of the individual component parts of the syntax. In 

ACI, the array is taught as three ACPs: Array Creation, Array Read and Array Write. Only 

later, once these patterns are understood, are counting loops integrated with them to 

form an Array Counting Loop.  The emphasis is on simplifying the patterns and giving the 

learner the opportunity to correct any misunderstandings of them as early as possible. 

For example, when reading an array, the index into the array must fall within a legal range 

of values: this concept is introduced naturally as a consequence of exploring the Array 

Read and Array Write patterns. As a consequence, it becomes much easier to identify 

potential learning difficulties because these typically arise when multiple patterns are 

merged. Furthermore, one result of naming the ACPs is that it makes communicating 

hints much easier. 

Students should be dissuaded from modifying the pattern where possible, since 

systematically applying the same pattern makes it easier to remember. As an example, 
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when teaching counting loops, students should be dissuaded from modifying the 

Counting Loop pattern as they may be tempted to do if they are asked to count down 

rather than up.  

3. Provide multiple exercises to reinforce application of the abstract pattern 

All the fundamental constructs were taught using named ACPs and the number and 

variety of exercises provided were tailored to develop the students’ mental model 

(schema) of the construct. For example, the first exercise for applying branch statements 

is shown in Figure 7-4. 

Enter price 

Display “Price is greater than £302.20p” 

Figure 7-4 An Exercise for Using a Branch Statement 

The presentation of the exercise is deliberately quite terse to minimise confusion that 

might be introduced by the surface features of the problem statement itself. A danger 

with providing exercises is that they may become too complicated and interfere with the 

learning of the ACP. Initial exercises, at least, should prompt the recall of the ACP itself 

and emphasis the correct approach to converting the abstract pattern into a concrete 

form. Thus, in the previous question, the “condition” becomes “price > 302.20” in a 

branch statement. Providing numerous exercises, such as these, may be considered rote 

learning but as noted by Lui et al [7]: 

“Rote learning is often criticized, but in the case of weak students memorizing key 
programs and program segments can consolidate viable knowledge construction” 

4. Graduation of exercise difficulty 

Although each ACP is introduced with a targeted set of exercises, for useful program 

construction these patterns must be integrated to form solutions to more interesting 

problems.  Therefore, once the learner has understood an ACP then more exercises can 

be introduced that require previously learnt patterns to be used to complete them. 

However, the number of patterns required to solve a problem should be strictly 

controlled to avoid interference effects caused by difficulties recalling previous patterns, 

identifying the required patterns and over complexity. Where learning to integrate a new 

pattern with previously learned patterns is concerned, exercises should make the solution 

as easy to identify as possible. The guiding rule is not to create exercises to develop 
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problem solving skills, but to aid recall of the patterns themselves. Of course, there is 

some overlap with POI in that students can be expected to recall a particular approach 

they have previously encountered e.g. reading through an array in reverse.  

5. Promote Memorisation of Patterns 

Although students will be given or may take their own notes, ACI must specifically address 

the memorisation of patterns and their meanings. Therefore, reviewing notes and 

searching for patterns when completing exercises must be seen as poor practice and 

strongly discouraged. In this regard, four approaches were taken to modify student 

behaviour: 

a) At all times during class, memorisation of the patterns was given particular 

importance. 

b) Although students were encouraged to take notes, they were asked not to consult 

any notes from previous classes and to immediately attempt to commit to 

memory the current pattern being considered.  

c) A set of exercises was only provided in class, although additional exercises were 

made available for home consumption. This enabled the progress of the students 

to be more closely monitored than would otherwise have been possible. 

d) A number of unannounced informal in-class tests were given to the class at regular 

periods. The students were aware that tests would occur but not when or what 

they would contain. In addition, it was clearly explained to the students that these 

would not be marked and the purpose of the tests was for the individual student 

to assess their own progress. Thus, students were asked to score their own work. 

All the students submitted the written work and code for the tests for research 

purposes. 

6. ACI and Problem Solving 

Although the development of problem solving skills is not the main purpose of ACI, a 

Generic Function Pattern is introduced to promote the association between function and 

a specific problem being solved (Figure 7-5). The pattern contains three components, the 

“ProblemName” which must describe the problem being solved, the information required 

to solve the problem (if any) and the type of result produced by solving the problem (if 

any). 
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resulttype   ProblemName  (information to solve problem) 

Figure 7-5 The Generic Function Pattern 

Introducing functions through this pattern immediately introduces the principle of higher 

level abstraction of a problem. In effect, calling functions tells the “story” of how the 

problem is being solved. Excluding the Nested Function Call pattern, the exercises 

provided focused on solving a single problem through the creation of one function. Such 

an example is shown in Figure 7-6, where the student must write the function, but to do 

so, they must also infer from the problem description both the return type and the 

arguments required to solve the problem. 

returntype   AddThreeNumbers(args) 

Pass in three whole numbers, sum them and return the result. 

Figure 7-6 An Exercise in Writing a Function 

To teach the Nested Function Call pattern, the exercises involved subdividing simple 

problems into multiple functions. Subsequent exercises promoted reusing functions from 

previous solutions. Although the problems themselves are not complex and are designed 

to teach learners to call functions from other functions, the result is that they learn to 

identify reoccurring solutions. It should be noted that many hints were given since coding 

the solution was the challenge and not solving the problem per se. Two consecutive 

examples demonstrate the approach (Figure 7-7): 

Exercise 1 Exercise 2 

Write a function to calculate the area of the 

following shape using function to calculate the 

area of each different shape. The user must 

supply values for each dimension. 

Write a function to calculate the shaded area of 

the following shape. The user must supply 

values for each dimension. 

 
 

Figure 7-7 Two Exercises for Demonstrating the Use of Nested Functions 

W1

H1
W2

H2

R1

R2
R1

R2
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In Exercise 2, the learner is expected to reuse the function for calculating the area of a 

circle in writing the function for calculating the shaded area of the shape. Such exercises 

require the learner to subdivide the problem, name the functions after the problem is 

identified, write the functions, test the functions and combine them in an overall single 

function representing the complete solution. These are all fundamental skills required to 

solve much larger, more complex problems. Thus, ACI does provide the underpinning 

necessary for learners to move forward to solve much more interesting and complicated 

problems. 

7.2 Teaching Problem Solving Skills 

ACI was the approach taken in teaching the first semester of the course. During the 

second semester, the course evolved into an investigation of problem solving techniques 

and their application to programming problems. To assess the effectiveness of ACI itself, 

the POI approach was not adopted. The primary aim was to determine if ACI enabled 

students to solve problems for themselves without limiting the creativity of the solutions 

that they may develop. Thus, a set of techniques were taught and exercises were 

provided to develop the students’ appreciation of their use. These techniques were 

developed by observations of past students’ programming behaviour during class, and 

were a modified superset of those introduced by Spraul [349] which were themselves 

derived from common techniques such as those described by Kirkley [350]. The 

techniques used in this study are listed in Table 7-3. 
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Technique Description 

First solve the problem on 
paper 

Do not try to solve the problem by typing at the keyboard 

Use what you know Remember the things you have been taught and think how they 
might be applied 

Restate the problem Make the restatement of the problem constraints generic (or 
abstract) 

Subdivide the problem Always break the problem into parts 

Solve the easiest problem 
first 

Always solve the most heavily constrained or the most obvious 
component of a problem first 
Start by coding/designing that which “you know how to do” before 
doing anything else 

Generalise the solution Try to make the solution as generic as problem so that it can solve a 
range of problems rather than just one 

Change the game If you cannot solve the problem you are given, rewrite the problem 
to make it simpler 
Concentrate on a simpler, reduced version of the problem by 
adding or removing constraints 
Learn from solving the simpler problem 

Work the problem 
(General sklls) 

Do not attempt to solve the problem by typing at the keyboard, 
solve it on paper first 
Identify what you do not understand or do not know 
Break the problem statement down e.g. highlight key words and 
phrases 
Experiment 
Choose part of the problem and try a brute force approach to 
coding solution 
Try different input values or combinations of input values 
Look for relationships between entities such as values, inputs and 
outputs. 
Draw diagrams to represent the problem 

Testing Always test the solutions to check that they solved the problem. 

Table 7-3 Problem Solving Techniques 

The following describes a number of common observation of students’ programming 

behaviour during class over a number of years.  

1. The typing race 

Typically once introduced to programming, students will seek to solve all exercises by 

immediately typing at the keyboard. This leads to “code thrashing” where a student 

rewrites the same section of code multiple times attempting to find a sequence of 

program statements that gives the solution. It also leads to students writing irrelevant 

and fundamentally incorrect code. To reduce these problems, they must be encouraged 

to view the implementation step as a translation of a pre-determined codeable solution. 

To prevent incorrect coding and as a memory aid, the solution should be documented 

prior to coding. 
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2. Failure to retain or apply existing knowledge 

When trying to solve a programming problem students appear to forget what they have 

learnt (known as inert knowledge [31, 51]), or fail to map their knowledge to the problem 

facing them. This failure in mapping, related to the “closeness of mapping” [192] takes 

multiple forms and results in the student: 

a) Failing to recognise features of the problem description that implicitly require the 

use of an ACP. An example of this is where an exercise requires the user to enter 

multiple values and then to display all the values entered. The student may fail to 

recognise that “multiple values” implies the use of an array.  

b) Being distracted by surface dissimilarities between problem descriptions [174] and 

consequently failing to recognise that the same ACP is required. For example, 

where one exercise might ask for the user to be able to “enter ten numbers” and 

another exercise might ask for a “list of ten names”. Here, the use of word “list” in 

English is given increased relevance by the student and not interpreted as just 

storing multiple values (names in this case). Thus, they fail to see this as just 

another array. 

c) Selecting an incorrect approach to the problem, and hence introducing an 

“unsolvable” problem, either immediately or sometime later. For example, if the 

exercise requires the user to enter an arbitrary number of values, the student may 

apply a counting loop. Applying a counting loop immediately opens the question 

of how many times the loop should be repeated, which of course, is 

unanswerable. 

d) Identifying a solution to a problem but being unable to adapt the ACP to translate 

this solution to code. A common exercise used in teaching problem solving using 

an array, is to require a solution that involves adding an offset value to an array 

index within a counting loop. For example, an exercise that requires the 

production of the Fibonacci sequence up to a value of n (where n >= 2) will require 

array values to be summed in pairs. The solution is very similar to the Array 

Counting Loop Pattern but applies the Array Read Pattern within it to read both 

the current and the next array value. Two potential approaches involve 

incrementing the count by 2 or calculating the number of pairs required and 

setting the count limit to this value. While the latter does not break the standard 
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pattern, the former approach does and this structural dissimilarity may cause 

problems later. For this reason, it is recommended that students be dissuaded 

from changing the ACPs where alternative solutions are possible. In this case, the 

count limit value can be calculated and the required array indices computed from 

the count. 

Mapping failures such as these can set up a cascade effect. A failure to recognise that an 

array is required will lead to a failure to recognise that in order to use an array, the 

number of values to be stored in it must also be known. Such initial mistakes can be hard 

for a novice programmer to correct. 

To aid students, the mapping process was made as explicit as possible by creating a table 

with two columns, one with a list of the features from the problem description, named 

sub-problems that they knew how to solve, or anything not understood such as words, 

phrases or sub-problems and the other containing brief headings and subheadings for the 

topics covered during the course. An example of the initial headings that might be used in 

the right hand column is shown in Table 7-4, but students were encouraged to 

personalise this list. In the left hand column, if they did not understand words such as 

“list”, “print” and “before printing”, they were instructed to include them all. 

  



174 
 

Problem Information Existing Knowledge 

Any information extracted from the problem 
definition or related to the potential solution. 

Variables 

 Must have a value 

 Must be declared 

 Types (int, string, double, bool) 

Branches 

 Must be a question to ask 

 If, else 

 Switch (one value to be tested) 

Loops 

 Must repeat 

 Counting loop count (starting at 0) 

 Conditional loop (loop when 

condition is true) 

Arrays 

 More than one value 

 Must know the number of values 

required 

 Must create array using ‘new’ 

 All the same type 

 First element starts at 0  

 Last element is arrayLength – 1 

 Use counting loops and arrays 

together 

 Input/Output 

Table 7-4 Map of Current Student Knowledge 

Once the left hand column contained enough information, the process of mapping 

between the problem space and the student’s knowledge domain could begin. This 

process consisted of simply drawing arrows from the left hand to the right hand column 

and took a number of iterations as the student mapped between the two. As more 

questions arose, they were written in the left hand column, and links started to be made 

between these questions and the known quantities. An example of the anticipated results 

following a couple of reviews of a question might resemble Figure 7-8. 



175 
 

Search?

Word?
Search for what ?

List?

Previously entered?

Message?

Is in list?

Isn’t in list?

Entered?

Printed?

What am I 
searching?

How do I search?

To find word the 
list must already 
exist

Find variable value 
in array

“hello”, “goodbye”
strings

A program allows the user to search for a word 
from a list of 10 words previously entered into the 
program. A message is printed stating whether the 
word is or isn’t in the list of words provided

Variables
Must have a value
Must be declared
Types (int, string, double, bool)

Branches
Must be a question to ask
If, else
Switch (one value to be tested)

Loops
Must repeat
Counting loop count (starting at 0)
While loop (loop when condition is true)

Arrays
More than one value
Must know the number of values required
Must create array using ‘new’
All the same type
First element starts at 0
Last element is arrayLength – 1
Use counting loops and arrays together

Input/Output
Console.WriteLine()
Console.ReadLine()

How big?
10

 

Figure 7-8 A Presentation Slide Illustrating the Mapping between Student’s Knowledge 
Domain and the Problem Space 

3. Understanding the problem 

Often, if a student fails to understand a problem, they will attempt different strategies to 

understand more about it. Of course, the first fundamental step is to identify the 

requirements, procedures and constraints. But what if this is still not enough for the 

student to make progress? Two techniques suggested by Spraul [349] are to restate the 

problem in “your own language” and to make the description of the constraints involved 

as generic as possible. To illustrate this idea, Spraul [349], uses the classic puzzle known 

as The Fox, the Goose and the Corn puzzle and shows how it can be solved by rewriting 

the operations and making them generic. He argues that this approach allows you to gain 

insight into how a problem can be solved and enables transfer of the solution across 

related problems. 

4. Divide and Conquer 

The standard problem solving approach is to subdivide a complicated problem into a set 

of simpler problems and then solve these instead [350]. For programming, this approach 
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is particularly apt [349], [211] and should be continually emphasised. In teaching 

functions using the Generic Function Pattern, this process is embedded immediately in 

the mind of the learner since they are continually being forced to identify and name the 

problem they are solving each time they write a function. From the outset, ACI 

systematically teaches the learner how to write and call functions/procedures from the 

perspective of deciding the information required to solve the problem, and whether the 

solution produces a result. The alternative approach of writing code and searching for 

replication of code discourages the learner from seeing a program as a set of well-defined 

solved problems. As a result, ACI encourages the student to see the main function of a 

program as the place where functions are called to tell “the story” i.e. the function names 

and the sequence in which they are called should produce a main function that reads like 

the problem description. Learners are not dissuaded from creating one line functions if 

their purpose is clear. 

5. Take the easy path 

Having created a set of the sub-problems to solve, the next step is to rank the problems 

from easiest to hardest which then becomes the order in which they should be solved 

[349]. This approach prevents the learner from becoming too focused on the parts of the 

problem they initially do not know how to solve. A commonly observed problem is 

students failing to make any progress on a solution despite aspects of the problem being 

quite straightforward. Firstly they become disheartened and secondly they fail to learn 

more about the problem i.e. solving part of the problem may provide additional 

information that they are missing.   

6. Abstract solutions are best 

When creating functions, the learner should seek to make them as generic as possible so 

that they can be applied through a range of problems [28, 349]. Although, the Nested 

Function Call pattern and associated exercises demonstrated the reuse of functions 

across problems, generalising those solutions was not necessarily the main emphasis. 

Thus, additional exercises were provided to give more opportunity for this abstraction. 

7. Change the game 

Spraul [349] described an approach that overcame the seemingly challenging problem of 

drawing half a square over a number of steps, by reducing the problem each time with 
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modifications to the problem constraints. This principle of modifying a seemingly 

intractable problem into one that is easy to solve in order to glean more information, 

formed a major principle in the second semester. Sometimes this was referred to as a 

“brute force” or “hard coding” approach. An example would be repeating a line of code 

ten times instead of using a loop to swap array values. For the assignment, the students 

were requested to provide evidence of this form of experimentation and incomplete 

solutions were accepted providing they demonstrated a potential path to the solution i.e. 

evidence of a reasoned approach. 

8. Always Test 

A common novice programmer mistake is to assume that their solution must work, 

because they find it harder to spot programming bugs and to make a good hypothesis of 

how the code works when reading it [351]. Even worse, they often add new bugs when 

searching for errors [351] because of these poor assumptions. This is related to 

perceptual learning [351], [143]. Coders who think about testing are more likely to write 

correct code, therefore learners must be encouraged to frequently test their code [352]. 

7.2.1 Incomplete Solutions are Acceptable 

It was important to remind students that the process undertaken to solve a problem was 

more important than implementing a complete solution. A complete solution, 

constructed with little thought or design, is of little interest. The student tendency of 

seeing programming as a kind of typing exercise has to be broken. Instead, the stages of 

solution development were emphasised during instruction and actively promoted in all 

exercises and assignments. 

7.3 Methodology 

The research was conducted in two phases. Firstly ACI was used in teaching a first year 

introductory programming course of ten students for 10 weeks during the first semester. 

Secondly, during the 10 weeks of the second semester, problem solving skills were taught 

to two separate focus groups consisting of four students each. The first group were 

drafted from the original ACI cohort and the second, for comparison, was created of four 

students that were drawn from a separate course taught through a worksheet approach 

with no exposure to ACI. These smaller focus groups allowed for closer observation and 

monitoring of the students, and the results were recorded for later discussion. Results 
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were gathered through observation, testing and interview. All observations were 

conducted over a series of two hour sessions held once a week. A series of unannounced 

tests was also given to all the students, with the objective of assessing their progress and 

testing their recall of the patterns. For comparison purposes, an initial test was given to 

both focus groups at the start of the second semester to compare their relative 

programming performances before the problem solving element of the course began. 

Finally, at the end of the course, all members of both focus groups were interviewed to 

determine if their attitudes and approach to programming had changed. The ACI focus 

group were also questioned about the role and influence of ACI in their learning. 

7.4 Observations during ACI 

The teaching of ACI was divided into two sessions, the first introducing the ACPs and 

contextualising their usage with some examples. During the follow up session a range of 

exercises, typically around 6 per ACP, were provided and the students were closely 

observed and questioned during this time with particular attention paid to those in the 

focus group.  

One of the first exercises given to the students asked them to identify quantities or values 

and to categorise them into one of four groups: integers representing whole number 

values, doubles representing floating point values, strings representing text and Booleans 

consisting of a true or false value. It is known that novice programmers find it difficult to 

both identify variables [75] and their type [197] from a value given in a natural language 

problem. Interestingly, all the students assigned the values such as postcode (or sort 

code) and telephone number to the set of integer values. Even when the nature of these 

quantities was further explored, by considering specific values, some students went on to 

assign them to the next set which consisted of double values. In normal life we may refer 

to numbers when we are talking about identifiers e.g. pin number, but this is both 

misleading and incorrect in a programming context. This may also explain a second 

commonly observed misconception that numbers entered at the keyboard automatically 

become numbers when read in a program. Key values are ASCII, and an entered number 

is a string unless converted. This mistake was observed in 3 of the 4 students in the initial 

test conducted on the non-ACI focus group despite having completed a full semester of 

programming.  
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Not surprisingly, when asked to simply identify what they thought were the variables 

from a problem statement, most of the students struggled to produce a coherent list of 

names. The exercises produced for the course were kept short and often terse to 

minimise this type of problem. 

Another exercise asked students to identify words that could be associated with 

conditions within branch statements, such as greater than, less than and equal to. Again, 

natural language gave rise to problems e.g. the use of “same” for equals and “exceeds” 

for greater than. Specific training had to be provided, in the form of exercises that 

required branch statements to be written where the problem description used various 

different natural language terms to indicate the appropriate condition required. 

Novice programmers see variables as being “unique”, that is to say, they see a variable as 

a “use once entity” which results in them trying to create multiple variables where only 

one is required. As an example, suppose the user should enter two numbers and the 

program should add and display the sum of both. A novice may create three variables, 

where only one or two are required. This in itself is not a problem but it may start to fuel 

the misconception that a variable cannot be reused. Later, when an exercise requires a 

running total of an arbitrary set of entered numbers students will often store all the 

entered values in an array. Exercises can be designed to minimise these problems. 

Another area where difficulties were observed was in misapplying natural language logic 

to a program. To observe the influence of natural language, an exercise was created to 

intentionally produce the incorrect answer if the logic of the problem statement was 

explicitly followed step by step. The problem description is shown in Figure 7-9. 

Given a temperature under 100 check 

 when pressure is below 56 just display “pressure is too low” 

 when pressure is 23 or under just display “warning pressure is falling too low” 

Given a temperate at 300 or more check 

 when pressure is above 182 just display “warning pressure is rising too high” 

 when pressure is above 239 just display “pressure is too high” 

Figure 7-9 Number Range Condition Test 

Of the 10 students 9 incorrectly implemented the solution by simply following the natural 

language procedure as stated and 7 of the students were unable to determine the cause 

of the problem. Even after the cause of the error was explained using a number line 
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diagram, the majority of the students preferred to stick with the natural language 

sequence and apply a Boolean AND operation to isolate pressures above 23. The principle 

of using branch statements to test number ranges, and having an appreciation of the 

ranges of numbers excluded and included by applying conditions, is a key to 

understanding branching in programming. Therefore, a range of additional exercises were 

designed specifically around this principle to provide students with the opportunity to 

gain a better understanding of the number line. 

Modifying an ACP should not cause novice programmers many problems, especially a 

simple ACP such as the Counting Loop. However, when an exercise asked students to 

count down rather than count up, all the students initially failed to obtain an answer. 

They had to effectively create a completely new pattern that looked similar the original 

ACP, but in the process, the range of possible solutions lead to a great deal of confusion. 

The alternative was to leave the ACP untouched and seek to use the count value to 

generate the required alternative range of numbers. This method, of course, lead to other 

misunderstandings, but had two benefits. Firstly, thinking about using the count to create 

new values introduced an idea that could be expanded later to solve multiple additional 

problems, and secondly using a POI approach, the solution could be named the Counting 

Down Loop and taught as a new pattern. To reinforce this concept, a set of exercises were 

created using a Counting Loop to display various ranges of numbers and pairs of numbers 

calculated from the count. However, many of the students still had problems adapting the 

counting loop to reverse the count even after completing a number of these exercises. 

Arrays were taught as four separate patterns, Array Creation, Array Write, Array Read and 

finally in combination with a Counting Loop to form the Array Counting Loop. Exercises 

were provided as each of these patterns were introduced. For example, the array creation 

exercises required the students to just create an array of the appropriate type and size. 

Likewise, the exercises for writing and reading were introduced separately: firstly the 

writing pattern required values to be manually set to fill the entire array (no loop) and 

secondly the read pattern required the values to be read out again and used in some form 

of calculation. When the exercises focused on an individual pattern, the errors were 

mainly due to unfamiliarity with the individual pattern. This was by far the most difficult 

concept for the students to grasp but the problems mainly occurred when they had to 

combine the patterns. To write any useful code using arrays requires the integration of 
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patterns, and it appears that novice programmers struggle remembering and applying 

closely related patterns. Furthermore, processing arrays requires the implementation of 

an Array Counting Loop which is an integration of the Counting Loop with the array 

patterns. The use of a variable to select an array element, specifically the count variable 

in this case, is the primary cause of these issues. As the course progressed, the array 

patterns faded faster than any other ACP, which could be related to interference effects 

[353] due to the need to learn multiple patterns together over a short duration. 

7.5 Observations during Problem Solving 

Two focus groups were observed while completing problem solving exercises. These 

groups were drawn from the student body taught using ACI and from another course 

taught using traditional worksheets. 

When observing the students, it became clear that one of the limitations of the study was 

to overestimate the knowledge base of the students. It became apparent that although 

the exercises appeared to be quite straightforward, many of the students struggled with 

them. For example, some students had little knowledge of geometry and found questions 

based on circle area and circumference more challenging than expected. A number of 

exercises involved arrays, to give students more practice in applying them and because 

questions involving arrays and string manipulation tend to be more varied. One exercise 

that caused problems required the user to enter a word and asked that a program be 

written to reverse the letters in the word to form a new string. This involved reading 

backwards through the array using a Counting Down Loop. The two problems observed 

were misunderstanding how the count could be used with the array to read each 

element, and then how to store the reversed word. One student thought of swapping the 

letters around in the character array containing the word itself, but most created a 

second array and were then unable to copy letters between them. Others simply failed to 

use the array correctly and made little progress. 

The problem with setting suitable coding examples is not new. In the 1980s, an 

assignment that was set for students became well known as the “The Rainfall Problem” 

because it neatly demonstrated the difficulties novice programmers had with solving 

programming problems. The assignment said: 

“Write a program that repeatedly reads in positive integers, until it reads the integer 
99999. After seeing 99999, it should print out the average” [354] 
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Surprisingly, this seemingly straightforward problem could only be solved by 14% of the 

novice student programmers and even 30% of the most advanced failed to solve it [354]. 

This result has been repeated in numerous studies such as [32, 355, 356]. This also 

illustrates the challenges of setting appropriate exercises for novices when those 

exercises are being created by teachers with high programming expertise. 

However, ACI is not specifically aimed at teaching problem solving skills and observational 

results between both focus groups were comparable, as borne out by the test results. The 

ACI focus on functions as self-contained solutions to problems received very good 

feedback from the focus groups.  

7.6 Student Test Results 

To assess student progress throughout the course, five unannounced tests were given to 

the students, copies of which are provided in Appendix 2 with the average marks shown 

in Table 7-5. At the beginning and end of the second semester, comparison tests were 

given to both the ACI and non-ACI focus groups to allow comparison of their relative 

problem solving and programming abilities to determine whether ACI had affected the 

development of these skills over the academic year.  

Test Description Average 
Mark 

First Semester 

Variables Test Covered declaration and calculations using variables. 
Input/Output of values was also indirectly tested.  

83 

Branch Test Covered the use of branch if and else statements. Also 
re-tested variable declaration and input/output. 

69 

Loop Test Built upon the previous two tests but introduced the 
conditional and counting loop. 

68 

Second Semester 

Comparison Test Used at start of semester two for comparison of progress 
of both focus groups. Covered previous test content. 

69 

Functions and 
Problem Solving 
Test 

Covered problem solving through subdivision into 
functions. 66 

Table 7-5 Structure of Student Testing and Results 

Although the first test has a slightly high average, the marks across the tests (excluding 

zeroes) demonstrate that the students had a good understanding of the concepts and 

there is no significant decline in marks between tests over the course of both semesters.  

As well as scoring the tests, the type and counts of the number of errors were also 

recorded to establish the causes of errors and any student misconceptions. In addition, 
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the errors were mapped against the ACPs to identify any weaknesses in the students’ 

recall or understanding. As anticipated, most students completed many of the questions 

with no issues. Where students ran out of time, providing incomplete solutions, these 

were ignored in the error analysis unless sufficient progress had been made to allow 

conclusions to be drawn from them. The types of errors made by the students and the 

distribution of the error counts across the tests are shown in Table 7-6. 
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NUMBER OF PARTICIPANTS 10 10 6 9 8 

Wrong Type 0 0 0 2 0 2 

Wrong value assigned to variable 6 0 0 1 0 7 

Incorrect calculation of  
percentage value 

3 4 0 0 0 7 

Lack of domain knowledge 5 4 0 0 0 9 

Branch logic error 
(condition incorrect) 

NA 1 0 1 0 2 

Branch logic sequence 
(unrequired Boolean operator) 

NA 3 1 3 0 7 

Branch logic sequence error NA 3 2 0 0 5 

Branch logic error 
(missing else) 

NA 0 1 3 0 4 

Branch logic error 
(unrequired if in else statement) 

NA 0 0 3 0 3 

Over complicating solution NA 3 0 3 3 9 

Misunderstanding problem NA 0 0 3 4 7 

Loop Limit Error NA NA 1 0 0 1 

Array Declaration Error NA NA 2 0 0 2 

Lack of programming knowledge NA NA 5 4 3 12 

Loop logic error NA NA 4 3 1 8 

Forgot Counting Down Loop NA NA 0 3 2 5 

Array read error NA NA 0 0 2 2 

Table 7-6 Student Error Counts 

7.6.1 Initial Assessment of Variable Knowledge 

This first test (Appendix 2: Test 1) assessed the students’ understanding of variables and 

consisted of three questions. The first question required the identification of variable 

types from variable names, and the kind of values that could be assigned to those 

variables. Even this fairly fundamental concept caused a number of problems, in 

particular, remembering the double quotes around string values. The second question 

involved a calculation using variables, in this case, the total cost including a specified 

percentage tax. The problems encountered in this question, stemmed from the students’ 

lack of understanding of percentages and resulted in a number of erroneous approaches 

to coding the necessary calculations. Finally, the third question required the students to 

identify appropriate variables from a written problem description. No coding was 

required for this last question, and the students had no difficulty completing it.  

7.6.2 Assessment of Program Branch Knowledge 

Following instruction on branch statements using ACI, this test (Appendix 2: Test 2) 

consisted of three questions. The first of these reassessed the students’ understanding of 
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variables. Again, four of the students demonstrated an inability to recall the solution to 

calculating a percentage value, despite having seen a similar problem on more than one 

occasion. This may support the case for using POI, since recall might have been improved 

by introducing the solution as a formal pattern. In the second question, the incorrect use 

of branch conditions to select number ranges was tested. 3 of the 10 students made an 

error in sequencing the branch statements thus incorrectly including ranges of numbers 

which should have been processed separately, while a further 3 students used a less than 

optimal solution by using Boolean ANDs to solve the problem. We can conclude that, in 

the mind of the student, the procedures contained in the natural language description of 

the problem supersedes programming logic i.e. the cleaner, more logical solution to this 

problem that can be derived from consideration of the number line.  This was, in spite of 

encountering similar problems in previous exercises. The final question required finding 

the highest value of four numbers (no array or loop required). 4 of the 10 students either 

did not attempt it or did not complete this question, but for those who did provide a 

solution, the only issue of note was a tendency to slightly overcomplicate the answer. 

7.6.3 Assessment of Loop and Array Knowledge 

This test (Appendix 2: Test 3) consisted of five questions, the first of which was divided 

into four parts that tested fundamental understanding of variables, arrays and loops. In 

the second question, the contents of an array had to be displayed in reverse order. 

Neither of these questions caused the students any problems. In answering a question 

requiring an array search, 4 out of 6 students completed the problem, while a fifth 

student made a logic error that required the user to enter a value each iteration. When 

observed and questioned, this student believed that the solution was correct because 

when he ran the program he would enter the same value as the first entry in the array 

each time. A fourth question was similar to that in the previous test and required branch 

statements to check different number ranges but in this case, within a while loop to allow 

multiple checks to be made. For 3 students, the difficulty was in creating a while loop, 

while 2 students still had problems correctly selecting the ranges of numbers in a branch 

condition. The final question was only partially completed by one student and involved 

using a switch within a loop. 

7.6.4 Assessment of Function and Problem Solving Knowledge 

This test (Appendix 2: Post-Instruction Test 5) consisted of four questions, the first two 

assessed understanding and usage of functions and the last two assessed the students’ 
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problem solving approach. It was not assumed that all students would complete the last 

exercise, but it was anticipated that they would use a systematic approach in attempting 

to solve it. The first question was a straightforward area calculation while the second 

required combinations of area calculations to find the overall area of a more complicated 

shape. These were based on previously covered exercises, with the objective of 

determining if the students would remember and apply the same approach they had 

previously encountered. Only one student had a problem with these questions, and did 

not attempt them because he felt they were “more difficult”. These results suggest that 

the students are able to apply a similar solution to a problem only when the problem 

itself closely matches problems they have already solved. In the third question, numbers 

had to be stored in an array before being printed out in reverse order. The wording of the 

question stated that five numbers had to be entered and then “printed in reverse order” 

of entry. From this the student had to infer that the numbers had to be stored in an array, 

although the question does not require the values be reversed in the array itself. 3 of the 

students attempted to reverse the array contents, only 2 of whom were successful. The 

remaining students used the Counting Down Loop. 2 failed to complete the solution: in 

one case by incorrectly implementing the loop and in the other by subtracting the count 

from the array element value rather than using the count to select the array element. 

Again, the former is a case of “inert knowledge” [51], while the latter is more probably a 

programming logic error as shown in Figure 7-10. 

int[] numbers = new int[5]; 
int length = 5; 
             
for (int i = 0; i < length; i++) 
{ 
       Console.WriteLine("Enter Number >> "); 
       numbers[i] = int.Parse(Console.ReadLine()); 
} 
 
for (int i = 0; i < length; i++) 
{                      
       Console.WriteLine("{0}", numbers[i] - length - 1);   should be numbers[i -  length – 1] 
} 

Figure 7-10 Example of Student’s Incorrect Use of Array in Counting Down Loop 

The final problem, question four, involved generating five randomised lottery ball 

numbers without duplicates. To help the students, they were given a function for creating 

a random integer value. This problem requires an array to solve it, but was novel to the 

students and had not been covered in any previous exercises. 3 students just selected five 
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random numbers without preventing duplication. Only 2 students fully completed the 

solution. One student solved this problem by building his own version of a counting loop 

using a conditional loop, while the second student decremented the loop count to cause 

another iteration of the counting loop. Actually, a third student was also close to solving it 

by searching all the previously chosen values using a separate tailored loop as each ball 

was selected. 

In attempting both these problems, evidence of a problem solving approach being taken 

was clear and recognised by the subdivision of the problem into a number of self-

contained functions that fulfilled a single responsibility. For example, the problem of 

displaying the contents of an array using a counting loop was commonly separated into a 

dedicated functions given names such as DisplayBalls and PrintArray.  

Overall, the results from this test were mixed. The students clearly understood the role of 

functions in problem solving, and they were able to solve a problem when it was clearly 

related to a set of problems they had seen before. However, when the problem required 

combining concepts, as in question three, only 5 of the 8 students managed to solve the 

problem. Likewise, in question four, five of the students made some progress but the crux 

of the problem was to prevent the selection of duplicate numbers and this was ignored. 

For questions three and four, the students were asked to map their knowledge to the 

problem domain in writing as shown in Figure 7-8. Most found this difficult and their 

analysis was very brief (e.g. Figure 7-11a). Interestingly, only one student identified the 

importance of preventing the selection of duplicate numbers in question four (Figure 

7-11b) and began developing a strategy to solve it. 

 Students’ Analysis (in their own words) 

(a) Generate random number 
Declare array of numbers 1 to 5 [index 0 to 4] 
Randomise selection of number 

(b) Have 5 balls in a sorted order 
One is selected at random 
Copy that value into new array 
Random new value 
Check to see if it is already in new array, if not, copy it into new slot, 
move to next slot [slot here means array element] 
Check to see if array is full, if [it is] break, 
Output lottery array 

Figure 7-11 Student Analysis of Lottery Ball Problem 
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This reluctance to solve a problem before attempting to code it might explain why so few 

students were able to identify a potential approach to solve this problem. For example, in 

Figure 7-11b the student has decided that a new array is required to store the 

randomised ball value in a “new slot” i.e. a new position, and deduced that a search of 

this array is required to determine if the value already exists before storing it. In 

considering question three, the same student’s analysis of reversing the display of the 

array contained the crucial observation that the count had to be translated into a count 

down and this can be seen in the code as shown in Figure 7-12. Actually, the array did not 

need to be reversed but as a solution to the problem it still works. This solution is also 

generalised so it can work for any size array. 

i = 0      j = 4 
      1           3 
      2           2 
      3           1 
      4           0 

static int[] reverseArray(int[] numbers) 
{ 
       int[] reverseNumbers = new int[5]; 
             
       for(int i = 0; i < numbers.Length; i ++)    Range of i is 0 to 4 
       { 
              int j = numbers.Length - 1 - i;            Range of j is 4 to 0 
              reverseNumbers[i] = numbers[j]; 
       } 
       return reverseNumbers; 
} 

Figure 7-12 Student Analysis of Reversing Array of Numbers 

However, in Figure 7-11a, “Randomise selection of number” does not add to the student’s 

understanding of the solution because there is a failure to map from the problem domain 

to the student’s existing knowledge of the program domain.  

A previous test (Appendix 2: Pre-Instruction Test 4) was given to both focus groups at the 

beginning of semester 2 to compare their relative performance before problems solving 

skills were taught to both groups. The average marks for this test was 62% for the ACI 

group and 81% for the non-ACI group. In this final test, the respective marks were 57% 

and 74% showing the gap had closed a little. On further inspection, the weakest 

participant (Student A) across both groups was a member of the ACI group (Table 7-7), 

and had significantly lower marks as a result of failing to complete a number of the 

questions. This student had issues performing under test conditions, although the 

assignment results he later achieved were comparable with the other students in the 

group. 
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ACI 

Student A 22% 

Student B 84% 

Student C 78% 

Student D 44% 

Non ACI 

Student E 95% 

Student F 55% 

Student G 91% 

Student H 55% 

Table 7-7 Final Test Marks for Focus Groups 

Excluding the marks for Student A produced a fairer reflection of the ACI group’s progress 

and produced a result of 69% showing that the gap had not just narrowed but had closed. 

An explanation for this is that ACI does not focus on problem solving skills whereas the 

non-ACI group had attempted a more varied range of problems in the more traditional 

teaching approach. However, by the end of the course the results for both groups were 

comparable demonstrating that ACI did not disadvantage the students over the full 

academic year. The potentially negative effects of a time-restricted test are students 

becoming overly stressed or running out of time by concentrating on a particular difficulty 

they are having with some aspect of one of the problems. However, these effects were 

minimised by carefully monitoring the students during the tests and emphasising that 

they were designed to enable the students to evaluate their own progress and would not 

count as part of the official course assessment. All the students engaged with the tests 

and the range of test results obtained suggest that these issues had little impact on the 

results of this research. 

7.7 Student Interviews  

At the end of the academic year, the students in the focus group were formally 

interviewed and transcripts were taken. A set of eleven questions were designed, of 

which five were directly related to ACI and therefore only answered by the 4 students in 

the ACI focus group. The student’s prior knowledge is shown in Table 7-8. 
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ACI Focus Group 

Subject A Some basic HTML and CSS. 

Subject B Limited programming experience. 

Subject C Limited programming experience. 

Subject D None 

Non-ACI Focus Group 

Subject E None 

Subject F Python coding at college 

Subject G Prior programming experience in JAVA 

Subject H Prior programming experience in Python and JAVA. Found OOPs too 
difficult. 

Table 7-8 Student Experience Prior to Course 

7.7.1 Analysis of ACI Interviews 

The five ACI questions (Table 7-9) were designed to evaluate the students’ experience of 

the ACPs and the process of learning them through small, tailored exercises. Therefore, 

these questions were only addressed to the students in the ACI focus group.  

Question 

1 How did you find learning these concepts as patterns? 

2 How did you find applying these patterns? 

3 Did the style of exercises provided help you? 

4 Was the number of exercises appropriate? 

5 How much did you find the exercises reinforced your learning of the 
patterns? 

Table 7-9 List of ACI Interview Questions 

The students’ reaction to the principle of learning through ACPs was overwhelmingly 

positive, all of the group referred to the need to memorise them and Subject A 

specifically mentioned that learning the constructs as patterns made it easier to recall 

them. In fact, the need to remember the patterns was a continual theme with Subject B 

feeling “betrayed by my own memory”. Subject C compared ACI with the previous 

teaching approach they had experienced and felt that they had learned more “we learnt 

from the bottom up how to apply concepts and learned the ins and outs”. We can infer 

that they felt that the ACPs provided a framework within which they could build their 

understanding i.e. “the ins and outs” of programming. The role of repeated application of 

ACPs in remembering and transferring knowledge across problems was also commented 

on by 3 of the students. The increase in difficulty of the exercises was noted by the group 

but the gradual nature of this increase succeeded in mitigated any potentially negative 

effects. For Subjects B and C, the exercises were easy at the beginning, although both felt 

they were still good practice. An interesting comment made by Subject C was that the 

exercises were getting harder as a result of more being incorporated in them.  Since the 
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exercises being discussed explored the application of patterns rather than problem 

solving, we may conclude that the perceived difficulty of the exercises is related to the 

integration of multiple patterns. The same student also noted that the time taken to 

complete the exercises increased until they were completing far fewer exercises in the 

available time as the course progressed. A core principle of ACI is the provision of multiple 

exercises to reinforce an ACP: as the time taken to complete exercises increased so the 

number of exposures to the pattern decreased. With hindsight, even the limited 

“problem solving” may have served to distract the students from the purpose of 

memorisation and application of the patterns. For example, a student may have known 

how to swap the values in two variables but asking them to deduce that the same 

technique could be applied to swapping values in array elements may have taken them 

some time.  Might this time have been better spent over a number of exercises examining 

exchanging array values in counting loops in various ways? The exercises do not need to 

have any real-world relevance, so they can be arbitrary and focus solely on the swapping 

of array values. This is potentially one benefit of POI, since the initial solution is provided 

and students practise applying it across a range of similar problems. 

7.7.2 Analysis of Problem Solving Interviews 

Both focus groups (8 students in total) were interviewed to assess their attitudes towards 

problem solving and programming following instruction in programming problem solving 

techniques. The questions (Table 7-10) were broadly divided into three themes, the first 

identified whether the students felt they had changed their approach to programming 

problems, the second addressed the nature of any difficulties they experienced and the 

third assessed whether they felt the pedagogical approach had been effective. In 

considering the nature of the difficulties experienced by the students, three of the 

questions (3a, 3b and 3c) were only asked if during the interview there was suggestion 

that the student might have had issues with their problem solving ability. These additional 

questions were intended to establish the stage at which these issues had developed. Did 

the difficulties arise when trying to interpret the question, in visualising a solution or were 

they specifically related to the process of translating a solution to code? 
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Question 

1 What would be the first thing you do when approaching a new 
programming problem? 

2 What do you think of your overall approach to programming 
problems? 

3 How would you describe your ability to solve problems? 

a What kind of difficulties did you experience in understanding 
the problem? 

b What kind of difficulties did you experience in solving the 
problem once you understood it? 

c How difficult did you find coding the solution once you knew 
the solution? 

4 Did you find solving programming problems helpful? 

5 Did you feel you were reapplying underlying principles? 

6 How much practice did you do outside of class? 

Table 7-10 List of Problem Solving Interview Questions 

The first two questions were intended to identify each student’s approach to 

programming. Subjects F and H, stated that before the course, they would sit in front of 

blank screens when faced with a new problem they could not immediately solve. Both 

now felt more confident and more able to tackle problems. When asked what their 

approach to a new problem would be, 6 of the 8 students discussed subdividing a 

problem immediately while the remaining students talked about taking a step-by-step 

approach. Furthermore, the important role of functions in this process was also 

recognised by 5 of the students. For example, Subject F elaborated on developing 

functions instead of putting all of the code in the main. In this case, the student is 

breaking the code into separate problems and making the main function tell the story 

defined by the problem description i.e. the functions are named according to the sub-

problems identified. Related to this, Subject H described creating functions that did only 

one thing: a consequence of ensuring a function only solves one problem reflecting the 

name it is given. Although Subject D reported feeling “scared” when first faced with a 

new problem, overall, the interviews demonstrated that the students felt more confident 

and had a better understanding of how to approach problems. 

In evaluating their ability to solve problems (question 3) 5 students expressed varying 

levels of difficulty, the two most common difficulties being understanding the 

requirements of the problem (2 students) and coding the solution (4 students). Example 

comments include “…getting confused about what the problem requires”, “Trying to 

figure out what is required was difficult” and “Knowing how to code the solution was the 
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hard part”. Only Subject C felt that they had difficulties solving a problem once they 

understood the requirements of the question, and in this case the student felt that he 

needed to develop the ability to view problems from different perspectives. This suggests 

that students who recognise that they have difficulties see their problems being related 

to a direct translation from natural language problem description to code. However, the 

evidence from observation and testing indicates the core problem is an intermediate step 

involving developing a solution that meets the requirements of the problem and crucially, 

in a form that can be programmed. In short, they fail to recognise the importance of 

mapping between the problem domain and their existing programming knowledge. As an 

example, Subject B concluded that he was “…too eager to get programming to solve the 

problem first”. 

Questions 4 and 5 addressed the students’ views on the pedagogical approach. In terms 

of solving problems, the main benefit that all 6 students identified was the number and 

range of problems they were provided with one student likening it to the process of 

learning mathematics. All agreed that exercises enabled them to transfer principles (and, 

of course, patterns) between exercises. Two students found this process more difficult, 

for example, Subject B found he was forgetting the patterns required and was “blinded by 

the problem”. This, of course, is related to the mapping process but also acknowledges 

that without continuous repetition, programming knowledge fades over time even during 

the duration of the course. During the interview, the same student also expressed his 

appreciation of the unannounced tests because they helped him to monitor his own 

progress. A key purpose of these tests was to provide opportunities for students to test 

their memory, and to further promote the importance of memorising the ACPs. 

The final question considered the students’ approach to practice. Disappointingly, only 2 

of the students engaged in regular practice, the remainder viewed the assignment as the 

opportunity to practice in their own time. Limited practice has two drawbacks, firstly, it 

allows the memory of previously learnt patterns to degrade over time and secondly it 

reduces the range of exercises the students are exposed to, thus constraining the 

development of the skills required to transfer those patterns between problems.  

7.8 Conclusions 

ACI acknowledges the importance of abstraction in programming and incorporates it in 

teaching at a very fundamental level through a series of patterns. These patterns adopt a 
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template approach that mimics the process by which programmers memorise syntax and 

thus learn to program. By splitting off and moving problem solving into a later activity, the 

students were able to focus on memorising, recognising and applying the fundamental 

abstract programming patterns. The provision of multiple simple exercises tailored to 

each pattern provided a more gradual gradient in difficulty that gave better support for 

the weaker students reducing programming’s “brutal feedback” [22], and all the students 

demonstrated good recall of the patterns. The benefits of this concentration on 

memorisation through repetition and test, were noted by the students in their interviews. 

Two indirect benefits of this approach were that it enabled a better appreciation of the 

difficulties faced by the students and it allowed exercises to be targeted more carefully to 

those specific weaknesses. For example, one conclusion that came from observation was 

that mixing even simple patterns, such as in an Array Counting Loop, caused considerable 

difficulty. Even though the individual patterns were learnt separately and understood, the 

main obstacle became the relationship between them. In short, novice programmers 

found the interaction between patterns difficult because they failed to “see” the data 

flow or control flow they shared. In the Array Counting Loop, they failed to see how a 

variable could be both a count and an index into the array. Therefore, at least 3 exercises 

must be provided to reinforce such interactions. In setting an exercise, care was taken to 

simplify the problem description to avoid distracting the students from the key concept 

being applied. A number of misunderstandings were quickly remedied by teaching the 

students how to interpret natural language statements to enable them to extract the 

pertinent information. A process of starting with terse problem statements and slowly 

introducing more text was found to be very beneficial, since the students were effectively 

being primed to find the required underlying abstraction. An interesting observation was 

that there existed a contradiction between the difficulties that the students had in solving 

problems and their explicit belief that the problem was related to code translation. That 

is, they believed they knew the solution to the problem but could not translate it to code. 

This was best observed when the students were required to document, via a table, the 

mapping from the problem domain to their existing knowledge. This process implies that 

there is an intermediate stage in the development model, where the solution to the 

problem is ascertained in a form that can be translated to code. This provides support for 

Pennington’s [101] theory that programming knowledge is divided into a situation and a 

program model, where the situation model represents the knowledge drawn from the 
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problem and a mapping process occurs between both models. The students found this 

mapping process very difficult, which leads to the conclusion that the students tended to 

build their understanding of the program from a simplistic situation model. Pennington’s 

[101] program model was divided into text structure and plan structure knowledge, 

where plan structure knowledge represents an intermediate stage between the situation 

mode and the translation to code.  The reluctance and difficulties experienced by the 

students in performing this mapping suggests that the problem may lie in this 

intermediate process, in which the situation model has to be converted into a 

programmable solution. The programmable solution does not represent code but 

represents a solution that can be translated to code. The students focused on raw 

information extracted from the problem and code patterns (syntax), but they failed in the 

mapping stage. In short, they failed to solve the problem before attempting to code it. 

This most clearly manifests itself when students take a “code thrashing” approach, where 

they rewrite the same piece of code multiple times until they accidentally implement the 

correct solution or give up. 

The difficulties experienced by the students during this ACI instruction vindicated the 

decision to minimise the emphasis on problem solving. Problem solving is a key skill, but 

applying programming abstractions (syntax) themselves posed a sufficient enough 

problem during this initial exposure to programming. Therefore, it is clear that 

introducing problem solving at a later stage was the correct decision. Following a course 

in problem solving, the results achieved by the students given ACI instruction were 

comparable to those achieved by students given more traditional programming 

instruction. Therefore, we can conclude that the teaching of problem solving can be 

delayed without impacting student performance over the academic year. During problem 

solving instruction, some issues were identified in setting appropriate problems. These 

issues were, in part, related to assuming that students possessed the domain knowledge 

to solve them. This reflects the grounded theory analysis, where a significant component 

of what is considered expertise is possessing the necessary domain knowledge. This study 

suggests that accessing the students’ domain knowledge may be a prerequisite before 

providing exercises requiring that knowledge. However, while recognising these issues, 

the overall response to this instruction was very positive with students commenting on 

the confidence it gave them.  
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In conclusion, familiarity with the programming concepts should precede a more formal 

approach to teaching problem solving skills. Identifying the appropriate level of challenge 

for a problem is difficult as it relies on a student’s ability to interpret the problem and 

their existing level of domain knowledge. Simplifying exercises and focusing on pattern 

based learning builds initial confidence, and delaying the exposure to more challenging 

problems has no adverse effects. 
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8 Teaching Advanced Programming Problem Solving Skills 

for Programming 

Given the importance of problem solving in programming, a study was conducted into a 

teaching approach that would enable students to solve larger more “open” problems that 

reflected real-world scenarios. The use of problem based learning is well established in 

some sectors of education but has not been widely adopted in programming. In this 

study, a modified and carefully structured approach was adopted to determine the 

potential benefits and drawbacks of scaffolding using a programming framework 

constructed by the student through a series of exercises. A programming framework  is a 

software structure or set of components that allows a programmer to solve larger 

problems and to build applications [357]. 

8.1 A Structured Problem Solving Approach to Teaching 

Programming 

Problem based learning was first proposed in the 1960s at McMaster University Medical 

School [358], to encourage students to work together in groups. It is intended to 

encourage the development of communication, problem solving and self-directed 

learning skills [359]. An open-ended problem is posed that requires the students to work 

together in collaborative groups with the lecturer taking the role of the “facilitator” of 

learning [360]. The process has been refined to six essential steps, namely, starting with 

the essential question, designing a plan for the project, creating a schedule, monitoring 

the students and the progress of the project, assessing the outcome, and evaluating the 

experience of the learners [361, 362].  

“…problem based learning is any learning environment in which the problem drives 
the learning”[360] 

The problem is posed before the students are given any new knowledge and the students 

should discover through their own activities that they lack the knowledge to solve the 

problem. In so doing they should develop their inquiry and intellectual skills [360]. The 

main issue with this approach is neatly summed up by Michalewicz: 

“Since problem based learning starts with a problem to be solved, students working 
in a problem based learning environment should be skilled in problem solving or 
critical thinking or ‘thinking on your feet’ (as opposed to rote recall).” [360]. 
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Puzzle based learning [360] is a complementary approach that emphasises the learning of 

problem solving skills while retaining the fundamental concept of learning through 

problem solving. It recognizes that developing problem solving skills requires practice and 

the review of solutions in order to study the principles and techniques required. It 

encourages reflection on what has been learnt and most importantly, an understanding 

of how the solution has been applied. Primarily, this approach has been used to teach 

mathematics [360]. In developing puzzles, four factors should be considered [360]: 

1. Puzzles should be used to develop a general/universal principle that can be 

applied to a range of problems.  

2. The easier the description of the problem is the easier the solution is to 

remember.  

3. However, the problem should frustrate the solver so they gain a sense of reward 

when they solve it (the Eureka factor). This is also clearly related to “effort after 

meaning”[363].  

4. Finally, the puzzles should be entertaining, perhaps by setting them in an 

interesting context (e.g. a game), to prevent the students losing interest. 

8.1.1 What is a Structured Problem Based Programming Exercise? 

Unfortunately, in programming, problems tend neither to take the form of one simple 

problem to solve nor one simple strategy to apply. The nature of programming requires 

the solution of a number of interrelated problems. What can be considered a problem 

depends on the ability of the student. One student might take on the challenge of 

implementing a linked list, while a weaker student may find simply identifying where a 

loop is required quite difficult. Therefore, neither the problem nor the puzzle based 

approaches is fully applicable in teaching programming students. The proposed 

alternative structured problem based learning approach, provides the student with a 

code framework constructed by the student themselves through a series of exercises. 

“Structured” in the sense that the exercises must be self-contained and presented with 

appropriate teacher scaffolding [159], such that when the solutions are integrated they 

form a complete framework that can then be used to solve much larger problems. In 

effect, this confirms the findings of Deek et al[33] that scaffolding the problem helps to 

present the problem and develops an initial understanding of the problem. The 

scaffolding may also begin the process of subdividing a problem and setting initial sub-

goals. This approach recognises that large software projects require the ability to solve a 
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range of programming problems. Unlike pure problem based learning, the nature of 

programming primarily requires the student to develop the ability to discover the 

problems and to consider abstract generic solutions that can be translated to code. Thus, 

the key difference in programming exercises is that the main focus is on developing skills 

rather than gaining more knowledge. In this respect, the approach is similar to puzzle 

based learning. However, in pure puzzle based learning the emphasis is on making puzzles 

simple to state and reinforcing a general principle. However, Michalewicz does state that 

puzzles do not necessarily need to conform to both these criteria [360]. Nevertheless, 

programming problems tend to be too open-ended to be considered puzzles.  

In applying the structured problem based learning approach to teaching programming, a 

number of issues must be addressed: 

1. Poor Problem Solving Skills and Lack of Motivation

The framework should be designed to emphasise the subdivision of problems. This

means paying careful attention to ensure functions only solve one problem, and in

Object Oriented Programming it means applying the Single Responsibility Principle

(SRP) [364] even when this may lead to many additional classes. Problems may be

set at more than one level, for example, students may be required to complete a

class or just use provided classes. The emphasis should be on the student

discovering problems for themselves, a skill that underpins this approach. Often

students are demotivated when they see no purpose to the theory they are

covering or the problem they are solving. Allowing the students to incorporate

their solutions in the framework or enabling them to visualise how their work

would be applied is of considerable benefit. A student is more motivated to solve

a problem if they see a need for the solution because they discover it themselves.

The framework should enable scenarios to be designed where this type of

discovery based learning can take place and leads to the introduction of new

concepts (aka problem based learning). As in pure problem based learning, they

may not have the complete knowledge to immediately solve a particular problem

they discover. In this case, the framework can be designed to enable them to work

around this until the new concept is formally introduced. Alternatively, the

framework could just act as a familiar environment in which a number of

principles or concepts can be demonstrated. Teaching material should provide
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enough detail for the students to begin developing a complete solution, and 

enable them to develop the ability to see related problems.  

2. Copy Cat Syndrome 

One way for beginners to learn how to program is to follow how a problem is 

solved and the program is written [29]. Often this takes the form of a written 

tutorial containing code that they can copy. However, Scott [214] hypothesized 

that many problems experienced by students arise because programming is 

taught this way, and this does not help students to learn how to solve open-ended 

problems [29]. A carefully structured framework should provide considerable 

opportunity to challenge students to apply their skills and knowledge to complete 

aspects of it or solve specific problems.  

3. Lack of Knowledge 

By carefully subdividing problems in the framework implementation and the 

liberal usage of SRP, problems can be cleanly isolated and the knowledge required 

to solve them can be well defined. Research [365] has also shown that students 

perform better when provided with a template in which to work rather than 

developing code from “scratch”. Thus, the framework should provide a structure 

to support the students’ learning.  

4. Scalability of Problems 

Large programming problems, or more advanced software architectures such as a 

class library, are often quite complicated and take considerable time to teach. 

Subdivision of the architecture enables a series of simpler component parts to be 

considered. In addition, dividing the architecture allows the concept(s) used to be 

built up to a complete solution over multiple lectures. This also allows theoretical 

content to be integrated more closely with the practice. Not all the classes in the 

framework may need to be taught: if one class uses three others it may only be 

necessary to discuss the most important class to illustrate a concept. Students can 

be expected to investigate certain aspects of the framework as part of their self-

study.  

5. Separation of Theory and Practice 

Theoretical ideas are easier to contextualise and illustrate when the architecture 

of the code is designed to provide a clean separation between individual problems 

or implemented principles.  
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6. Lost Students

Although the problems provided should be well defined in scope and appropriate

teacher scaffolding provided, it must be anticipated that some students will

implement an incorrect or incomplete solution that will require some remedial

action. Therefore, a complete solution should always be provided at the end of

each stage for student review.

8.2 Methodology 

A study was conducted into teaching the principles and concepts associated with 

Javascript frameworks such as Backbone.js, Angular.js and Ember.js. A new framework 

was developed explicitly for teaching purposes and to enable problem based learning. In 

the study, a focus group consisting of 8 final year degree computing students were 

introduced to this framework over the course of several weeks, during which their 

progress was observed and at the end of which they were asked to complete a survey. A 

number of the questions on the survey were designed to confirm that the students’ 

experience matched the observations made. 

8.3 The Framework 

The framework was developed to teach a class in advanced Javascript application 

development and was developed in object oriented Typescript and jQuery. Typescript 

was chosen because it provides type checking and is a good Object Oriented language, 

allowing a very readable class library to be created. In developing the framework, the 

emphasis was on applying the Single Responsibility Principle (SRP) [364],  which states 

that a class should fulfil only one responsibility and should have one, and only one, reason 

to change [366]. This resulted in over 10 smaller classes and often meant rewriting 

existing Javascript libraries to simplify their structure. However, performance was not a 

major consideration as the primary emphasis was on readability. The approach was to 

construct as many elements of a number of classes as possible with the students, and set 

them challenges to complete the work. To make this possible, the size of the classes 

produced had to be as short as possible. Where this was not possible, the students had to 

be provided with the code for a class and instructions in its use.  

A number of the main features of the available MV* frameworks were identified and the 

framework was designed to incorporate similar features. Again, the aim was not to build 

an efficient framework, but to develop a coherent design that allowed various concepts 
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to be demonstrated. A popular design pattern used in these frameworks is the Model 

View Controller (MVC) pattern [367], and consequently the implemented framework 

contained the concept of a Model that described the data, a View that displayed the data 

and a Controller that determined the view to be displayed and the data to be passed to it.  

An event-driven architecture based on the publisher/subscriber principle (or broadcast 

design pattern [270]), enabled communications between the various component parts 

e.g. a Model generates an event when a data value is changed. This approach achieved 

the flexibility required to allow a variety of classes to communicate with each other and 

thus enabled a number of software architectures to be explored. This was key to enabling 

different problems to be identified and tackled independently. 

The View classes in all the frameworks use standard HTML to display the content and any 

associated data values in the browser. A common approach taken by similar frameworks 

is to use a template engine, which interprets a set of special tags embedded in the 

standard HTML and replaces them with the required values rendered appropriately e.g. 

as rows in a table.  This is a variation of the Template View pattern [368]. Handlebars.js 

was chosen for this framework because of its simplicity. A TemplateView class was 

provided to underpin this concept, from which students could derive their own View 

classes. Inheritance enabled the student to build upon solutions previously developed. 

As an additional challenge, an XML parser was produced that enabled additional template 

tags to be parsed to register event handlers that could handle browser DOM events e.g. if 

a button was clicked. This would have enabled more advanced students to take on a more 

significant challenge, but in the end was never used because of time constraints.  

Javascript frameworks allow for dynamic and interactive delivery of data to the user by 

using Asynchronous Javascript and XML (AJAX) [369] and Representational State Transfer 

(REST) web services [370]. An AjaxifiedModel class was provided, from which the students 

could derive their own class for reading appropriate data using AJAX. The data was 

retrieved in Javascript Object Notation (JSON) [371] format and students were introduced 

to the benefits and use of this format. Before teaching of the framework began, the 

students were introduced to AJAX and the dynamic exchange of data in JSON through a 

number of examples. The aim was to demonstrate that encapsulating the AJAX handling 

prevented the reinvention of similar solutions. It also made it possible to set the students 

challenges to complete aspects of the AJAX handling. 
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8.4 Instructional Scaffolding for Teaching Using a Framework 

An important difference between pure problem based learning and structured problem 

based learning, is providing sufficient scaffolding so that a programming problem is 

approachable and engages the students’ interest in implementing a solution which 

contributes towards the “bigger picture” in a carefully structured way. A balance has to 

be struck between frustrating the learner [360] and providing sufficient knowledge to 

ensure that they are able to solve the problem. Both direct and indirect learning 

approaches [372] were used in this study. Lectures began with direct instruction of the 

theoretical concepts to provide the background knowledge of the underlying concepts 

and to outline the goals of the lecture. It was important to begin the lecture with a 

discussion of the problem that needed to be solved and to clearly outline why it was 

important to solve it in the context of the framework. The lecture itself was interspersed 

with a discussion of code that demonstrated the ideas being outlined and this code 

sometimes acted as a partial solution. Once the problem, the reasons for solving it and 

the concepts(s) being covered were understood, the students were then asked to solve a 

related problem. This problem would either require them to complete a solution, or 

alternatively to apply the concept(s) to solving a similar problem. As the course 

progressed, the problems would make use of the elements of the framework already 

created by them. Thus, the challenges presented to the students grew in scale as the 

solutions drew upon their previously acquired knowledge. Typically, each solution 

involved developing or adapting one or two classes. This incremental acquisition of 

knowledge is a key characteristic of structured problem based learning. Learners can be 

divided into entity-theorists and incremental-theorists (Table 8-1). Entity-theorists 

“believe their aptitude is natural fixed trait” while incremental-theorists believe it is a 

“malleable quality which is increased through effort” [373, 374].   

Entity-Theorists Incremental-Theorists 

Goal of student? To demonstrate a high coding 
ability 

To improve coding ability, 
even if it reveals poor progress 

Meaning of failure? Indicator of low programming 
aptitude 

Indicative of lack of effort, 
strategy, or pre-requisites 

Meaning of effort? Demonstrates low 
programming aptitude 

Method of enhancing 
programming aptitude 

Strategy when meets 
difficulty? 

Less time practicing More time practicing 

Performance after difficulty? Impaired Equal or improved 

Table 8-1 The Potential Influence of Different Theories of Aptitude[373] 
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The structured and incremental approach is important as it encourages an incremental-

theorist attitude, which is an important component of any programming pedagogy [373].  

One difficulty that may arise is that students can fail to understand aspects of the code or 

architecture, or simply forget the solutions they produced. Clearly the benefits of 

progressively building a mental model can be lost should this occur. To resolve this issue, 

a website was created containing pages that outlined the problem, motivation, and then 

fully documented the code covered in class. Pages containing the solutions were also 

added as the course continued, so that students always had access to a solution to 

review. In creating this website, a Cascading Style Sheet (CSS) file was used to highlight 

lines in the code and hyperlinking was used to associate text to code, code to text and 

code to code. These hyperlinks were also made between pages, allowing for easy 

reference to previous solutions and the text covering previous concepts. The aim was to 

minimise any distraction from the current work in progress by enabling the students to 

refer to any information they needed with the minimum of searching. For example, a 

student could link from a concept in the text to the method that implemented it in the 

code and follow the chain of method calls.  

8.5 Survey Results 

On completion of the short course, the eight students were asked to complete an online 

survey, the objective of which was to confirm in-class observations and assess the 

benefits/drawbacks of the structured problem based learning approach. All the questions 

(Appendix 3) were scored on a Likert scale of 1 to 10, excluding question 5 that addressed 

the topic of practice. These questions are shown in Table 8-2, and where appropriate the 

mean score has also been shown: 
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Question Mean 
Score 

REFFLECTION 

Q1 I recognise the importance of solving problems in programming 8.63 

Q2 I find solving problems challenging 7.63 

Q3 I find solving coding and solving problems interesting 8.00 

Q4 I have learnt more by attempting to solve problems myself in class 7.50 

Q5 In working on the exercises provided:   

I spent very little time attempting them 

R
es

p
o

n
se

 

0% 

I would like to have spent more time attempting them 87.5% 

I was too busy or unable to attempt them for other reasons 12.50% 

 I felt I dedicated enough time 0% 

I spent too much time 0% 

INTERACTION 

Q6 Engaging in solving problems leads to more class interaction between 
students 

7.88 

Q7 Engaging in problem solving learning leads to more class interaction between 
students and lecturer 

7.63 

Q8 I felt I was solving problems with the lecturer 7.63 

Q9 I found the class more interesting when trying to solve the challenges 
presented by the lecturer 

8.25 

TEACHING APPROACH 

Q10 I prefer to follow code or solutions, step-by-step, developed by the lecturer 6.25 

Q11 Problem solving activities provide gave me a better understanding of the 
technologies or principles being taught 

7.50 

Q12 The context of the problem is important (I like to know why it is important to 
solve a problem) 

8.25 

Q13 It is more interesting to discover next problem(s) myself, as a consequence of 
completing a previous exercise 

7.25 

Q14 I prefer partially solved problems to new problems with no initial code 
provided 

5.25 

Q15 I prefer to learn new technologies or concepts by attempting to build my own 
solutions 

7.13 

Q16 I reviewed the completed solutions offered by the lecturer after attempting 
the problems myself 

7.50 

LEARNING MATERIAL 

Q17 Sufficient documentation was provided to attempt the exercises 7.13 

Q18 Providing hyperlinks between the code in the documentation enabled me to 
follow the code more easily 

7.63 

Q19 The exercises provided a gradual increase in difficulty (allowing for the 
complexity of the concepts being taught) 

7.38 

CONFIDENCE 

Q20 I found this approach gave me confidence in my ability to develop my own 
learning skills 

7.43 

Q21 I will be more confident in studying new technologies in the future 7.86 

Table 8-2 Structured Problem Based Learning Survey 
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In the following text, the question number and mean score are shown in brackets e.g. 

question 1 with a mean score of 8.63 is shown as (Q1:8.63). 

The questions were subdivided into five separate sections: reflection, interaction, 

teaching approach, learning material and confidence. In the first section, the students 

were asked to reflect on their own personal skills and whether they felt that problem 

solving was a skill that they wished to develop further. This section consisted of five 

questions. In terms of student motivation, there was recognition that it was an important 

skill (Q1:8.63) and that solving problems helps to develop this skill (Q4:7.50). However, 

the answers to question 5 show that they all felt they should have dedicated more time 

to practice. Unfortunately, learners often claim that they lack time [373] for dedicated 

practice. There are a number of factors [373] that can prevent students from practicing. 

Given there was no continual formal assessment associated with each problem set within 

the course, it is possible that this contributed to the lack of engagement outside the class. 

As Gibb et al [375] have observed, learners “often focus on topics associated with 

assessment and nothing else”. Therefore, the study has to be restricted to an analysis of 

the students’ behaviour within class. The lack of practice may also be because “learners 

start to believe an inherent aptitude is required to become a programmer” [373] or 

becoming overly frustrated [373]. An element of frustration is inherent in the process of 

learning by problem solving [360] and this is reflected in the survey (Q2:7.63). However, 

student motivation to solve the problems has not been impacted by this (Q3:8.00). 

Structured problem based learning should provide sufficient scaffolding to enable 

students to discuss problems coherently and the framework should provide an 

environment that promotes shared experiences. It would appear that there is broad 

agreement that with this approach, the level of interaction between students (Q6:7.88) 

and students with lecturer (Q7:7.63) was good. By observation, setting students 

challenges immediately prompts questions and the lecturer must play an important role 

in guiding the students towards the correct solution i.e. play the role of the “facilitator” of 

learning [360]. Again the students agreed that this approach enabled the lecturer, in this 

role, to be seen to be solving the problems with the students as opposed to solving them 

for the students (Q8:7.63). Setting problems did not negatively affect the relationship 

with the lecturer and confirms that the progressive incremental nature of the approach 

was successful in maintaining student interest (Q9:8.25). 
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A set of questions directly addressed the benefits of structured problem based learning. 

When asked whether they preferred to follow lecturer provided solutions instead of 

developing their own (Q10:6.25), the results were moderately in favour of solving the 

problems themselves. However, there was more agreement when this approach was 

related to learning a new technology or concept (Q15:7.13) and the students felt that the 

approach did help them to learn new ideas more effectively (Q11:7.50). This suggests 

that, at least within a lecture environment, students respond positively to the structured 

problem based learning provided they can see they are learning something new i.e. they 

are not just being asked to practice something they have already covered. Obviously, 

students should practice outside of class and they were aware of this (Q5).  Interestingly, 

when it comes to developing a solution, providing an initial code skeleton to contextualise 

or aid the student in solving the problem may instead be acting as a barrier to learning 

(Q14:5.25) for some students. Figure 8-1 shows a comparison of each students response 

to questions 10, 14 and 15 which gauge the students’ reaction to the amount of code that 

should be provided with a problem, ranging from a complete analysis of the solution 

(Q10:6.25), to a partial solution (Q14:5.25) or just a statement of the problem with no 

code provided (Q15:7.13). Clearly the results are mixed, although five out of the eight 

students preferred extending a partial solution or developing their own complete solution 

over constructing the full solution with the aid of the lecturer. These results demonstrate 

that with appropriate teacher scaffolding many students prefer solving problems 

themselves with minimal support. It also shows that even students that prefer to be led 

through a solution to a problem, are in most cases not alienated by the approach (Subject 

H being an exception). There is some evidence [4, 365] that students do perform better 

with a template rather than creating a complete solution on their own, but a comparison 

of the students’ preference against actual performance was not conducted in this study. 

Of course, these results may also reflect the difficulty in providing appropriate scaffolding 

that meets the needs of each student without reducing the overall effort and the 

challenge that makes structured problem based learning interesting and motivational.  
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Figure 8-1 Comparison of Student Responses to the Presentation of Problems 

During the course, it was observed that students found the reason for solving the 

problem i.e. not solving a problem for the sake of solving it, was an important element in 

motivating them. This observation became a key component of structured problem based 

learning. To determine whether these informal observations were correct, the survey 

contained questions that queried the importance to the student of the context of the 

problems they had solved. Likewise, to confirm another observation, the survey set out to 

find if they felt more motivated if they identified problems by themselves. The student 

responses confirmed both these observations. Contextualising the problem was very 

important (Q12:8.25) and the process of discovery also drew a positive response 

(Q13:7.25). 

The final question about the teaching approach sought to determine whether providing 

correct solutions for students to evaluate against their own, was taken advantage of by 

the students. On average, response to this question (Q16:7.50) was good but an 

examination of the individual responses (Table 8-3) suggests that some students failed to 

engage with the process as actively as had been hoped. It is likely that the reasons for this 

are similar to those already discussed in considering question 5. However, students were 

observed reading through and making appropriate modifications during the lecture in 

order to progress to the next problem/concept. Unfortunately, it is also likely that some 

students simply copied the solutions. This is unavoidable, since in an incremental learning 
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approach it is important to give students an opportunity to solve their own problems and 

to keep up to date with current progress. 

 Likert Score 

Subject A 7 

Subject B 8 

Subject C 5 

Subject D 10 

Subject E 7 

Subject F 6 

Subject G 10 

Subject H 7 

Table 8-3 Student Response to Q16: Review of Provided Solutions 

The learning material section of the survey, contained three questions that directly 

investigated the appropriateness of the scaffolding. Documentation was provided in the 

form of a website, and the response (Q17:7.13) was encouraging although three students 

gave a Likert score of 6. In true scaffolding, the scaffold must be faded [159, 259]. Fixed 

fading can lead to worse results [247]: instead, the student should be able reduce the 

scaffolding when they no longer require the support [253]. As previously discussed 

(Section 8.4), a website was produced with separate pages progressively covering the 

development of principles and concepts, setting a range of problems and providing 

solutions. One objective of this approach was to allow the student to reference material 

as required as a pseudo-fading method, but this may not have achieved the intended aim 

for all students. In evaluating the effectiveness of the pseudo-fading approach using 

hyperlinking, the students found this enabled them to navigate through the 

documentation in quite a natural way (Q18:7.63) and none of the students found the 

progressive challenge of the problems too difficult (Q19:7.38). Figure 8-2 shows each 

student’s response to the individual questions, and although there is some variation, the 

majority of students found the material and the incremental learning approach to be very 

good. 



210 
 

 

Figure 8-2 Comparison of Student Responses to the Provided Learning Material 

In the final section of the survey, the students were asked to reflect on the overall 

effectiveness of the course in developing confidence in their skills. This is a very subjective 

measurement and must be treated with caution, but gives some indication of the success 

of structured problem based learning. In response to two questions, in the students’ 

opinion they found the course gave them confidence in their ability to develop their own 

learning skills (Q20:7.43) and in learning new technologies (Q21:7.86). Figure 8-3 shows 

the individual student responses, the vast majority of which are rated 7 or above. 

 

Figure 8-3 Comparison of Student Reflection 
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8.6 Conclusions 

This research investigated the benefits of a Structured Problem Based Learning pedagogy 

using a programming framework to provide appropriate scaffolding within which 

problems could organically develop. One conclusion that arose very early in the study was 

that student motivation to solve a problem was dependent on how invested they felt in 

defining it and the relevance of the solution in real-world scenarios. In this respect, the 

programming framework and supporting material proved very successful in both 

providing a rationale for a problem and enabling students to identify future problems 

themselves. Solving a problem implicitly requires setting a challenge, and the capability of 

students to overcome that challenge varies, requiring a scaffolded learning approach. 

Two types of scaffolding are required: scaffolding of knowledge and scaffolding of 

practice. Scaffolding of knowledge was provided through a series of highly interlinked 

webpages providing descriptions of the concepts being introduced. Scaffolding of practice 

was provided through code either provided in context within the webpages or separately, 

which was intended to provide the students with a starting point from which to work. 

Both the documentation and the progression of difficulty were found to be of an 

appropriate standard. However, in scaffolding of practice, the survey revealed more 

mixed results.  Most students felt that they wanted to develop their own solutions rather 

than follow a completed solution, demonstrating that the rationale and principles behind 

the pedagogy were correct. However, this was not true of all the students suggesting that 

either the level of personalisation of the scaffolding was insufficient to support those 

students or that they simply disliked the thought of solving any problems. In the latter 

case, it is likely that they would have reacted negatively to any form of problem based 

learning. Overall, the results demonstrate that the approach has a number of benefits in 

motivating and building student confidence, but the scaffolding approach needs further 

research. 
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9 Discussion of Action Research and Results 

The initial teaching approach adopted worksheets as a means of fostering continuous 

programming practice. These were constructed such that the introduction of the syntax 

of a new programming instruction was followed by the associated example(s) that 

enabled the students to learn how to apply it. However, the grades achieved by the 

students showed the typical bimodal distribution. Clearly the effectiveness of the practice 

the students were engaged in was of limited value for weaker students and further 

research was required to establish a more effective means of practising. In endeavouring 

to determine why this should be, 12 metrics were identified and were scored at the end 

of each worksheet, to try to determine patterns of behaviour that were indicative of good 

or poor programming skills. As a result, problem solving skills were identified as the main, 

if not the only, important characteristic related to the performance of the students. This 

study also failed to address the reasons why students had poor problem solving skills and 

how better student performance could be achieved. In addition, poorer coding 

performance was particularly noticeable in worksheets 5 and 6, as shown in Figure 5-2 

and Figure 5-10, which covered classes and class inheritance respectively. Clearly, Object 

Oriented Programming (OOP) is implicitly more abstract and this may provide further 

evidence in support of the Grounded Theory analysis findings. Following these results, for 

some degree schemes, OOPs was split into a new course and moved to the second year of 

the programme. The teaching of programming to first year novice programmers now 

concentrates solely on procedural programming and problem solving. This decision also 

moved the focus of the research away from OOP specific issues since for novice 

programmers this represents a higher-order level of abstraction. 

From a personal perspective, it was important to investigate new pedagogical approaches 

that could address the issues identified and determine their effectiveness. Action 

Research is a methodology for a research process based on the development of one’s 

own practice. In applying this methodology, results are considered to be what the 

practitioner learns about their practice. This iterative process involves taking action, 

reflecting on the actions taken and critically analysing the significance of the results 

obtained. In the mixed methodology adopted, Grounded Theory was applied, initially to 

enable the development of the literature review, and on an ongoing basis throughout 

each cycle of modification of practice. In adopting a mixed methodological approach, 

some compromises were required. The requirement for an initial literature review meant 
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that the natural emergence of theories associated with Grounded Theory was, at least 

initially, pre-empted. However, this was redressed by continuing research, 

experimentation and the re-structuring of the review on completion of the research. The 

focus on taking action may influence or narrow the research field, which could limit the 

use of the constant comparative and theoretical sampling approach associated with 

Grounded Theory. However, the mind of the learner is so complex that this never became 

a problem as the process of teaching is in essence a process of experimentation. 

During the grounded research analysis, the two main theories which developed were that 

code abstraction and problem solving skills were the primary influences on the 

development of programming ability. Closely related to these theories were the effect of 

working memory on problem solving and Pennington’s concept of the program model. In 

particular “plans” as mental abstractions of the code. A study was conducted to 

determine the influence of working memory on programming and confirmed that a 

relationship does indeed exist between programming ability and working memory. By 

comparing results from both a code and Raven Matrices test at the end of a short 

programming course, a correlation was found between working memory and 

programming. This offers an explanation for the bimodal distribution of results obtained. 

Furthermore, this result also suggests that some students are at an inherent 

disadvantage, at least initially, which requires them to dedicate more time to practice 

and/or requires a different teaching approach that focuses on minimising distractions i.e. 

examples and exercises need to be precisely targeted at learning single steps. In the 

grounded research conducted, a number of characteristics were found to distinguish 

between expert and novice programmers. Expertise involves building detailed mental 

models constructed from acquired domain specific knowledge which novices do not have. 

In addition, novices also lack the same level of problem solving skills and focus more on 

the concrete surface features of a problem because they are less able to identify 

abstractions. That is to say, they are more distracted by the natural language presentation 

of a problem and fail to recognise the applicable abstract programming concept(s). In a 

study investigating the range selection problem, it was demonstrated that students do 

tend to apply a natural language procedure literally rather than converting it to the 

correct Boolean logic. This illustrates that the concrete surface features of a natural 

language problem definition present problems for novice programmers seeking the 

underlying abstractions. The potential limitations of student memory combined with the 
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need to simplify problem definitions, implies that exercises have to be structured in order 

to promote recall with minimum distraction from the main concept being introduced. 

Therefore, in developing examples and exercises, these results highlight the need to make 

them short and direct to minimise irrelevant information foraging. Given working 

memory capacity limits the tolerance to distractions, significant levels of problem solving 

presented in an exercise may prevent later recall of the central concept being studied. 

Thus the challenge of solving problems can reduce the effectiveness of these exercises as 

a means of practising a specific concept. Practice involves repetition but not all practice is 

effective. To be effective, the overall aim of the practice must be subdivided into the 

specific component skills that enable it to be achieved and exercises must be designed to 

target these skills. This leads to the conclusion that programming is best learnt through a 

series of highly targeted short exercises, but leaves open the question of the nature and 

structure of these exercises. 

Given the importance attached to abstraction in the Grounded Theory analysis, an 

approach was sought that would bring together the research fields of software 

comprehension and programming pedagogy to promote abstract thinking. The grounded 

theory analysis provided evidence for the relationship between the concept of “plan” 

knowledge and the mechanism by which that knowledge is applied to the reading and 

writing of code. Perceptual learning describes the process by which the load on working 

memory is reduced by learning patterns that can be quickly recognised, a defining 

characteristic of gaining expertise. Therefore, identifying these “plans” and developing 

them into patterns for easy memorisation and recall provided a route by which this 

expertise may be gained more quickly and less painfully. Each programming concept was 

introduced as one or more patterns and these patterns provide a fixed text structure 

representing the instruction statement(s). Students were taught to recognise and modify 

the elements of theses pattern that were dependant on the context in which they were 

used i.e. the problem being solved. POI is a related pedagogy that develops a series of 

patterns for solving problems but reduces the creativity by providing template like 

solutions. ACI was proposed as a new pedagogy that concentrated on the fundamental 

constructs in significantly more detail and crucially, introduced them as abstractions. 

Thus, ACI was developed based on the concept of pattern learning. An important feature 

of this approach was to name these patterns (or ACPs), as this both acted as an aide-

memoire and provided a common point of reference between the teacher and the 
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learner. The exercises provided were short and concise, designed to vary different 

elements or combinations of elements within the patterns and were graduated in 

difficulty to allow the learning process to be carefully controlled, especially during the 

initial exposure to a new pattern. The aim of these exercises was not problem solving per 

se, but to promote the recall of an abstract pattern and its usage. Furthermore, it was 

found that difficulties experienced in array usage were due to interference effects caused 

by attempting to learn multiple ACPs simultaneously. In this particular case, it was not 

possible to avoid this situation because it is a fundamental of array syntax and semantics. 

However, this did provide evidence that one of the root causes of difficulty in translating 

a solution to code is the number and mixture of the ACPs required. This was observed 

even when, as in the case of arrays, these ACPs were not especially complicated. Thus, in 

creating exercises to focus on a specific use of an ACP, the number of additional ACPs 

required was minimised.  

As already stated, problem solving skills are a critical component of programming and not 

supporting and nurturing these skills would be counterproductive. Therefore, ACI 

instruction was followed by a course covering problem solving skills in a programming 

context. To determine the effectiveness of both ACI and the subsequent problem solving 

course, two focus groups were created and tested, observed and interviewed. The first 

student focus group was drawn from a programming course taught using the ACI 

approach, the second focus group was drawn from a course taught in a more traditional 

worksheet approach. Dealing first with ACI, a number of interesting results were obtained 

(as discussed in chapter 7) and from a teaching perspective these were very encouraging, 

with the emphasis on recall and rote learning being favourably received by the students. 

Even the inclusion of unannounced in-class tests proved to be both motivational and 

beneficial. Furthermore, evidence gathered through the observation and testing also 

showed that the students were able to recall and apply the patterns. To investigate any 

potential drawbacks of ACI, both focus groups were taught problem solving skills in a 

follow-up course with testing before and after. From the results, it was clear that the non 

ACI group had better problem solving skills at the start of instruction but that this gap had 

closed by the end of instruction. Thus, we can conclude that ACI did not inhibit the 

development of these skills over the duration of a full academic year. In fact, abstracting 

and relating functions to problems in a clearly defined manner was a process that the 

students clearly identified as beneficial during interviews. There was also some evidence 
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to support this during the testing of the effectiveness of this approach in teaching 

functions. The overall results from the problem solving instruction were, by contrast, 

more mixed. A significant element of this instruction was aimed at building confidence in 

tackling problems rather than producing complete the solutions. In this respect, the 

problem solving instruction was very successful: all of the students described feeling 

more confident, whereas prior to instruction they had felt more fearful or might have 

suffered a mental block when faced with a new problem. All the students commented 

positively on the significant number and range of exercises provided during both the ACI 

and problem solving instruction phases. The main difficulty was assessing the appropriate 

level of difficulty of an exercise. In setting an exercise, the difficulty experienced by the 

students depends on their existing problem domain and programming knowledge, and 

their ability to map that knowledge in order to solve it. For example, it was assumed that 

basic geometry would be familiar to all students but this belief proved unfounded and 

resulted in an initial set of exercises being more difficult than expected. A very interesting 

observation was made by comparing observations of the students’ coding approaches 

and the code they produced against their interviews following problem solving 

instruction. In attempting to distinguish between the difficulties experienced by the 

students in interpreting a problem description, the process of developing and coding a 

solution showed a clear misconception. On one hand, observation and testing showed 

that the main difficulty encountered was in understanding how the solution to the 

problem would work i.e. defining the solution, while the students themselves felt they 

possessed the solution but could not translate it into code. For example, if a problem 

required a student to find the highest value in a list then most of the students considered 

this to be a code translation issue rather than problem solving process. A novice 

programmer might read this as some value being greater than another, whereas an 

experience programmer sees this as read each value from a list of values and compare it 

with the provided value. An experienced programmer does the problem mapping 

inherently. Requiring students to explicitly solve the problem on paper first by mapping 

their programming knowledge to the problem description, revealed both a reluctance to 

perform the mapping explicitly and a casual attitude to its application. This failure by the 

students to recognise that programming is not a simple translation exercise, combined 

with a reticence to solve the problem before attempting to code it, explained a number of 

novice programmer difficulties. 
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Comparing ACI with a more traditional teaching approach is difficult given the variety of 

teaching styles and approaches employed. However, to form the basis of a comparison of 

the new pedagogical approaches proposed in this thesis with “old” approaches, some 

assumptions need to be made. These assumptions are: 

1. A programming concept and the syntax for the associated instruction statement 

are formally presented 

2. A number of worked examples are used to illustrate the use of the syntax, and the 

student infers how the syntax can be applied 

3. The students is given a series of exercises in the form of a number of problems 

that require the use of the syntax, and problem solving is implicitly required to 

complete the exercises.  

4. Exercises take the form of problem definitions from which the student must elicit 

the appropriate abstraction(s) required e.g. nested if statement. 

5. The programming concepts are presented in a number of defined stages over a 

number of weeks 

Given these assumption, Table 9-1 provides a comparison between the traditional and 

the ACI approach highlighting a number of benefits. 
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TRADITIONAL APPROACH ACI APPROACH 

Abstraction is implicit. The learner must 
develop their own abstract knowledge. 

Abstraction is taught explicitly, the learner is 
taught to view the instruction syntax as an 
abstract text pattern with elements that vary. 

Simple exercises are provided to explicitly 
promote understanding of the meaning of the 
pattern and recognition of the variability of its 
elements. 

The learner is expected to implicitly learn the 
syntax over time by solving problems. 

Exercises are used to promote recall, the 
learner is actively encouraged to memorize the 
patterns. Learning by rote is encouraged. 

The emphasis on syntax makes it harder to 
prompt the learner. 

The naming of patterns makes interaction with 
learners easier, and the constant emphasis on 
recall means that students should be able to 
quickly understand the teacher’s prompts. 

The learner is expected to be able to deduce 
the correct usage of syntax from a natural 
language problem definition without training 

The design of exercises for introducing a new 
pattern are simple and terse. For example, the 
learner is often required to just choose 
appropriate values to complete a pattern. 

Exercises are provided to support the process of 
mapping natural language to a pattern. 

Where natural language may give rise to 
misunderstandings, such as in the range 
selection problem, these are explicitly taught. 
No assumptions are made with respect to the 
learners’ deductive reasoning skills. 

Problem solving skills are an implicit 
requirement of many of the exercises 
presented to the learner. Typically, the learner 
is expected to be able to solve problems they 
have never seen before, or apply a solution in a 
different context e.g. applying a loop within an 
if-statement when they have only seen them 
used separately. 

Exercises deliberately minimize the need for 
problem solving skills.  

Functions are explicitly taught as solutions to 
problems, rather than as opportunities to 
prevent code duplication. This may not be 
unique to ACI, but it is strongly encouraged in 
ACI as it provides a clear stepping stone into 
problem solving. 

Problem solving is taught separately following 
ACI instruction, although in the teaching of 
functions there is scope to blur this boundary at 
the end of ACI instruction. 

The range and number of exercises is fairly 
limited, often due to the time taken by the 
learner to complete them. 

Many shorter exercises are preferred over 
fewer longer exercises, and a number of 
exercises are provided that use the same 
abstract solution.  

Practice tends to be more sub-divided into self-
contained blocks. For example, a work sheet 
about arrays might provide exercises that 
require a counting loop to read through an 
array but may not provide exercises just on 
loops to aid recall.  

The emphasis on memorisation requires 
continual testing of the learner’s memory: this 
naturally entails testing of previous concepts 
across the course. The shortness of many 
exercises means that they take up little time, 
allowing more frequent testing. Testing in this 
context could just entail including exercises 
during a tutorial session. 

Programming concepts are presented in a 
number of stages over a number of weeks. 

Programming concepts are presented in a 
number of stages over a number of weeks. 
However, problem solving is taught much later, 
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and therefore the exercises become longer and 
more difficult at a later stage than normal. 

Table 9-1 A Comparison of the Traditional to the ACI Programming Pedagogical 
Approach 

The level of problem solving skills that could be introduced at an introductory level was of 

course limited, and more challenging problems were faced by the students as they 

progressed. In particular, for final year degree students the expectation was that they by 

the end of the course they would be able to use code frameworks and tackle problems 

that reflected those encountered in industry. A key motivation for students when solving 

a problem is to understand the real-world purpose of the solution. Introducing students 

to large scale problems raises the issue of how to present those problems in a manner 

that challenges the students but without the students becoming too confused or 

intimidated. 

In considering a number of pedagogical approaches, problem based learning was the 

pedagogy that seemed most appropriate for developing problem solving skills. However, 

the complex nature of programming precludes adopting such an approach without 

significant modification. Instead, a more nuanced, moderate constructivist and structured 

approach was adopted. A significant consideration in adopting this approach was the 

provision of appropriate scaffolding. Two forms of scaffolding were required, scaffolding 

of knowledge and scaffolding of practice. Scaffolding of knowledge entailed providing 

suitable documentation and instruction on the concepts being covered. Scaffolding of 

practice involved providing a code structure within which the students could implement 

their code and experiment with their solutions. The survey results suggest that although 

not all of the students engaged with this material to the extent that was anticipated, 

there were no particular concerns about the quality of this material. Thus, we can 

conclude that in terms of scaffolding of knowledge, the documentation provided was 

sufficient. Careful consideration was given to the integration of both scaffolds, and the 

documentation provided consisted of a series of webpages within which the content 

(including relevant code) was carefully hyperlinked to allow the students to trace 

between concept to code and code to concept. It was intended that the mapping 

between the situation and program models would be as straightforward as possible. One 

consideration when constructing the scaffolding was the amount of scaffolding of 

practice required, in other words, how much code should be provided and should the 

students be expected to understand all of the code? If pre-prepared code or even an 
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existing coding framework had been used, the scale of the problems to be solved would 

have been larger. Of course, an implicit disadvantage of providing significant amounts of 

code to students is the need for them to learn how to use it, which does not necessarily 

promote problem solving and indeed may form a barrier to learning. Hence, the approach 

adopted eschewed the provision of an initial framework in favour of the development of 

the framework itself. Thus, the problem solving took the form of stages in development 

of the framework, which also had the benefit of integrating the understanding of the 

principles and concepts of its application into the problem solving exercises. On 

completion, the students were able to apply the framework to build applications that 

mirrored real-world practices. This approach of careful scaffolding of knowledge and 

practice, combined with a staged approach to building solutions to tackle larger problems 

was the basis of the Structured Problem Solving approach. One observation made very 

early in the application of this pedagogy was that students felt even more motivated 

when they were able to discover problems that needed to be solved themselves. Thus, 

where possible the scaffolding was designed to give them the opportunity to “see” 

potential future problems that would need to be addressed in order to make progress, 

implicitly building the desire for a solution. Sometimes this also gave the students the 

opportunity to attempt their own solution, before moving onto the next development 

stage where the problem was more formally covered.  

In general, this pedagogical approach was successful in building student confidence and 

the survey results also show that a number of students (Q20:7.43) felt they benefited 

from solving the problems through the framework. However, the results also indicate that 

this was not a universal opinion (Q14:5.25), implying that for scaffolding of practice, the 

balance between supporting the individual student’s needs while maintaining an 

appropriate level of challenge was more difficult than anticipated. One possible solution 

would be to design a more carefully constructed fading system that would be able to 

provide scaffolding of practice that is more tailored to the individual. At some point, 

students need to be given complete solutions to enable them to review their own 

solutions and to allow absent students to catch up. Although an obvious potential 

drawback, on balance, this can be countered by close monitoring of the students and 

gauging their motivation. 

The benefits of structured problem solving are summarised in Table 9-2. 
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Benefit Description 

Increased motivation to solve 
problems and better student 
engagement 

Although students can learn concepts and principles 
through a series of exercises by exploring each one 
individually, student motivation to solve those problems 
increases when the solutions contribute to a much 
larger outcome. For example, students gain a better 
understanding of MVC by building their own MVC 
framework and exploring the concepts in the process. 

Increased opportunity for problem 
discovery 

The process of construction in stages provides the 
means by which problems can be discovered. This 
discovery process encourages students to seek their 
own solutions more readily. 

Larger scale problem solving (real-
world challenges) 

To solve larger problems, it is necessary to develop 
applications based on a typically large existing code 
base. Structured problem solving seeks to build a 
solution to a large problem by solving a number of 
smaller problems over a number of stages. This reflects 
real-world software engineering practice. 

Increased problem solving skills The students are engaged in solving a range of problems 
using particular languages and technologies. 

Better understanding of principles and 
concepts associated with a software 
framework 

Instead of building a series of applications using existing 
code, the students focus on solving problems that 
require knowledge of the core principles and concepts. 

Scaffolded practice A software framework must be built or selected which 
allows incremental evaluation of the principles or 
concepts at a suitably granular level. This approach is 
different to teaching an existing framework by 
discussing a concept and then providing a worked 
example demonstrating it, because the students engage 
in solving a problem that is crucial to understanding the 
principle. For example, in MVC they may be required to 
complete the code for the View class to create an 
example using a view. Building a View class gives the 
student a better understanding of why such a class is 
required and how to use it rather than simply creating a 
subclass from an existing View class. Alternatively, if an 
existing framework is being used, the student may be 
required to experiment with a number of methods to 
solve a specific problem related to all views e.g. 
effectively create a fake view class. 

Increased student confidence Solving problems at each stage builds confidence in the 
use of the scaffolded framework in implementing 
applications and gives students exposure to real-world 
software development. 

Table 9-2 Summary of Benefits of Structured Problem Solving 

9.1 Suggested Structure for Programming Content within a 

Computer Science Programme 

Figure 9-1 illustrates the suggested overall structure of the programming content in a 

Computer Science degree. A study was conducted (Chapter 6) in which an initial short 

Computational Thinking course in programming was given to all students prior to the 
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commencement of their studies, with the intention of accelerating their initial learning 

and to enable prediction of any potentially weaker students that may require more 

support. The results showed that it was possible to predict performance, but in the 

process, also demonstrated that the course had no direct benefit. Therefore, such a 

course is only recommended as a means of identifying students that may require support. 

Hence, it precedes other academic activities as shown at the beginning of the first year in 

this figure. A drawback of POI is that it potentially limits the creative problem solving 

required by programmers: one objective of ACI was to avoid this problem by delaying 

problem solving until the students had a good appreciation of coding. It was also thought 

that by developing an appropriate programming problem solving course, it would be 

possible to gain the benefits of good programming and problem solving skills without 

resorting to fixed patterns. The results obtained at the end of the problem solving course 

do bear out these initial beliefs, but in hindsight the POI approach has the benefit of 

reducing the initial difficulties and provides more scaffolding for weaker students. 

Therefore, POI is shown in Figure 9-1 as sitting between and overlapping with ACI and 

problem solving. OOPs and software design patterns are shown in the second year, but in 

practice it is common for at least some OOPs concepts to be taught in the first year. Here, 

OOPs is placed in the second year in recognition of the higher abstractions it represents 

e.g. inheritance and polymorphism. Furthermore, while structures like classes can be 

used to write short simple code, they only become fundamentally important when the 

problems being solved become large enough to warrant data encapsulation. Similarly, 

software design patterns are a natural extension of the programming patterns 

encountered in POI, as they represent solutions to well-known problems in software 

engineering and consequently are also shown in the second year. Structured problem 

solving is shown in the third year, and assumes that the students have developed an 

appropriate level of programming ability for application level development. 
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OOP

Design 
Patterns
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Engineering

First Year Second Year Third Year

CT: Computational Thinking
ACI: Abstracted Construct Instruction
POI: Pattern Oriented Instruction
PS: Problem Solving
OOP: Object-Oriented Programing

CT

Figure 9-1 Suggested Overall Structure of Programming Content in a Computer Science 
Degree 
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10 Conclusions and Future Work 

At the start of the research process, it was anticipated that there would be no single 

cause of novice programmer difficulties and no simple solution. Instead, the aim was to 

identify a number of causes and a number of approaches to alleviating these difficulties. 

Given the breadth and depth of the research available, the Grounded Theory approach 

was identified as the most appropriate research methodology around which the research 

process could be constructed. From this analysis, a number of significant factors emerged 

and were used to structure the literature review previously presented in this thesis. 

Primarily, the analysis demonstrated the importance of abstraction, cognitive load and 

problem solving.  

A grounded action research mixed methodology was applied to the research. As a 

consequence of applying this methodology, two new pedagogical approaches were 

developed. Firstly Abstracted Construction Instruction pedagogy and secondly Structured 

Problem Solving for teaching more advanced problem solving. However, prior to these 

developments, a more traditional worksheet based teaching approach was used, with the 

purpose of encouraging continual practice. As part of the grounded theory investigations, 

a series of coding performance metrics were used to score each student across the 

worksheets with the objective of identifying any patterns of behaviour associated with 

categories of student grades. Market basket analysis was chosen for this analysis, but no 

significant pattern could be identified and none were found suitable for prediction of 

student performance. However, overall it was shown that problem solving was a key 

discriminator, confirming other research in the field as identified in the grounded theory 

analysis. In considering new programming pedagogies, problem solving is the key 

component that needs special attention. Little evidence could be found to suggest that 

promoting other characteristics such as enforcing a programming style, would improve 

programming ability. 

The grounded theory analysis also suggested that a relationship between problem 

solving, fluid intelligence, working memory and programming may exist. To further 

investigate this relationship, tests were conducted using Raven Matrices to determine if 

any such relationship could be measured. A correlation was found, which for the first 

time provides an explanation for the relationship between problem solving and 

programming. Working memory provides a kind of mental notepad in which temporary 
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results are stored. Lower working memory capacity means that a novice programmer is 

able to process fewer ideas at the same time. As a result, such a novice is likely to find it 

more difficult to create a mental model and to map multiple elements from the problem 

definition to it. Furthermore, the bimodal distribution obtained also indicates that this 

inherent limitation is associated with weaker programmers.  

The interesting conclusions from this result are that programming pedagogies must pay 

close attention to the role of cognitive psychology and the process of learning 

abstractions, and that lowering the cognitive load imposed will bring considerable 

benefits.  

A further study is required to determine whether weaker programmers would be able to 

overcome working memory capacity limitations by adopting different strategies to reduce 

the demand on working memory. For example, by the simple expedient of making notes. 

An important factor that contributes to cognitive load when developing code is the cross-

referencing process between the code and the information available that defines the 

problem being solved. This load can be so considerable that even if the learner is able to 

find a solution to a problem, the effort required may lead them to forget the very abstract 

concept that they were intended to learn. To address this issue, the nature of “expertise” 

was considered. Clearly, expertise is also related to the amount of domain specific 

knowledge already possessed. However, beyond this, expertise is gained by memorising 

abstract patterns and being able to quickly recall them. This reduction in effort enables 

expert programmers to concentrate on extracting pertinent information and solving the 

problem at hand. A programming pedagogy should aim to accelerate the learning of 

fundamental patterns to enable the learner to mimic expert behaviour. 

Furthermore, novices fixate on the concrete surface dissimilarities while experts 

concentrate on structural similarity. In the former, for example, a novice programmer 

may fail to see the underlying abstract principle required to solve a problem because the 

natural language used and/or the context are different to the original example in which 

that principle was introduced. Whereas in the latter, to be considered an expert, a 

programmer will have gained expertise by being previously being exposed to similar 

concepts and will have built up knowledge of the field in which the question is posed. This 

would include the general programming field, for example, understanding the 

implications of a “sort” or a “search”.  Working memory determines the level of 
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distraction an individual can tolerate, multiple distractors in the surface features of 

problem can cause the underlying abstract principle to be missed. This implies that to 

ensure good levels of recall, the exercises provided should be brief and highly focused on 

the abstraction being taught. 

ACI was developed around the core principle of teaching abstract patterns based on 

mental models used by programmers and minimising the cognitive load required. The aim 

of ACI is to encourage novice programmers to memorise the patterns so that they can be 

quickly recalled and applied. The cognitive load was reduced in two ways. Firstly by using 

terse exercises requiring minimum interpretation and secondly by recognising problem 

solving skills are vital but their teaching can be delayed to avoid distraction from the 

pattern being studied. Specific problem solving skills were taught separately to two focus 

groups: one of which was taught using the ACI approach and a comparison was made. 

The results were found to be comparable, indicating that the ACI group’s problem solving 

ability was unaffected by this approach. ACI was demonstrated to be a very effective 

approach to supporting and developing programming ability, with all the students 

recognising the importance of memory and taking the correct approach to solving 

problems. 

A secondary benefit of ACI, was the ability it afforded to micro manage the teaching of 

programming and to observe difficulties at a much more granular level. Observations 

following ACI instruction show that as well the natural language used in the problem 

definition causing problems, the students often fail to map the problem to their existing 

knowledge. Instead they attempt to solve the problem on the fly while coding. They spent 

little, if any, time planning the solution prior to coding and their strategy appeared to rely 

heavily on cross-referencing from the code back to the problem to see if the code “looked 

correct” in bottom-up manner. The phrase “looked correct” is used, since most students 

never tested their code during and sometimes not even after completing it. The general 

aim of their approach was that the solution would emerge as more and more code was 

developed. Of course, the main issue with this strategy was that sometimes the correct 

solution never emerged or that it would take significantly longer to emerge when 

multiple wrong decisions were made. This led to the students viewing their coding 

difficulties as code translation issues rather than problem solving issues. The correct 

approach was to solve the problem before attempting to code the solution, suggesting 
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that there is an intermediate level of knowledge and understanding which represents the 

solution to the problem. However, to obtain this solution the problem definition must be 

recontextualized into one that can be solved in code. In Pennington’s [101] view, the 

situation model represents the information acquired from the problem definition and the 

intermediate level is represented by the plan structure knowledge within the program 

model. From this perspective, solving a problem involves mapping the pertinent 

information from the problem definition to the correct situation model and then mapping 

the situation model to the plan structure knowledge in order to create a programmable 

solution. In an attempt to teach this mapping process, a novel approach was used to aid 

the students in visualising the mapping of the problem definition to their existing 

knowledge with the intent of encouraging a solution first approach to coding. Although 

there was some evidence in the results to support this approach, most students found it 

difficult and typically the level of detail provided was far too vague.  The students were 

also reluctant to apply it, even when they acknowledged its importance. Thus, the 

conclusion is that the mapping process is difficult and novice programmers prefer to 

perform this mapping process by writing the code and solving problems as and when they 

reach points from which they are not sure how to proceed. 

One final observation from ACI is related to the complexity of the patterns. It was found 

that even when simple patterns (ACPs) were combined, the problems experienced by 

novice programmers became very significant due to the interrelationship between them. 

Where a multi-pattern required more than one new pattern to be learnt and applied 

simultaneously, as in the Array Counting Loop, these problems were magnified. A simple 

conclusion is that learning multiple patterns simultaneously is a significant barrier to 

learning. Separately, the array patterns are not difficult to understand or learn and were 

taught individually with a number of associated exercises. However, adding a counting 

loop to form an Array Counting Loop still caused students a great number of problems, in 

particular the interrelationship between count/index. The main conclusion is that when 

combining multiple patterns, the interrelationships between data and control flows 

causes considerable confusion in novice programmers. Further research is required into 

methods of improving novice understanding of these mixed patterns. If exercises require 

multiple ACPs, the exercises could be delineated by presenting them separately and 

perhaps by naming the specific ACPs required. Some combinations of ACPs could be 

presented as a new ACP, especially if they serve a particular purpose e.g. a search. In ACI, 
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it should never be assumed that novice programmers will automatically learn to nest 

ACPs in specific ways. In this respect, there is some overlap between ACI and POI, but 

teaching the use of constructs is still the aim. 

10.1 Conclusions from Action Research 

10.1.1 Teaching Using Worksheets 

Initially, the main cause of student programming difficulties was considered to be related 

to lack of practice. Accordingly, programming concepts were subdivided across 6 

worksheets, each containing a set of exercises that were to be submitted on a regular 

basis. Unfortunately, the results shown in Figure 5-1 and Figure 5-13 disappointingly 

demonstrated the same bimodal distribution common to many programming courses. In 

addition, the worksheets were used to obtain a dataset of results that could be analysed 

to determine potential indicators of success or failure. Although no such pattern could be 

determined, the results did show that problem solving was strongly associated with good 

programming ability. This result confirms the findings of a number of research studies. 

Therefore, the focus of the research switched to determining how problem solving skills 

could be developed and to what extent they may be inherent.  

10.1.2 Accelerated Teaching of Computational Thinking 

If problem solving skills are one of the key elements determining potential programming 

success, then to what extent are they inherent? Could providing an initial accelerated 

learning course prior to full-time study aid students by providing them with an 

opportunity to study fundamental concepts? Over a two year period, all first year 

computing students at UWTSD were required to complete a Computational Thinking 

course prior to the start of their normal studies. At the end of this course, they were 

assessed using a programming test and a Raven Matrices test to determine both their 

programming knowledge and their working memory capacity, this capacity being a good 

measure of problem solving ability. The results showed a correlation between the 

programming test and the final assignment marks obtained by the students. Thus, a 

disappointing conclusion that can be drawn from this correlation is that the accelerated 

learning process failed as a method for boosting initial learning. However, it did also 

demonstrate that it was possible to predict student performance prior to starting a 

programming course. Furthermore, it indicated an inherent component to programming 

ability and found that students with higher working memory capacity enjoyed an initial 
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advantage over other students. This conclusion reinforces the importance of problem 

solving skills in programming, but raises a number of questions related to addressing this 

weakness.  

10.1.3 Abstracted Construct Instruction Pedagogy 

The ACPs were reinforced by providing at least 3 exercises specifically designed to 

promote learning and the application of the abstraction. A core principle of the ACI 

pedagogy is that significant time must be devoted to encouraging the memorisation of 

the ACPs. In setting exercises, ACI encourages problem definitions that are concise, terse 

(almost bordering on “abstract”), repetitive and specifically targeted to promote recall. 

Results were obtained through testing, observation and interview, and it was found the 

emphasis on patterns and memorisation was beneficial. 

Creating concise and terse definitions reduces surface dissimilarity and procedural 

comprehension difficulties that novice programmers often experience when reading 

natural language problem definitions. These difficulties were observed, and included 

miscategorising of values, the inability to identify the correct conditional operator and the 

number range selection problem.  

In programming, problem solving requires a specific set of techniques which can be easily 

described but are difficult to master. ACI is not intended to develop problem solving skills, 

so approaches to developing these skills were also explored. For comparison, a focus 

group was also drawn from a cohort that had been taught using a more traditional 

worksheet approach. Both groups were tested before and after undergoing problem 

solving instruction. In the final test at the end of the academic year, the results for both 

groups were comparable indicating that the students given ACI instruction were not 

disadvantaged. 

10.1.4 Structured Problem Based Learning Pedagogy 

For more advanced final year degree students, the limited problems presented to 

students on the first year of a computing degree course provide insufficient challenge and 

do not prepare them for more real-world open problems encountered in industry. To 

investigate how these much larger problems could be presented to students, a structured 

problem based learning pedagogy was adopted. A cohort of final year undergraduate 

students were taught using a Javascript framework designed to explore a number of 

concepts associated with the development of AJAX enabled single page applications. It 
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became clear very early in the study that the students felt that there had to be a clear 

motivation for solving a problem, and an approach of gradually building a framework that 

could be used to create applications was a distinct advantage. In particular, this approach 

worked well when the next problem to be solved was “discovered” during completion of 

the previous exercise. Supporting teaching material was provided in the form of a series 

of webpages, and considerable effort was expended in ensuring hyperlinks were provided 

between all the significant elements in both the text and the presented code. These notes 

were also made available to the students online to enable them the view the exercises 

outside of class as well as the sample solutions. In providing a code framework, one issue 

identified was the quantity of the code that should be provided for scaffolding for 

practice. Some students preferred none at all, while some wanted to be provided with a 

complete solution that they could copy. By providing the correct scaffolding for 

knowledge and practice, the majority of students felt engaged and motivated. On 

completion of the course, the overall feedback from the students demonstrated the 

effectiveness of this approach in building confidence to develop their own learning skills 

and to adopting new technologies. Thus, this approach holds considerable promise for 

developing higher level student problem solving skills in programming courses, 

particularly if those courses are providing instruction on design patterns, algorithms or 

developing the core principles associated with a set of technologies and their 

applications. 

10.2 Future Work 

The small sample size used for analysis of ACI allowed a depth and variety of results to be 

obtained which would not have been possible in larger sample size. To consider further 

the effectiveness of this technique, a study should be conducted using a larger body of 

novice programmers with an evaluation of the benefits from the teacher’s perspective. 

By allowing problems of novice programmers to be viewed at a very granular level, ACI 

affords the teacher the opportunity to intervene at a much earlier stage when 

programming difficulties begin to emerge. It would interesting to identify the type and 

nature of these interventions. It is anticipated that the type, structure and the nature of 

the abstract patterns may evolve as more is learnt about the difficulties novices 

experience using and combining them. More fundamentally, there exist many 

programming languages and some present more challenges than others. For example, the 

use of pointers in C and C++ can be a source of great confusion. From a teaching 
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perspective, analysing the interaction between teacher and learner, could yield better 

cognitive explanations of the difficulties faced by the novice programmer.  

To ensure the findings are balanced, a cross institutional study should be conducted to 

evaluate the effectiveness of the approach applied in different programmes and 

institutions. It is likely that staff within the same institution have identified and developed 

similar strategies and viewpoints. Furthermore, the student profile and cohort may vary 

across institutions. A new study involving two or three institutions would enable an 

evaluation of the importance of these factors as well as further confirming the 

effectiveness of the approach. 

The highly abstract nature of object oriented programming meant that the syntax, 

concepts and principles of this methodology were not addressed in the current version of 

ACI. Given that object oriented analysis, design and programming has become almost 

ubiquitous in the software development industry, novice programmers must be exposed 

to these concepts but only once they have acquired the necessary problem solving skills. 

Further research is required into the best approach for applying ACI in developing the 

necessary OOP mental models. This would require the development of new ACPs, but 

would also need to take into consideration the difficulties students have in understanding 

fundamental concepts such as the difference between a class and an object. The difficulty 

here is not just related to retaining knowledge of the mental model but appreciating the 

benefits of translating entities that might be found in the real world into the appropriate 

abstractions. This is analogous to defining a database table and creating tuples in the 

database itself. Development of the database tables implies an analysis and mapping 

process from real world information. Class development is a similar process but is further 

complicated by the introducing of constructors and methods. The abstract nature of 

object orientation means that the benefits of this process can be very unclear for novice 

programmers. For example, database tables are created to enable sets of data to be 

stored in multiple tuples. Likewise, classes allow multiple objects to be created 

representing multiple entities of the same type but they are also used for many other 

reasons including data encapsulation and separation of program logic. Therefore, careful 

consideration is required to ensure that both the mental model of the class as a data 

structure and the notional machine model learnt by novice programmers are correctly 

aligned and understood.  
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A further difficulty arises because classes are actually programmer defined variable types. 

This very powerful feature means that programmers can create, store and pass objects of 

their own types. However, novices must be supported to enable them to make this 

mental leap and fully appreciate the impact this has on their current mental models. 

Passing objects into methods is a specific example where this concept can be perceived as 

simple to the teacher but can potentially result in great difficulties for the learner. Clearly, 

even more challenging concepts such as polymorphism require a firm understanding of 

these OOP fundamentals. From a novice programmer’s perspective, many of the 

characteristics and features of object orientation represent a considerably bigger 

challenge than creating a database table and inserting rows into a database.   

As already alluded to, ACI allows a micro-management of the abstract patterns being 

studied allowing learner behaviour to be studied in more detail. Therefore, two studies 

should be conducted to evaluate these challenges from both the teacher and the learner 

standpoint. These studies should provide more detailed knowledge and understanding of 

the most effective approach to teaching object oriented programming and lead to further 

developments of the ACI pedagogy. 

10.2.1 Further Considerations Suggested by Related Research 

Learning to program can be seen as equivalent to learning a foreign language. First you 

learn how to construct words, then sentences from the words using the correct grammar, 

then paragraphs from sentences, in a gradual process that develops writing skills. In 

programming, you first learn keywords and constructs which is similar to building the 

vocabulary and the fundamental rules of grammar where each construct has both syntax 

and semantics. These are the ACP patterns that must be memorised. With the grammar 

learnt, you can begin to apply the rules to construct meaningful sentences. In ACI, the 

novice programmer solves a number of exercises that explore different ways of using the 

ACP patterns. In a foreign language, the first sentences learnt are simple, but the length 

and complexity increases as your vocabulary expands and your knowledge of the rules of 

grammar increases. Likewise, in ACI the ACP patterns begin to combine so a Counting 

Loop becomes an Array Counting Loop, complete with exercises to reinforce the “rules of 

grammar”. Next we combine sentences to begin to tell a short story by forming 

paragraphs. In programming, we solve problems by combining sequences and nesting 

ACP patterns within procedures and functions. The equivalent in programming to writing 

an essay is to write longer programs by creating multiple functions, using function calls to 
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define the complete solution. Problem solving instruction provides the tools for 

identifying the problems to be solved, like the chapter headings in a book, and by calling 

these functions the main function should tell the story. It is in the construction of the 

paragraphs, or the production of a generic solution to a set of common problems that 

additional work is required. POI [27] is a pedagogical approach that espouses the principle 

of teaching patterns that can be combined to form more complex solutions. It may 

restrict the creative thinking process, focusing on the construction of solutions through a 

building block approach, but it supports the development of problem solving skills in 

weaker students.  

Therefore, the next step in the research is to integrate POI as the stage between ACI and 

the more “open” problem solving instruction. It may also be possible to allow the novice 

programmer to develop the initial solutions to the “new” pattern themselves by 

specifying the ACPs required in the problem definition. This process builds upon ACI, 

allowing the novice to use creative thinking skills while potentially giving them the same 

named building block as POI. Since ACI promotes the view of functions as solutions, this 

should not prove too onerous a task. It would be wise to set a time limit and provide a 

suitable solution for students who fail to find one for themselves. Multiple exercises need 

to be provided to explore various uses of the new pattern with the aim of improving 

memory recall. The merging of the ACI and POI stages needs further investigation, since 

there is some overlap but one should also build upon the other.  

From the results obtained from the research into ACI, there is a suggestion of a 

contradiction between the cause of novice programmer difficulties and their beliefs and 

attitudes towards solving those issues. While the root cause of their difficulties is actually 

their inability to solve a problem, their implicit belief is that it is a code translation issue. 

The probable cause of this contradiction, is the existence of an intermediate stage that 

exists between “solving” a problem and solving it in such a way that it can be 

programmed. Pennington [101] identifies this division in the program model, which is 

separated into text structure knowledge representing the translation stage and plan 

structure knowledge representing the intermediate stage. Understanding the problem is, 

of course, also related to the Pennington [104] situation model which represents the 

extraction and mapping of relevant detail from the problem. Thus, “solving” a 

programming problem requires the programmer to construct both a situation model and 



234 

an associated plan structure knowledge. Psychologically, novice programmers appear to 

believe that they already have a perfect model of the problem as evidenced by their 

reluctance to engage in an explicit mapping process from problem space to their domain 

knowledge. In fact, they have created a simplistic situation model that prevents them 

drawing the appropriate inferences from which to construct the required plan structure 

knowledge. Support for this hypothesis can be found in research that contrasts the 

performance of experts and novices [150]. One robust finding from this research was that 

“experts can sort problems into categories according to features in the solution, whereas 

novices can only sort problems using features in the problem statement itself” [150]. For 

example, an intermediate level of planning might occur when a programmer is faced with 

a problem that asks them to “display the top 10 rated products”.  Experienced 

programmers might divide this into 3 separate problems “the products are stored on a list 

because we do not know how many there are”, “the products must be sorted by their 

ratings” and “10 items must be displayed”. These new sub-problems are still natural 

language but contain within them programming knowledge and cues such as “list” and 

“sort”. This concept is related to “information scent” [126]. In intermediate planning the 

problem is not solved, for example, what is the “product” and how do the list and sort 

work together? As Green et al note [376]: 

“Semantic knowledge is required for solving a problem but not for coding the 
solution in the specified language”  

Crucially, the original natural language problem has been re-contextualized into a set of 

problems that can be solved by a program. Although some testing was carried out, the 

full extent of this mapping process needs further exploration. 

Another area where further research is required is the presentation of exercises to 

provide interleaved practice [377]. In block practice, students study problems of one type 

before moving on to the next topic. In interleaved practice, students alternate their 

practice between different types of problems. There is significant evidence that although 

students perform worse during practice, this is reversed when students whose practice 

was interleaved are subsequently tested [378, 379]. A plausible explanation is that the 

simultaneous exposure to multiple problem types helps students to discriminate between 

them by allowing them to be more readily compared i.e. the solution to the previous 

problem is already in working memory to allow the comparison to be made. Other 

evidence [380] suggests that interleaved practice is most beneficial when the student has 
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a certain level of ability achieved through block practice. In short, block practice followed 

by interleaved practice does not detract from the benefits of interleaved practice alone. 

Thus, when a new topic is introduced, it should be followed by block practice and then by 

an extra practice session that interleaves problems from previous classes [377]. 

Interleaved practice has been found to be ineffective in some studies, such as learning 

French vocabulary [381]. However, for ACI and POI, incorporating interleaved practice 

should not be a significant undertaking and may offer significant benefits in problem 

solving. 

The limited size of the focus groups enabled closer observation of the participants and 

allowed the delivery and content of the course to be adjusted with minimum disruption. 

However, it will be necessary to expand this to a trial using the full student cohort to 

evaluate its effectiveness in a larger group. This should include different teaching staff 

and different programming languages to eliminate any potential undesirable extraneous 

influences, such as the ability of the teacher to inspire and motivate students. 

In investigating problem solving in larger scale problems, one issue identified in applying a 

structured problem solving approach was that the scaffolding provided should have been 

implemented to allow for fading and the level of fading required deserves further study. 

The mixed results from the survey demonstrate that some of the benefits of the approach 

may have been lost because the scaffolding was not sufficiently personalised to the 

individual student. Obviously, this also has an impact on the interaction between the 

scaffolding of knowledge and practice which also deserves further consideration. 
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Appendices 

Appendix 1  Computational Thinking Test 

Answer only the questions you can – if you cannot answer a question, move on to the 

next question.  This test is not negatively marked, so you may wish to guess if unsure.  

Questions 1 and 2 to be answered on this paper, questions 3 and 4 to be answered using 

IDLE and saved. 

1) You have been selected to program a new robot intended to create hot drinks.  The 

robot is capable of following simple, tea and coffee-oriented commands precisely, 

but has no understanding either of the process, or the fundamental principles which 

underpin it (e.g. that a kettle requires power).  The robot has access to the following 

items: 

 Kettle (initially unplugged) 

 Tea bags 

 Jar of ground instant coffee 

 1L carton of milk 

 Unopened bag of sugar 

 1 metal tea spoon 

 1 large mug 

 Access to a sink for water and an electrical socket for power 

 

a) You are required to give the robot the set of instructions necessary to 

successfully make a cup of milky coffee with 1 teaspoon of sugar.  Each 

instruction should be on a new line.  Ensure that your instructions are in a logical 

order and no steps are missed; while highly capable of following instructions, the 

robot cannot solve problems independently. 

b) The robot is, of course, capable of making many variations of hot drink.  The user 

must be permitted to give information about their drink preferences to the robot 

before it is created.  What are the pieces of information the robot must collect 

before starting? 

c) If the instructions were converted to code, explain briefly how this data may be 

stored.  What is the name given to a piece of data stored by a computer? 
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2) Write a single flowchart which: 

a) Says “Hello” to the user at the start. 

b) Asks the user how many addition operations they would like to perform. 

c) Loops the number of times requested by the user. 

d) For each loop, takes two new numbers from the user, adds them together and 

outputs the result. 

 

3) You are required to create a computer system, in Python, which mimics the 

functionality of the national lottery.  Each lottery draw results in six balls, numbered 

between 1 and 49 being selected, plus one “bonus ball” making a total of seven.  The 

balls are not replaced after each selection, so each number may only be selected 

once.  Remember, in Python, a random number may be selected through the 

statement: 

random.randint(0, 10 

This code will pick a random number between 0 and 10 inclusive, and duplicates are 

possible. 

The following requirements specification was created for the application: 

 Seven random numbers should be selected – six regular numbers plus the 

bonus ball 

 The numbers should be displayed to the user 

The output format should mirror the following (where the numbers following colons 

are generated randomly): 

Starting lottery selection. 

Ball 1: 17 

Ball 2: 31 

Ball 3: 5 

Ball 4: 44 

Ball 5: 28 

Ball 6: 33 

Bonus ball: 22 

Lottery selection complete. 

 

 No randomly selected number should be repeated 
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You should aim to implement as many of these requirements as possible within your 

Python solution.  Focus on the logic of the program, and do not worry unduly about 

syntax.  If you feel a requirement will be too difficult to implement, ignore it and 

focus on the others. 

4) Using Python with turtle, draw the following shapes:

a) An oval.  Remember that the code to draw a circle is:

import turtle 

count = 0 
while (count < 360): 
    turtle.forward(1) 
    turtle.right(1) 
    count = count + 1 

You should start with this as a base, and modify it to form an oval similar to: 

b) A 5 point star.  This can be achieved without lifting the pen.  It should look

similar to:

Hint: the angle of rotation at the end of each point is 144 degrees. (medium) 

c) A spiral.  This may be a square spiral similar to:
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You should not equate each edge to a line of code.  Instead consider what you 

can use to reduce the amount of code you are required to produce. 
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Appendix 2   ACI and Problem Solving Tests 

Test 1: Test for Assessing Student’s Knowledge of Variables 

1. Identify the types need and suitable values for the following: 

(a) 

type postCode; 
postCode = value; 

 
(b) 

type numOfAnimals; 
numOfAnimals = value; 

 
[2 Marks] 

2. Write a program that allows the user to calculate the cost of purchasing a number of 

cars of the same type. They must be able to enter the car model name, the price and the 

quantity that they wish to buy 

Print out the model name, price and the total cost including a tax of 12.5%. 

[12 Marks] 

3. A shop owner requires a program to calculate the running costs and profits of their 

business. The business employs a number of people but each earn the same wages and 

the operational costs of the shop include supplies, manufacturing and utility costs. These 

values will be entered into the program. It has been agreed that the owner will calculate 

the total sales and will also enter this value. However, the program should calculate the 

overall profits made, allowing for VAT which will be alterable but have a default value of 

17.5%. For security, the program will also require the owner to login with a pre-set 

username and password. 

Identify the variables, selecting appropriate names and types. 

[11 Marks] 

Test 2: Test for Assessing Student’s Knowledge of Branch Statements 

1. (a) Enter two values: 
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type cupCount = ???; 
type maxCups = ???; 

Display “You have purchased up to or over the max cups allowed” 

[3 Marks] 

(b) Enter the original price of a product and a sales discount as a percentage (e.g. 12.5 for

12.5%). 

Calculate the discount and the new product price. 

[4 Marks] 

2. Given a temperature under 321 check:

• pressure is below 48 and display “pressure too low”

• pressure is 12 or under and display “warning pressure is falling too low”

Given a temperate at 459 or more check: 

• Pressure is above 35 and display “warning pressure is rising to high”

• Pressure is above 126 and display “pressure too high”

[11 Marks] 

3. A program is required to monitor the water level in a pumping station. The water level

is measured and entered into the program 4 times during the day (you may assume it is 

rerun everyday), and must display the highest level the water has reached during the day. 

[7 Marks] 

Test 3: Test for Assessing Student’s Knowledge of Array and Loop Statements 

1. (a) Enter two values:

type isReady = ???;       assume not ready initially 
type postCode = ???; 

 [2 Marks] 

(b) Create the variables for the following:

type[] prices = new type[??];  // Store 22 prices 
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Given a dog owner has 8 dogs, and requires a program that can remember all their 

names. 

Given there are 78 streets, provide a variable that can store the number of houses in each 

street. 

[4 Marks] 

(c) Create an array of 12 dog names, and set the following three names.

Set first name:  dogName[??] = “Fido”; 
Set second name: dogName[??] = “Biff”; …   Don’t care about remaining names 
Set last name:  dogName[??] = “Bones”; 

 [3 Marks] 

(d) Display a count that increments from 0 to 99.

type count; 
for(count = ??; count < ??; ???) 
{ 

 Console.WriteLine(“Count is {0}”, count); 
} 

[3 Marks] 

2. Allow the user to enter 30 numbers.

• After they have all been entered, print all the numbers in the order.

• Print numbers entered in the reverse order.

[6 Marks] 

3. Allow the user to enter the names of 20 books. Once all the book names are entered,

allow the user enter the name of one of the books, and then check that it was one of the 

previous names entered. Print a message if it is found. 

[8 Marks] 

4. A program is required to monitor the water level in a pumping station. The water level

is measured and entered by the user on a continuous basis until they decide to quit the 

program e.g. they type “quit”. 
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• When it exceeds 50m, a warning message should be displayed 

• When it exceeds 100m, an “overflow” alarm message should be displayed 

• When it falls below 20m, a warning should be displayed 

• When it falls to 0m, an “empty” alarm should be displayed 

• After quitting and before exiting the program, the average water level should be 

displayed. 

NOTE: You do not need to store all the water levels. 

[8 Marks] 

5. Display the following menu: 

1. Choose Max Numbers 

2. Enter Number 

3. Add All Numbers 

4. Calculate 12.3% of All Numbers 

5. Quit 

You may assume that the default max numbers that can be entered is 5, and if no 

numbers are entered the results displayed should all be 0. 

When executing the program would look something like this: 

Max numbers you can currently enter is 5   max starts at 5 

1. Choose Max Numbers 

2. Enter Numbers 

3. Add All Numbers 

4. Calculate 12.3% of All Numbers 

5. Quit 

Select Option > 1 

Max > 3     User enters max 

1. Choose Max Numbers 

2. Enter Numbers 

3. Add All Numbers 

4. Calculate 12.3% of All Numbers 
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5. Quit

Select Option > 2 

Please Enter 3 Numbers  User is asked to enter max numbers 

Enter Number > 10 

Enter Number > 20 

Enter Number > 30 

1. Choose Max Numbers

2. Enter Numbers

3. Add All Numbers

4. Calculate 12.3% of All Numbers

5. Quit

Select Option > 3 

Sum is 60 

1. Choose Max Numbers

2. Enter Numbers

3. Add All Numbers

4. Calculate 12.3% of All Numbers

5. Quit

Select Option > 4 

12.3 of 60 is 7.38 

1. Choose Max Numbers

2. Enter Numbers

3. Add All Numbers

4. Calculate 12.3% of All Numbers

5. Quit

Select Option > 5 

Goodbye 

Start by getting the menu to work and only allowing the user to quit by entering number 

5 for the menu option. 

[10 Marks] 
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Test 4: Comparison Test for ACI and Non-ACI Focus Group Prior to Problem 

Solving Instruction 

1. (a) Enter two values: 

type numberOfPeople = ???; 
type maxLength = 3/2;  
 
 [2 Marks] 

(b) Ask the user to enter price of a book. When the price is £20 or more the book is 

delivered for free, otherwise the cost of delivery is £1.50. Display the told purchase and 

delivery cost of the book.   

[3 Marks] 

(c) Enter the original price of a product and a sales discount as a percentage (e.g. 22.5 for 

22.5%). Calculate the discount and the new product price. 

[5 Marks] 

2. Write the code for a stock checking application. 

Check the number of outstanding deliveries exceeds 1010 then check: 

• Boxes in stock is below 897 and display “order more stock”  

• Boxes in stock 467 or under and display “warning stock level is low” 

Check the number of outstanding deliveries at 459 or lower then check: 

• Boxes in stock are above 2033 and display “warning stock level is getting high” 

• Boxes in stock is above 5456 and display “stop ordering stock”  

[25 Marks] 

3.  

A program is required to monitor the pressure level in a pumping station during the day. 

The pressure level is measured and the user must continuously enter it into the program. 

At the end of the day, the user exits the program and the program displays the highest 

and lowest levels the pressure reached during that day. 

[20 Marks] 
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4. Allow the user to enter exactly 25 numbers. After they have all been entered, print all

the numbers in the order they were entered and in the reverse order. 

 [20 Marks] 

5. Allow the user to enter exactly 12 numbers. After they have all been entered, allow the

user to search for a number and print a message telling them if the number was 

previously entered. 

 [15 Marks] 

6. Display a multiplication table. The user enters two for the max rows and the max

columns e.g. 2 and 3 and the table should be displayed like this: 

1 x 1 = 1 
1 x 2 = 2 
1 x 3 = 3 
2 x 1 = 2 
2 x 2 = 4 
2 x 3 = 6 

[10 Marks] 

Test 5: Comparison Test for ACI and Non-ACI Focus Group Post Problem Solving 

Instruction 

1. Write a function to calculate the area of right angled triangle and provide appropriate

test code. Hint: Think half a rectangle. 

2. Calculate the black area of the following shape:

w

h

w
r

hr

r

The User should enter all the dimension values required. 
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FOR THE FOLLOWING QUESTIONS, MAP WHAT YOU KNOW AGAINST THE PROBLEMS YOU 

NEED TO SOLVE USING THE TABLE PROVIDED 

3. Write the program that allows the user to enter 5 numbers, and then print the 

numbers in reverse order e.g. they enter 1, 3, 4, 5, 8 and then you display 8, 5, 4, 3, 1. 

4. Write the code to randomise the selection of 5 lottery balls. Code has been provided 

below to help you: 

static void Main(string[] args) 

{ 
Random rnd = new Random(); 
int[] balls = new int[] { 1, 2, 3, 4, 5 }; 

 
RandomiseBalls(balls, rnd);   Randomise the numbers 1 to 5 
DisplayBalls(balls);   Display the numbers 

 
Console.ReadKey(); 

} 
 
// Select a random value between the provided min and max values (both the min  
// and max values can also be chosen). 
static int RandomNumber(Random rnd, int minValue, int maxValue) 
{ 

return rnd.Next(minValue, maxValue + 1); 
} 

MAPPING TABLES PROVIDED FOR STUDENT USE  
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Appendix 3 Structured Problem based Programming Online 

Survey 

Question Type 

I recognise the importance of solving problems in programming Likert 1 to 10 

I find solving problems challenging Likert 1 to 10 

I find solving coding and solving problems interesting Likert 1 to 10 

I have learnt more by attempting to solve problems myself in class Likert 1 to 10 

In working on the exercises provided: 
I spent very little time attempting them 
I would like to have spent more time attempting them 
I was too busy or unable to attempt them for other reasons 
 I felt I dedicated enough time 
I spent too much time 

Single Choice 

Engaging in problem solving learning leads to more class interaction 
between students and lecturer 

Likert 1 to 10 

I felt I was solving problems WITH the lecturer Likert 1 to 10 

I found the class more interesting when trying to solve the challenges 
presented by the lecturer 

Likert 1 to 10 

I prefer to follow code or solutions, step-by-step, developed by the 
lecturer 

Likert 1 to 10 

Problem solving activities provide gave me a better understanding of the 
technologies or principles being taught 

Likert 1 to 10 

The context of the problem is important (I like to know why it is 
important to solve a problem) 

Likert 1 to 10 

It is more interesting to discover next problem(s) myself, as a 
consequence of completing a previous exercise. 

Likert 1 to 10 

I prefer partially solved problems to new problems with no initial code 
provided 

Likert 1 to 10 

I prefer to learn new technologies or concepts by attempting to build my 
own solutions  

Likert 1 to 10 

I reviewed the completed solutions offered by the lecturer after 
attempting the problems myself 

Likert 1 to 10 

Sufficient documentation was provided to attempt the exercises Likert 1 to 10 

Providing hyperlinks between the code in the documentation enabled 
me to follow the code more easily 

Likert 1 to 10 

The exercises provided a gradual increase in difficulty (allowing for the 
complexity of the concepts being taught) 

Likert 1 to 10 

I found this approach gave me confidence in my ability to develop my 
own learning skills 

Likert 1 to 10 

I will be more confident in studying new technologies in the future Likert 1 to 10 

Please describe any benefits you felt you gained from the problem based 
learning approach 

Open text 

Please provided details of any drawbacks or anything you disliked in 
problem based learning 

Open text 


