
����������
�������

Citation: Fan, C.; Kaliyamurthy,

N.M.; Chen, S.; Jiang, H.; Zhou, Y.;

Campbell, C. Detection of DDoS

Attacks in Software Defined

Networking Using Entropy. Appl. Sci.

2022, 12, 370. https://doi.org/

10.3390/app12010370

Academic Editor: Christos Bouras

Received: 30 November 2021

Accepted: 28 December 2021

Published: 31 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Detection of DDoS Attacks in Software Defined Networking
Using Entropy
Cong Fan 1,2,*, Nitheesh Murugan Kaliyamurthy 2 , Shi Chen 1, He Jiang 1, Yiwen Zhou 1 and Carlene Campbell 2

1 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
chenshi@whut.edu.cn (S.C.); Hejiang2019@whut.edu.cn (H.J.); 293423@whut.edu.cn (Y.Z.)

2 Wales Institute of Science and Art, University of Wales Trinity Saint David, Swansea SA1 8PH, UK;
n.kaliyamurthy@uwtsd.ac.uk (N.M.K.); carlene.campbell@uwtsd.ac.uk (C.C.)

* Correspondence: 293410@whut.edu.cn

Featured Application: This study proposes a detection method of Distributed Denial of Service
attacks in Software Defined Networking, which uses the property of entropy to measure the
occurrence of attack behavior in the network. The significance of this study is to quickly and
effectively detect Distributed Denial of Service attacks in the Software Defined Networking and
protect the SDN controller against security threats.

Abstract: Software Defined Networking (SDN) is one of the most commonly used network architec-
tures in recent years. With the substantial increase in the number of Internet users, network security
threats appear more frequently, which brings more concerns to SDN. Distributed denial of Service
(DDoS) attacks are one of the most dangerous and frequent attacks in software defined networks.
The traditional attack detection method using entropy has some defects such as slow attack detection
and poor detection effect. In order to solve this problem, this paper proposed a method of fusion
entropy, which detects attacks by measuring the randomness of network events. This method has the
advantages of fast attack detection speed and obvious decrease in entropy value. The complementar-
ity of information entropy and log energy entropy is effectively utilized. The experimental results
show that the entropy value of the attack scenarios 91.25% lower than normal scenarios, which has
greater advantages and significance compared with other attack detection methods.

Keywords: software defined networking; entropy; distributed denial of service attacks

1. Introduction

SDN breaks the shackles of traditional network complexity and coupling and makes
it possible for network architecture to satisfy flexibility, reliability and security at the
same time. It separates the control plane from the data plane and separates the control
function of the network from the data forwarding function [1]. The control plane is
only responsible for routing decisions, while the data plane realizes these decisions by
forwarding packets and other behaviors. The separation of the two planes can improve the
abstraction and programming ability of the network and makes the network structure less
tedious and redundant.

Centralized control and implementation of network programming solve the interde-
pendence problem in three planes which are control plane, data plane and application
plane. The control plane communicates with the application plane through northbound
API. The southbound API is mainly the OpenFlow protocol, through which the control
plane is able to communicate with the data plane.

Essentially, SDN provides a brain (controller) for the underlying network, making
each network plane device centrally programmable [2] and giving the administrator abso-
lute control over the use of software to manage network functions through a centralized
control point.
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Although SDN architecture has many advantages compared with traditional network,
it is often subjected to network threats and attacks. Network threats to SDN are mainly
reflected in security device licensing and global view acquisition [3]. Because packets are
passed according to flow rules, physical security devices do not have the right to decide,
and attackers can bypass security devices before deployment. The controller is the core of
the entire network and can obtain various network status information. The attacker can
use the controller to directly grasp the global view of the network to launch serious attacks.
SDN has a clear plane structure, and the attack objects at different planes are different. At
the control plane, because the controller manages the entire network, an attacker damaging
the controller can cause serious damage. Controllers are the main targets of attacks in
recent years.

In emerging SDN deployment scenarios such as data centers, the centralized control
plane is the main cornerstone, which makes SDN more scalable [4]. The controller has the
right of absolute control over the whole SDN. They communicate with switches through
commands and perform network operations through packet switching and routing SDN
applications. It acts as a core brain, controlling the forwarding operation of the data plane
and managing the traffic behavior of the entire network. The controller has the unique
property of providing a global view of the network, making it the highest priority target in
the network [5]. The global view of the network includes flow rules for network devices
and various statistics.

The main security challenges on the control plane are as follows:

• Application threats: Applications implemented on the control plane may seriously
threaten the security of the control plane.

• Scalability Threats: Due to lack of scalability, the control plane gradually becomes
saturated and cannot handle more flows [6].

• DDoS attack: Controllers are vulnerable to DDoS attacks [7]. When receiving a packet,
the switch matches the packet with the flow table entry. If the packet fails to match, the
switch encapsulates the packet header into a packet_in message and sends the packet
to the controller. When an attacker sends a large number of packets to the network,
the switch forwards these packets to the controller. A large number of DDoS spoofing
packets exhaust controller resources and make the controller unable to work properly,
posing serious threats to the controller and the entire network.

• Other threats: Inconsistent and conflicting controller configurations may result in fail-
ure to receive network information [8]. Malicious applications can easily be developed
to apply to controllers. There is no effective trust management mechanism between
controller and application.

Among the confirmed security vulnerabilities, DDoS is still one of the most important
security problems at the control plane [9]. In view of the importance of controllers in
software-defined networks, DDoS attacks on controllers are very dangerous and protecting
controllers from attacks is also a major concern of researchers.

DDoS attacks send a large amount of traffic to the network and consume network
resources and cause network congestion. Many DDoS attacks are launched from distributed
hosts [10]. DDoS attacks have two stages. First, an attacker creates a distributed attack
network of thousands of targeted computers, known as zombies, robots or attack hosts.
The attack host then sends massive traffic to the victim either on the attacker’s command
or automatically [11]. To build an attack network, attackers seek out computers that are
less secure, such as those that have not been properly patched.

A DDoS attack is an aggressive and destructive network attack that causes the system
to stop working by depleting system resources. It can destroy the user’s available network
services, thus seriously threatening the network. When malicious data packets are sent
by attackers on the network, normal traffic is processed or even cannot be processed due
to the consumption of network resources. As a result, the network and servers become
jammed and normal services are interrupted. Attackers who apply DDoS often target SDN
mainly because of its unique characteristics.
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In order to solve the impact of DDoS attacks on the SDN controller, this paper proposes
to use fusion entropy for attack detection. Through research, it is found that information
entropy has the characteristics of rapid entropy reduction in attack scenarios, but it does
not have the function of rapid detection. Although the log energy entropy reduces the
entropy value in the attack scenario less than the information entropy, it can detect the
attack at the beginning of the attack. Based on this, this paper proposes the fusion entropy,
which combines the two entropies by weighting. The fusion entropy can effectively utilize
the complementarity between the two entropies, which can quickly detect attacks and
significantly reduce the entropy value. The remainder of the paper is organized as follows:
Section 2 introduces related work of this study. Section 3 gives a detailed introduction to
the proposed method. Section 4 is about the attack detection simulation. Section 5 is the
experimental results and discussion. Section 6 presents the conclusion.

2. Related Works

The security threats facing SDN have received extensive attention. The most common
and well-known attack in SDN is the DDoS attacks. So far, many DDoS detection methods
have been proposed.

2.1. Software Defined Networking

SDN is a network architecture in which the control plane manages the forwarding
state of the data plane [12]. The control plane is decoupled from the data plane so that
network devices only need to implement the forwarding function, which is the biggest
advantage of SDN, as shown in Figure 1. The forward decision is based on a stream that
combines packet field values and operation instructions. Streams abstract the behavior of
different types of network devices, such as switches, routers, and firewalls.
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In the existing traditional network, this abstraction is not implemented. Because
network devices in traditional networks are interrelated and dependent on each other [13].
Programming for streams provides a lot of flexibility. The key to achieving flexibility is the
introduction of functional separation between the implementation of switching hardware
and the forwarding of legitimate traffic. Because of these advantages, Cisco, Juniper and
other major Internet companies are investing in this technology [14]. Enterprise engineers or
network administrators can dynamically change the centralized traffic console on demand.
This behavior does not affect the underlying network devices such as switches. This rapid
response to changes in requirements is critical and urgently needed for the application of
real scenarios.

SDN has the advantages of abstraction and flexibility, various enterprises and com-
panies have stepped on the road to use this technology. Although SDN brings a lot of
advantages, when a network structure system is attacked, the consequences are serious
and how to protect SDN from attack need serious consideration.
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2.2. Analysis of Threats over SDN Network

From 2020 to 2025, some enablers such as cloud service providers will greatly promote
the use of SDN, which is expected to increase by 19% [15]. However, SDN architecture still
has some security holes. These security vulnerabilities are related to some of their own
characteristics [16].

SDN separates the control plane from the data plane through OpenFlow protocol.
Frequent communication between switches and controllers makes SDN vulnerable to
attacks, which greatly reduces the network performance. Switches in traditional networks
not only complete forwarding tasks but also need to formulate flow rules, while SDN
formulates flow rules through controllers. This means that if one of the controllers and
switches is attacked, the other will be affected. SDN is attacked mainly for the following
four reasons:

• The lack of security protection mechanism makes the controller in a potential threat;
• Complex interactions between various applications increase the burden of flow rules;
• Lack of authentication mechanism and application authorization;
• There is not enough secure encryption for the flow rules, making it easy for the flow

rules to be tampered with after publication.

Although SDN brings the benefits of programmability, centralization and flexibility, it
also brings new security issues. In ref. [17], the author analyzes the security problems of
the three planes in SDN architecture and puts forward corresponding security solutions.
In order to deal with the security threats of SDN, relevant organizations have developed
corresponding security challenges and solutions. It is necessary to analyze the security
threats of this architecture from different functional planes.

In SDN architecture, the security of the control plane (namely OpenFlow controller)
directly affects the data forwarding plane. As the decision center, the controller has a
high probability to become the target of attackers. D. Melkov et al. [18] analyzed the
advantages and disadvantages of SDN in detail and classify security threats into SDN’s
unique challenges and the same challenges as classical networks. The security vulnerability
of controller is studied and discussed from different angles, because it is the most vulnerable
component in SDN architecture. In a multi-controller architecture, the threat to distributed
multi-controllers is also a security problem. The coexistence and cooperation of multiple
controllers will lead to configuration conflict. In addition, malicious access can occur to
applications running on the controller, which requires a different security policy for each
application. J.H. Cox et al. [19] paid attention to how SDN is further applied in practice and
discuss structural security and attack detection measures. More consideration has been
given to the security of the controller. A DDoS attack on a controller prevents legitimate
traffic from using controller resources and functions by exhausting computing or memory
resources. An attacker launches an attack on SDN within a short period of time, and the
attack traffic is mixed with normal traffic. Under normal circumstances, it is difficult to
distinguish the two types.

2.3. Distributed Denial of Service in SDN

A DDoS attack is one of the biggest security threats to SDN network in recent ten
years. It can not only prevent legitimate users from accessing and using network resources,
but also destroy the entire network [20]. Therefore, it is vital to protect the SDN network
from DDoS attacks.

Attackers combine multiple hosts to form zombie host groups that meet their attack
requirements. These zombie hosts send a large number of useless data packets to the target,
making it consume a large amount of resources such as CPU and bandwidth to process
these packets. Once the target host receives far more data packets than the load, it will
not work properly and cannot process legitimate data packets. DDoS attacks are easy to
implement and favored by attackers.

When the controller is attacked, the switch receives the attack packets and matches
them with flow entries one by one. The attack packet is not valid and of course cannot
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match the flow table in the flow table entry. In this case, the switch encapsulates the packet
as packet-in message and sends it to the controller. Then the controller makes decisions
on the direction of the data packet. Attackers send a large number of attack packets so
that packet-in messages continuously enter the controller and occupy a large number of
controller resources [21]. As a result, the controller cannot process legitimate traffic data,
and the controller cannot work properly or is faulty.

The above content shows that the security problems under SDN cannot be underesti-
mated. Although it subverts the traditional network and brings many amazing benefits,
the security problems hidden behind it pose a great threat to its own development and
application. It is very important to further discover the security vulnerabilities of SDN
architecture and find appropriate solutions to promote the further development of SDN.

DDoS attacks are of various types, such as TCP flood [22], UDP flood [23], and ICMP
flood. An attacker sends a large amount of garbage traffic to the target network by operating
the attack source, which sharply reduces the available bandwidth and prevents the target
host from communicating with the outside world. TCP flood and UDP flood attacks use
massive TCP and UDP packets to attack victims. ICMP flood is applied by displaying
ICMP request packets to disturb normal traffic destined for the target host. In a TCP flood
attack, the attacker sends a large number of forged IP address packets to the destination
host. As the IP addresses of the packets are forged, the destination host cannot receive
the response from the sender. The difference between UDP flooding attacks and TCP
flooding attacks is that UDP is connectionless, which is commonly used in voice and
video applications [24]. An attacker initiates UDP flooding attacks by generating excessive
UDP packets to random ports of the destination host and prevents the attack target from
responding to legitimate users.

When a DDoS attack occurs on a controller, the impact on the SDN is more serious.
Therefore, effective detection methods are of great significance to attack detection and
response. So far, there have been many methods to detect DDoS attacks against SDN
controllers. Each technology approach has a different design and definition in terms of
architecture, timing, and parameters.

Packet-based detection and flow-based detection are two main DDoS attack detection
methods in SDN environment. The flow-based DDoS attack detection method checks flow
tables on the switch, while the packet-based detection method should check all packets
on the network. In the flow-based method, the pre-set trigger mechanism can first judge
whether there is an attack in the network, and then start the attack detection algorithm
if there is an attack. The package-based approach needs to examine every packet in the
network, regardless of whether the attack time has occurred. In comparison, the flow-based
detection method consumes less system resources and is more efficient.

J. Boite et al. [25] proposed a new method based on switching processing capability.
This method can quickly respond to DDoS attacks. However, the author could have added
more details about the complex flows in the switch. The scheme in [26] defines the predicted
value of the number of switch requests according to Taylor series, and can filter out the
requests that lead to a sharp decrease in entropy. P. Kumar et al. [27] proposed a scheme for
single TCP SYN flood, which can improve the processing delay. In ref. [28], the author uses
Paspberry Pis as OpenvSwitches and proves that virtual hardware resources can be used
as a solution for the Internet of Things. In this paper, entropy is used as a DDoS detection
scheme, but the disadvantage is that the threshold cannot be dynamically updated. In
ref. [29], the author uses multi-scale principal component analysis to denoise signals, but in
this paper, data packets are used for different application objects, so denoising technology
can be considered to reduce interference in data packets in subsequent work. In ref. [30],
the author proposed the adaptive wavelet transform method for signal decomposition
to improve the classification accuracy. In SDN, there are also many kinds of interference,
this method can be considered to improve the accuracy of attack detection in the future.
In ref. [31], the author proposes to use multivariate empirical wavelet transform to decode
motor imagery tasks. Similar to the preprocessing method mentioned above, we will also
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preprocess the interference existing in the attack detection process in the future. Similarly,
in [32], the author combines dimension reduction technology with neural network to
improve system performance. The entropy value used in this paper can be used as feature
vector for reduction and neural network, which will be discussed in the future. The authors
in [33] propose a statistical feature to describe the traffic characteristic condition entropy
of DDoS attacks, and then use support vector machine classifier to identify attacks. This
method can distinguish attack traffic from normal traffic. Sabah et al. [34] proposed a
distributed artificial neural network method based on anomaly detection and signature
detection. This hybrid model can improve the detection performance of DDoS attacks.
In ref. [35], entropy is used to detect whether the traffic is abnormal firstly. After extracting
the attack characteristics, BiLSTM-RNN neural network algorithm is used to train the data
set and classify the real-time traffic to achieve DDoS attack detection. I. Sumantra et al. [36]
calculates entropy using various attributes of source IP and TCP tokens in the network.
This technology can detect TCP SYN flood, Ping flood, and Slow HTTP attacks, making
good use of the programmability and flexibility provided by centralized control. T.A.
Tang et al. [37] proposed an intrusion detection system based on the Gated Recursive Unit
Recursive Neural Network (GRU-RNN), which uses the least functions to achieve higher
computational efficiency without affecting the performance of the network. The detection
method based on the entropy change of destination IP address [38] can be used to identify
the attack in the early stage. Entropy is a statistical concept that represents the randomness
of a particular dataset. The higher the entropy is, the stronger the divergence of the data
set is; the lower the entropy is, the weaker the divergence of the dataset is.

Many DDoS detection methods based on SDN have been designed. In this paper, a
fast DDoS detection method is proposed which can effectively detect attacks based on the
significant change of entropy and it utilizes the working characteristics of flow table and
the randomness of entropy.

3. Proposed Work
3.1. Fusion Entropy

Entropy is an important part of information theory. Entropy can measure the ran-
domness of packets entering the network, which is the main reason for using entropy in
DDoS detection. Entropy increases with the increase of randomness and decreases with
the decrease of randomness. Common entropy includes information entropy, mean energy,
mean Teager Kaiser energy, shannon wavelet entropy and log energy entropy. Considering
the probability of using destination IP address in this paper, for the case of only one vari-
able, this paper mainly uses information entropy and log energy entropy and achieves the
purpose of improving the detection effect by using complementarity through fusion.

To calculate the information entropy, the first is to calculate the probability of the
destination IP address. The variable x is used to define the destination IP address of the
packet, and the probability of x is calculated by using Equation (1). Set the number of
packets in the window to n. The probability of each element in the window is defined as p.

pi =
xi

∑n
i=1 xi

(1)

In Equation (1), i = {1,2,3...n}, 0 ≤ pi ≤ 1.
Then calculate information entropy, the calculation formula is Equation (2). H is the in-

formation entropy of the destination IP address of packets appearing in a specific window.

H1 = −
n

∑
i=1

pi log pi (2)
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Log energy entropy as another kind of entropy, its calculation formula is shown
in Equation (3). In Equation (3), n and pi still represent the number of packets and the
probability of destination IP addresses.

H2 = −
n

∑
i=1

log pi
2 (3)

Through research and experiments, it is found that the entropy value of information
entropy will be significantly reduced when an attack occurs, but the attack cannot be
detected quickly, while the log energy entropy can quickly detect the attack, but the entropy
value is not as obvious as the information entropy. This paper considers the fusion of the
two entropies through weighting, so as to achieve complementary effects. Since p ranges
from 0 to 1, according to the mathematical properties of the logarithmic function, the log
energy entropy will get a negative value. In order to better integrate with the information
entropy, we multiply the log energy entropy by minus one and weighted with information
entropy. This change is shown in Equation (3). The selection of weight is based on the
change rate of entropy decline of the two kinds of entropy when the attack occurs. The
fusion entropy calculation is shown in Equation (4). In Equation (4), 0.75 in weight w1 is the
change rate of entropy corresponding to information entropy, while 0.13 in weight w2 is the
change rate of entropy corresponding to log energy entropy. The subsequent experimental
results show that the fusion entropy effectively realizes the complementary advantages of
information entropy and log energy entropy, which can not only quickly detect the attack
but also have a high decline rate of entropy.

H3 = w1 ∗ H1 + w2 ∗ H2

w1 = 0.75
0.75 + 0.13

w2 = 0.13
0.75 + 0.13

(4)

When multiple data packets are received on the same host or switch port in a specific
window and the number of data packets exceeds the threshold, DDoS attacks are detected.
The basic steps handled by this detection method are shown in Figure 2. During an attack,
if the computation entropy of a specified window continuously drops below the threshold,
the target port on the specified switch is blocked. In the experiment, data packets will
continuously flow into the network. For each incoming packet, the entropy is calculated. If
the entropy value is higher than or equal to the threshold, the next calculation will be carried
out normally. If the entropy value falls below the threshold, the packet is logged. The
threshold is determined based on the entropy fluctuation range in normal traffic scenarios.
In the later experiments, the threshold will be described in more detail.

3.2. Packet Generation

Packet generation is done by scapy. It is a very powerful tool for package generation,
scanning, sniffing, attacking, and forgery. Two parameters set in scapy are packet type and
packet generation interval. The packet type includes TCP and UDP packets. UDP packets
are used to cheat the source IP addresses of packets. The interval is set to fit the test case.

In this experiment, using scapy to generate network traffic so that normal and attack
traffic can be simulated. With scapy, forged IP packets can be generated, in which way the
identity of the real attacker is hidden. Run the scapy program on the host to send packets,
both normal packets and attack packets (UDP packets and TCP packets) to the host in the
designed network topology.
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3.3. Window Size

The window size should be set to less than or equal to the number of hosts to provide
accurate calculations. In this paper, the window size is set to 50. The primary reason for
choosing 50 is the limited number of incoming new connections to each host in the network.
In SDN, once a connection is established, packets will not pass through the controller unless
there is a new request.

The second reason is that each controller can only connect to a limited number of
switches and hosts. Finally, the third reason for choosing this size is the amount of com-
putation done for each window. A list of 50 values is much faster to compute than a
list of 500 values, and attacks within the 50 packets window are detected earlier. Given
the controller’s limited resources, this window size is ideal for networks with only one
controller and a few hundred hosts.

4. DDoS Attacks Detection on Simulated SDN Network
4.1. Experiment Environment Setup

This experiment was carried out on an HP laptop with 8 GB RAM. The experimental
operating system adopts Linux Ubuntu 20.04 with 20 GB memory and uses Ubuntu image
files to run in Oracle VM VirtualBox software. The version of mininet is 2.3.0 and runs
locally on Linux. The network topology shown in Figure 3 is created using mininet. The
network is a tree structure with a depth of 2. The switch adopts OpenFlow switch, which
can support OpenFlow protocol.

In order to realize the function of the controller, it is necessary to turn on the controller
to observe the changes of traffic in the network during simulation. In SDN, when a data
flow arrives, the Openflow switch will parse the data packet and match it with the local
flow entry. If the match is successful, the data flow will be processed according to the
forwarding policy. The flow table counter corresponding to this flow table entry is increased
by 1. If the match fails, the packet is encapsulated as a packet_in message and sent to the
controller through the Openflow switch. Then, the controller sends the updated flow table
information to the Openflow switch. The flow table includes three modules: matching
domain, counter and forwarding policy.

In the experiment, the destination IP address of the packet is extracted from the
matching and the corresponding number of packets is obtained from the counter. Before
the experiment, the window size and threshold size need to be set in advance. If the
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window setting is too small, not enough samples will be obtained, which will affect the
accuracy of attack detection. If the window setting is too large, the computing load of the
controller will increase.
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4.2. Pox Controller

It is very necessary to choose a suitable controller. At present, there are many con-
trollers available for researchers and developers. This paper selects some representative
controllers and compares their basic information, as shown in Table 1. The Pox controller is
used in this experiment. It is widely used in experiments with high speed and light weight.
It is designed as a platform, so a user-defined controller can be built on it. Pox is an open
source controller written in Python. Its advantage is to facilitate the application interface to
the controller so that they can run in parallel with the controller.

Table 1. SDN Controllers.

Controller Language Openflow Thread Release

Ryu Python 1.0~1.4 Single 03/2015
Pox Python 1.0 Single 10/2013
Nox C++ 1.0&1.3 Multiple 02/2014

Beacon Java 1.0 Multiple 09/2013
Floodlight Java 1.0 Multiple 11/2012

Opendaylight Java 1.0&1.3 / 03/2015
ONOS Java 1.0&1.3 / 03/2015

The Pox controller is developed by Stanford and is based on Openflow. Kernel
and component are two important parts of Pox. The kernel is the assembly point for
all components, and components can interact with each other through the kernel. Pox
provides Openflow interface for topology discovery and path selection and can customize
components to realize specific functions. Pox controller supports rapid development of
controller prototype functions and it can produce superior performance applications, which
decreases the burden of developers and improves development efficiency.

In addition to the advantages of programming language, Pox also has the advantages
of clear architecture, good performance and strong scalability, so it has attracted the atten-
tion of many developers and researchers. Based on the above reasons, the Pox controller
was selected for the simulation experiment in this paper.

5. Experimental Results and Discussion

In this experiment, each test contains 250 data packets, divided by window value of
50, 5 results will be obtained, and a total of 16 times of running, and we will get a total of
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80 data results. The results are plotted as a discounted graph, where the horizontal axis
represents representative packets and the vertical axis represents the value of calculated
entropy. Table 2 shows the information entropy values of partial data packets in the
normal and attack scenario. The entropy values of the data packets with 10 nodes in the
above representative data packets are selected. The entropy value calculated in the normal
scenario is that host 1 randomly sends normal traffic to the simulated network topology. To
simulate the attack scenario, two hosts 4 and 6 send attack traffic to the target host 56.

Table 2. Information entropy values.

Information Entropy Incoming Packets
Normal Attack

1.11439 1.13712 1
1.1174 1.13712 10
0.84288 0.20198 20
1.0235 0.02878 30
1.0235 0.20452 40
1.05419 0.20017 50
1.0235 0.01419 60
1.0235 1.0235 70
0.84288 1.10643 80

Figure 4 shows the comparison of information entropy between the two scenarios.
Among the 80 packets, the green line represents the information entropy value in the
normal scenario, and the blue line represents the information entropy value in the attack
scenario. The green line shows the packet’s information entropy fluctuates between 0.8 and
1.4. The minimum entropy value of 0.8 was adopted as the threshold of our experiment,
which could ensure the minimum error.
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From the 10th packet to the 65th packet, the entropy value drops sharply and remains
in the low value region between 0 and 0.21. The lowest point of normal flow entropy is
0.84288, and the highest point of attack flow entropy is 0.20882. The difference between the
two is 0.63406, indicating a 75% decrease in information entropy under attack in the normal
scenario. According to the experimental results of information entropy, when an attack
occurs, the entropy value decreases obviously, but the attack is not detected immediately.
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Without changing other experimental conditions, log energy entropy is used to mea-
sure the randomness of the network. Table 3 shows the calculated log energy entropy
values of partial data packets in the normal and attack scenario. The entropy values of the
data packets with 10 nodes in the above representative data packets are selected.

Table 3. Log Energy Entropy values.

Log Energy Entropy Incoming Packets
Normal Attack

2.66956 2.67964 1
3.05772 1.23388 10
2.97717 1.0398 20
3.05772 1.0398 30
2.97717 1.04654 40
3.05772 1.04654 50
2.97717 1.09536 60
3.05772 1.0398 70
2.97717 2.96453 80

Figure 5 shows the comparison of log energy entropy under the two scenarios. In
normal traffic scenarios, the entropy value of packets ranges from 1.7 to 3.5. We use the
minimum entropy value of 1.7 as the threshold to ensure a small error. It can be seen from
the figure that in the attack scenario, the value of log energy entropy starts to decline from
the third packet, showing an earlier change. The lowest point of entropy of normal flow is
1.87379. The maximum entropy of attack traffic is 1.62796 when very few abnormal data
are discarded. The difference between the two is 0.24583, indicating that the log energy
entropy decreases by 13% when the attack occurs. According to the experimental results of
log energy entropy, when an attack occurs, the attack can be detected immediately, but the
change of entropy is small, and even a few extremely high entropy values will appear.
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Without changing other experimental conditions, fusion entropy is used to measure
the randomness of the network. Table 4 shows the calculated fusion entropy values of



Appl. Sci. 2022, 12, 370 12 of 16

partial data packets in the normal and attack scenario. The entropy values of the data
packets with 10 nodes in the above representative data packets are selected.

Table 4. Fusion entropy values.

Fusion Entropy Incoming Packets
Normal Attack

3.03872 2.93872 1
2.18832 0.13869 10
2.25056 0.13869 20
2.08832 0.1411 30
2.25056 0.13869 40
2.18832 0.14284 50
2.25056 0.16812 60
2.28832 0.14284 70
2.25056 2.35056 80

Figure 6 shows the comparison of fusion entropy under the two scenarios. In normal
traffic scenarios, the entropy value of packets ranges from 2 to 3.3. We use the minimum
entropy value of 2 as the threshold to ensure a small error. It can be seen from the figure
that in the attack scenario, the value of fusion entropy starts to decline from the third packet,
showing an earlier change. The lowest point of entropy of normal flow is 2.01975. The
maximum entropy of attack traffic is 0.17669 when very few abnormal data are discarded.
The difference between the two is 1.84306, indicating that the fusion entropy decreases
by 91.25% when the attack occurs. The experimental results of fusion entropy show
that when an attack occurs, the fusion entropy can quickly detect the attack, inheriting the
advantages of log energy entropy, while the entropy value decreases significantly, inheriting
the advantages of information entropy, and making good use of the complementarity of
the two entropies to effectively detect the attack.
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Figure 7 lists the comparison between different entropy calculation methods. It can be
seen from the figure that the fusion entropy represented by solid line is obviously better
than the other two kinds of entropy represented by dotted line and has good effects in
rapid detection and entropy value decrease, thus achieving the purpose of attack detection.
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Table 5 lists the comparison between the proposed method and other attack detection
methods. The results show that the fusion entropy detection method used in this paper can
achieve a higher entropy decline rate and has the function of rapid detection.

Table 5. Comparison with other attack detection methods.

Method Decline Rate of Entropy

Average normalized entropy [27] 89.90%
Information entropy + trigger [35] 82.14%

Shannon entropy [38] 74.75%
Proposed method 91.25%

The above experimental results show that the fusion entropy has a good attack de-
tection performance and can effectively make use of the complementarity of information
entropy and log energy entropy. It not only has a fast attack detection speed, but also has a
high entropy decline rate, which is significantly improved compared with other methods,
which indicates the method can well detect DDoS attacks in simulated network scenarios.

6. Conclusions

This paper focuses on protecting the controller as the core of a software-defined
network by detecting DDoS attacks. In order to achieve the purpose of attack detection,
this paper proposes a fusion entropy method. This method effectively uses the advantages
of information entropy and log energy entropy to achieve complementarity. Fusion entropy
has the advantages of rapid detection and obvious changes in entropy value, which can be
used in attacks. The attack is detected in the fastest time. At the same time, the entropy
value when the attack comes is about 91.25% lower than the entropy value in the normal
scenario, which can effectively detect the attack. Compared with other attack detection
methods, it has great advantages in protecting SDN controller from DDoS attack.

In the future, detecting DDoS attacks in structures that connect or communicate
between multiple controllers will be the subject of further research. In addition, since
low-rate DDoS attacks are more difficult to detect because the difference between normal
traffic and low-rate DDoS attacks is not obvious when they occur on the network, low-rate
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DDoS attacks can also be the subject of further research in this paper. At the same time,
to reduce the interference in attack, detection is also a key research issue in the future. It
can be considered to combine entropy value with dimension reduction technology and
machine learning method to achieve better attack detection.
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