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Efficient algebraic image reconstruction  
technique for computed tomography

Industrial computed tomography (CT) has seen widespread adoption within certain areas of non-destructive testing 
(NDT), with many commercial systems capable of acquisition and reconstruction of cone-beam CT data. The majority 

of these systems utilise reconstruction algorithms based on the traditional filtered back-projection (FBP) methods, which 
are imperfect with respect to limited-angle cone-beam data. These techniques are also inherently restricted in the source 
trajectories that can be utilised due to the use of Fourier slice theorem. This restricts FBP-based techniques to a circular or 
helical trajectory. Iterative reconstruction algorithms provide a solution to these limitations as the volume reconstruction 

does not depend on the location or orientation of the source and detector, allowing the possibility of scanning trajectories 
that satisfy well-known CT data-sufficiency conditions. This paper proposes a method of reconstruction based on 

computationally efficient computer graphics algorithms data collected from points in 3D space not restricted to a single 
circular trajectory, which is useful within NDT for automated robotic inspection. The algorithms developed allow for rapid 

processing of the algebraic reconstruction technique (ART) for use with X-ray transmission data for CT reconstruction. 
Experimental results are presented for reconstructions for circular trajectory and points on a sphere to demonstrate the 

suitability for NDT applications.

R Hanna, M Sutcliffe, P Charlton and S Mosey

1. Introduction
Since the innovation of cone-beam X-ray projections for computed 
tomography (CT), volume reconstruction has typically been 
achieved using filtered back-projection (FBP) methods, which are 
founded on Fourier slice theorem[1]. Initially developed for parallel-
beam projection, the technology has been adapted for use with fan-
beam projection and later cone beam. The most widely used 3D 
reconstruction algorithm for CT is the Feldkamp, Davis and Kress 
(FDK) algorithm[1], which uses the 3D cone-beam model at speeds 
much faster than the fan-beam data acquisition methods. However, 
in order to achieve this, some transformations are required to 
approximate a parallel-beam acquisition due to limitations within 
the FDK reconstruction algorithm[2]. This process is referred to as 
cone-beam re-binning. The FDK algorithm therefore produces an 
approximation method to cone-beam image reconstruction but is 
computationally efficient and practical where sufficient rotational 
information is available.

In contrast, iterative reconstruction methods for X-ray imaging 
have been around for many years[3]. While they offer an accurate 
(rather than approximate) solution for volume reconstruction, it 
comes at the cost of computational time. Initially developed in the 
1970s, the algebraic reconstruction technique (ART) (described later 
in Section 2) was introduced at a time when contemporary computing 
power was limited. The ART algorithm has no computational 
dependencies between individual ray-sums or projections, making 
modern parallel computing processing techniques applicable 
to aid in the reduction of volume reconstruction speed. While 
parallel processing systems have existed for many years (for 
example the Cray-1 supercomputer of the 1970s), it was not until 
the 2010s that computing power for parallel processing became 
affordable for consumer use. Technological advancements such as 
compute unified device architecture (CUDA) allow for general-
purpose computing to be performed on specialised hardware, 
such as a graphics processing unit (GPU)[4]. This allows for high 
levels of parallelisation to occur during code execution, utilising a  

brute-force approach to achieve computational speed as seen in 
non-destructive testing (NDT) applications[5].

As NDT inspection components increase in geometrical 
complexity and size, the ability to inspect with CT systems becomes 
more challenging, in part due to limited access and restricted 
scanning trajectories. The ability to locate the part inside a 
traditional CT cabinet in an orientation that will allow sufficient 
quality of data to be obtained is critical to the ability to provide 
a reconstruction that can be useful for accurate measurements of 
dimensions or defects. This problem is noticeable in components 
with a high height-to-width ratio (HWR), such as planar samples[6]. 
If the acquisition strategy used is a circle of source and detector 
points limited to a single plane aligned with the reconstruction grid 
axes, as described in[1] and referred to from here on as a circular 
trajectory, this can cause limitations on the angular range allowable 
to ensure sufficient X-ray penetration. This problem has previously 
been researched through the use of iterative algorithms such as 
ART[3] and the simultaneous algebraic reconstruction technique 
(SART)[7], due to their ability to provide improved reconstructions 
with less data than that of the FDK algorithm. 

An alternative to placing restrictions on the range of data that 
can be acquired in a circular trajectory is to increase the degrees of 
freedom of the source and detector. The use of a circular trajectory 
with a cone-beam geometry, as in the FDK algorithm (due to the 
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use of the Fourier slice theorem), does not fulfil the requirements 
for a mathematically exact reconstruction, as shown by Tuy[8] and 
Smith[9]. As iterative image reconstruction methods use a ray-
tracing-based model to obtain the voxels that contribute to the 
measured attenuation, there is no limitation on the trajectory or 
position of the X-ray source and detector. This flexibility allows 
the source to traverse points on a sphere or indeed any arbitrary 
geometry (such as a robotic path), increasing the number of views 
to be obtained of a region. 

The ability to perform arbitrary scanning of an object without 
the requirement for a cabinet system would be of great benefit to 
NDT, where larger components require inspection. This added 
flexibility allows scanning of components that were previously 
infeasible but now possible using new technologies such as robotic 
systems. This paper explores methods for volume reconstruction at 
computationally efficient speeds with source and detector positions 
not restricted to a single circular trajectory, to create a practical 
NDT solution with applications to robotic systems.

2. Theoretical background
The algebraic reconstruction technique was proposed by  
Gordon et al[3] for 3D electron microscopy and X-ray photography. 
It has since been widely researched for use in X-ray computed 
tomography (XCT) as an alternative to analytical techniques such 
as the FDK algorithm. The basic principle is to find which voxels 
are intersected by the X-ray and to provide a weighted contribution 
based on the pixel detector value and voxel intersection properties. 
The geometric configuration, as used in this paper, is shown in 
Figure 1. The ART algorithm considers a 3D grid (V) of voxels that 
contain the calculated attenuation coefficients of the object. These 
coefficients are calculated through summation along a ray path 
from the source to the ith detector pixel, where the intersection path 
throughout the voxel volume can be used to calculate the weighting 
coefficient Wij, a correction factor based on the contribution of each 
voxel to the ray sum. Win is the total length of the ray within the 
voxel volume.

The ART algorithm as expressed in equation form for voxel 
volume reconstruction is as follows:

                                   V  j   (k + 1)   =  V  j   (k)   + λ   
 (Pi − qi) 

 _____  ∑ 
n=1

  N    Win
2    Wij  ....................... (1)

where qi is the sum of the forward-projection operation for the ith 
ray based on the current grid values determined by k iterations, j 
is the voxel index, i is the row index value (pixel index in XCT) 

and n is the voxel index for the ith ray. The value of the forward 
projection, qi, is calculated as:

                                           qi =   ∑ 
n=1

  N     Wij   V  n  
 (k)    ................................... (2)

where Pi is the measured value from the input images and the 
difference between the measured value Pi and the calculated ray 
sum qi is applied to the relevant voxels based on the calculated 
weight and the relaxation factor λ. 

The ART algorithm uses a weighted contribution (the W 
term) to represent the sum along a ray path through the 3D voxel 
grid. The simplest of the techniques to determine the weight 
uses a binary method; if a voxel has been intersected by the ray, 
the corresponding weighting contribution is given a value of 1. 
The weighting contribution can be formulated as coefficients of a 
system of linear equations, with the coefficients for each element of 
the voxel grid calculated as the product of the weight of the voxels 
Wij and the attenuation coefficient   V  n   (k)    for each projection position. 

A method to improve the weighted contribution is to use the 
line integral method (LIM)[10], where the normalised length of 
the ray within a voxel is used as the coefficient, which improves 
the accuracy of the contribution of the voxels to the attenuation 
coefficient of the pixels. Considering the binary weighting method 
and Figure 2, if a voxel is intersected by either path A or path B, 
then the weight values assigned would be 1 regardless of the ray 
intersection length. In the case of the LIM, however, path A is 
given a weighted value of 1 (as it traverses the longest possible path 
through the voxel), but ray B is given a weighted contribution of 
0.25 (which is proportional to the maximum possible).

Two immediate computational problems present themselves 
with respect to the ART equation: firstly, how to algorithmically 
determine which voxels are intersected by a given X-ray; and 
secondly, how to compute the LIM weighted value. These will be 
explored in the next section.

2.1 Efficient ray-voxel intersection
As previously discussed, the set of intersected voxels in 3D space 
for a given ray results in only a small number of voxels with respect 
to the entire volume. Defining the voxel intersection problem 
in the context of 2D computer graphics is conceptually identical 
to standard line drawing methods, where the algorithm aims to 
define which pixels in 2D space to illuminate. This is a well-defined 
problem, with the most common method being to use a variation 
of the digital differential analyser (DDA) algorithm[11]. Originally 
developed for 2D graphics, Amanatides and Woo[12] extended this 
concept to 3D voxel traversal. In their work, the DDA algorithm 
was adapted to 3D and extended to have no preferred axis, making 
it both computationally efficient while prohibiting more than one 
axis change per traversal step. For a ray in parametrised form, as 
shown in Equation (3), the value of t for the three axes x, y and z 

Figure 1. Illustration of the coordinate system used in this work

Figure 2. Line integral model
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is calculated, where the minimum of the three values indicates the 
distance along the ray that is within the current voxel: 

                                                 r→  = r⟶  0     + tv→ ....................................... (3)

To support this, it is preferable to define the coordinate space as 
a series of axis-aligned bounding boxes (AABB) representing the 
voxels, where if a voxel is traversed, the coordinates are assigned 
to ObjectList[X][Y][Z], which represents the 3D grid of voxels.  
A definition of this algorithm is given in the pseudocode below:

Pseudocode 1: Voxel traversal algorithm 
list= NIL;
do {
 if(tMaxX < tMaxY) {
  if(tMaxX < tMaxZ) {
   X= X + stepX;
   if(X == justOutX)
    return(NIL); /* outside grid */
   tMaxX= tMaxX + tDeltaX;
  } else {
   Z= Z + stepZ;
   if(Z == justOutZ) 
    return(NIL);
   tMaxZ= tMaxZ + tDeltaZ;
  }
 } else {
  if(tMaxY < tMaxZ) { 
   Y= Y + stepY;
   if(Y == justOutY)
    return(NIL);
   tMaxY= tMaxY + tDeltaY;
  } else {
   Z= Z + stepZ;
   if(Z == justOutZ)
    return(NIL);
   tMaxZ= tMaxZ + tDeltaZ;
  }
 } 
 list= ObjectList[X][Y][Z];
} while(list == NIL); 
return(list);

The calculation of the LIM weight may then be obtained by 
extending the slab algorithm[13] to 3D space. The slab method is a 
computationally efficient method for determining the length of the 
intersecting line through a 2D box (as illustrated in Figure 3) and 
extending it to 3D space for this work is trivial. 

A slab is defined as a bounding volume between two parallel 
planes with a finite distance separating them, expressed as a normal 
vector to one of the planes. The bounding volume intersection is 
first calculated as the ray intersection, from r0 to r1, for each slab, 
represented by S0 and S1 for the y-axis and S2 and S3 for the x-axis, 
which are then used to calculate the intersection of the intervals. 

The intersection of the intervals is calculated as the maximum of the 
near values and the minimum of the far values.

3. Implementation of algorithms
Circular trajectories use a fixed source and detector and a rotating 
platform to obtain a series of projections at equal angular spacing. 
This acquisition strategy is the simplest to physically implement using 
a rotating platform, although the accuracy of reconstructed planes 
decreases when further away from the plane of the source and detector 
due to the divergence of the cone beam when using reconstruction 
algorithms such as FDK. Algebraic reconstruction methods are not 
inherently restricted in the geometries or trajectories used, so long as 
the positions and orientations of the source, detector and volume can 
be accurately represented. This allows greater flexibility in the positions 
and orientations, which can be used to obtain projections to improve 
the reconstruction quality. The circular trajectory for a 2D voxel grid 
fully satisfies the necessary data sufficiency conditions; however, these 
are no longer satisfied when cone-beam acquisition geometry is used, 
as all of the object intersection planes do not intersect the source 
trajectory at least once as in the Tuy-Smith condition[8,9]. The simplest 
analogue of the circular trajectory in 2D space is a spherical trajectory 
in 3D space. The use of a spherical trajectory has the added benefits 
of multiple views from orthogonal positions, allowing in two or three 
projections to determine the approximate position of a defect in the 
x, y and z coordinates.

The source and detector locations for an arbitrary trajectory are 
defined by positions in 3D space using the cartesian coordinates  
x, y, z. The orientation of both the source and detector are defined using 
an axis-angle representation, to allow the position and orientation 
of the source and detector to be characterised individually. This is 
required when the source orientation is not normal to the surface of 
the detector, either due to positional errors, which is more important 
in robotic acquisition, or intentional, to allow for alternative scanning 
strategies such as laminographic scanning. This is where the detector 
and source are kept stationary and the component is moved with 
linear motion between the source and detector.

The spherical trajectory with locations of the source and 
detector placed on the surface of a sphere with equiangular 
spacing determined by a single parameter ∆θ, which denotes the 
angular spacing between all points, has a large amount of data 
redundancy, allowing a reduction in the number of projections. The 
number of projections on a circular path can be determined using  
Equation (3) to be approximately 480 projections for a full rotation 
with an angular spacing ∆θ of 0.75°:

                                                   Np =    πNx _ 2    ......................................... (4)

where Nx is the number of voxels in the x and y axes. For the volume 
of a side length of 300 voxels (as used in the later experimental 
configurations), the minimum number of projections Np is 472 over 
a range of 0° to 360°. 

Using the same spacing for an equiangular spherical trajectory 
to allow direct comparison, where a full 360° rotation with a 
0.75° angular spacing, followed by a tilt of 0.75° over 180° until 
the sphere is fully sampled would yield 115,200 projections  
(480 × 240 projections), as shown in Figure 4, a value much larger 
than necessary for a fully determined system of linear equations. 

There has been a significant amount of interest in the use of 
ART-based algorithms for reconstruction of CT data acquired 
using non-traditional scanning modalities[14,15]. For the circular 
trajectory, the source moves in the XZ plane of the coordinate 
system of the reconstruction volume. 

Figure 3. Bounding box coordinate nomenclature
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This is implemented within floating-point 
memory on the GPU as two voxel datasets; 
the current iteration answer and the weight 
correction coefficients. For a single source 
position and the corresponding projection, 
a ray path from the source to each detector 
pixel is created and passed to a GPU for 
processing, as illustrated in Figure 5.

Each CUDA processing thread calculates 
the voxels intersected by the ray path 
dynamically using the ray-voxel intersection 
algorithm, as described in Section 2.1.  
A corresponding line weight is then calculated. 
Each thread calculates the contribution of the 
individual detector pixels to the volume using the ART equation 
and the calculated values are applied to the relevant voxels. A pre-
calculation step is performed for each ray path to check that it 
intersects the reconstruction volume. This is performed using the 
slab method, with the volume being represented by a single voxel 
and the number of voxels in each dimension as the size. If the ray 
path for a given detector pixel does not intersect the volume, the 
processing for the ray path is terminated. The implementation of 
the algorithm means that each projection can be calculated with 
no dependence on any other projection. This lack of dependence 
and the algorithms used for the ray traversal calculations allows the 
non-circular reconstruction to be performed with no additional 
computational cost compared to the circular reconstruction.

When using a single ray path per detector pixel, located at its 
centre, the issue of over-sampling (and under-sampling) may 

become problematic. The limitation of a single ray path per detector 
pixel presents itself as voxels with a high attenuation coefficient that 
is disproportionate to the surrounding voxels, due to a single voxel 
being sampled many times within a single projection and other 
voxels being under-sampled or missed due to the divergent nature 
of the beam. This effect is illustrated in Figure 6, where the pixel 
values of 0.9, 0.7 and 0.8 are back-projected. This leads to a voxel 
that is sampled by all three pixels, with the result being the sum of 
the three pixel values, shown in Figure 6(b) as the bottom middle 
voxel with a value of 2.4. By subsampling the detector pixel and 
keeping track of the number of times a voxel has been intersected, a 
correction can be applied by dividing the voxel value by the number 
of intersections to give an average voxel attenuation coefficient.

4. Experimental configuration
To evaluate and compare the quality of the reconstructions for the 
circular and spherical trajectories, the acquisition and reconstruction 
were simulated for scenarios with full access and limited access. 
The simulated projections are modelled as noiseless and with a 
point X-ray source, to allow investigation of the reconstruction 
algorithms in an ideal set-up. For the circular trajectory, this is 
equivalent to a full 360° acquisition and a 120° limited-angle 
acquisition. The object being reconstructed was the Shepp-Logan[16] 
phantom, with a side length of 300 voxels. This was chosen due to 
its use as a common point of reference within the literature[17]. The 
projections were simulated by forward-projecting through the 
volume to create a 400 × 400 detector pixel projection at a 16-bit 
data resolution. The geometry used within the system consisted 

of a source-to-object distance of 573.8 mm, 
a source-to-detector distance of 1147.8 mm  
and a detector pixel pitch of 0.2 mm.  
This is consistent with a typical cabinet 
system, such as the Nikon XT H 225 CT unit.

These projections were reconstructed 
using 50 iterations of the ART algorithm to 
achieve a convergence criterion of 5 × 10−5  
between iterations. This convergence 
behaviour is shown in Figure 7. The 
reconstructions were performed on a 64-bit 
Windows 10 Professional PC using an  
Intel i9-9900KF CPU running at 3.60 GHz as 
a host for the Nvidia RTX-3090 GPU.

In total, six experimental configurations 
were explored, consisting of a range of circular 
and spherical data acquisition strategies over 
a range of limited and full angular coverage. 
These are illustrated in Figure 8 and Table 1.

Figure 4. Illustration of the spherical trajectory

Figure 5. Data partitioning for parallel processing algorithms

Figure 6. Artefact suppression: (a) original; (b) back-projection; and (c) subsampling

4 Insight • Vol 64 • No 6 • June 2022
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To provide a baseline comparison against commercial cabinet 
systems, an initial experimental configuration was established 
that used the full 360° rotation with an angular increment of 
0.25°. A series of noiseless projections were simulated using the 
forward-projection model and then reconstructed using the ART 
algorithm. This method is repeated for all further experiments. 
This configuration is illustrated in Figure 8(a) and is referred to in  
Table 1 as Experiment 1.

To evaluate the use of a spherical trajectory, a configuration is 
presented with a source and detector rotation around the x, y and z  
axes. The use of the x, y and z axis rotation is chosen to allow for 
the object to be imaged for each plane along an axis. This contrasts 
with the circular trajectory, where the rotation plane is never 
imaged directly. The angular increment between projections for 
a rotation around a single axis is 0.75°. The angular increment 
has been chosen to allow for comparison between circular and 
spherical configurations with an equal number of projections. 
This configuration is illustrated in Figure 8(b) and is referred to in  
Table 1 as Experiment 2. 

To verify the robustness of the proposed strategy, the angular 
range of the source and detector were restricted to 180° for 
the x and z axes. This reduces the total number of projections 
from 1440 to 960 with a minimal loss of accuracy, as shown by  
Wang et al[18]. This scanning strategy reduces the reconstruction 
time and, for a physical system, the acquisition time would be 
reduced. This configuration is illustrated in Figure 8(c) and is 
referred to in Table 1 as Experiment 3.

To further assess the effect of non-circular source and detector 
positions, Experiment 4, as illustrated in Figure 8(d), demonstrates 
acquisition from locations distributed on the surface of a sphere 
with no dependence on the use of a Cartesian axis.

Inspection in NDT applications can frequently be limited by 
the component size or geometry. These factors reduce the access 
available to the component, reducing the available angles that 
projections can be obtained from. For two-dimensional fan-beam 
geometry, the minimum angle required for a mathematically exact 
reconstruction to be possible is 180° plus the fan angle, known as 
the half scan[18]. The use of an angular range less than the half scan 
results in an ill-posed process[19] and is known to cause artefacts in 
the reconstruction[20]. 

To investigate the performance of the spherical reconstruction 
method in the limited-angle case, a circular trajectory was first used 
with a rotation from 30° to 150° as a baseline. The resultant angular 
range of 120° (Experiment 5), as shown in Figure 8(e), is a limited-
angle acquisition that would be necessary in a cabinet system where 
larger angular ranges are not possible due to the component size or 
geometry. 

The trajectory for Experiment 5 was extended to a non-
circular trajectory to demonstrate limited-angle acquisition. 
The trajectory occupies an angular range from −45° to 45° in a 

Figure 8. Experimental configurations for: (a) circular full scan;  
(b) spherical orthogonal full scan; (c) spherical limited orthogonal 
full scan; (d) spherical multi-path full scan; (e) circular limited-
angle; and (f) spherical limited-angle

Figure 7. Convergence of the six experimental configurations

Table 1. Description of all experimental configurations

Experiment Figure Trajectory Angular range (y-axis) Angular range (x, y, z) Projections

1 8(a) Circular 360 – 360 – 1440

2 8(b) Spherical 360 360 360 360 1440

3 8(c) Spherical 360 180 360 180 960

4 8(d) Spherical 360 360 360 180 1440

5 8(e) Circular 30-150 – 120 – 1120

6 8(f) Spherical 30-150 90 120 – 1120
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direction orthogonal to the primary scanning 
direction of Experiment 5. This is referred 
to as Experiment 6 and is illustrated in  
Figure 8(f). The angular increment used was 
0.75°, resulting in a total of 1120 projections. 
This number of projections was also used in 
Experiment 5 to ensure consistency between 
the two limited-angle experiments. 

5. Results and discussion
All data was normalised between 0 and 1 
using min-max normalisation (Equation (4))  
to allow direct comparison against the ground 
truth Shepp-Logan phantom, as shown in 
Figure 9. Reconstructions were completed 
for the entire volume, with data extracted for 
each central slice, as shown in Figure 10.

                      Vnorm =    v − min _ max − min   .................. (5)

For Experiments 1-4 (full-scan 
experiments) the root mean squared error 
(RMSE) shown in Equation (5) (see Table 2) 
was used as a metric to evaluate the accuracy 
of the reconstructed volume against the 
ground truth: 

               RMSE =   √ 
_____

   1 _ n   ∑ 
i=1

  n    (Yi − Ŷi) 2   ........... (6)

Table 2. Root mean squared error of 
experimental configurations

Experiment RMSE

1 0.148

2 0.115

3 0.103

4 0.096

5 0.242

6 0.224

The structural similarity index measure 
(SSIM) is a metric for the perceived quality of 
an image that was proposed by Wang et al[21]  
as an extension of other full-reference 
algorithms, such as the mean squared error 
(MSE). The SSIM provides a quantifiable 
metric for the similarity of two images 
when viewed by a human operator. After 
a CT reconstruction has been performed, 
a human operator views the images to 
sentence the component. To quantify the 
difference between the reconstructions from 
the experiments performed, the SSIM, as 
presented in Equation (6), was applied to the 
3D volume using a 3D multi-scale variation 
of SSIM (MS-SSIM)[22]: 

       SSIM =    
 (2μXμY + C1)   (2σXY + C2) 

  ___________________  
 (μX + μY + C1)   (  σ  

X
  2  +  σ  

Y
  2  + C2) 

   .... (7)

where μ and σ represent the average and the 
standard deviation of the original image X and 

Figure 9. On-axis planes of the Shepp-Logan phantom

Figure 10. Reconstruction for: (a) Experiment 1; (b) Experiment 2; (c) Experiment 3;  
(d) Experiment 4; (e) Experiment 5; and (f) Experiment 6

6 Insight • Vol 64 • No 6 • June 2022
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the test image Y. σXY is the covariance of X and Y and the variables 
C1 and C2 are constants to ensure numerical stability. The metric 
was calculated using the multissim3 function in the MATLAB 
Image Processing Toolbox[23] and the results are presented in  
Table 3, where a value of 1 is an exact match.

An analysis of the 300 × 300 × 300 reconstructed volumes 
for all configurations was compared to the ground truth Shepp-
Logan phantom to characterise the 
differences in error using the RMSE as a 
metric (shown in Table 2). The experiment 
with the highest error was Experiment 1, 
which used the circular trajectory, while  
Experiments 2, 3 and 4, which used a full-
scan spherical trajectory, yielded a lower 
error. The error difference was measured 
as between 22% and 35% improvement. 
Experiment 5 demonstrated a limited-
angle circular scan, which gave an RMSE 
of 0.242. A direct comparison between  
Experiments 5 and 6 (limited access spherical 
scan) gave an improvement of 7.5%. This 
demonstrated that in all of the experiments 
conducted, improvements were observed in 
the use of a spherical trajectory over that of a 
circular trajectory. The accuracy improvement 
with the spherical reconstruction technique 
clearly demonstrates that the use of non-
circular scanning modalities is a valid strategy that can be utilised 
for applications such as limited-access or limited-angle acquisition.

Table 3. MS-SSIM for the six experimental configurations

Experiment MS-SSIM

1 0.935

2 0.949

3 0.951

4 0.954

5 0.839

6 0.889

To quantify the quality of the reconstruction from the 
perspective of a CT operator, the SSIM was used for all six 
experimental configurations, with an SSIM of 1.0 being an exact 
match. Considering the circular trajectory, Experiment 1 gave an 
SSIM of 0.935, while Experiments 2, 3 and 4 gave values in a range 
of 0.949 to 0.954, demonstrating that reconstructed data using 
the spherical method performed closer to the ground truth than 
the corresponding circular trajectory. Similar observations can 
be seen for the limited-angle experimental configurations, where 
Experiment 5 (circular) gave a result of 0.839, compared to a value 
of 0.889 for the spherical. This gave an improvement in the use of 
the spherical trajectory over circular, albeit with a reduction over a 
full angular scan coverage. This is in agreement with the literature 
and is a consequence of not meeting the Tuy sampling criteria[24] 

for the circular trajectory, with the spherical providing more data 
for the reconstruction. However, there are many practical cases 
where limited-angle acquisition would be a necessary requirement 
due to constraints imposed by the physical size or geometry of 
the component. In this scenario, the methods developed in this 
paper would provide an advantage over the limited-angle circular 
scanning traditionally utilised.

Figure 11 illustrates visually the differences between the use of 
different trajectories for the limited-angle use-case as measured 
using the SSIM. Here, it can clearly be seen that the spherical method 
is more consistent with the size and geometry of the ground truth. 
The extra degrees of freedom available for this technique clearly 
demonstrate the ability to exploit reconstruction from source and 
detector positions out of the y-axis midplane. 

6. Conclusions
In this paper, an efficient method has been presented to reconstruct 
X-ray computed tomography data from non-circular acquisition 
trajectories using simulated data. Reconstructions were performed 
using the algebraic reconstruction technique and were validated 
against the ground truth Shepp-Logan phantom and reconstructions 
with the traditional circular scanning modality. The results show 
an increase in reconstruction accuracy compared to the circular 
trajectory. Non-circular trajectories were implemented to assess 
their suitability for reconstruction of the Shepp-Logan phantom. 

The non-circular trajectory reconstructions were compared to 
circular trajectories that are used in traditional CT cabinet systems 
using standard measures, allowing an analysis of the reconstruction 
accuracy. The trajectories implemented had a comparable total 
number of projections to the circular case, with the source and 
detector positions distributed on the surface of a sphere instead 
of around a single rotation axis. The experiments performed show 
that the spherical trajectories have a lower reconstruction error 
for on-axis reconstruction planes and an overall reduction in the 
root mean squared error calculated for the entire volume. A non-
circular limited-angle trajectory was investigated for comparison 
against a spherical scanning strategy, demonstrating a lower 
impact of artefacts traditionally associated with the use of a limited 
angular range. This is of great benefit to NDT when considering 
robotic acquisition or where access may be limited in traditional 
cabinet systems. Further work would seek to implement a robotic 
environment to assess the impact of image unsharpness, noise 
and other common artefacts on the reconstruction with physical 
acquisition and to extend the work to arbitrary robotic paths.
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