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Abstract 

Fast estimation of head profile and posture has applications across many disciplines, for 

example, it can be used in sleep apnoea screening and orthodontic examination or could 

support a suitable physiotherapy regime. Consequently, this thesis focuses on the 

investigation of methods to estimate head profile and posture efficiently and accurately, 

and results in the development and evaluation of datasets, features and deep learning 

models that can achieve this. Accordingly, this thesis initially investigated properties of 

contour curves that could act as effective features to train machine learning models.  

Features based on curvature and the first and second Gaussian derivatives were evaluated.  

These outperformed established features used in the literature to train a long short-term 

memory recurrent neural network and produced a significant speedup in execution time 

where pre-filtering of a sampled dataset was required. Following on from this, a new 

dataset of head profile contours was generated and annotated with anthropometric cranio-

facial landmarks, and a novel method of automatically improving the accuracy of the 

landmark positions was developed using ideas based on the curvature of a plane curve. 

The features identified here were extracted from the new head profile contour dataset and 

used to train long short-term recurrent neural networks.  

The best network, using Gaussian derivatives features achieved an accuracy of 91% and 

macro F1 score of 91%, an improvement of 51% and 71% respectively when compared 

with the un-processed contour feature. When using Gaussian derivative features, the 

network was able to regress landmarks accurately with mean absolute errors ranging from 

0 to 5.3 pixels and standard deviations ranging from 0 to 6.9, respectively. End-to-end 

machine learning approaches, where a deep neural network learns the best features to use 

from the raw input data, were also investigated. Such an approach, using a one-

dimensional temporal convolutional network was able to match previous classifiers in 

terms of accuracy and macro F1 score, and showed comparable regression abilities.  

However, this was at the expense of increased training times and increased inference 

times.  This network was an order of magnitude slower when classifying and regressing 

contours. 
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1 Introduction 

 

Accurately locating and identifying the features of an individual’s face is an intuitive 

ability in humans requiring little thought or effort; so too is classifying gender, age, 

emotion, pose and other more abstract attributes.  It is not, however, a trivial task.  These 

human abilities are the product of millions of years of evolution and, while current 

machine vision state of the art tools and hardware can match human performance in a 

narrow range of predefined image recognition activities, in general they cannot compare. 

 

Given the ease with which a human can detect and recognize objects, it is not surprising 

that the computer vision community turned to the biological sciences for inspiration in 

developing artificial vision systems capable of competing with or replicating human 

vision capability.   Early computer vision research was guided by existing investigations 

into the structure of animal neurological systems. This research was informed by the 

discovery of regions of the brain that appeared to specialize in identifying low level visual 

primitives (Hubel and Wiesel, 1959). Hierarchies of further structures had also been 

located in the primate brain (Kruger et al., 2013) that process these visual primitives in 

order to identify more complex objects and this layered approach to feature detection and 

segmentation was then co-opted into computer vision research (Fukushima, 1980). More 

recently, the design of deeply layered convolutional neural networks (CNNs) used in deep 

learning is also underpinned by this insight (LeCun et al., 1998; Zhang, Zhao and LeCun, 

2015). 

 

Whether the activity of locating and identifying features is done by a machine or an 

animal, the early processing of the image to identify suitable primitives underpins any 

vision system. Once these features are available, they can then be used by other 

algorithms to solve problems in classification or regression. 

 

Traditional image processing and computer vision methods attempted to solve the feature 

recognition problem using the ingenuity and skill of the researcher to create custom made 

algorithms with some notable early successes in detecting low level features such as 

corners, edges and contours, and in segmentation and region/object labelling (Abdou and 

Pratt, 1979; Otsu, 1979; Canny, 1986).  Latterly, these have been combined with 
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optimization methods to identify higher level features, solve alignment problems, model 

form  and so on (Hough, 1962; Lowe, 2004; Bay, Tuytelaars and Gool, 2006; Rosten and 

Drummond, 2006). The more recent successes of deep learning approaches  have 

surpassed this earlier work in some areas (Krizhevsky, Sutskever and Hinton, 2012), but 

the effort expended in for example, face detection and recognition is immense, relying on 

the availability of vast image datasets scraped from the internet and then, in many 

instances, laboriously hand labelled. Compiling and labelling huge datasets of images is 

not a trivial task, and the computing time required to train a face detection system using 

such datasets is also significant, but often worthwhile. 

 

With these thoughts in mind, the focus of this work involves using computer vision and 

machine learning (ML) ideas together with the mathematical concepts of curvature and 

curve derivatives to identify salient craniofacial landmarks of profile head images in order 

to accurately measure head posture at speeds fast enough for use in real-time systems. An 

important requirement of this process is the development of a suitably labelled head 

profile dataset that can be used to train suitable classifiers and regressors. 

 

1.1 Why Measure Head Posture? 

For this study we refer to head posture in the context of physiological measurement of 

the head using anthropometric methods.  In particular, anthropometric landmarks are 

identified that could help accurately define the posture, as are specific regions of the face, 

such as the philtrum, the region between the top of the upper lip (the labiale superius) up 

to the bottom of the nose (the subnasale). These landmarks and regions that are 

identifiable from a profile image, together with other landmarks such as the tragus of the 

ear, can quantify position, that is, define the head’s posture. This can be extended to 

measure forward head posture (FHP), should additional body landmarks be available. For 

example, landmarks on the upper shoulders and neck.  

 

There are also clear advantages to accurate, real-time, automatic head posture 

measurement across a range of disciplines.  For example, in a clinical setting, a system 

capable of fast acquisition of facial landmarks can speed up the process of posture 

measurement and provide near instantaneous feedback to the clinician and patient alike.  

Moreover, such a tool can make use of established 2D and 3D photogrammetric 
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technologies  which claim to afford highly repeatable and precise measurements on a par 

with direct anthropometry (Aldridge et al., 2005; Ozsoy et al., 2009; Dindaroğlu et al., 

2015). 

 

It has been found that qualitative assessment of head posture by observation can suffer 

from poor intra-observer and inter-observer reliability and validity (Silva, Punt and 

Johnson, 2010). Here, the application of a real-time head posture measurement system 

based on 2D and 3D photogrammetry concepts and emerging deep learning methods 

could improve the validity and accuracy of qualitative posture assessments. 

 

A real-time posture measurement system could also facilitate posture modification and 

control in a range of settings. FHP in adults is correlated with neck pain and a limited 

cervical range of motion (Fawzy Mahmoud et al., 2019) and this has become more 

common as mobile devices and desktop computers have risen in popularity.  Here, 

immediate feedback from a real-time system could support a suitable physiotherapy 

regime and in general, real-time posture measurement has potential in all aspects of head 

and craniofacial anthropometry where accurate location of facial landmarks is crucial.  

 

Additionally, localized craniofacial landmarks may be used directly within a medical 

setting, prior to calculating posture, for example in sleep apnoea screening (Deberry-

Borowiecki, Kukwa and Blanks, 1988; Lam et al., 2005; Eastwood et al., 2020) or in 

orthodontic examination, harmony assessment and treatment planning (Lippold et al., 

2014). 

 

Realtime measurement of head and shoulder posture may also prove useful outside a 

clinical setting, for example, to support voice control in singing, aspects of dance posture 

and so on. 

 

The success of the approach relies not only on the development of fast and accurate 

algorithms that can solve the landmarking problem in this context, but also upon camera 

technology capable of capturing real-time image data that contains enough useful 

information and is low in cost. 
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1.2 Cameras: 2D or not 2D, that is the question 

Before a face profile can be landmarked it must first be found within an image. There are 

several existing computer vision approaches that could be used to detect faces from a 2D 

image.  Popular methods are based upon the Viola-Jones algorithm (Viola and Jones, 

2001), histogram of gradients (HOG) (Dalal and Triggs, 2005), active appearance models 

(AAM) and more recently deeply layered neural networks (DNN), and in particular 

deeply layered convolutional neural networks, for example RetinaFace (Deng et al., 

2019), though most of these methods perform best with frontal or near frontal face poses.  

Once detected, landmarking prior to pose estimation can begin. Again, recent work on 

landmarking and shape estimation has focused on AAMs and DNNs, with DNNs 

currently achieving best performance across several competitions and challenges 

(Russakovsky et al., 2015; Wang et al., 2015; Deng et al., 2019). 

 

What has this got to do with camera choices? It is apparent that the majority of effort 

recently has been applied to 2D image land-marking and whilst the results are impressive 

there is significant processing involved in identifying landmarks. So, could depth 

information improve the efficiency of landmarking?  Depth information can be binarized 

and used to infer contours of the profile face in controlled environments such as those 

discussed earlier in this introduction. This information can be used to generate a 2D 

contour from which curvature can be calculated and, following on from this, salient 

landmarks identified.  Key areas of this thesis will focus upon the use of profile contours 

extracted in this way and use features related to curvature to identify head landmarks and 

face regions that in turn can be used to describe head posture.  

 

A 3D camera provides RGB values and an additional depth image, often such an image 

is referred to as an RGB-D or RGBD image.  Several technologies exist that achieve this 

in different ways.  Light sectioning or sheet of light triangulation methods emit a 

horizontal stripe of light and the reflected light from the object is converted by 

triangulation into depth information (Minolta, 2001). Stereophotogrammetry where 

multiple cameras, carefully aligned with matched optical parameters, are available but 

here the correspondence problem needs to be solved, that is, common points on each 

image need to be aligned and this takes valuable processing time.  They also have the 

disadvantage of being relatively expensive and less compact than emerging alternatives 

such as structured light and Time of flight (ToF) cameras.  
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Structured light (active stereo) cameras illuminate the scene with a specific infrared light 

pattern and an image of the scene is then captured.  Depth is calculated by processing this 

image.  A second RGB camera also captures colour information.  An alternative is ToF 

depth cameras.  Here a light pulse is sent out and reflects off objects in the scene. These 

reflections are received at the camera’s infra-red image depth sensor and the depth is 

inferred from the time it takes for the reflected ray to make the round trip. A second RGB 

camera is also used here to capture colour information, though the pixel densities of the 

cameras are typically different. 

 

Recent advances in camera technologies have resulted in widely available, compact and 

low cost devices, such as Intel’s RealSense Depth Camera (Intel, 2018) or, more recently, 

the Microsoft Azure Kinect that allow high definition colour images with depth 

information to be captured in real time at up to 30 frames per second (Microsoft, 2019). 

Additionally, laser and infrared light used for depth measurement is largely unaffected by 

local changes in the lighting of the scene which results in a more robust depth capturing 

process. Depth information captured by these devices are generally independent of the 

background scene and so segmentation of the regions of interest is not a problem.  This 

is a significant advantage when fast processing of the scene information is paramount.  

ToF cameras are also beginning to be integrated into mobile devices which suggests that 

this technology will become significantly cheaper and widespread. 

 

1.3 Anthropometry 

Accurate and reliable identification of anthropometric landmarks is the foundation of 

anthropometry.  Manual anthropometric measurement made by expert technicians has 

traditionally been regarded as the gold standard. However, digital anthropometry that uses 

photogrammetric methods based on 2D camera images and, more recently on 2.5/3D 

cameras and scanners, has become popular with many studies in the literature comparing 

the efficacy of both manual and digital approaches and, whilst each has distinct 

advantages and disadvantages (see section 1.2 above), both are regarded as being capable 

of generating valid data and outcomes.  
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By studying craniofacial anthropometry and related photogrammetric methods we can 

identify candidate landmarks suitable for measuring head posture and use the results of 

this investigation to inform the design of our algorithms and related models. 

 

Additionally, as is reviewed in section 2.9, there is an abundance of anthropometric data 

and statistics available from several sources that can also be used to define constraints 

when searching for landmark parameters. 

 

1.4 Landmarking and posture estimation from RGB-D images 

There is already a mature research field in face landmarking for 2D images in controlled 

and un-controlled (“in the wild”) (Wang et al., 2015; Johnston and de Chazal, 2018; Deng 

et al., 2019) with many datasets of annotated images available and open competitions 

encouraging research, for example the Menpo 300W faces in the wild challenge (Sagonas 

et al., 2016). There is, however, no agreed single standard for facial landmark annotation 

and additionally some profile datasets use their own labelling standards with many points 

not corresponding to established anthropometric landmarks (Sagonas et al., 2016). 

 

There also appear to be few 3D datasets or 2D datasets with depth information, although 

a limited number of controlled environment, 3D head profile datasets have been generated 

(Yan and Bowyer, 2007). 

 

As outlined earlier in this introduction, RGB-D profile images lend themselves to fast 

contour extraction. Couple this with the observation that many anthropometric landmarks 

have, necessarily, points of high curvature, then extraction of curvature from the profile 

contour and the analysis of this to locate landmarks would seem sensible.  Indeed 

curvature has previously been used in analyzing 2D shape (Belongie, Malik and Puzicha, 

2001), face recognition (Kakadiaris et al., 2008)  and in face gesture recognition (Pantic 

et al., 2005). 

 

Suitably landmarked training data can be used in training several ML regression 

algorithms including CNNs. The accuracy of these will depend not just upon the size of 

the dataset and the sophistication of the model but also upon the accuracy of the 

landmarking, and manual human landmarking will always be a source of measurement 



 

7 

 

error. This thesis notes that it may be possible to correct mislabelled landmarks by taking 

advantage of the underlying curvature properties of a profile.   Such an approach is 

conjectured and investigated in chapter 5. Here, a novel, semi-automatic method is 

proposed that will allow the approximate placing of landmarks by a skilled operator 

followed by an automatic correction phase based on local curvature analysis. This 

annotated dataset may then be used to train selected algorithms as in (Wang et al., 2015). 

 

A curvature dataset parameterized on arc length opens up additional opportunities for 

time-series analysis.  The literature here is mature and practitioners have already 

investigated the efficacy of time-series analysis methods in silhouette identification 

(Fawaz et al., 2019). 

 

1.5 Additional requirements 

An attractive feature of a system capable of locating landmarks and using these to 

measure posture is the ability to explicitly follow the process by which a set of pixel 

values and depth measurements translate into a measured posture, that is, to answer the 

question “how does it do that?” This is a useful trait as it gives confidence in the reliability 

of a measurement and of future measurements.  A neural network might be able to regress 

a landmark within an image but it is not yet possible to fully identify what, where or how 

distinct processes take place within the network and, given the non- linear nature of neural 

networks, whether points nearby in the input space will map to points nearby in the output 

space. 

 

The trained network alone might be deterministic but, in isolation, it is not possible to 

know what it has been trained with. Whilst many would sacrifice deterministic confidence 

for accurate results most of the time, all other things being equal, it is nice to know how 

it does what it does, if only because one can replicate its action and thereby gain 

confidence in its reliability or otherwise. 
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1.6 Research Question 

This introduction identifies the focus for this work and outlines approaches that will be 

of use in achieving the goal of creating methods for the fast and accurate measurement of 

head posture and the challenges involved. 

 

Using depth information from a 2.5D camera it is possible to efficiently extract precise 

2D geometric information of the shape of the head and shoulders in profile and so, given 

this assumption, the research question becomes: 

 

“When used as features for deep DNNs, to what extent can curvature and its properties 

such as the first and second derivatives of a curve be useful in segmenting and regressing 

points on the occluding head profile?” 

 

From this question aims, objectives and hypotheses can be identified. 

 

1.7 Aims, Objectives and Hypotheses 

1.7.1 Aims 

The aim of this research is to: 

 Explore extensively the suitability of curvature and its properties as features for 

fast regression and segmentation of parameterized plane curves, and in so doing, 

examine the effectiveness of these features in training deep neural networks to 

estimate head profile posture derived from 2.5D images. 

 

1.7.2 Objectives 

From this aim the following objectives can be enumerated: 

1. To engineer and evaluate features derived from plane curves to train supervised 

machine learning models capable of efficiently segmenting regions of interest. 

 

2. To develop a dataset of accurately landmarked head profile contours. 
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3. To develop and evaluate fast ML models capable of estimating head profile by 

segmenting profile contours into regions of interest and regressing key head 

profile landmarks. 

 

4. Demonstrate that engineered features, in the context of this thesis, compare well 

with end-to-end ML approaches. 

 

1.7.3 Hypotheses 

From the research question and aim it is hypothesized that curvature and the related first 

and second derivatives of a curve can be efficiently calculated from a given plane curve 

and these features will enable the fast and accurate segmentation of a curve when used in 

conjunction with suitable ML models.  A second hypothesis is that the same ML models 

can also be used to efficiently regress points on a plane curve with high accuracy and 

precision. A final hypothesis is that, in the context of this, these engineered features can 

produce results superior to an end-to-end ML approach. 

 

1.8 Ethical Approval and Risks 

Ethical approval was sought for the research and experimental work underpinning this 

thesis and, as such, was considered and approved by the University’s ethics committee.  

A summary of the approved Ethics proposal is included in Appendix E. 

 

1.9 Contributions to the literature 

The following contributions are identified and enumerated below: 

 

i) This study provides an evaluation of the effectiveness of curvature and related 

features used to efficiently identify regions of interest in a uniformly sampled 

sequential dataset.  This includes the generation of new algorithms, software and 

tools to evaluate the accuracy of a recurrent neural network (RNN) that uses the 

features engineered here.  Additionally, an investigation of the run-time efficiency 

of the engineered features is provided. 
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ii) An existing RGB-D dataset is extended, by extracting head profile contours so 

creating a new database of face profile contour curves.  Additionally, a new set of 

manual annotations are generated identifying key anthropometric landmarks on 

both the RGB images and profile contour curves. 

 

iii) A novel approach is developed in this context to automatically improve the 

accuracy of the annotations based upon the curvature properties of selected 

anthropometric landmarks. 

 

iv) The findings of i) above are extended to work with the head profile contour dataset 

created in this study resulting in a new procedure that can accurately achieve fast 

face segmentation of head profile images.  An evaluation of this procedure 

documents both the accuracy of the approach and its run-time efficiency when 

used with two RNNs. 

 

v) The procedure used in iv) is further extended to develop a method to regress 

landmarks from the segmented profile contour and the accuracy and precision of 

this method is evaluated and documented. 

 

vi) Finally, the effectiveness of an end-to-end learning approach is investigated using 

a one-dimensional temporal convolutional neural network (1DTCNN) to achieve 

the same goals of iv) and v) and the findings of this investigation presented with 

recommendations. 

 

1.10 Layout of Thesis 

Chapter 2 reviews previous work related to head posture estimation from perspectives of 

anthropometry and machine vision fields.  Here, methods of extracting profile contours 

from 2D and 2.5D image data are reviewed and the theory behind curvature of a sampled 

plane curve is covered including methods used to efficiently calculate curvature and 

signal derivatives. Related work that uses curvature as a feature for classification and 

regression is identified and its relevance to this study assessed. Existing datasets used in 

both anthropometry and machine vision are also identified and the selection of suitable 

landmarks discussed.  This chapter also includes essential theory related to ML and deep 
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neural network ideas used in this work and references more detailed discussions in the 

relevant appendices.  

 

Chapter 3 provides a review of the research methodology and common methods used in 

the thesis and provides details and justifications for their use. 

 

Chapter 4 applies the ideas of curvature and other related features to segmenting a 

uniformly sampled time series dataset. A RNN is used in conjunction with a range of 

engineered features and their run-time efficiency and segmentation efficiency are 

evaluated using established metrics and conclusions made.  

 

Chapter 5 introduces the Notre Dame J2 dataset and details the methods used to extract 

profile contour information from the dataset.  It includes a description of the manual 

annotation process and tools developed to generate a new dataset.  Here, suitable 

anthropometric landmarks are selected for annotating the 2D RGB images and methods 

for extracting curvature and enhancing landmark accuracy are explained and 

implemented. These methods are evaluated, and their usefulness and limitations 

discussed. In the second part of the chapter, two RNNs are trained using a variety of 

features and the effectiveness of the segmentation process is evaluated, as previously for 

both networks, before settling on a best choice for features, network architecture and 

training hyper-parameters.  Finally, the segmented profile contour is subjected to a further 

process to regress landmark positions and the accuracy and precision of the estimated 

landmarks is determined and evaluated using a held-out dataset. 

 

In Chapter 6 a more complex 1DTCNN is used with a subset of features developed in 

previous chapters. Its accuracy, precision and execution speed are evaluated and 

compared with the approaches used in chapter 5.  This chapter also examines the 

effectiveness of the end-to-end ML approach when compared with a more traditional 

methodology that emphasizes feature engineering.  

 

Finally, in Chapters 7 and 8 we summarize our findings, make recommendations and 

present possible future work. 
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2 Literature Review 

 

2.1 Introduction 

This chapter begins by reviewing the notion of contours and contour curvature followed 

by an examination of how curvature can be calculated from 2D binary images.  

Limitations of 2D image capture devices are identified and the necessary image 

processing operations required prior to curvature calculation are then discussed. An 

overview of facial landmarking from two perspectives, anthropological and machine 

vision is provided.  Useful datasets generated in both fields that are relevant to this thesis 

are identified. Classical optimising-based model fitting methods related to time series 

datasets and shape estimation are reviewed and then the chapter shifts attention to deep 

learning methods.  The aim here is to recognize, review and contextualise selected 

methods pertinent to this thesis. 

 

2.2 2D Face Landmarking and Feature Detection 

2.2.1 Face Landmarking Databases 

2D facial landmarking is a relatively mature field with many approaches developed to 

identify facial landmarks from two dimensional images.  Facial landmarking algorithms 

take an un-labelled image as input and attempt to generate a list of landmarks specific to 

the algorithm’s landmarking scheme. Typically landmarking methodologies rely on the 

existence of benchmark datasets with  high quality annotated sets of landmarks, for 

example (Belhumeur et al., 2011; Le et al., 2012; Köstinger et al., 2011; Sagonas et al., 

2013, 2016; Zhu and Ramanan, 2012) and more recently Deng, et al. (2019).   

 

Many large scale face image databases exist that have limited or no landmarking, for 

example the Labelled Faces in the Wild database (LFW) (Huang et al., 2008) and  RGC-

V2 (Phillips et al., 2005).  More recently the overwhelming success of recent deep 

learning methods has driven the development of large face and object databases. This 

began with the success of AlexNet in the 2012 ImageNet (Russakovsky et al., 2015) 

object detection competition which saw the beginning of the current deep learning 

approach to face and object detection using CNNs together with multiple layers of feature 
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extraction and transformation. The success of AlexNet propelled a growth in face 

recognition DNN architectures such as Facebooks’s DeepFace, DeepID, Google’s 

FaceNet and VGGNet for example, which have been best performers in face recognition 

challenges. All these deep face recognition networks require large databases of images 

for training and testing.  Most commercial face databases are private but the recent public 

release of the CASIA-Webface database (Wang et al., 2007; Yi et al., 2014) allowed 

researchers to train, evaluate and compare models.  These databases usually have limited 

annotations, typically a bounding box to identify a face or, in the case of celebrity 

databases, a person ID too. So, researchers in face landmarking do have choices: use 

existing face landmarking databases, develop new databases of landmarked annotated 

images or annotate existing public databases with landmarks. The databases used in deep 

face recognition that have been identified here are covered in more detail by Wang and 

Deng (2021) which also provides a good survey of face recognition. 

 

Putting aside databases that have not been annotated with face landmarks the following 

paragraphs concentrate on existing face landmarking databases and their landmarking 

schemes.  

 

 Sagonas et al. (2016) provides a clear overview of popular face landmarking databases 

categorised by the conditions under which the images were captured, namely controlled 

conditions databases and un-controlled conditions databases.  The controlled conditioned 

databases are captured in indoor environments, often with controlled lighting conditions, 

background and camera position. Typically, there are several images per subject where 

the subject is asked to assume a range of facial expressions and there is no face occlusion, 

though where near side facing images exist there is, naturally, some degree of self-

occlusion.  Whilst Köstinger et al. (2011) focused on faces-in-the-wild for their AFLW 

database they also identify constrained databases as well as unconstrained databases in 

their review of existing databases.   

 

Constrained condition databases identified by Sagonas and Köstinger  include: Multi-Pie 

(Gross et al., 2010), XM2VTS (Messer et al., 1999), FRGC-V2 (Phillips et al., 2005), 

AR (Martinez and Benavente, 1998) and The BioID Face Database (Jesorsky, Kirchberg 

and Frischholz, 2001). The unconstrained databases (often referred to as “in the wild”) 

are typically images scraped from the web and manually annotated by local experts. 
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Popular in-the-wild databases include Annotated Facial Landmarks in-the-Wild (AFLW) 

(Köstinger et al., 2011),  Annotated Faces in-the-Wild (AFW)  (Zhu and Ramanan, 2012), 

HELEN (Le et al., 2012), IBUG  (Sagonas et al., 2013, 2016),  Labelled Face Parts in-

the-wild (LFPW) (Belhumeur et al., 2011) and most recently the Mempo 2D and 3D  

Facial Landmark Databases (Zafeiriou et al., 2017; Deng et al., 2019). 

 

The majority of these databases concentrate on annotating frontal or near frontal face 

images, though some such as Multi-Pie and the Mempo 2D annotated databases also 

include profile annotations using their own landmark configuration scheme. Occlusion is 

common in these databases. 

 

2.2.2 Landmark Annotation Schemes 

The list of face landmarks used when annotating a face is called the annotation scheme.  

There is no standard annotation scheme but the labels used by popular or successful 

algorithms appear to be re-used most frequently by subsequent researchers.  The 

landmarks used include those derived from established anthropometrical practice as well 

as more ad-hoc choices. 

 

Phimoltares, Lursinsap and Chamnongthai (2007), Çeliktutan, Ulukaya and Sankur 

(2013) and Wu and Ji (2019) also identify a range of commonly used landmarks, suggest 

suitable groupings and provide criteria for  their selection, this is helpful to this study 

when identifying potential datasets and landmarking schemes  for profile based 

landmarking datasets.  

 

The fundamental characteristic of a good face landmark is its ability to be uniquely 

identified.  This is true whether the chosen landmark is identified by an anthropometric 

practitioner or by an automatic landmark detecting algorithm. Such landmarks are called 

primary landmarks in the literature and will have clear features that aid their detection 

such as points of extremity, gradient information related to areas of high curvature, 

corners and edges, and texture or other local information. Where primary landmarks are 

unaffected by changes of expression or orientation they can be used as reliable landmarks 

or datums for guiding landmark search. Such primary landmarks are often referred to as 

fiducial landmarks in the literature. Other less obvious landmarks can still be identified 

but they rely upon their spatial relationship with nearby primary and fiducial landmarks. 
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These landmarks are often called secondary landmarks. There is some evidence that 

extending the number of landmarks used can improve accuracy for some methods, for 

example Milborrow and Nicolls (2008) note improved accuracy of their extended Active 

Shape Model when additional landmarks were added.  

 

The number of selected landmarks differs significantly across databases, Multi-PIE, 

XM2VTS and the IBUG (200-W, faces in the wild) use 68 landmarks based on the Muli-

PIE scheme; AR annotates 22 landmarks (Ding and Martinez, 2010); AFW uses only 6 

(but these are multi-view and used for testing, with training of their method done on 

Multi-PIE); FRGC-V2  just 5; AFLW has 21; LFPW has 35 and HELEN uses 194. 

 

 Sagonas et al. (2016) illustrates the position of these landmarks as illustrated in Figure 

2-1. 

 

 

Figure 2-1 Popular landmarking schemes (Sagonas et al., 2016). 
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Çeliktutan, Ulukaya and Sankur (2013) note 17 primary landmarks, known as the m17 

landmarks in some literature.  They correspond to the landmarks of the AR database after 

removal of the face’s five outline landmarks. 

 

A goal of this study is to accurately quantify profiles using suitable landmarks. The 

landmarks catalogued in Figure 2-1 identify potential profile landmarks, especially those 

landmarks intersecting the mid-sagittal plane, that is the vertical midline of the faces 

above.  Ideally these will also be primary landmarks – that is landmarks that, in profile 

have high curvature and/or are points of extremity.  Looking at the landmarking schemes 

shown in Figure 2-1, there are many landmarks along this vertical midline that may be 

suitable, and in particular the schemes used by MultiPIE/IBUG, XM2VTS, LFPW and 

HELEN appear to be good candidates.  These databases could also be useful in evaluating 

the accuracy of the methods used later in this thesis to regress profile landmarks.  It’s 

clear that databases that include profile images might be suitable in assessing the 

performance of methods used in this thesis, assuming of course, the annotation of the 

databases is both accurate and consistent. 

 

2.2.3 Face Landmarking methods and algorithms 

Reviews of face landmarking approaches within the computer vision community have 

identified various categorizations to better present, classify, understand, and compare 

methods and techniques used. Phimoltares suggest five categories: geometry-based 

methods, colour-based approaches, appearance-based methods, motion-based methods 

and edge-based methods whilst Çeliktutan suggest two basic categories – model-based 

methods (or shape-based methods) and texture-based methods. Here model-based 

methods use the whole face image together with facial landmark groupings to help guide 

the algorithms in regressing landmarks. Typically, such algorithms use a pre-labelled 

training set of images. In comparison texture-based methods locate facial landmarks 

independently without the use of global information encoded in an idealised model and 

as Çeliktutan points out there can be overlap between these categories.  

 

The model based methods would include, for example, those of Cootes, Edwards and 

Taylor (1998, 2001) and encompass Active Appearance Models (AAM) and Active 

Shape Models (ASM) (Cootes et al., 1995) which, together with their variants (Milborrow 

and Nicolls, 2008; Tresadern et al., 2009),  have been used with great success since their 
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introduction in the mid 90’s. AAM and ASM both use statistical information generated 

from the image to modify or morph an ideal model, fitting it to the image by optimizing 

the model parameters using optimization methods, for example gradient descent. The 

model based methods would also include neural network models where the model 

information is implicitly encoded in the network weightings.   

 

The successes demonstrated by recent developments in neural networks have eclipsed 

AAM methods.  For example, Johnston and de Chazal, (2018) note the first two 300W 

faces in the wild landmarking competition (Sagonas et al., 2016) received few deep neural 

network submissions whilst the 2017 Menpo Facial Landmark Localisation Challenge 

(Zafeiriou et al., 2017) comprised wholly of submissions based on deep learning methods 

and the organizers note that deep learning methods can lead to excellent results when 

trained with large datasets (Deng et al., 2019).   

 

A third categorization by Wu and Ji (2019) has three categories: holistic (generative) 

methods, constrained local models (CLM) and regression-based methods. The holistic 

methods model the appearance of the whole face in the image and include information 

about the shape of the face as defined by the face landmarks and their inter-relationships 

and includes AAMs identified above.  CLM methods use local patch information and face 

shape information, and regression-based methods use either or both local patches and/or 

the whole face image. 

 

Jin and Tan (2016) identify two classifications: holistic (generative) methods as described 

above and also discriminative methods which include CLMs, deformable parts models 

(DPM), cascaded regression and deep neural networks. 

 

However one decides to group and classify these approaches, there are limitations to the 

methods used particularly in real-time scenarios where processor resources are limited.  

Álvarez Casado and Bordallo López (2021) note such limitations become problematic 

when dealing with occlusions, extreme poses, and so on.  

 

As the review above indicates, a single, agreed classification standard does not exist. 

However, these attempts at creating taxonomies of facial landmarking methods can be 

useful here for several reasons, even though this study concentrates instead on contour 
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curves of the mid sagittal plane. They help to identify algorithms and methods based on 

similar approaches and specify characteristics and properties of the image data used by a 

method or algorithm.  This, in turn, helps guide this study in promising directions, 

searching out methods or algorithms suitable for accurate landmarking given the available 

data.  

 

The taxonomies described above concentrate on two dimensional methods to locate 

landmarks and regions of interest. In contrast, the data used in this thesis is a contour 

curve extracted from an image using depth information. As the taxonomies of facial 

landmark algorithms and methods discussed above assume two-dimensional, multi-

channel, image data (three channels for colour or one for greyscale), then not all the 

methods identified and evaluated in the reviews are relevant, though some ideas remain 

pertinent to sequential data such as the need to select regions of interest (RoI) and to apply 

image smoothing operations prior to applying any landmarking algorithm. Additionally, 

the principles of adjusting and fitting features to a standard size (Procrustes methods) are 

relevant when dealing with sequential data in the form of contour curves, for example, as 

well as two dimensional images.  

 

The excellent results obtained in the last few years using 2D images makes the use of 

deep neural networks both attractive and relevant to regressing facial landmarks using 

both two dimensional image information as well one dimensional data.  Given the 

enormous success in 2D landmarking and the focus here on profile contours, section 2.8 

further investigates suitable emerging neural network varieties that have been 

successfully used with sequential data sets. 

 

The next section looks at profile contours and, interpreting this as a data sequence, 

reviews algorithms that have capability in feature generation for regression and region 

classification. 

 

2.3   Profile landmarking and curve segmentation 

A profile contour and its curvature, once extracted from a binary image, can be used as 

an input to an algorithm to regress selected facial profile landmarks.  Promising methods 

used to locate landmarks might include classical optimization problems that locate local 
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maxima and minima within a curve.  These can be used with additional information 

describing the relative ordering of local landmarks to regress co-ordinates on the binary 

image.  Distance based similarity measures such as Euclidian and Mahalanobis distance 

are regularly used to estimate the similarity of the shape of a candidate curve with that of 

an architype, either locally on a sub-sequence of the contour, or globally. Such measures 

can be used here to quantify errors, similarity, and so on. 

 

Interpreting the profile contour curve and its curvature as an abstract sequence of sampled 

data allows other well studied methods to be investigated.  For example, there are several 

approaches to curve fitting found in the time series analysis literature that have already 

been used to solve similar problems. Cross-correlation is a simple approach that can work 

well on similar data sets and is an attractive idea, however it does not perform well when 

the series to be matched are at different scales and have been stretched or compressed in 

a non-linear fashion at a local scale. Since this non-linearity is evident in the phenotypic 

diversity of faces then more sophisticated methods are required here.  

 

Dynamic time warping (DTW) (Sakoe, 1978) attempts to solve this problem.  It uses a 

mapping of two vectors found by minimizing the distance between them using dynamic 

programming methods and has often been used successfully in time series analysis, for 

example in speech processing, handwriting and gesture recognition, time series 

clustering, protein sequencing and, as will be seen soon, in both electrocardiogram 

analysis and profile recognition. 

 

Hidden Markov models (HMM) and other Bayesian methods are also used in time series 

analysis in similar areas to DTW.  They have been a mainstay of classical speech analysis 

since the 1950s where they attempt to deal with scaling, stretching and compression of 

data samples by using the trained model’s state transition probabilities to guide the 

evolution of state space.   

 

More recently RNNs have successfully been applied to sequential data and have been 

responsible for the impressive advances seen in speech recognition.  These methods 

currently eclipse in performance HMMs and related Bayesian methods (Graves et al., 

2006; Graves, Mohamed and Hinton, 2013). 
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2.4 Object Contours from RGB-D data 

The primary advantage of using 2.5 dimensional RGB-D image data is the relative ease 

of extracting profile contours in a controlled environment.  There are several proprietary 

RGB-D data formats in use and typically they include colour image RGB data stored in 

a suitable format, for example .png or .bmp file types together with depth information 

stored separately in a binary or text based format. The depth information may or may not 

be sampled at the same resolution as the colour image data, however each depth sample 

typically includes (x, y, z) spatial co-ordinate values for each point and may also include 

binary image data.  The binary data consists of a set of binary true or false (1 or 0) values 

corresponding to image pixel values where a logical true (1) indicates that a valid depth 

sample has been captured and its related x, y and z value corresponds to width, height and 

depth, respectively.  A logical false (0) indicates an invalid sampled pixel where no depth 

range information has been returned by the camera.  Typically, this will occur when an 

object is beyond the range of the camera, when incident light has been attenuated or 

scattered and no reflected ray has been received by the camera, or when there has been 

interference between light reflected from multiple surfaces, see Microsoft (2019) for 

further details. 

 

Binary data can also be created from valid depth pixels by removing all points which are 

to one side of an arbitrary two-dimensional plane.  For example, assuming a right handed 

co-ordinate frame and a plane with a normal vector, �̂� = (0,0,1) and a point, p on the 

plane, p=(0, 0, -1) then all points with a depth value, z, less than  -1 can be selected and 

all others culled. 

 

Once a binary image has been captured then its contour can be found.  Moore’s algorithm 

(Moore, 1968) as described by Woods and Gonzalez (2017) reliably finds the outer 

boundary of objects in a binary image where the background pixels are labelled with zeros 

and the foreground with ones.  It is useful to place a boundary frame of logical false (zero) 

pixel values around the image to prevent errors should the object not be totally contained 

within the image.  The resulting contour is a data structure containing a sequential list of 

(x, y) pixel locations describing the contour of the object. 
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This algorithm assumes a clockwise orientation and eight-connected pixel neighbours, 

that is any object pixel has at least one adjacent pixel that is either horizontally adjacent, 

vertically adjacent, or diagonally adjacent.  Figure 2-2 shows an example binary image 

and the resulting, overlaid contour (in red) produced by an implementation of Moore’s 

algorithm in C++ created for this study. 

 

 

 

 

Figure 2-2: Moore’s Boundary algorithm.  Left: the binary image with Moore’s algorithm 

applied.  Right:  A close up of spiral centre showing 8-connectivity. 

The resulting contour curve can then be further processed to determine points of interest 

as discussed in section 2.3. In particular, points of prominence can be located, and areas 

of high curvature calculated using the ideas discussed next. 

 

2.5 Curvature 

In sections  1.4  and 2.3 it was noted that many anthropometric landmarks are placed at 

points of high magnitude of curvature so this section reviews the idea of curvature and 

describes how to determine the curvature at any point on a given contour. The calculated 

curvature at every point can then be used as a feature to describe and identify specific 

landmarks. 

 

A plane curve is any curve that is contained in a two-dimensional plane. Here an equation 

for the curvature of a plane curve is developed together with a method to calculate the 

curvature at sampled points on the contour of a two-dimensional binary image. Sampled 

points present their own difficulties so an approach is proposed that will reduce the 

introduction of systemic noise related to the sample space. 
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The following review of curvature and the development of the curvature formula that 

follows is based upon established works on differential geometry, for example (Gray, 

Abbena and Salamon, 2017). 

 

The arc length, s of a plane curve is defined as the distance between two points as one 

moves along the curve and the curvature, κ is given as d∅/ds where ∅ is the tangential 

angle. Figure 2-3 shows this relationship. 

 

 

 

 

 

 

 

 

 

Figure 2-3: Curvature as the derivative of the tangential angle, ∅ wrt arc length, s 

 

If the plane curve is given by the Cartesian parametric equations x=x(t) and y=y(t) then, 

κ can be represented in terms of the parameter t as 

𝑑∅

𝑑𝑡
𝑑𝑠

𝑑𝑡

. 

Cauchy showed in 1826 (Gray, Abbena and Salamon, 2017; Kline, 1972) that  

 

𝑑𝑠

𝑑𝑡
= √(

𝑑𝑥

𝑑𝑡
)

2

+ (
𝑑𝑦

𝑑𝑡
)

2

    so, 

 

𝜅 =
𝑑∅

𝑑𝑡

√(
𝑑𝑥

𝑑𝑡
)

2
+(

𝑑𝑦

𝑑𝑡
)

2
    

 

or using the notation, 

 

 𝑥‘ =
𝑑𝑥

𝑑𝑡
  and 𝑦‘ =

𝑑𝑦

𝑑𝑡
  then,  

s1 

s2 

 

∅2 

∅1 

𝛥∅

𝛥𝑠
=

∅2 −  ∅1

s2 −  s1

 

        and in the limit as 𝛥𝑠 → 0  

𝜅 =
 𝑑∅

𝑑𝑠
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𝜅 =

𝑑∅
𝑑𝑡

√𝑥‘2 + 𝑦‘2
 

 

 (2-1) 

 

Next, note that the derivative 
𝑑∅

𝑑𝑡
 can be represented using the identity tan(∅) = 

𝑑𝑦

𝑑𝑥
 and that 

tan(∅)  = 

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

,  then, 

 

𝑡𝑎𝑛(∅) =
𝑦‘

𝑥‘
 

          (2-2) 

 

 

Now let g = tan(∅) and differentiating with respect to t using the chain rule,  

 

𝑑𝑔

𝑑𝑡
 =

𝑑𝑔

𝑑∅
 
𝑑∅

𝑑𝑡
  then,  

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡
  =𝑠𝑒𝑐2∅

𝑑∅

𝑑𝑡
   and re-arranging this for 

𝑑∅

𝑑𝑡
   gives, 

 

𝑑∅

𝑑𝑡
=

1

𝑠𝑒𝑐2∅

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡
 

(2-3) 

 

 

Differentiating equation (2-2) using the quotient rule gives, 

 

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡
=

𝑥‘𝑦‘‘ −  𝑦‘𝑥‘‘

𝑥‘2
 

(2-4) 

 

Combining equations (2-3) and (2-4) and noting 

 

 
1

𝑠𝑒𝑐2∅
=

1

1+𝑡𝑎𝑛2∅
   yields, 

 

𝑑∅

𝑑𝑡
=

1

1+𝑡𝑎𝑛2∅
 

𝑥‘𝑦‘‘   − 𝑦‘ 𝑥‘‘ 

𝑥‘2
 ,   

 

     =
1

1+
𝑦‘2

𝑥‘2

 
𝑥‘ 𝑦‘‘ −  𝑦‘ 𝑥‘‘ 

 𝑥‘2
   and, 
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𝑑∅

𝑑𝑡
=

𝑥‘ 𝑦 ‘‘ −  𝑦‘ 𝑥‘‘ 

𝑥‘2 + 𝑦‘2
 

  

(2-5) 

Finally, combining equations  (2-1) and (2-5) gives the curvature, 𝜅 of the curve at point 

(x(t),y(t)). 

 

𝜅 =
𝑥‘ 𝑦 ‘‘ −  𝑦‘ 𝑥‘‘ 

(𝑥‘2 + 𝑦‘2)
3
2

 

 

(2-6) 

where 𝑥‘, ‘‘, 𝑦‘ 𝑎𝑛𝑑  𝑦‘‘ are the first and second derivatives of x and y with respect to the 

parameter t. 

 

Equivalently and more intuitively the curvature, κ is given by 𝜅 =
1

𝑟
  where r is the radius 

of the osculating circle, see Figure 2-4. 

 

 

Figure 2-4: Curvature, 𝜅 =
1

𝑟
   described by the osculating circle of radius, r. 

To see this note that if a circle specified as 𝑥 = 𝑟 cos(𝑡) and 𝑦 = 𝑟 sin(𝑡)  is tangent to 

a curve at a given point then 

 

 𝑥‘ = −𝑟 𝑠𝑖𝑛(𝑡) , 𝑥‘‘ = −𝑟 𝑐𝑜𝑠(𝑡) , 𝑦‘ = 𝑟 𝑐𝑜𝑠(𝑡)  𝑎𝑛𝑑 𝑦‘‘ = −𝑟 𝑠𝑖𝑛(𝑡),  

 

and so from equation (2-6), 

 

 𝜅 =
𝑟2 sin2(𝑡)+ 𝑟2 cos2(𝑡)

(𝑟2 sin2(𝑡)+𝑟2 cos2(𝑡))
3
2

 , and therefore, 
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𝜅 =
1

𝑟
  

  

(2-7) 

where r is the radius of the osculating circle.   

 

Curvature can also be found numerically by using the radius of curvature by fitting an 

osculating circle to each point in the curve. Fitting can also be performed using a linear 

least-squares regression technique (Hopp et al., 2015). 

 

It is worthwhile pointing out that the curvature is dependent on both first and second 

derivatives and these properties have been used alone by some authors to identify face 

landmarks with moderate success. Lippold et al. (2014) compared first and second 

derivatives of an outline face profile and reported successful landmark localization using 

just the second derivative. Pantic, Patras and Rothkruntz (2002) uses first and second 

derivatives individually to locate landmarks but also uses a priori knowledge of the 

positions of landmarks and their convexities and concavities. Also, the first and second 

derivatives of points within a 2D image are used extensively in traditional computer 

vision and image processing fields for example in filtering and edge detection,  in Canny 

edge detection (Canny, 1986), with the Sobel operator (Szeliski, 2010), etc.  

 

Curvature has been used already to identify landmarks. Efraty et al. (2009) calibrate and 

enhance the manual landmarks using an automatic process that assumes the furthest point, 

P1 is the point of highest curvature, as shown in Figure 2-5. Here, Pa and Pb form a vector 

located on the plot of the curvature calculated from the profile. Pa and Pb must lie on 

either side of P1.  Their position is determined by handcrafted rules.   

 

 

 

 

 

 

Figure 2-5: Approximating highest point of curvature between two points, after (Efraty et al., 

2009). 

P1 

Pb 
Pa 
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Bottino and Cumani (2008) find landmarks in profile by using curvature also.  Their 

algorithm also uses a handcrafted approach that identifies landmarks by knowledge of 

their relative positions, for example the stomion is between the labiale inferius and labiale 

superius. The algorithm then identifies points of opposite curvature, i.e., concavity and 

convexity, to locate the landmark position.  Their process requires the orientation of the 

head profile to be first approximated and three reference points, the nasion, pronasale and 

gnathion, located prior to further landmark localization.  This requires additional pre-

processing of the profile, for example they need to find the two-dimensional centre of 

gravity of the profile and uses further hand-crafted rules to identify extremities prior to 

applying their approach. 

 

Bhanu and Zhou (2004), and Zhou and Bhanu (2005) have also focused on curvature as 

a means to recognize faces from profiles in both still images and images extracted from 

video.  They use Gaussian functions and convolution to smooth and extract derivatives 

for curvature calculation of the entire profile before applying dynamic time warping to 

match a face’s profile with a database of image profiles. 

 

Lipoščak and Lončarić (1999, p. 245) use the curve and its first and second derivatives to 

create a scale space interpretation of a face profile using Gaussian functions.  

Significantly, They note that “at any value of variance (σ2), the extrema in the nth 

derivative of the smoothed signal are given by the zero-crossings in the (n+1)th 

derivative.”  This means it is possible to locate high points of curvature using both the 

curvature of a point on a curve and also derivatives of the smoothed curve.   

 

The ideas discussed here are used extensively throughout this thesis where Gaussian 

filters are used as a means to smooth and differentiate curves simultaneously to create 

suitable features for supervised machine learning classifiers.   

 

In this study curvature as a feature (amongst others) is used to identify common 

anthropometric landmarks and so the aim is to match the accuracy of an expert annotator 

who has the tools to identify a landmark at pixel resolution.  Pragmatically it makes sense 

to use all the information available, so initially in this study, curvature will be calculated 

at every sampled point on the smoothed contour. Hence it is useful to represent the plane 

curve by the Cartesian parametric equations x=x(t) and y=y(t) as detailed in the preceding 
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proof.  If follows that, the parameterized curve, C will be given by C(t) = (x(t),y(t)) where 

𝑡 ∈ ℕ: 𝑡 <= 𝑁 and N is the number of sampled points in the contour. Equation (2-6) can 

then be used to solve for 𝜅 where the parameter t represents the sampled arc length from 

the beginning of the sampled curve.  To do this the first and second derivatives of both x 

and y co-ordinates with respect to arc length need to be calculated. 

 

Finding derivatives of functional plane curves at given points parameterized by arc length 

for example, requires a closed form representation or a series of piece-wise fit functions 

that are continuous, smooth, and which clearly need to be twice differentiable. 

Unfortunately, the contour datasets used in this thesis, and in the vast majority of image 

processing systems, are sequences of points sampled from 2 dimensional images, so 

before considering the calculation of curvature at any point on the curve, the question, 

“how can we reliably and effectively calculate derivatives on the sampled contour curve” 

needs to be answered.  The answer to this can be found in the relevant literature and the 

following sections detail several well studied approaches that are used extensively in the 

fields of numerical methods and image processing. 

 

2.6 Derivatives of a sampled curve 

There are several numerical methods that can be used to find the derivatives of planar 

curves. This section considers three popular methods and outlines their advantages and 

disadvantages before selecting the most suitable given the problem context. 

 

2.6.1 Finite differences 

Finite differences can be used to approximate derivatives numerically. In the limit the 

derivative of a function f(x) is defined as, 

  

𝑓‘(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

                 

If h is nonzero and small then the derivative is approximated as, 

 

𝑓‘(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

(2-8) 
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and this is known as the forward difference. Similarly, the backward difference 

approximates the derivative as, 

 

𝑓‘(𝑥) ≈
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ
 

(2-9) 

 

and the central difference approximates the derivative as, 

 

𝑓‘(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 

(2-10) 

 

Taylor’s theorem can be used to estimate the order of the error of the forward, backward 

and central difference methods. Appendix B provides details of how this is achieved. 

 

In particular the error in approximating the first derivative using the forward difference 

method is O(h) and so is proportional to the step size, h.  Here, halving the step size will 

halve the error associated with finding the derivative. Similarly, for the backward 

difference method the approximation error is also O(h) and here, too, halving the step size 

also halves the error. 

 

When calculating the first derivative using the central difference method, however, the 

error is of order O(h2) so halving the step size will make the error associated with the 

derivative four times smaller. Therefore, the central difference approach to finding the 

gradient is more accurate for small step sizes and so is the preferred of these three 

methods. 

 

The central difference method can be implemented by convolving the sampled image 

with the kernel [-1/2 0 1/2] but the small kernel size can lead to errors when estimating 

the shape of a sampled curve. Step changes at the pixel level within a sampled contour 

lead to errors in calculating the derivative at finer scales and so low pass filtering of a 

sampled curve is advisable prior to calculating its derivatives (Farid and Simoncelli, 

2004). Bouma, et al. (2007) also suggest that the method used to find the derivative should 

be rotation invariant as well as twice differentiable as otherwise the shape of the pixel 

grid will be measured instead. This leads to noisy and inaccurate curvature calculations. 
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Gaussian filtering and Gaussian derivatives are discussed next as they not only have these 

properties, but they also benefit from other qualities useful for filtering and, as it turns 

out, for fast curvature estimation.  Gaussian derivatives also have the additional benefit 

of efficiently smoothing the sampled contour as the convolution kernel used encodes both 

the smoothing and derivative operations as discussed next in 2.6.2. Finally, when 

represented as a convolution kernel, their size can easily be adapted to suit the image 

scale. 

 

2.6.2 Gaussian Filters and Derivatives 

The Gaussian function has several attractive properties that make it a useful differential 

operator and filter (Marr and Hildreth, 1980). It is smooth and band-limited in the 

frequency domain and exhibits spatial localization. It is also smooth and localized in the 

spatial domain. The Gaussian filter is the only filter capable of this since the Fourier 

transform of a Gaussian is another Gaussian. There are many other interesting properties 

of the Gaussian and its derivatives.  This chapter covers properties and theory relevant to 

this thesis and many of the ideas are covered in existing Computer Vision texts.  

Romeny’s text, Front-End Vision and Multi-Scale Image Analysis (Romeny, 2008) acts 

as a good reference and several of the ideas covered here are to be found in this text.  

 

The Gaussian function is also separable, that is, a bi-variate Gaussian function can be 

represented as the product of two, uni-variate Gaussians, and the two-dimensional kernel 

of a bi-variate Gaussian is also separable into two, one-dimensional kernels. This property 

is regularly used in the image processing and computer vision community when filtering 

a 2D image as it reduces the time complexity of this operation from O(n2) to O(n). Since 

this thesis concentrates on processing contour curves embedded on a two-dimensional 

plane it is worth while emphasizing that a contour curve is represented in this study as a 

list of (x, y) co-ordinates and that 1D Gaussian kernels are applied to each co-ordinate 

separately when calculating derivatives and curvature. 

 

A univariate Gaussian is defined as, 

 

𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥−μ)2

2σ2  
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where σ2 is the variance, σ the standard deviation (measured in pixels) which controls the 

scale and μ is the average (expected) value which acts to offset the function along the 

independent variable axis, x.  The Gaussian filter is symmetric and if centred at zero, μ is 

zero giving, 

 

𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥)2

2σ2  
(2-11) 

 

 

The bi-variate Gaussian is given by 

 

𝐺σ(𝑥, 𝑦) =
1

√2πσ2
𝑒

−
(𝑥+𝑦)2

2σ2  

 

(2-12) 

and the Gaussian filter can be extended into higher dimensions as required.   

 

Filtering is usually performed by creating a kernel of the sampled Gaussian and 

convolving this Gaussian kernel with the sampled dataset. In this study, a contour 

extracted from a binary image is to be filtered. Recall from section 2.5, the contour is 

represented as a parameterized curve given by C(t) = (x(t),y(t)) where 𝑡 ∈ ℕ: 𝑡 <= 𝑁 and 

N is the number of sampled points on the contour.   

 

Smoothing C is achieved by convolving with a suitable Gaussian kernel, 𝐺σ.  We 

convolve x(t) and y(t) with 𝐺σ separately to give us xs = 𝐺σ*x(t) and  ys = 𝐺σ*y(t). 

 

To find the first and second derivatives of xs and ys we note that differentiation of xs with 

respect to t can be written as  
𝑑

𝑑𝑡
(𝑥𝑠)  =  

𝑑

𝑑𝑡
(𝐺σ ∗ 𝑥(𝑡)) and so from the commutative 

properties of convolution, 

 

𝑑

𝑑𝑡
(𝑥𝑠) = 𝑥(𝑡) ∗

𝑑

𝑑𝑡
(𝐺σ) 

(2-13) 

 

and by the same argument,  
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𝑑

𝑑𝑡
(𝑦𝑠) = 𝑦(𝑡) ∗

𝑑

𝑑𝑡
(𝐺σ) 

(2-14) 

 

So, both differentiation and smoothing may be achieved with just one convolution on the 

unfiltered, sampled contour curve, C. The kernel that represents the Gaussian derivative, 

𝑑

𝑑𝑡
(𝐺σ) can be constructed efficiently from the coefficients of the Hermite polynomials 

or by sampling the derivative curve, 
𝑑

𝑑𝑡
(𝐺σ). We will refer to the Gaussian Derivative as 

the “Derivative of the Gaussian” and use the abbreviation, DoG, to remain consistent with 

existing image processing literature. 

 

Analytically, the DoG is obtained by differentiating the Gaussian, 

 

𝑑

𝑑𝑡
(𝐺σ(𝑥)) =

𝑑

𝑑𝑡
(

1

√2πσ2
𝑒

−
(𝑥)2

2σ2 )   
(2-15) 

 

 

So,  

 

Similarly, the second order derivative of the Gaussian is obtained by a second 

differentiation of the DoG.  This is referred to in the literature as the Laplacian of the 

Gaussian, LoG. 

 

LoG =  
(𝑥2 − σ2)

σ4√2πσ2
𝑒−

(𝑥)2

2σ2  
(2-17) 

 

The scale of the Gaussian smoothing operator is given by σ and needs to be chosen 

carefully to ensure that the range of pixels involved in the smoothing operation is neither 

too small nor too large.  If it is too small, then the derivative kernel will introduce noise 

based upon the sampling grid structure, too high then the features of interest will be 

removed.  The choice of this value depends very much upon the image sample grid and 

the regions of interest.  Where the scale of the regions of interest differs, σ and hence the 

smoothness of the Gaussian can be adapted. 

DoG = 
𝑥

−σ2√2πσ2
𝑒

−
(𝑥)2

2σ2    
(2-16)  
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The size of the kernel depends upon the choice of σ.  Since the tails of the Gaussian are 

close to zero beyond ±3σ there is little point in using kernel coefficients beyond this 

range. 

 

Truncating coefficients beyond this range keeps the calculation computationally efficient 

and introduces little error. The number of coefficients will naturally be odd to ensure 

symmetry around the smoothing point and so the value of 3σ should be rounded up 

accordingly to the nearest odd number. The coefficients themselves will need to sum to 

unity to prevent any scaling errors. The final kernel will therefore range from −3σ to +3σ 

and will have a size of 6σ + 1. 

 

Choice of σ can be empirically estimated but should the number of pixels of the region 

of interest be known through prior observation of typical image contours, for instance, 

then the standard deviation,  σ can be estimated using the relationship between standard 

deviation and the notion of bandwidth. For the Gaussian filter, the bandwidth is often 

described by the term “the full width at half maximum” (FWHM).  The FWHM is 

2σ√2𝑙𝑛2  ≈ 2.355σ pixels.   

 

The scale of the filter is given by σ and so it is helpful when experimenting with the effect 

of smoothing upon a region of interest to note that the repeated application of consecutive 

Gaussian kernels can be made more efficient since; 

 

𝐺σ1 ∗ 𝐺σ2 = 𝐺√σ12+σ22
 (2-18) 

 

Here 𝐺σ1 𝑎𝑛𝑑 𝐺σ2 represent Gaussian functions and the superscripts 

σ1 and σ2 represent their standard deviations.  Note convolution of the Gaussian 

functions result in another Gaussian, 𝐺√σ12+σ22
 with a standard deviation of √σ12 + σ22. 

This property can be used to improve calculation efficiency when applying repeated 

convolutions on an image or other function.  To see this imagine the convolution  

𝐶σ1 = 𝐶0 ∗ 𝐺σ1, with (σ1 < σ2) where 𝐶0 is the curve discussed in the previous section, 

had already been calculated and next a convolution at a scale σ2, was required.  Instead 
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of performing the convolution 𝐶σ2 = 𝐶0 ∗ 𝐺σ2 , instead 𝐶σ2 = 𝐶σ1 ∗ 𝐺√σ22 − σ12
 is 

calculated since 𝐺σ1 ∗ 𝐺√σ22 − σ12
= 𝐺√σ12+σ22−σ12

, and so, 

 

𝐺σ1 ∗ 𝐺√σ22 − σ12
=  𝐺σ2  

 

This is more efficient because the kernel size of the Gaussian with σ = √σ22  −  σ12 is 

smaller in the number of its elements and so the convolution is faster. 

 

This section has covered methods to efficiently and accurately smooth, differentiate 

sampled curves and subsequently determine curvature. These methods will be used in this 

thesis later to develop algorithms to efficiently calculate features used with supervised 

ML models.  The next section covers key ML concepts that are used in this thesis, 

including metrics used to evaluate a ML model’s quality. 

 

2.7 Evaluation metrics in machine learning 

Machine learning models can be classified in numerous ways.  This thesis aims to develop 

machine learning models that can segment samples prior to regressing landmarks.  This 

implies the use of a model that can classify a sequence of samples into one of several 

discrete classes.  A contiguous group of like classes is regarded as a region which has 

been segmented.  Additionally, a labelled dataset will be used to train the classifier. Such 

a training method is called supervised training.  Hence the machine learning model used 

is a classifier and the learning method is supervised training.  

 

In order to assess the quality of the classifier several approaches could be used.  Kamiri 

and Mariga (2021) provide a good review of machine learning methods and identifies 

several methods and metrics used in evaluating ML models. These methods are used in 

many disciplines and consequently terminology and presentation of results is not 

consistent across fields.  Appendix D brings together and details methods and metrics 

used to evaluate machine learning models used for classification in this thesis.  It outlines  

concepts, terms and the choice of formatting and presentation of data as they are used in 

this thesis, and draws from several sources including the Scikit-learn python project 

(Pedregosa et al., 2012), TensorFlow (Abadi et al., 2016), Keras documentation (Chollet 
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and others, 2015), Géron (2019), Russell and Norvig (2020) and Bishop (2006). The 

following methodology chapter provides details of the choice of metrics and their 

application in this thesis. 

 

2.8 Machine Learning with Neural Networks 

This section provides an overview of related work covering the use of the perceptron, 

RNNs, CNNs and 1DTCNNs, focusing on their use with sequential data and time series 

signals. 

 

The introduction to this thesis and the literature review so far has already identified the 

relevance of deep neural networks and their recent successes in areas such as face 

recognition and face detection. The successes of the past decade have been attributed to 

the convergence of existing theoretical ideas with several technological advances: 

• The ubiquity of affordable and powerful computing technologies, especially 

graphics programming units (GPUs) driven by the rise of computer games and 

computer generated imagery (CGI) in general.   

• The Internet and worldwide web; 

• Availability of open source, powerful programming languages together with well 

designed software libraries that enable the development of ML applications and 

DNNs, for example Python and ML packages such as Keras, Tensorflow, Café, 

PyTorch and Scikit-learn. 

 

However, the theoretical concepts underpinning deep neural networks had been 

developed some decades before. In fact, the area of neural networks has a long history 

within the subject of computer science (Russell and Norvig, 2020) beginning with work 

done by McCulloch and Pitts (1943); the formalisation of neural networks within the 

broader field of AI beginning at the seminal 1956, Dartmouth Summer Research Project 

on Artificial Intelligence (McCarthy et al., 2006); and the introduction of the perceptron 

by Rosenblatt (1958). However, it was the development of the efficient back propagation 

algorithm in 1970 by Seppo Linnainmaa (1976), although not focused on neural networks 

(Schmidhuber, 2015), and its popularisation by Hinton and Rumelhart (Rumelhart et al., 

1986) in the 1980’s that kicked started the renaissance of neural networks and the growth 

of deep learning techniques. 
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The past decade saw many successful applications of deep neural networks in many areas 

but especially in two domains: sequential data processing and two-dimensional image 

classification. RNNs, often in the form of long short-term memory (LSTM) RNNs (Gers 

and Schmidhuber, 2000; Hochreiter and Schmidhuber, 1997), revolutionised sequential 

data processing in numerous fields from speech translation and recognition to time series 

prediction and healthcare applications, whilst CNNs (Fukushima, 1980; LeCun et al., 

1998; LeCun et al., 1989) have been shown to be capable of impressive image recognition 

and detection  on a par with human ability (Krizhevsky, Sutskever and Hinton, 2012; He 

et al., 2016).  Since their introduction the CNNs have also been used to solve sequential 

and time series related problems with some success, either in their own right or in 

combination with RNNs (Shi et al., 2015; Bradbury et al., 2016; Oord et al., 2016; 

Sejnowski and Rosenberg, 1987). Bai, Kolter and Koltun ( 2018) provide a detailed 

comparison of DNNs and CNNs used for sequence modelling and, for instance, describes 

the architecture of  1DTCNNs suitable for sequence processing. 

 

The following sections briefly review RNNs and 1DTCNNs that are suited for achieving 

the aims of this study. A more detailed explanation of the underlying theory and operation 

of these DNNs is provided in appendix C of this thesis. 

 

2.8.1 RNNs for sequential data 

Unlike feedforward networks whose connections are constrained to link forward to 

neurons deeper in the network, RNNs include links feeding back to earlier parts of the 

network. Interpreting these feedback links as outputs from a previous time step, and 

chaining these stages together, allows learning across several time steps.  Hence the 

network can learn patterns across time or sequences of data.  

 

Typically, RNNs are used in a number of configurations: vector to sequence; sequence to 

sequence; sequence to vector or as an encoder-decoder, that is sequence to vector 

followed by a vector to sequence.  These architectures and their uses are detailed in 

Appendix C and in several texts, (Goodfellow, Bengio and Courville, 2016; Géron, 2019) 

and so their detailed theoretical underpinning is not repeated here.  
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Sequence to sequence and sequence to vector RNNs allow an output sequence to be learnt 

from a labelled dataset of input sequence vectors.  The output sequence can be configured 

to be of a different length to the input sequence or it could be the same length, depending 

on the problem scenario. Variable lengths can be accommodated by, for example, 

padding, however the majority of modern neural network libraires include options for 

variable length sequences (Chollet and Others, 2015; Abadi et al., 2016; Mathworks, 

2020a). 

 

An aim of this thesis is the segmentation of a contour curve, and so a sequence-to-

sequence network is a candidate worth considering.  Here the input and output sequences 

are the same length, although, depending upon the number of features used the dimension 

of the input sequence vector may change. For example, a univariate time series or a scalar 

feature such as curvature would have a dimension of 1, a profile’s x and y co-ordinates, 

on the other hand, would have a dimension of 2. Additionally, the length of each training 

or test sequence can also be varied.  

 

RNNs can be used for segmentation by adding additional layers to the output as is 

common in other neural network architectures.  Typically, a fully connected layer 

followed by a softmax layer is used to convert the real valued output state to a finite 

number of classes.  A probability value is associated with each of the multiclass outputs 

and a decision boundary is chosen (usually a probability of 0.5 or greater is regarded as 

true). The output sequence may consist of a sequence of labels classifying each input of 

the sequence.  For example, a single input from a long sequence might be a co-ordinate 

(x,y) pair representing a point on a curve, whilst the corresponding output at that time 

would be a region label, for example, “upper lip”. 

 

RNNs have a limited memory, the literature often states 10 time/sequence steps and 

attribute this to both vanishing gradients or exploding gradients that cause some 

oscillation in the gradient magnitudes during back propagation.  This led to the 

development of LSTM RNNs that attempted to address these limitations.  LSTMs 

introduce a memory component that allows internal state to be remembered or forgotten 

through the use of a gate structure and expands the internal states to include a hidden state 

h() vector (also referred to as hidden units) and an additional cell state, C() vector.  The 
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hidden state corresponds to the short-term memory and the cell state to the long-term 

memory. 

 

There are several variants of LSTMs, for example the Gated Recurrent Unit (GRU) (Cho 

et al., 2014), that aims to simplify the architecture of the gate.  This is currently a very 

popular network choice. Staudemeyer and Morris (2019) suggest GRUs outperform 

LSTMs, however Shewalkar (2019), for instance, presents empirical evidence that 

suggests they are comparable in speech applications, though the GRU can be faster to 

train.   

 

LSTMs, with their ability to learn longer sequences and their previous successes in 

segmenting sequential data, are a good choice for segmenting profile contours and so their 

use can contribute toward achieving the aim of this thesis.  

 

The next section reviews the use of CNNs in processing sequential and time series data, 

focusing on 1DTCNNs. 

 

2.8.2 Sequential data processing using convolutional neural networks 

A two-dimensional CNN layer, as used in image detection, typically uses many small 

kernels or filters that are moved across the input image, performing convolutions at each 

pixel.  Each kernel’s convolutions creates a single two-dimensional feature map as it 

moves across the image. Together, these feature maps form a single layer.  The kernels 

each encode a particular feature that is representative of part of the image to be 

recognised.  As each kernel has effectively scanned the image looking for its feature, the 

resulting feature map encodes where that feature (or multiple versions of it) lies within 

the image.  Hence the use of the word “map.”  Multiple scales are accommodated by 

adding a pooling layer afterwards to downsize or subsample the layer above. Hence a 

CNN has the ability to localise an object within an image and at multiple scales.  The 

back propagation algorithm is used to train the kernels. More detailed descriptions of 

CNNs and their variations are provided in Goodfellow, Bengio and Courville (2016) and 

Géron (2019). 

 

One dimensional CNNs work in a similar manner to the more common two dimensional 

CNNs.  Convolutions become one dimensional in nature and multiple layer subsampling 
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occurs, and is referred to as dilation.  This property is useful where a range of features at 

differing scales need to be recognised, as is the case in this study, where the aim is to 

segment the head profile contour.  

 

The wavenet architecture introduced by Oord et al. (2016) apply these ideas and 

additionally includes a temporal feature that prevents looking ahead.  This sequential, 

ordinal property is useful where features to be segmented are constrained by their order, 

as is the case also for head profile contours.  For example, the lower lip is below the upper 

lip, which is itself below the nose. This, together with the multi-scale property described 

above also makes this DNN a good candidate for segmenting the head profile contour 

studied in this thesis. 

 

Bai, Kolter and Koltun (2018)  provide a detailed explanation of the operation and 

architecture of 1DTCNN networks. As with the LSTM, the 1DTCNN performs 

classification using a fully connected output and softmax layer.  Appendix C of this thesis 

also provides further details of 1DTCNNs along with a description of their architecture. 

 

2.9 Anthropometry and facial landmarking 

Section 2.2.2 reviewed face landmark annotation schemes used in the computer vision 

community.  Recall, also, the introduction to the thesis included a brief overview of 

anthropometry.  This section builds on these ideas, focusing on the anthropometric 

literature related to facial landmarking and identifies potential landmarks, statistics and 

related datasets that may prove useful in achieving the aim of this thesis related to 

landmark localisation.  With this in mind, this section also reviews the literature related 

to indirect anthropometric methods used in photogrammetry in order to assess the 

reliability of those methods.  

 

Anthropometry is the study of the measurements and proportions of the human body and 

can be divided into two branches, craniofacial anthropometry whose focus is the 

measurements of the head and face, and somatometry which is the measurement of the 

body (Salkind, 2007).  
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As anthropometric measurements rely on the accurate and repeatable identification of 

landmarks, then it would be sensible to select candidates from the set of established 

landmarks studied in the anthropometric literature. The observation made in section 1.4 

is worth reiterating here, that points of high curvature correlate remarkably well with 

craniofacial anthropometric landmarks. 

 

To help inform the choices of candidate landmarks used in this study, a very brief history 

of anthropometry is provided next and is followed by a survey of modern head and upper 

body anthropometry and the methods and tools used to capture measurements. 

 

Anthropometry has a long history.  The techniques used were originally developed by 

Johann Sigismund Elsholtz in 1654 (Kolar and Salter, 1997), and  his ideas were still used 

extensively in the 19th century to quantify human development and morphology.  During 

this time the work of Paul Broca in the field of physical anthropology and that of the 

French policeman Alphonse Bertillon, who was searching for a reliable method to identify 

criminals, helped standardise physical measurements and practices. As the 19th century 

progressed a separate German school of Anthropometry had emerged which was 

formalised in the 1882 Frankfurt Convention and it is worth noting that this convention 

gives its name to the “Frankfort horizontal plane” which is a reference line or plane still 

in use in modern craniofacial anthropometry (Salkind, 2007, p. 36). 

 

During the early 20th Century anthropometry was linked with pseudo-scientific ideas 

related to scientific racism and the now discredited eugenics movements and 

consequently its use in the study of human populations declined, however the practice of 

anthropometric methods in the study of human growth and development continued and 

its application in other disciplines increased. Anthropometric tools and techniques are 

now used in ergonomics, biometrics and security, in several medical disciplines including 

physiology, dysmorphology, dentistry, surgery, physiotherapy, anthropological 

medicine, kinanthropometry, forensic science and so on. 

 

 An important element of modern anthropometry is quantifying norms of human 

measurements to facilitate further comparative investigations using appropriate statistical 

methods.  Modern cranio-facial anthropometry has been fuelled by the clinical 

community’s desire for high quality datasets of population norms. Uses for these datasets 
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include understanding disease, informing plastic surgery and so on. Accordingly, research 

groups have created datasets of anthropometric data of the head and body (Farkas, 1994; 

Robinette et al., 2002; Lipira et al., 2010; Gordon et al., 2014; Weinberg et al., 2016)  

that use a variety of technologies and tools to capture the data. Typically, researchers 

report summary statistics of standardised measurements of the human face, and some 

include additional collections of 3D normative craniofacial images.  Some published 

datasets include both craniofacial and somapometric results, the US Army’s 

Anthropometric Survey of Army Personnel of 2012 (ANSUR  2012) (Gordon et al., 2014) 

and the Civilian American And European Surface Anthropometry Resource (CAESAR)  

(Robinette et al., 2002) are good examples. As new methods have evolved for capturing 

anthropometric data researchers have been keen to compare the efficacy of these 

emerging methods (Farkas, Bryson and Klotz, 1980; Weinberg et al., 2004; Robinette 

and Daanen, 2006; Ghoddousi et al., 2007; Dindaroğlu et al., 2015).  A principal 

limitation of all these datasets relates to the paucity of ethnographic data. Most datasets 

concentrate on white Caucasian ethnography which is a problem recognised by 

researchers in the field and attempts are being made to address it (Weinberg et al., 2016).  

 

For the purpose of this review these methods can be separated into three broad categories: 

those derived from  digital 3D imaging technologies, those derived from  2D images and 

those derived using direct (manual) anthropometric methods and instruments such as 

callipers, goniometers and so forth.  The first two methods are indirect methods and are 

forms of 3D photogrammetry and 2D photogrammetry, respectively.  The third method 

is termed direct anthropometry. 

 

2.9.1 Direct and indirect anthropometry 

Modern direct craniofacial anthropometry was pioneered by Leslie Farkas (1915-2008) 

(Naini, 2010) who developed an empirical system of facial measurements and over his 

career compiled a huge database of craniofacial “norms.” He was the first to recognise 

and subsequently emphasise the importance of the relative proportions of craniofacial 

measurements. In direct anthropometry, measurements are made using callipers, 

goniometers, rulers, and tape measures and these rely on trained and experienced 

practitioners to obtain accurate and repeatable results. This process is time-consuming 

and requires direct contact and so also the compliance of the subject (Jayaratne and 

Zwahlen, 2014). Despite these difficulties direct anthropometry remains the touchstone 
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against which other methods are compared, for example evaluations of 3D stereo-

photogrammetry and 2D photogrammetry. 

 

Photogrammetry is the art, science, and technology of obtaining reliable information 

about physical objects and the environment through processes of recording, measuring, 

and interpreting photographic images and patterns of recorded radiant electromagnetic 

energy and other phenomena (McGlone, 2004).  Farkas, Bryson and Klotz (1980) studied 

the reliability of 2D photogrammetry in anthropometry as long ago as 1980 and its use in 

cranio-facial anthropometry is well documented in the literature (Aldridge et al., 2005; 

Ozsoy et al., 2009; Aksu, Kaya and Kocadereli, 2010; Dindaroğlu et al., 2015). 

Fundamental to its use is the correct calibration of the camera.  

 

Software based calibration processes are used to correct distortions generated by the 

camera’s optical system. 2D photogrammetric measurement software, for example, often 

runs on desk-top machines and uses a range of plug-in cameras, so correct calibration 

remains an important procedure in setting up such software. Typically, this process uses 

a standardised object, for example, a printed chessboard pattern whose image is captured 

in various orientations and transformations on the image are then calculated that remove 

distortion generated by the camera optics. On the other hand, RGBD cameras and self-

contained, proprietary photogrammetric instruments are typically calibrated during 

manufacture and may need little user calibration, or, where necessary, occasional user 

based calibration using supplied calibration equipment. The use of 2D and 3D 

photogrammetric instruments in anthropometry are well studied, and typically these 

studies compare their results with measurements made using direct anthropometry 

(Nechala, Mahoney and Farkas, 1999; Aldridge et al., 2005; Weinberg et al., 2006; 

Ghoddousi et al., 2007; Ozsoy et al., 2009; Dindaroğlu et al., 2015; Kim et al., 2015). All 

conclude that the accuracy and repeatability of the photogrammetric methods compare 

favourably with direct anthropometry, a significant finding for this study as it supports 

the use of indirect 2D and 3D photogrammetry in measuring head posture.   

 

Direct physical contact between the subject and the measuring instruments can lead to 

underestimates as pressure applied by the instrument will cause indentation of the soft 

tissue. Use of photogrammetric methods avoids this potential operator error.  On the other 

hand, a significant advantage of direct anthropometry is the opportunity to locate 
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landmarks using soft tissue palpation.  Indirect photogrammetric methods may exclude 

landmarks if palpation is necessary to locate them or require them to be first located using 

soft tissue palpation and the skin marked accordingly (Weinberg et al., 2004; Ghoddousi 

et al., 2007). Where palpation is necessary, crudely marked landmarks may also be a 

source of measuring error (Farkas, 1994).  Consequently, landmarks that require palpation 

for accurate location may not be the best candidates for use in this thesis. 

 

In direct as well as indirect photogrammetry Ozsoy et al. (2009, p. 288) note “..accurate 

location of landmarks and user skill are important factors to achieve reliable data” and 

“the period of interaction with the subject is potentially shorter” with indirect methods. 

Consequently, an automatic, indirect method of identifying landmarks would provide an 

additional advantage and this itself is a motivating factor in this research.  

 

Whilst photogrammetric methods can produce accurate results, typically equipment used 

does require some user interaction to define and locate landmark positions, measure 

distances and angles, and so on. A 2016 study by Kuehnapfel et al. (2016) observed that 

whilst the 3D scanning equipment used produced generally excellent reliability with 

comparable intra-rater and inter-rater results, overall it was slightly more time consuming 

to use but was better accepted than classical manual anthropometric assessments (CA).  

However, many more measurements were obtained in the same amount of time than with 

CA. 

 

Aldridge et al. (2005) reports image acquisition times of 2ms using a 3D imaging system 

but landmark location and measurement was done manually. Whilst image acquisition is 

generally very fast, no head anthropometric photogrammetric systems have been 

identified in this literature review that report accurate, real-time and automatic landmark 

localization. The review of landmark localization in section 2.2 identified several 

methods used to localize landmarks using various methods based on AAMs, and more 

recently, deep learning based approaches.  Clearly there is an overlap here and a potential 

for cross fertilization across fields, however clinical acceptance of these innovations is 

necessary before these ideas can gain acceptance. 
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2.9.2 Landmarks used in craniofacial anthropometry 

Whilst Farkas described 47 craniofacial landmarks (Farkas, 1994), modern 3D stereo 

photogrammetry methods typically use a smaller subset, for example FaceBase 

(Weinberg et al., 2016) uses a subset of 24 of Farkas’ original landmarks. The criteria for 

the selection of these is informed by the nature of 3D methods and their limitations. For 

example, as noted earlier, in order to reliably locate some traditional direct 

anthropometric landmarks, the practitioner needs to palpate soft tissue which is not 

possible using 3D photogrammetry. Previously sections reviewed datasets used for face 

detection and noted that up to 68 landmarks were used yet only a few of these were 

established craniofacial anthropometric landmarks.  

 

Next, the established landmarks used in head and face anthropometry are identified, 

landmarks useful for this study are selected and include two additional landmarks that are 

not normally regarded as craniofacial landmarks but will be of potential use in future 

work.  

 

The landmarks selected here are used for three purposes. Their first use is for estimating 

the relationship between landmarks in terms of their relative distances.  Mean values 

between identified landmark pairs and their variance may be useful in providing 

constraints and have potential in guiding the design of the identification and selection 

algorithms used in this thesis. The variance and average distance between recognised 

landmarks can be obtained from tables of craniofacial norms published by Farkas and 

others identified earlier in this section.  

 

Their second purpose is to act as reliable reference points to measure face posture defined 

by angle. This will allow, for example, the measurement of FHP. 

 

Their third use is to act as delineation points when measuring regions of interest 

associated with head and face profile estimation, for example, the upper lip, nose, chin 

and so on. Such points of delineation are used later in this thesis to regress landmark 

positions from segmented head profile contours. 

 

Table 2-1, overleaf, lists common established craniofacial landmarks used in the literature 

(Kolar and Salter, 1997; Farkas, 1994).   
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It lists candidate landmarks considered for use in this study and these are highlighted and 

italicised for this thesis. Those landmarks underlined were ultimately used in chapters 5 

and 6 to segment face profiles. 

 

 

 

Region Name Abr. Definition 

Head Glabella G The most prominent midline between eyebrows. 

Nose, 

Columella 
Nasion N The midpoint on the soft tissue contour of the base of the 

nasal root at the level of the frontonasal suture. 

 
Sellion Se The most posterior point of the frontonasal soft tissue 

contour in the midline of the base of the nasal root. 

 Pronasale Prn The most anterior midpoint of the nasal tip. 

 
Subnasale Sn The midpoint on the nasolabial soft tissue contour between 

the columella crest and the upper lip. 

 Alare Al The most lateral point on each alar contour. 

 
Columella apex c′ The most anterior, or the highest point on the columella 

crest at the apex of the nostril 

Eye Exocanthion Ex The soft tissue point located at the outer commissure of 

each eye fissure 

 
Endocanthion En The soft tissue point located at the inner commissure of 

each eye fissure 

Philtrum, 

Lips and 

mouth 

Crista philtra Cph The point at each elevated margin of the philtrum just 

above the vermilion line 

 
Labiale  

superius 

Ls The midpoint of the vermilion line of the upper lip 

 Cheilion Ch The point located at each labial commissure 

 
Stomion Sto The midpoint of the labial fissure when the lips are closed 

naturally 

 Labiale inferius Li The midpoint of the lower vermilion line 

 Sublabiale Sl The midpoint of the Labiomental sulcus 

Chin Pogonion Pg The most anterior midpoint of the chin 

 
Gnathion Gn The lowest median landmark on the lower border of the 

mandible 

Ears Tragion Tr The notch at the upper margin of the tragus 

 
Table 2-1: Anthropometric landmarks and regions of the head. 

 



 

45 

 

2.9.3 Neck and upper body landmarks 

Two axes of rotation related to head posture have been identified in the anthropometric 

literature.  The first is an axis of rotation about the tragus in the sagittal plane and a second 

axis is located at the point of the C7 vertebra, again, in the sagittal plane. Authors typically 

construct a line joining the tragus and exocanthion and measure the angle between this 

construction and the horizontal or the Frankfort line. This angle is referred to as the gaze 

angle. The second angle is measured by constructing a second line between the tragus and 

the C7 vertebra and this angle is measured between this line and Frankfort line. This angle 

is known as the cranio-vertebral angle (CVA).  Head posture can then be defined by these 

two angles (Youssef, 2016).   

 

FHP describes the poor head posture resulting from the hyperextension of the upper 

cervical vertebrae and forward translation of the cervical vertebrae is significantly 

correlated with neck pain measures in adults and older adults (Fawzy Mahmoud et al., 

2019; Silva, Punt and Johnson, 2010).  It is often measured using the CVA, although 

several authors use the two angles described above to measure the extent of forward head 

posture during examination as a greater gaze angle indicates a more extended position of 

upper cervical spine (Youssef, 2016).  

 

Accurately identifying head posture by means of regressing landmarks on the face profile 

goes some way to measuring these angles, or an equivalent, since the landmarks provide 

a reliable reference for construction lines. For example, the subnasale can be used in place 

of the exocanthion in the above description.  In order to achieve this, not only does the 

subnasale landmark need to be located but, in addition, an automatic method of regressing 

the position of the tragus is required as is the regression of the C7 vertebra position.  An 

alternative to the C7 vertebra is presented here.  The suprasternal notch (jugular notch), 

measured at the point of normal exhalation could be used if the C7 vertebra is not visible. 

 

Relevant anthropometric head profile landmarks identified in this study could therefore 

be used as a starting point to develop methods to automatically measure forward head 

posture in real time. 
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2.10 Summary of gaps in knowledge and contributions 

The first two chapters of this thesis have identified several opportunities to advance both 

knowledge and understanding within this field of research. These are enumerated in Table 

2-2.  

 

 Gaps in Knowledge 

1 No one has evaluated the effectiveness of curvature and related features that 

could be used to efficiently identify regions of interest in a uniformly sampled 

sequential dataset. 

 

2 No-one has investigated the capability of head profile contours, derived from fast 

depth cameras, to localize anthropometric landmarks. 

 

3 A substantial body of work exists that has labelled 2D RGB images of front 

facing faces, but not with depth information, and few include side profiles. Nor 

does such work exclusively use anthropometric landmarks. 

 

4 3D anthropometric datasets exist but these use slow, interactive capture methods, 

and are subject to editing/post-processing.     

 

5 Datasets exist of raw and unprocessed profile head images taken using fast depth 

cameras, but none have been anthropometrically labelled. 

 

6 There exist no reported publicly available datasets of raw, unprocessed head 

profile contours. 

 

7 Whilst landmark localisation of head profiles from 2D images has been 

attempted, no evidence was available from the literature of the use of contours, in 

their raw state, extracted using depth information. 

 

8 Fast depth cameras (30fps) are now commonplace so contours could be extracted 

in real-time, prior to landmark localisation.  This approach has not yet been 

attempted. 

 

9 A comparison of the effectiveness and run-time efficiency of end-to-end ML 

DNNs with that of DNNs that use engineered features has not been attempted 

within the context of head profile contour segmentation and regression. 

 

 
Table 2-2: Summary of gaps in knowledge. 
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The gaps in existing knowledge identified here have resulted in the following 

contributions to knowledge detailed in Table 2-3. These contributions include an 

evaluation of curvature and curve derivatives as features for uniformly sampled time 

series datasets as well as more general contour curves sampled from images. They include 

the generation of a new head profile contour dataset labelled with anthropometric 

landmarks, as well as investigations of the effectiveness of DNNs in the segmentation of 

head profile contour and the regression of profile landmarks. Chapters 4,5 and 6 of this 

thesis detail the investigations carried out that resulted in these contributions. 

 

 
Table 2-3: Summary of Contributions cross referenced to gaps in knowledge (see Table 2-2). 

 Contributions 

1 

 

This study provides an evaluation of the effectiveness of curvature and related 

features used to efficiently identify regions of interest in a uniformly sampled 

sequential dataset.  This includes the generation of new algorithms, software and 

tools to evaluate the accuracy of a recurrent neural network (RNN) that uses the 

features engineered here.  Additionally, an investigation of the run-time efficiency 

of the engineered features is provided (Table 2-2, gap 1). 

 

2 An existing RGB-D dataset is extended, by extracting head profile contours so 

creating a new database of face profile contour curves.  Additionally, a new set of 

manual annotations are generated identifying key anthropometric landmarks on 

both the RGB images and profile contour curves (Table 2-2, research gaps 3,5,6). 

 

3 A novel approach is developed in this context to automatically improve the 

accuracy of the annotations based upon the curvature properties of selected 

anthropometric landmarks (Table 2-2, research gaps 3,5,6). 

 

4 The findings of 1, above, are extended to work with the head profile contour dataset 

created in this study resulting in a new procedure that can accurately achieve fast 

face segmentation of head profile images.  An evaluation of this procedure 

documents both the accuracy of the approach and its run-time efficiency when used 

with two RNNs (Table 2-2, research gaps 2,4,7,8). 

 

5 The procedure used in 4 is further extended to develop a method to regress 

landmarks from the segmented profile contour and the accuracy and precision of 

this method is evaluated and documented (Table 2-2, research gaps 2,4,7,8). 

 

6 Finally, the effectiveness of an end-to-end learning approach is investigated using 

a 1DTCNN to achieve the same goals of 4 and 5, above, and the findings of this 

investigation presented with recommendations (Table 2-2, research gap 9). 
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2.11 Summary 

The importance of landmark localisation was reviewed in the fields of 2D face recognition 

and landmarking, and in indirect anthropometry and photogrammetry. This identified 

candidate landmarks that could be applied to head profile contours and their properties. 

A discussion of their usefulness as fiducial markers in head profiles was also included.  

 

An overview of methods used to localize landmarks in 2D images identified potentially 

useful approaches that could also be used for segmenting head profile contours. The use 

of deep neural networks used in 2D face landmarking has had great success recently and 

shows that the application of DNN concepts will be successful in this thesis.  As head 

profile contours can be regarded as a sequential series then the application of deep 

learning methods such as RNNs and one dimensional temporal CNNs were reviewed and 

their effectiveness in this area discussed. Since such methods will need to be evaluated 

then a brief review of ML metrics was also outlined here. 

 

Additionally, methods useful in extracting profile contours from RGBD images were 

detailed and the success of curvature and curve derivatives as features in profile 

recognition and landmark regression were reviewed. The features and the methods 

identified here were hypothesised to be useful in fast and accurate classification and 

regression and so efficient approaches to calculating these features were investigated in 

this review also. 

 

Finally, gaps in knowledge within this field were enumerated and the arising contributions 

of this thesis were summarised. 

 

The following chapter describes and justifies the research methodology used in the 

investigations carried out in chapters 4, 5 and 6 of this thesis. 
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3  Research Methodology 

 

This research explores the suitability of curvature and its properties as features for training 

deep neural networks to estimate head profile posture. Previous chapters have explored 

related work and identified opportunities to advance existing knowledge and research 

arising from this.  This chapter will describe the research methods used in the 

investigative studies that follow. The chapter identifies and justifies the research methods 

applicable to this research and follows on with a discussion of the chosen methodology, 

and details the common methods used in the investigative studies of chapters 4, 5 and 6. 

 

3.1 What type of research? 

The aim of the research is to “explore extensively the suitability of curvature and its 

properties as features for fast regression and segmentation of parameterized plane 

curves, and in so doing, examine the effectiveness of these features in training deep neural 

networks to estimate head profile posture derived from 2.5D images.” This aim, derived 

from the research question, indicates the use of an exploratory investigation to prove or 

disprove the identified hypotheses. 

 

This research is applied research since it aims to solve a problem, that is, define head 

posture position.  Since the exploration also focuses on evaluating the effectiveness of 

machine learning algorithms and their time efficiency, then the research is also of a 

quantitative nature. 

 

3.2 What Research Method? 

Given that the research has been identified as exploratory, appropriate research method(s) 

need to be reviewed that will suit an exploratory study. As the main focus of this study is 

to explore the suitability of curvature and its properties as effective features for estimating 

head posture, then ways of measuring this effectiveness need to be identified.  Also, any 

methods used must ensure relationships between selected variables are well defined, 

quantifiable and that the measurements are repeatable. Additionally, the methods used 

need to be appropriate for testing hypotheses in controlled conditions to deduce causal 
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inferences. The experimental research method meets these criteria (Maxion, 2009), and 

so will be used in this study. 

 

The aim of this thesis also requires the development and evaluation of various DNNs. 

Typically, DNNs are considered part of the machine learning canon and development of 

these models follow an established machine learning process which is an empirical 

procedure and is experimental in nature.  

 

3.3 Experimental Research 

There are a range of experimental types used in experimental research. As this thesis aims 

to evaluate the effectiveness of various features used to train a number of deep neural 

networks, it is necessary to vary these features in a controlled and systematic way.  This, 

then, is a controlled experiment and is conducted within a setting that is especially created 

for this investigation. 

 

3.4 Experimental Methodology 

In order to achieve the research aim identified in chapter 1, several objectives were 

identified and enumerated along with corresponding experimental investigations. These 

investigations are documented in chapters 4, 5 and 6.  However, only the general 

experimental design details and common methods which apply to all these experiments 

will be discussed in this chapter.  Details relevant only to a specific investigative study 

will be reported in the corresponding chapter. 

 

The experiments and investigations documented in this thesis focus on the development 

and evaluation of various features as inputs to machine learning algorithms. Whilst the 

investigation uses an experimental approach, the procedure used naturally follows that of 

the machine learning process (Kumar and Sharma, 2017).  This is described next and 

accommodates within it opportunities to apply experimental methods during the phases 

of feature selection, pre-processing, model optimization and model evaluation. 
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3.5 Machine Learning Process 

As part of the investigative studies undertaken in this thesis, several deep learning models 

were developed.  This involved creating datasets, pre-processing existing datasets, 

engineering features, designing and implementing DNN models, and was followed by 

their supervised training and evaluation.   

 

Several process standards related to developing machine learning and data science 

systems have been documented in the literature  (Wirth, 2000; Shearer, 2000; Studer et 

al., 2021; Azevedo and Santos, 2008; Géron, 2019).  Broadly they follow the same 

approach as that shown in Figure 3-1 below. 

 

 

Figure 3-1: Stages involved in the ML process (iterative phases not shown). 

 

Once the dataset has been collected and collated, several candidate features are first 

identified and transformed during the data pre-processing phase. This is referred to as 

feature engineering in this study. The experiments relevant here include the evaluation of 

the features and the transformations used.   

 

In chapter 4 a study of feature transformations is undertaken, and their resulting run-time 

efficiency is analyzed.  During model training further experiments are undertaken to 

establish the best features to use with the ML algorithms. The experiments of chapter 4 

also have a confirmatory aspect since the deep learning model used and its architecture 

and training parameters were specified in previous work (Mathworks, 2020c).  The new 
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features explored in this experiment can then be evaluated against the previous published 

results and the previous results can then be verified as part of this experiment. 

 

Chapters 5 and 6 also undertake experiments as part of the ML process.  Chapter 5 

evaluates the model with newly engineered features (curvature and its derivatives) whilst 

chapter 6 develops a different DNN ML model to demonstrate the effectiveness of an 

end-to-end ML approach. 

 

3.6 Apparatus 

All experiments in this study were performed on a machine with the following 

specification and development software. 

 

Processor Intel core i7-7700 CPU 

Memory 32GB RAM 

GPU Nvidia 1080Ti GPU 

Operating 

System 

Windows 10 

Matlab 

version 

2019b  (Chapter 3 and 4); 

2020b (Chapter 5). 
 

 

Table 3-1: Computer hardware specification. 

 

3.7 Evaluation Metrics 

Evaluation of the experiments fell broadly into three camps, classifier evaluation, 

regressor evaluation and run-time efficiency evaluation. The classifiers of chapters 4, 5 

and 6 are evaluated using the metrics discussed here. 

 

3.7.1 Classifier Evaluation 

Several metrics are used for evaluating classifiers, and whilst a single numerical value 

that describes the overall accuracy of a classifier is desirable, a more thorough approach 

is necessary.  
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Typically recall and precision are reported together with their harmonic mean (F1 score). 

Overall accuracy and the macro F1 score are also reported. The experimental 

investigations used in this thesis report per-class F1 scores, recall and precision together 

with overall accuracy and macro F1 score. These metrics were calculated from multiclass 

confusion matrices. These values and their significance are outlined in the previous 

chapter with further details provided in Appendix D. 

 

These metrics were chosen since they are well understood by the ML community and 

results are normally reported using these metrics (Handelman et al., 2018; Kamiri and 

Mariga, 2021). 

 

3.7.2 Regressor Evaluation 

Where experimental investigations evaluate the accuracy of facial landmark localization, 

two measures are used, the precision and the accuracy (International Organization for 

Standardization, 1994). Here, precision is described using the sample standard deviation 

of the test results from the ground-truth facial landmark.  

 

Accuracy is measured using the mean absolute error (MAE), and was used instead of the 

mean squared error (MSE) since MSE exaggerates the importance of outliers thus 

avoiding excessive skewing of results. The mean error (ME) is also reported as it gives 

additional information (positive or negative values) indicating whether a landmark’s 

estimated position is skewed below or above its true location. These metrics are also well 

understood by the ML community and regularly used in the literature (International 

Organization for Standardization, 1994; Handelman et al., 2018; Kamiri and Mariga, 

2021). 

 

 

The procedure followed regarding the inclusion of outliers here is that suggested by 

typical ML dataset pre-processing methodologies (Géron, 2019). That is, outliers are 

examined individually, and a decision is made as to whether they are included in the 

dataset.  For example, an image showing no profile at all would not represent a valid test 

sample and so would not be included in the evaluation. 
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3.8 Run-time Efficiency Evaluation 

A key objective of this study is to investigate candidate features suitable for fast 

classification and segmentation of planar curves.  These results inform the feature 

engineering processes and algorithms used to train the LSTM time series segmenter of 

chapter 4, the LSTM profile segmenter of Chapter 5 and the 1DTCNN of chapter 6.  

Additionally, measuring the processing-time of various algorithms used in the 

segmentation process is important for this study and, more generally, machine learning 

researchers are beginning to focus more on run-time evaluations of their algorithms as 

well as classification or regression performance (Handelman et al., 2018; Kamiri and 

Mariga, 2021). 

 

3.8.1  Timing procedure 

The algorithms were implemented in MATLAB version 2019b and MATLAB version 

2020b.  MATLAB’s timeit() function was used to calculate the run-time of the MATLAB 

scripts.  The algorithms’ runtimes are tabulated, and relative comparisons are made. The 

goal is to compare the speed of the algorithms against each other and not to measure 

against an absolute reference.  Consequently, they were not cross-compiled to C++ nor 

other optimizations applied beyond MATLAB’s default settings. 

 

A comparison of the timeit() function’s results with that of MATLAB’s built in code 

profiler was also undertaken.  Both methods produced comparable results.  The timeit() 

function was chosen and the procedure described here was used in the experiments 

detailed chapters 4, 5 and 6. 

 

Current processors are typically multicore which can affect accurate timing of algorithms 

as operations may be shared across cores. Most modern applications such as MATLAB 

take advantage of multi-threading techniques which are often out of the control of the 

script writer.  Additionally, modern processors make use of single instruction, multiple 

data (SIMD) architectures. Here, operations such as multiplication and addition are 

applied in parallel to a group of data.  This can drastically improve execution time.  

Convolutions and vector additions benefit from this architecture, for example, a 

convolution involving 10 multiplications will take the same time as one involving 2 

multiplications.  This further complicates the problem of accurate timing of algorithms.  
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Consequently, a pragmatic approach was taken in choosing timing methods as described 

next. 

 

CPU clock cycle timing was considered and would have been preferred if a single core 

machine without an SIMD architecture was being used.  As this could not be guaranteed 

in this study and would not be representative of the hardware used in a real situation, a 

variation on a wall clock approach was considered using MATLAB’s timeit() function. 

 

 

The timeit() function measures wall clock time but performs multiple runs of the specified 

function and returns the median of results.  This is done to reduce the effect of errors 

introduced by multi-tasking operating systems. To summarize, the timeit() method was 

chosen for the following reasons: 

1. It returns the median of multiple timing measurements of a function, 

2. times recorded are representative of typical use, 

3. a brief review of researcher opinions and papers that report execution times 

using MATLAB, use wall-time methods such as timeit() and tic/toc,  

(Mathworks, 2020b). 

4. the MATLAB profiler also returned results comparable with the timeit() 

function. 

 

The procedure used is detailed next: 

1.  Each feature pre-processing algorithm was encapsulated in a MATLAB function 

with all requisite one-off initialization of variables completed outside the function 

and before starting the timing tests. 

2. Each algorithm was inserted inside the test function, enclosed in a for-loop and 

executed 1000 times. The average time taken was calculated from the overall time 

taken to complete 1000 runs. 

3. Within each test function, each algorithm was applied to the same data-subsets. 

4. All variables were cleared using the clear all command prior to timing. 

 

Feature generation algorithms require the initialization of several parameters.  Where 

relevant, details of the initialization of parameters specific to run-time experiments are 

discussed in the relevant chapters. 
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Regarding the timing of neural network inference times, the same procedure described 

above was used. Where training times are reported, these were provided by MATLAB’s 

neural network training functions. MATLAB’s GPU parallel pool was turned off when 

measuring training and inference times. 

 

3.9 Common Experimental Methodologies 

Several investigative studies are detailed in this thesis, and the experiments undertaken 

are, in general, specific to each investigation and documented in subsequent chapters.  

However, there are some aspects of the experimental design and methods which are 

common, for example the application of the machine learning procedures when training 

and evaluating the DNN models of chapters 4, 5 and 6. This section describes these 

common procedures. Details relevant to specific investigative studies will be omitted here 

and reported in the corresponding chapter. 

 

3.9.1 Training LSTM and 1DTCNN models. 

Chapter 4 investigates the application of various features used to train an LSTM 

segmenter using an ECG dataset. As this dataset is not used elsewhere in this thesis then 

it is not discussed in this section.  However, chapters 5 and 6 investigate various features 

used to train DNNs capable of segmenting and regressing profile head contours.  Hence, 

the same head profile contour dataset is used in both chapters.  Accordingly, discussions 

of the dataset design that are common to both investigations are provided here.  

 

Similarly, some common features are engineered from the head profile contour dataset 

during the pre-processing period and applied to both the LSTM RNN and the 1DTCNN 

of chapters 5 and 6.  Consequently, the following sections summarize: the dataset used 

and justification of the design, the features engineered from the dataset and applied to the 

model, and finally, the common procedures used to train and evaluate the networks. 

 

3.9.1.1 The head profile contour dataset 

The creation of the head profile contour dataset is described in detail in chapter 5.  It is 

also used for the investigations of chapter 6 and so is outlined here. Figure 3-2 below 
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illustrates an example instance of a head profile contour that has been labelled with 

landmarks that delineate the coloured regions. 

 

 

 

Figure 3-2: Example of a single segmented head profile contour. 

The number of contours in the dataset is 648.  Segmented profiles consist of seven regions 

as illustrated in Figure 3-2 and Table 3-2. 

 

Class imbalance is an important consideration in pre-processing datasets. The dataset is 

mildly imbalanced though not extremely so, with the columella of the nose having the 

largest support. Class size ratios for philtrum:columella is 2:3, upper lip:columella 2:3 

and lower lip:columella 1:2. 
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Table 3-2: Segmented contour profile. 

Since the aim of the segmenter is to accurately identify a small number of landmarks that 

remain invariant under transformation and facial expression, then only a subset of the 

profile is required.  The dataset used was trimmed accordingly, resulting in the number 

of n/a labels being reduced to 14, 7 before the gnathion and 7 after the sellion.  This means 

the longer “n/a” labelled parts of the profile can be trimmed, thus improving the balance 

of the data categories.  

 

The chin region is not used in this study as it contains no useful anthropometric landmarks 

and in comparison to other regions it also adds to data imbalance. Consequently, it was 

removed from the dataset and the segmented contour profile dataset was adjusted 

accordingly, thus further reducing dataset imbalance. The resulting dataset consists of 

contours of varying length, from approximately 14 sample points up to 155. This dataset 

is used to train the networks of chapters 5 and 6.  Further information relating to the 

generation of the dataset and choices made are specific to chapter 5 and so are not re-

produced here. 

 

3.9.1.2 Model training 

The ML models used to segment both the ECG dataset and the head profile contour 

dataset is a supervised classifier trained on labelled datasets.  For all the investigations of 

chapters 4, 5 and 6, training follows the established machine learning approach. 

 

Region (label used) Start Point End Point 

n/a (Not defined) 7 samples before the 

Gnathion 

Gnathion (gn) 

Lower lip Labiale inferius (li) Stomion (sto) 

Upper lip Stomion (sto) Labiale superius (ls) 

Philtrum Labiale superius (ls) Subnasale (sn) 

Columella Subnasale (sn) Pronasale (prn) 

Dorsum nasi Pronasale (prn) Sellion (se) 

n/a (Not defined) Sellion (se) 7 samples after the sellion 
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Features are initially engineered from the relevant dataset and then the dataset is spilt into 

a train:test ratio of 70:30. A validation subset is useful when a parametric optimization of 

the model is crucial and can also be used during training to prevent over-fitting by using 

early stopping as described in chapter 2 and appendix D.  Since this study was focused 

on the engineering of features suitable for a DNN segmenter, use of a validation subset 

was not essential. The DNNs used did not need extensive optimizations since this was not 

the focus of the study. The investigation of chapter 4 used a predefined experiment which 

did not use a validation subset and so to ensure repeatability of the existing experiment 

this constraint was observed also. Additionally, the head profile contour dataset used in 

chapters 5 and 6 was small and removing a subset for validation would further reduce the 

dataset size.  Finally, overtraining was avoided by monitoring training and stopping once 

the accuracy of the model plateaued. In summary, all experiments did not use a validation 

data subset. 

 

The features used to train and test the DNNs are specific to each investigation, however 

the overall procedure is the same. For each engineered feature set input to a model the 

following procedure was executed: 

 

• Repeated training runs were undertaken to identify the number of epochs required 

for each model to plateau. 

 

• Five runs of each training procedure were carried out and the model with the 

median accuracy was used. 

 

3.9.2 Testing and Evaluation of LSTM and 1DTCNN models 

The trained models were tested on their related test dataset. The DNN models investigated 

in chapters 4, 5 and 6 outputted a sequence of classifications corresponding to each point 

on a contour.  All models used a softmax output layer corresponding to the number of 

classes for each investigation.  The softmax function and its use as an activation function 

in neural networks is well documented in the literature (Russell and Norvig, 2020) and an 

overview is presented in Appendix C. 
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In Chapters 5 and 6 the softmax outputs comprised of 5 classes: 

• n/a (not defined), 

• lower lip, 

• upper lip, 

• philtrum, 

• columella. 

 

For Chapter 4 the softmax layer had 4 output classes comprised of:  

• n/a (not defined), 

• P, 

• QRS, 

• T. 

  

The softmax layer produces a probabilistic result for each class so an argmax operation 

was applied to identify the class with the highest probability. 

 

Consequently, a sequence of length, n applied to the trained models would result in an 

output sequence of the same length, n but containing a sequence of classifications, one 

for each point of the presented sequence. 

 

3.9.2.1 Classifier evaluation 

For a given engineered feature or feature combination, each model’s test outputs were 

stored in MATLAB arrays and evaluated using the metrics and methods described in 

section 3.7.1 as follows: 

• For all test sequences, the labelled ground truth values and the model’s predicted 

class values were used to calculate a multi-class confusion matrix.  

• From this confusion matrix, the following metrics were calculated for each class:- 

• The support, 

• The recall, 

• The precision, 

• The F1 score. 

• Using these results, the overall accuracy and macro-F1 scores were calculated. 
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Chapters 4, 5, and 6 present and discuss these results, and where relevant, detail any 

investigation specific modifications to this method. 

 

3.9.2.2 Regressor Evaluation 

This section details the common methods used to evaluate landmark location regression 

accuracy in both chapter 5 and 6. Chapter 5 provides full details of the approach used to 

initially label ground truth landmark positions and documents the method used to predict 

landmark positions from segmented head profile contours. 

 

A predicted landmark position occurs at a transition between regions of a contour.  Each 

point on a contour represents a pixel position and the contour is a list of adjacent pixels. 

The distance between a predicted and a ground-truth contour position is an integer value, 

measured in pixels and corresponds to a simple count along the contour line.  For 

example, if the difference between a ground-truth landmark and the model’s predicted 

landmark position is one pixel, then they are adjacent.  

 

The metrics discussed in section 3.7.2 are used to evaluate landmark position. These are 

MAE, ME and precision. These results are calculated using the full test dataset.  The 

precision is calculated using the sample standard deviation. Results are tabulated and 

histograms generated to show the distribution of test dataset values. This visualization 

was included to identify any bi-modal or related artifacts existing within the test results. 

3.10 Summary 

This chapter presented and considered the experimental research methods adopted in the 

investigations of the following chapters. It provided details of the common methods used 

to train and evaluate ML models.  The methods identified and detailed here are used to 

measure the effectiveness and efficiency of  both classifiers and regressors. 

 

In the following chapters, several experiments are undertaken that use the ideas 

considered here to evaluate the effectiveness and efficiency of curvature and curve 

derivatives as features for a RNN capable of segmenting a uniformly sampled time series 

dataset.  The best of these features are then selected for further investigations in 

subsequent chapters.  
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4 Segmenting uniformly sampled datasets with RNNs 

This chapter considers approaches used to efficiently calculate 1st and 2nd order 

derivatives and the plane curvature of a uniform time-series dataset (Mathworks, 2020c). 

Algorithms are developed that calculate these features efficiently and their effectiveness 

in classifying a publicly available time series dataset is evaluated and compared with other 

commonly used alternative features derived from that dataset. All features are used as 

inputs to a LSTM RNN which is used as the classifier in these experiments. 

 

4.1 Comparison of Gaussian derivatives and central difference methods 

In this section the central difference method is compared with the DoG methods for 

calculating signal derivatives on unfiltered univariate times series data and the advantages 

and disadvantages of both methods are discussed. 

 

The central difference method of calculating derivatives and defined in equation (2-10) 

is considered first.   

 

This can be implemented by convolving a 1D sample with the kernel [-½ 0 ½].  This 

approach is fast and requires just 2 multiplications and one addition per sample.  

However, previously it was noted that sudden step changes as might occur between 

sampled points, on an image or univariate waveform, can lead to errors in calculating the 

derivative at finer scales and so low pass filtering of a sampled curve is advisable prior to 

calculating the derivative (Farid and Simoncelli, 2004; Bouma et al., 2007). This 

additional filtering step reduces the speed of the process; however, the central difference 

method is still commonly used to calculate derivatives despite the small support of its 

kernel and its subsequent sensitivity to noise, even after filtering.   

 

Since an aim of this study is to assess the suitability of derivatives and curvature as 

features for regression, classification and segmentation, it is still worth considering the 

central difference method since the limitations of the method may be inconsequential 

when used as a feature for classification. It may, or may not, be a suitable candidate 

feature for a classifier when used alone on the raw data, or with pre-filtered data, or when 

used to calculate curvature, so a further analysis is appropriate. 
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To determine this initially, a visual comparison is made between the central difference 

method and the Gaussian derivatives discussed in section 2.6.2. First, both methods are 

used to calculate curvature then a visual inspection of the resulting curvature graphs is 

undertaken to confirm whether or not the central difference method produces results 

comparable to the DoG. 

 To assess the quality of these methods for computing derivatives a sample dataset is 

required.  Here the chosen dataset is taken from the publicly available Research Resource 

for Complex Physiologic Signals’ QT Database ECG dataset (Goldberger et al., 2000) 

which is used throughout this chapter to evaluate the effectiveness of features used to 

segment ECG signals and is described in detail in section 4.3.1. 

 

To assess the central difference method of calculating the curvature we load an arbitrary 

ECG signal comprising of 250 000 samples and first filter this by convolving it with a 

Gaussian kernel with a standard deviation, σ = 3. The kernel is a one dimensional array 

of  6σ + 1 = 19 elements, sampled from the Gaussian function.  

 

The curvature is next calculated using equation (2-6), repeated here for convenience: 

 

𝜅 =
𝑥′𝑦′′  − 𝑦′𝑥′′

(𝑥′2 + 𝑦′2)
3
2

 

 

 

This equation requires the calculation of the first and second derivatives of the x co-

ordinate with respect to arc length and the first and second derivatives of the y coordinate 

also with respect to arc length.  Since this is a univariate curve, the x values increment 

uniformly by one for each sample.  Hence 𝑥′  = 1  and 𝑥′′ = 0 and this equation simplifies 

to: 

 

𝜅 =
𝑦′′ 

(1 + 𝑦′2)
3
2
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Next, a random section of the smoothed curve is selected then 𝑦′ and 𝑦′′ are calculated 

by using the central difference method and the resulting curvature is plotted and then 

visually inspected, see Figure 4-1 (lower).  

 

For comparison, the curvature is then calculated using the DoG (upper), again, with  σ=3.  

The second derivative is calculated here by applying the DoG twice. 

 

 

Figure 4-1: Comparison of Curvature Calculations. Upper using Gaussian derivative, 

lower using central difference method on a Gaussian smoothed (σ=3) signal. 

  

As can be seen, the lower plot is more sensitive to changes and exaggerates curvature, 

despite the signal being filtered with the Gaussian smoothing kernel (σ=3).  However, it 

does reproduce the curvature characteristics obtained by using Gaussian derivatives and 

in particular, minima and maxima of curvature occur at the same arc-length sample 

locations. The randomly selected points shown demonstrate this. 

 

Figure 4-2 visualizes the distribution and range of the curvature calculations for each 

method using a sample size of 5000.  Note the range of the central difference method is 

approximately twice that of the Gaussian method and exaggerates changes in curvature.  

 

ECG Curvature using Gaussian Derivatives (σ=3) 
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Figure 4-2: Comparison of Curvature Calculations across 250 000 samples. Upper using 

Gaussian Derivative, lower using central difference method. 

 

The conclusion is, the central difference method, despite being applied to a filtered signal 

is more susceptible to local changes in curvature due to its small support, compared with 

a Gaussian derivative.  However, it is still capable of locating important curvature 

features.  As a result, the central difference method is not discarded here but is 

investigated further and its usefulness as a feature for segmenting an ECG signal is 

evaluated in later sections of this chapter.  Its major disadvantage appears to be the need 

to pre-filter the signal before differentiation.  The question of whether pre-filtering is 

required for the purposes of segmentation is answered in section 4.3. 

 

ECG Curvature using Gaussian Derivatives (σ=3) 
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The next section of this chapter focuses on the efficiencies that can be achieved using the 

properties of the Gaussian function, in particular its ability to achieve both filtering and 

derivative calculations in one pass. A procedure to efficiently calculate curvature-based 

features suitable for training a classifier to segment a time series dataset is then presented. 

 

4.2 Efficient filtering and derivative calculations using Gaussian kernels 

Having compared the central difference method with the DoG to calculate derivatives in 

section 4.1, this section now focuses on applying Gaussian smoothing to a one-

dimensional time series dataset and the calculation of first and second order derivatives.  

In particular, it focuses on how these operations can be combined into a single Gaussian 

derivative kernel. Chapter 2 presented the necessary theory required to achieve this and 

whilst the focus is on a uniformly sampled time series in this chapter, the procedure is 

equally valid when the dataset represents any curve on a two-dimensional plane. 

Recall from section 2.6.2 the Gaussian function, 𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥)2

2σ2  ,  

its first order derivative, DoG = 
𝑥

−σ2√2πσ2
𝑒

−
(𝑥)2

2σ2  ,  

and the second order derivative,  LoG  = 
(𝑥2 − σ2)

σ4√2πσ2
𝑒

−
(𝑥)2

2σ2 . 

Gaussian smoothing and filtering were achieved in one efficient operation by convolving 

the DoG with the unfiltered curve, C.  This gives the first derivative of the smoothed (low 

pass filtered) curve, C′. To obtain the second derivative either convolve the Gaussian 

second derivative kernel, that is, the LoG with C, or convolve C′ with the DoG kernel 

once more. 

 

To achieve this, first create a Gaussian kernel of the required support by sampling the 

normalized Gaussian function as previously described.  The kernel size is 6σ + 1 and the 

Gaussian is sampled from x= −3σ  to +3σ on integer steps. This range is sufficient to 

ensure the sampled Gaussian is close to zero at ±3σ.  The samples are scaled to ensure 

there is no magnification of the signal, that is the kernel elements sum to one.  Note the 

DoG is the Gaussian function scaled by  −𝑥σ−2.  As the DoG goes to zero a little more 

slowly than the Gaussian, then kernel size may benefit by extending the support to ± the 

ceiling of 3.5σ + 1 or higher, depending upon the series length and sample rate.  
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Determining the appropriate support is explored next, when curvature calculation 

methods are investigated. 

 

4.2.1 Comparison of numerical and analytical curvature calculations. 

Although the curvature equation can be simplified to a univariate function as described 

in section 4.1 when samples are taken periodically, the curvature is determined by using 

the full curvature equation given by equation (2-6).  In this section the first and second 

derivatives (with respect to arc length) of each data point will be calculated prior to 

completing the curvature calculation of equation (2-6). As a sanity check, the curvature 

of a sine wave was determined analytically and then compared with curvature determined 

using derivatives calculated using DoG and LoG methods.   

 

The equation for the curvature of a sine wave is derived from the curvature equation (2-6).  

After differentiating the relevant terms, it is, 

 

𝑘 =  
sin(𝑥)

√(1+𝑐𝑜𝑠2(𝑥))3
     

(4-1) 

        

A plot of the curvature and the sinewave itself is shown in Figure 4-3 overleaf.  The left 

figure shows curvature calculated analytically and the right using DoG and LoG. 

 

These plots show that the DoG method re-produces the analytical plots faithfully. MAE 

of the normalized range of the analytic and DoG calculations is 0.0077 and the Pearson 

correlation coefficient is 0.9997 showing a very close agreement and provides some 

confidence that this numerical method gives accurate results. 
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Figure 4-3: Curvature of sine wave: Top- Analytically Calculated, Bottom- DoG used. 

 

4.2.2 Effect of Gaussian derivative kernel size on long data samples 

Directly filtering and calculating the 2nd derivative using the LoG is sensitive to the size 

of the kernel and the support needs to be sufficient to ensure consistent results when 

convolving with a large number of samples.  This assumption is examined and illustrated 

next. A sampled sinewave of length 5000 is used as this is the size of the feature vectors 

used with the LSTM RNN investigated in the next sections.  DoG and LoG methods are 

used to calculate the curvature with a kernel range from – cutoff up to +cutoff where 

cutoff is defined as the ceiling of (sσ + 1).  In this experiment the variable, s is set 

variously to 3, 3.5, 4 and finally 5; σ is set to a constant value of 2.  The results are shown 

in Figure 4-4, Figure 4-5 and  Figure 4-6.  It was observed that the lower support values 

of s=3 and 3.5, used with the LoG method introduced an error in the calculated curvature 
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proportional to the magnitude of the x co-ordinate – see Figure 4-6. At 𝜎 = 2, an s value 

of 4 is sufficient to remove the error. This gives a kernel size of 2cutoff +1 = 2*9+1= 19. 

 

 

 

    (a)                                                                               

 

 

              (b) 

 

Figure 4-4: Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±3𝜎 + 1, 

b) ±3.5𝜎 + 1. 
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(a) 

 

 

 

(b) 

 

Figure 4-5:  Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±4𝜎 + 1,  

(b) s= ±5𝜎 + 1. 
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                                    (a)                                                                               (b) 

 

 

 

 

 

 

 

(c) (d) 

  

Figure 4-6: Curvature of sin(x) calculated using LoG: 𝜎 = 2: a) s = ±3𝜎 + 1; 

b) s = ±3.5𝜎 + 1;  c) s= ±4𝜎 + 1; d) s= ±5𝜎 + 1. 
 

Figure 4-5 (a) and Figure 4-5 (b) show no changes in amplitude as the magnitude of x 

increases.  In comparison, the LoG method illustrated in Figure 4-6 (a) and (b) is 

susceptible to changes in amplitude for large sample sizes when the kernel width is too 

small. This occurs when the derivatives of the Gaussian taking longer to decay to zero 

and the independent variable, x has a high magnitude.  
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The findings of section 4.2 are twofold.  First, the curvature calculated using LoG and 

DoG methods accurately reflect curvature calculated analytically for the example 

sinewave and second, a kernel size of length 2cutoff +1 where cutoff = 4σ  + 1 ensures 

there is no amplification of longer signals when calculating curvature using LoG and 

DoG. 

 

These findings inform the design and implementation of the experiments in the following 

section where an LSTM RNN is trained to segment curves.  Its performance is analyzed 

using a range of engineered features that include DoG, LoG and curvature. 

 

4.3 Curve segmentation using LSTM RNNs 

The review of section 2.8 introduced the LSTM RNN.  This kind of neural network was 

explicitly developed to work with data-series where dependencies between information 

is distributed across the data, often in a causal manner. This neural network therefore 

seems an appropriate choice to investigate the efficacy of curvature and derivatives as 

input features to a classifier.  In this case they will be used to segment a times series, 

though, equally, this approach could be extended to a two-dimensional dataset and this is 

explored in the following chapter when a head profile contour dataset is segmented. 

 

In this section an LSTM RNN is trained on a range of features and feature combinations 

and their effectiveness in segmenting electrocardiogram (ECG) signals is evaluated. 

Section 4.3.1 describes the dataset and 4.3.2 discusses feature choices and combinations 

in detail.  Following on from this in section 4.3.3, combinations of these features are used 

to train the network. The trained networks are then tested and the efficacy of the features 

and feature combinations are discussed, compared and evaluated. 

 

4.3.1  Dataset Description 

The chosen dataset is based upon the publicly available Research Resource for Complex 

Physiologic Signals’ QT Database ECG dataset (Goldberger et al., 2000). The derived 

dataset consists of 210 ECG recordings sampled at 250Hz and segmented by an 

automated expert system (Laguna, Jané and Caminal, 1994).  Recordings are taken from 
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105 separate subjects, and each is of approximately a quarter hour each in length. Figure 

4-7 (Yochum, Renaud and Jacquir, 2016) shows a segmented EGC signal delineating the 

QRS and T regions of an ECG signal. The coloured circles identify the peaks and troughs 

of the respective waves and the black circles represent the boundaries of the P, QRS and 

T regions. 

 

Figure 4-7: P wave, QRS complex and T wave regions of an electrocardiogram (Yochum, 

Renaud and Jacquir, 2016). 

This dataset has properties useful for analysing the effectiveness of curvature and plane 

curve derivatives. The curvature of these signals also has similar ranges and scales to the 

contours derived from the two-dimensional head profile image dataset that forms the 

focus of later chapters in this study. 

 

Focusing on the present ECG dataset, the properties of the dataset that are useful here are: 

1. Samples are taken from a wide variety of subjects;  

2. ECG signals have recognisable regions- the P wave, QRS complex and the T wave 

and the aim is, typically, to segment these regions into distinct subsets; 

3. these regions are recognisable by their local curvature patterns; 
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4. local signal derivatives have been used in previous work to isolate the regions 

(Laguna, Jané and Caminal, 1994); 

5. these signals display a wide range of concave and convex curvature. 

6. The labelled regions include n/a labels representing a “none-of-the-above” 

classification. 

 

Another reason for using this dataset is related to previous work where the ECG dataset 

was used to demonstrate the effectiveness of LSTM RNNs (Mathworks, 2020c). The 

following discussion documents the reproduction of this work and the features used as 

inputs to the LSTM RNN and extends it to evaluate the effectiveness of curvature and 

curve derivatives as input features.  In the next sections the selection of features for use 

with an LSTM recurrent network is discussed, the network architecture and any necessary 

modifications are defined, and the results of the classification accuracies are presented.   

In addition, the run-time efficiency of the feature pre-processing and generation 

algorithms is analysed and compared with the methods used in Mathworks (2020b). 

 

4.3.2 Feature choices 

The proposed features used to evaluate the accuracy of the recurrent LSTM network are 

enumerated in Table 4-1 overleaf, together with a brief outline of the purpose for selecting 

these features. The replication of the results of previous work is important as it will 

provide some confidence that the neural network implementation and results are reliable, 

and it will also provide a benchmark for assessing the features identified in the table.  

 

Additionally, curvature as a feature is investigated at a range of scales; methods of 

calculating both first and second derivatives as features are investigated as is their 

effectiveness as input features; and combinations of these features as inputs to the LSTM 

are also evaluated. 
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One dimensional input feature vector 

 Feature Purpose 

1 Raw ECG signal Replicate results of previous work 

(Mathworks, 2020c). 
2 Band pass filtered signal 

3 Normalized, curvature of Gaussian 

filtered signal, 𝜎=3 

Assess the effect of standard 

deviation, 𝜎 filter parameter on 

accuracy of network and evaluate 

accuracy of curvature as an input 

feature. 

4 Normalized, curvature of Gaussian 

filtered signal, 𝜎=2 

5 Normalized, curvature of Gaussian 

filtered signal, 𝜎=1 

6 Central difference of raw data  Evaluate effectiveness of central 

difference method derivative as a 

feature and additionally evaluate the 

effect of pre-filtering signal. 

7 Central difference of Gaussian filtered 

signal, 𝜎=3 

8 First order derivative of Gaussian 

filtered signal. 

Evaluate its effectiveness as an input 

feature. 

9 Second order derivative of Gaussian 

filtered signal. 

Two dimensional input feature vector 

10 1st + 2nd order derivatives Evaluate the effectiveness of 

combinations of 1st order derivative, 

2nd order and curvature as input 

features. 

11 Curvature and 1st derivative 

12 Curvature and 2nd derivative 

Three dimensional input feature vector 

13 Curvature, 1st, and 2nd derivatives Evaluate the effectiveness of 

curvature, the 1st order derivative and 

the 2nd order derivative as an input 

feature. 

40 dimensional input feature vector 

14 FSST of raw ECG signal. Replicate results of previous work 

(Mathworks, 2020c). 

Table 4-1: Proposed features used to evaluate accuracy of a recurrent LSTM Network. 

4.3.3 LSTM DNN architecture and training 

This section defines the network architecture, the training and testing procedure, and 

explains the choice of network parameters. Since the LSTM network replicates the 

experiment of Mathworks (2020c), the LSTM RNN architecture is not adjusted except to 

alter the number of inputs when combining features. 
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The network comprises of: 

• 200 hidden units;  

• a fully connected output layer with 4 outputs corresponding to, 

o  the P segment, 

o the QRS complex, 

o the T segment and a neutral, none of the above, classification; 

•  and a softmax layer. 

 

The network is trained using mini-batches with an adam optimiser and a minibatch size 

of 45. Shuffle at every epoch is set to true. The initial learning rate is set to 0.01, the 

learning rate drop period is set to 3 and the gradient threshold is 1. The learning rate 

schedule is set to ‘piecewise.’ Training of the network stops after 10 epochs since, for 

each feature or combination of features used, the testing accuracy has plateaued. 

 

For each feature or feature combination we train and test the LSTM RNN using a 70:30 

train:test dataset ratio. The entire dataset comprises of approximately 46 million samples. 

 

4.3.4 Results and Comparisons of Network Accuracy 

The network architecture parameters remain fixed.  A multi-class confusion matrix is 

generated for each network/feature combination of a trained LSTM RNN and from this 

an overall accuracy figure is calculated along with, for each class, its precision, recall and 

F1 score. The support is also stated for each class’s test data. A review of precision, recall, 

F1 scores, support and accuracy was provided in section 2.7 and Appendix D and the 

results shown here use these metrics to evaluate the classifiers’ success in segmenting the 

dataset. 

 

The LSTM network architecture remains fixed except for the occasions where the input 

feature vector changes dimension and then the input layer is modified accordingly. 

 

4.3.4.1 Raw ECG signal 

The accuracy of the Raw ECG signal forms the benchmark against which the remaining 

networks are compared.  Table 4-2  summarizes the results. The network has some success 

in classifying the regions of interest during the segmentation process with a 70.3% overall 
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accuracy and a macro F1 score of 65.5% indicating that it has moderate success as a 

classifier.  There is some variation between interclass scores and there is some imbalance 

between class sample size (see the support column of the tables for details). The variation 

in support is due to the nature of the dataset and its segmentation.  For example, the QRS 

complex is shorter in duration and so has less samples belonging to this class. 

Nevertheless, its individual shape has resulted in the classifier attaining a higher 

Precision, Recall and F1 score than the P and T cycles of the ECG. 

 

 

Table 4-2: Evaluation of LSTM Network with Raw ECG signal as input feature. 

 

4.3.4.2 Bandpass Filtered ECG signal 

The filter used here is that defined in (Mathworks, 2020c).  It is an IIR bandpass elliptic 

filter with 60dB roll-off, 0.1dB ripple, with a pass band between 0.5Hz and 40Hz.  The 

sample rate of the filtered signal is 250Hz.  

Table 4-3 shows an improvement in each class’s F1 score and is probably due to the 

removal of base line, low frequency movement due to breathing and a reduction in 

sampled noise. 

 

 

Table 4-3 Evaluation of LSTM Network with Bandpass Filtered ECG as input feature. 

 

ECG Class Recall  (%) 

TP/(TP+FN) 

Precision (%) 

TP/(TP+FP) 

F1 Score (%) Support  

P 39.26 74.56 51.44 1528375 
QRS 60.76 79.75 68.97 2039160 

T 57.77 78.68 66.62 3686542 
n/a 86.97 65.75 74.89 6780923 

Overall Accuracy 70.30% 

ECG Class Recall  (%) 

TP/(TP+FN) 

Precision (%) 

TP/(TP+FP) 

F1 Score (%) Support  

P 50.46 65.99 57.19 1528453 

QRS 72.74 77.50 75.04 2039082 
T 75.30 79.60 77.40 3686542 
n/a 80.67 73.27 76.79 6780923 

Overall Accuracy 74.81% 
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4.3.4.3 Normalized Curvature (𝜎=1) Feature 

The curvature feature is calculated directly from the raw ECG signal data and improves 

on the bandpass filtered signal as an input feature with an increase in accuracy of 1.94%.  

QRS complex and T wave F1 scores differ marginally (about +0.41% and -1.19% for T 

and QRS wave respectively) though the P and n/a F1 scores improve by +4.5% and 

+3.03% respectively. 

This is an improvement.  Curvature is calculated using a kernel of length 19 compared 

with the bandpass filter that has 46 coefficients. Note that the curvature calculation also 

includes within it an automatic filtering operation as described in section 4.2. 

 

 

Table 4-4: Evaluation of LSTM Network with Normalized Curvature as input feature (𝜎=1).  

 

4.3.4.4 Normalized Curvature (𝜎=2) Feature 

When the standard deviation, 𝜎, is changed from 1 to 2 we see a slight decrease in the 

overall accuracy of about 0.75%, the slight changes in the P,QRS, T and n/a F1 scores 

reflect this. This is important as it emphasizes the correct choice of σ for a time series 

signal or, if used in the special domain, the scale of an image.  

 

 

Table 4-5: Evaluation of LSTM Network with Normalized Curvature as input feature (𝜎=2). 

ECG Class Recall  (%) 

TP/(TP+FN) 

Precision (%) 

TP/(TP+FP) 

F1 Score (%) Support  

P 53.84 72.22 61.69 1528453 

QRS 71.65 76.18 73.85 2038562 

T 73.88 82.19 77.81 3687062 

n/a 85.01 75.22 79.82 6780923 
Overall Accuracy 76.75% 

ECG Class Recall  (%) 

TP/(TP+FN) 

Precision (%) 

TP/(TP+FP) 

F1 Score (%) Support  

P 54.68 69.06 61.03 1528453 
QRS 73.68 74.14 73.91 2038562 
T 74.21 79.0 76.53 3687062 
n/a 82.42 76.20 79.19 6780923 
Overall Accuracy 75.98% 
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4.3.4.5 First Derivative of Gaussian Feature 

Since the 1st derivative has been used in previous work (Laguna, Jané and Caminal, 1994) 

as part of a hand-crafted expert system used to segment ECG signals, then the DoG 

feature was expected to perform well.  It achieved a surprisingly good accuracy of 

85.28%.  A significant jump from the baseline ECG raw signal accuracy of 70.3% and, 

also, it improves upon the curvature feature. This result, together with the observation 

that the DoG both filters and calculates the 1st derivative in one pass, is significant as it 

supports the use of the DoG as a feature capable of fast classification of regions of interest 

on curves. This finding will be further explored in the context of a 2-dimensional head 

profile curve to be investigated in the following chapters. 

 

 

Table 4-6: Evaluation of LSTM Network with DoG First Derivative as input feature (𝜎=2). 

 

4.3.4.6 First Derivative Using Central Difference Method 

Replacing the DoG derivative with the central difference method to calculate the first 

derivative gives a good result, though it does not perform as well as the DoG with a 

difference of 3.64% in overall accuracy.  This is an important finding for this study since, 

for this dataset at least, the DoG method improves upon the central difference method. 

This could be related to the lack of smoothing.  This hypothesis is investigated in the next 

section by prefiltering the signal using a Gaussian kernel before the central difference 

method is applied. 

 

 

 

 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 74.15 83.30 78.46 1528453 

QRS 86.27 92.60 89.33 2038562 

T 82.63 84.87 83.74 3687062 

n/a 88.93 83.91 86.34 6780923 

Overall Accuracy 85.28% 
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Table 4-7: Evaluation of LSTM Network with Central Difference First Derivative as input feature. 

 

4.3.4.7 First Derivative of Pre-smoothed Signal Using Central Difference Method 

Pre-filtering the signal before applying the central difference derivative feature has further 

improved the accuracy of the feature and it is now almost identical to that of the DoG 

method (see next section). Note there is an additional step required to smooth the signal 

prior to application of the central difference derivative. Here the smoothing function was 

achieved by first convolving the signal with a Gaussian kernel.   

 

Once more this is a significant finding as the central difference method is worth 

considering but only if the dataset used has already been pre-filtered.  If it is to be used 

in a fast or real-time application and the signal needs to be filtered, then its use should be 

avoided and the DoG method considered instead. 

 

 

Table 4-8: Evaluation of LSTM Network with Filtered Central Difference Derivative as input  

feature. 

 

4.3.4.8 The Laplacian of Gaussian Second Derivative Feature 

The LoG feature performs equally as well as the first derivative in terms of its overall 

accuracy. This is an interesting result as the second derivative describes the 

concavity/convexity of curvature whilst the first derivative encodes the degree of 

curvature at any particular point on the curve.  The implication here is that both first and 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 61.47 78.35 68.89 1528453 
QRS 82.33 86.90 84.56 2038562 
T 82.27 82.54 82.41 3687062 
n/a 85.64 80.33 82.90 6780923 
Overall Accuracy 81.64% 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 74.25 83.06 78.49 1528453 
QRS 86.83 92.71 89.68 2038562 
T 83.77 85.63 84.69 3687062 
n/a 89.43 84.77 87.04 6780923 
Overall Accuracy 85.91% 
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second derivates, when used together improve the accuracy of the segmentation process. 

The next section confirms this hypothesis. 

 

 

Table 4-9: Evaluation of LSTM Network with LoG Second Derivative as input feature (𝜎=2). 

 

4.3.4.9 Combined DoG and LoG Derivative Features 

Using the LoG and DoG as a 2 dimensional input vector to the network produces the overall 

best result, improving upon the FSST’s overall accuracy by 2% (see Table 4-12). This 

combination of features also outperforms the FSST feature vector in three out of the four, per 

class F1 scores.  The FSST improves on the P class F1 score, alone, by 0.69%.   This result 

demonstrates that it is possible to match and improve upon methods that use frequency 

domain information as features for classification and that, as demonstrated later, a significant, 

order of magnitude speedup in feature generation is possible. 

 

 
Table 4-10: Evaluation of LSTM Network with First and Second Derivative as input feature 

(𝜎=2). 

 

4.3.4.10 Combined Curvature, DoG and LoG Derivative Features 

The results of this feature combination are similar to those of the previous section’s DoG and 

LoG feature combination, though the accuracy and F1 scores are slightly less across all 

classes.  This is surprising since adding an additional feature (curvature) was expected to 

improve the results. This may be due to the nature of the dataset, however, it is more likely 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 78.20 82.71 80.39 1528453 
QRS 88.06 93.28 90.60 2038562 
T 80.24 83.92 82.04 3687062 
n/a 88.62 84.17 86.34 6780923 
Overall Accuracy 85.20% 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 79.23 84.96 81.99 1528453 
QRS 89.99 94.01 91.95 2038562 
T 85.24 85.02 85.13 3687062 
n/a 89.19 86.87 88.01 6780923 
Overall Accuracy 87.18% 
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to be due to the curvature calculation combining both the first and second derivatives into a 

single scalar feature and therefore losing some salient information. Once again, this result is 

important to this study as curvature was originally hypothesized to be a good choice as a 

feature for classification. 

 

 

Table 4-11: Evaluation of LSTM Network with First and Second Derivative, and curvature as  

input feature (𝜎=2). 

 

4.3.4.11 40 dimensional FSST Vector Feature 

Frequency domain features are also used in time-series classification and image 

segmentation. For example, frequencies corresponding to the first 5 peaks in amplitude 

of the discrete Fourier transform (DFT) have been used as a multi-dimensional feature 

for classifying human activity (Altun, Barshan and Tunçel, 2010).  Additionally, 

extracting time-frequency features allows a classifier to use local time and frequency 

information together. The Fourier Synchrosqueezed Transform (FSST) (Auger et al., 

2013) used here achieves this, but this additional information comes at a cost as, for each 

sample, a 40 dimensional vector encoding local time and frequency information needs to 

be calculated.  The FSST used here produces some excellent results with an overall 

accuracy of 85.48%, second only to the DoG and LoG feature combination. 

 

 
Table 4-12: Evaluation of LSTM Network with 40 dimensional FSST vector as input feature. 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 76.77 85.30 80.81 1528453 

QRS 89.38 94.14 91.67 2038562 
T 84.57 85.24 84.90 3687062 
n/a 89.82 86.21 87.98 6780923 
Overall Accuracy 86.96 

ECG Class Recall  (%) 

TP/(TP+FN) 
Precision (%) 

TP/(TP+FP) 
F1 Score (%) Support  

P 82.21  83.16 82.68 1528453 
QRS 90.45  91.90 91.17 2039082 
T 82.09  84.43 83.25 3686542 
n/a 86.57 84.67 85.06 6780923 
Overall Accuracy 85.48% 
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4.3.5 Summary of overall accuracy and F1 scores  

 Table 4-13 summarizes the results of section  4.3 and the plot in Figure 4-8 presents a 

visual summary of these results.  

 

 Feature Accuracy Macro-F1 score 

1 Raw ECG signal 70.30% 65.48% 

2 Band pass filtered signal 74.81% 71.61% 

3 Normalized, curvature of 

Gaussian filtered signal, 𝜎=1 

76.75% 73.29% 

4 Normalized, curvature of 

Gaussian filtered signal, 𝜎=2 

75.98% 72.67% 

5 First order derivative of 

Gaussian filtered signal. 

85.28% 84.47% 

6 Central difference of raw data  81.64% 79.69% 

7 Central difference of Gaussian 

filtered signal, 𝜎=3 

85.91% 84.95% 

8 Second order derivative of 

Gaussian filtered signal. 

85.20% 84.84% 

9 1st + 2nd order derivatives 87.18% 86.77% 

10 Curvature, 1st, and 2nd 

derivatives 

86.96% 86.35% 

11 FSST of raw ECG signal. 85.48% 85.54% 

 Table 4-13: Summary table of accuracy and macro-F1 scores. 

 

The overall accuracy is presented but, in addition, the macro F1 score for each class is 

also presented. The macro F1 score is used in this summary chart as it represents an 

average of all four class F1 scores without weighting, by sample size, for each class.  

Thus, it treats each of the multi-class F1 scores equally ignoring the support for each class 

and avoiding biases due to unequal class sizes. 

 

It is found that features that include the DoG or the LoG, either alone or in combination, 

result in a significant improvement in the classifier’s overall accuracy and macro F1 

score. 

 

Additionally, the curvature, which also uses the DoG and LoG, first and second 

derivatives as part of its calculation does not perform as well.  This is probably due to the 
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curvature combining both the first and second derivatives into a single scalar feature. This 

becomes clear when the DoG and LoG features are interpreted as a two-dimensional 

vector.  Reducing this vector to a scalar value loses the directional information encoded 

by the vector. 

 

 

 
Figure 4-8: Summary of Macro F1 and Overall Accuracy. 

 

The choice of classifier would change the results and no-doubt, further adjustment of the 

architecture and tuning of the LSTM RNN attributes will also improve the accuracy of 

the network for all the pre-processed features. Bear in mind, the purpose here is to assess 

the suitability of the various features as inputs to a given classifier so no further 

modification of the classifier was attempted. Additionally, this study is based on just one 

existing dataset.  Consequently, more work using a range of datasets is needed to assess 

the effectiveness of curvature, DoG and LoG used in time series segmentation. 

 

4.3.6 Runtime Results and Comparisons 

Having evaluated the accuracy of the segmentation network, the focus of this section now 

becomes the evaluation of the execution time of the pre-processing algorithms used to 

generate the input features for the LSTM network. 
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4.3.6.1  Timing procedure 

The timing procedures used here are detailed in the methodology chapter, section 3.8. 

The features evaluated in this section had their parameters initialized as follows. 

For these timing tests σ was set to 3, both the 1st and 2nd derivative’s kernel size was set 

to 27 (cutoff =4*σ+1, kernel length = 2*cutoff +1), there were 48 filter coefficients used 

in the bandpass filter and the datasets used were of size 112 000, 56 000 and 28 000 

samples. The results of these tests are shown Table 4-14. 

 

 
Table 4-14: Algorithm execution times to process dataset of size N. 

 

These results are then further combined together where necessary.  For example, the 

pre-filtered, central difference derivative feature’s execution time is obtained by adding 

the filter’s execution time to the central difference’s execution time (284.9μs + 2.12ms = 

2.4049ms), and so on. 

 

From the table and the discussion of these algorithms the time complexity of the 1st and 

2nd derivative features is O(nm) where n is the size of the dataset and m is the kernel size, 

but since n>>m then the complexity is O(n). The curvature algorithm calculates both the 

first and second derivatives and uses both square roots and 2nd and 3rd powers in the 

calculation which accounts for a slower run-time.  The timings show an approximate 

complexity of O(n) for the derivatives and curvature. 

 

Note MATLAB’s gradient() function was originally used to calculate the derivative using 

the central difference algorithm, however this function appeared to run very slowly in 

comparison the DoG and LoG algorithms. Consequently, the central difference algorithm 

Dataset Size, N 112 000 56 000 28 000 

1st Derivative (DoG) 188.4μs 103.6μs 57.8μs 

2nd Derivative (LoG) 186.0μs 100.7μs 57.1μs 

1st Derivative (Central Difference method) 284.9μs 124.5 μs 67.3 μs 

Filter 2.12ms 1.08ms 559.8μs 

Curvature 3.72ms 1.92ms 973.6μs 

FSST 1.37s 684.7ms 340.9ms 
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was re-coded and the times recorded in Table 4-14 reflect this. Nevertheless, given the 

central difference method’s smaller kernel size, the result here appears to be slower than 

expected (although approximately the same as the DoG and LoG methods). The central 

difference method coded here could be optimized further. 

   

4.4 Estimating the effectiveness of the feature pre-processing 

Choosing a feature engineering algorithm for fast and accurate classification is often a 

tradeoff.  Ideally the fastest algorithm is not the most accurate and vice versa. To help 

guide the engineer we summarize the timing and overall accuracy results here as a plot in 

Figure 4-9. 

 

The top right of the plot is where one would find the ideal feature pre-processor.  The 

higher the point is located, the better the accuracy and the further to the right the faster 

the algorithm runs.  To achieve this, accuracy was plotted against the normalized 

reciprocal of the run-time. 

 

Note the FSST algorithm is not shown as its runtime is several orders of magnitude greater 

than the other algorithms. 

 

Figure 4-9: Overall accuracy of the feature pre-processing algorithms vs their run-time speed 

measured as reciprocal time. 
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A measure of the algorithm’s quality would then be the Euclidian distance, given by the 

L2 norm and called here,  QL2. 

 

𝑄𝐿2 = √𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 +  𝑁𝑜𝑟𝑚𝑆𝑝𝑒𝑒𝑑2 (4-2) 

  

Table 4-15  shows the QL2 for the feature preprocessors of  Figure 4-9. Ultimately the 

choice depends upon the application. 

 

 

 

  

 

 

 

 

 

 

 

 
Table 4-15: Measure of each feature pre-processing’s QL2 plotted in Figure 4-9. 

 

We could improve upon this quality estimate by including an additional parameter to 

encode the perceived importance of accuracy or speed, let us call this parameter the 

relevance, r. It acts to generalize the quality estimate of the algorithm used.  We can 

modify the QL2 to incorporate this.  Equation (4-3)  shows how we might do this. 

 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑄𝐿2  = √(2(1 − 𝑟)𝑠)2 + (2𝑎𝑟)2  (4-3) 

 

Here, s is the execution speed, a is accuracy and r is the relevance parameter that ranges 

from 0 to unity. Table 4-16, Table 4-17 and Table 4-18 show the sorted adjusted QL2 for 

r = 1, r = 0 and r = 0.5.  When r = 0 the accuracy is ignored, and the execution speed is 

used to rank the algorithms.   

 

Ranking QL2   Feature 

1 131.37 2nd deriv (LOG) 

2 130.51 1st deriv (DoG) 

3 117.74 1st deriv (C Diff) 

4 98.52 LoG and DoG together 

5 87.15 DoG, LoG and Curvature 

6 86.39 1st deriv (C Diff) filtered 

7 76.97 curvature(σ = 1) 

8 76.20 curvature( σ = 2) 

9 75.50 IIR filtered 
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Ranking 

 

Adjusted  

QL2 

Algorithm  

Relevance = 0.5 

1 1 2nd deriv (LOG) 

2 0.993399 1st deriv (DoG) 

3 0.896251 1st deriv (C Diff) 

4 0.749961 LoG and DoG 

together 

5 0.663436 DoG, LoG and 

Curvature 

6 0.657599 1st deriv (C Diff) 

filtered 

7 0.585915 curvature(σ = 1) 

8 0.580071 curvature(σ =2) 

9 0.574713 IIR filtered 

 

Table 4-16: Ranking Algorithms as a 

function of the relevance factor, r = 0.5. 

 

  

Ranking 

Adjusted  

QL2 

Algorithm  

Relevance = 0 

1 1 2nd deriv (LOG) 

2 0.987889 1st deriv (DoG) 

3 0.84844 1st deriv (C Diff) 

4 0.459003 LoG and DoG 

together 

5 0.102001 IIR filtered 

6 0.091054 1st deriv (C Diff) 

filtered 

7 0.058648 curvature(σ = 1) 

8 0.058648 curvature(σ = 2) 

9 0.058648 DoG, LoG and 

Curvature 

 

Table 4-17: Ranking Algorithms as a 

function of the relevance factor, r = 0. 

 

           Ranking 

 

Adjusted 

QL2 

Algorithm 

Relevance = 1 

1 1 LoG and DoG together 

2 0.997482 DoG, LoG and Curvature 

3 0.985432 1st deriv (C Diff) filtered 

4 0.978206 1st deriv (DoG) 

5 0.977288 2nd deriv (LOG) 

6 0.936453 1st deriv (C Diff) 

7 0.880362 curvature(σ = 1) 

8 0.87153 curvature(σ = 2) 

9 0.85811 IIR filtered 

 

Table 4-18: Ranking Algorithms as a function of the 

relevance factor, r=1. 
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Notice the algorithms are ordered by execution speed alone.  When  r = 0.5 both accuracy 

and execution speed have equal relevance and the rankings match those shown in  

Table 4-15. When r = 1 the execution speed is ignored and the accuracy is used 

exclusively to rank the algorithms.  The results shown are normalized. Using the adjusted 

quality distance estimate outlined here we can see that the calculated distance when r is 0 

has a wide range which reflects the wide range of execution speeds and with r = 1 we see 

the range now reflects that of the accuracies of the pre-processors.  Note these results 

occupy the top three quarters of the accuracy range, that is, they all have accuracies 

around 75% and above. 

 

Since this study is investigating approaches to fast and accurate segmentation, these 

results show that DoG and LoG based features are ranked highly even when there are 

changes to the application requirements, for example if hardware and processor choices 

limit the executions speed, then one should still be considering LoG and DoG based 

features. As an aim of this study is to identify and develop fast features that are also 

accurate classifiers then, r is set to 0.5 to reflect their equal relevance. 

 

This measure can also be useful in specifying a system’s requirements as weighting a 

requirement’s importance in a project is often a qualitative decision so using a quantitative 

method to rank requirements based on measurable attributes and perceived relevance can 

simplify decision making.  

 

4.5 Discussion and Conclusions 

The accuracy of the network depends very much upon the chosen features. The raw ECG 

signal alone shows an accuracy of 70.3%, but pre-processing of the raw ECG signal has 

been shown to be worthwhile.  Using the filtered signal as an input feature to the LSTM 

RNN provides an overall accuracy increase of (74.81 -70.3)/70.3 = 4.51%, however use 

of the curvature feature improves on this again, with an increased accuracy of  (75.98 -

70.3)/70.3 = 5.68%.  For this additional 1.17% improvement there is a time penalty, as 

the curvature takes approximately 1.75 times as long to calculate as the filtered signal. 

Note the curvature algorithm contains within it an inherent smoothing due to the LoG and 

DoG operations. 
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Using the derivatives of the ECG signal as input features to the LSTM network provides 

the best performance and efficiency improvements.  Using the LoG to calculate the 

filtered second derivative provides an overall accuracy of 85.28%, an impressive 

improvement of 85.28-70.3/(70.3)=21.31% over the use of the raw signal as an input 

feature. Notably, this algorithm runs over 9 times faster than the filter pre-processor and 

17 times faster than the curvature calculation. The second derivative performs equally as 

well as the first derivative in terms of speed and overall accuracy. The filtered first and 

second derivatives of the signal match the overall accuracy of the FSST of the raw signal 

input feature. Finally, when combined together the LoG and DoG features provide an 

improvement in accuracy of (87.18 – 70.4)/70.4 = 23.87%. This outperforms the FSST 

by 2%. 

 

The FSST 40 dimensional vector does show some good results.  As discussed, it is a close 

second to the combined LoG and DoG input feature, but the cost in run-time performance 

is excessive.  The FSST feature extractor is about two orders of magnitude slower than 

all the other candidate feature pre-processing algorithms analysed here. 

 

Looking at the individual classes, the FSST, LoG and DoG features have similar F1 scores 

with little separating them.  In general, for all features used as input to the LSTM RNN, 

the P segment remains the most difficult to classify.  In this regard, the FSST feature 

performs marginally better, however the input feature is a 40-dimensional vector and 

takes considerably more time to calculate than any of the other input features. 

 

The curvature, whilst performing better than both the raw and filtered features, was out-

performed by the first and second derivative features either alone or together.  This is 

hypothesized to be due to loss of relevant information when both first and second 

derivatives are combined into a single scalar value.  

 

Figure 4-9 allows the reader to visually compare the algorithms by their attributes 

(accuracy and execution speed), however, where a simple quantitative estimate is required 

the QL2 and adjusted QL2 formulae of (4-2) and (4-3),  respectively, may be helpful.  The 

example rankings shown in Table 4-16 to Table 4-18 give a simple quantitative label that 

reflects the pre-processors’ suitability for the task, given the selected relevance, r, 

indicating the importance of the feature’s accuracy and speed attributes. 
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In summary, the derivatives of ECG signals are good indicators of the onset of the 

P/QRS/T complexes, accurately segment these regions and are fast to calculate. Using 

both the first and second derivatives as input features together in an LSTM RNN 

segmenter-classifier produces the best classification accuracy results of all the input 

features evaluated here and outperforms the second-best classifier’s execution time by 

two orders of magnitude. Should either accuracy or execution speed relevance change 

due to project considerations, then DoG and LoG based features are still excellent choices.  

 

The choice of classifier would change the results and adjusting the architecture and tuning 

the LSTM RNN attributes will also improve the accuracy of the network for all the pre-

processed features. Bear in mind, the purpose here is to assess the suitability of the various 

features as inputs to a given classifier, not to optimize the classifier alone. 

 

Additionally, this study is based on just one existing dataset.  Consequently, more work 

using a range of datasets is needed to assess the effectiveness of curvature, DoG and LoG 

derivatives used in time series segmentation. 

 

In the next chapter we consider segmenting and regressing head profile contours extracted 

from a 2D binary image using the ideas developed here for the uniformly sampled, 

univariate ECG dataset. 
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5 Segmenting face profile contours with RNNs 

This thesis proposes novel methods to segment and regress co-ordinates on face contour 

profiles.  In the previous chapter fast and effective feature processing algorithms were 

developed that could segment a univariate time series dataset.  In this chapter these 

methods are developed further with the aim of designing, implementing and evaluating a 

more sophisticated process capable of segmenting face profiles and regressing landmarks 

accurately, given an unseen image. To achieve this, chapter 4’s feature processors and 

underlying algorithms are extended and applied to a plane curve, consisting of a list of 

two-dimensional co-ordinates that represent sampled points on a face profile’s contour. 

These contours must first be extracted from a 2.5D image dataset.  This chapter also 

includes a description of the profile image dataset used and the creation of a new dataset 

of labelled, profile contours. 

 

The outline of this chapter is as follows. An overview of the method and procedures 

involved is outlined first. The image dataset used in this study is introduced in section 

5.2. Section  5.3 describes the method and apparatus used to pre-process and label the 

dataset. Section 5.4 details the process of extracting the profile contours.  Sections 5.5 

and 5.6 explains how the manual landmarking accuracy can be automatically improved. 

Section 5.7 details the method used to segment the dataset and section 5.8 details the 

design, implementation, training, and testing of a suitable classifier used to segment 

profile images. 5.9 investigates how changes to the LSTM network can improve accuracy, 

5.10 demonstrates how landmark positions can be regressed using the segmented dataset 

and 5.11 evaluates the runtime efficiencies of both LSTM networks.   Finally, section 

5.12 discusses results and presents conclusions of this chapter. 

 

5.1 Procedure and toolchain 

This section identifies the process required to achieve the aim of segmenting and locating 

landmarks on a face profile contour. Initially, a suitable profile image dataset was 

identified, reviewed and pre-processed to remove unusable images (see section 5.2).  

 

Next, a software tool was developed to automatically extract profile contours from 

images.   The curves extracted from the profiles were no longer a set of uniformly sampled 
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univariate time series as was considered in the previous chapter, but instead represented 

a plane curve as sampled points with each point represented by a pair of co-ordinate 

values. Following on from this, the RGB image was manually annotated by an expert to 

produce a list of profile landmarks associated with each image.  

 

At this point the dataset now comprised of: 

1. a set of profile images, 

2. a set of corresponding landmarks, 

3. a set of corresponding profile contour curves. 

 

Next, a second software tool was created that could automatically adjust landmark co-

ordinates on the profile contours with the aim of reducing positioning errors. To achieve 

this, a novel process used the curvature of the profile contours to guide the positioning of 

the landmarks. At this point the extensions to the dataset consisted of a set of 2-

dimensional vectors of x and y co-ordinates describing contour curves of face profiles 

together with labelled anthropometric landmarks. This dataset now stands alone and can 

be used to both train and test a suitable classifier or segmentation process in its current 

form. 

 

The previous chapter described the successful application of an LSTM RNN to segment 

an ECG dataset. Since this method was able to segment data with good accuracy then it 

would make sense to implement a similar experiment using the labelled profile dataset.  

Consequently, a final pre-processing step was required to modify the contour profile 

dataset. This step involved segmenting the contour profiles into regions of interest such 

as upper and lower lips, chin, and so on.  In order to achieve this, a further bespoke 

application was developed that used a profile contour and its associated landmarks to 

segment the regions of interest. From here the extended and processed dataset could be 

used to train and test a suitable classifier to segment face profiles and regress landmark 

position co-ordinates. 

 

The final stage of the procedure to automatically segment face contour profiles is the 

training and testing of a suitable LSTM RNN.  This is detailed in sections 5.8 and 5.9 of 

this chapter. Regression of landmarks is detailed in section 5.10. 
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In summary, the method and software tools outlined above extend the original dataset and 

so create a new stand-alone dataset.  The extensions comprise of: 

1. an anthropometrically labelled set of 2D RGB images, 

2. an anthropometrically labelled set of face profile contours, 

3. an anthropometrically labelled set of segmented face profile contours. 

 

This dataset is then used to train and test an LSTM RNN.  These results are then analyzed 

and discussed.  

5.2 The Notre Dame J2 Dataset 

In order to segment a profile and regress landmark co-ordinates a suitable classifier needs 

to be trained on a dataset of labelled face profile contours.  A review of publicly available 

datasets failed to identify any useable, existing datasets; however, one candidate dataset 

was identified that could be extended with sufficient effort.  The criteria used here to 

select an appropriate database was twofold: 

 

1. It had to be a “real-world” dataset, that is, the images captured were not pre-

processed and any flaws or “holes” in the images must not have been removed. 

The raw un-processed nature of such a dataset is an advantage for two reasons.  

First, it would be beneficial during the supervised ML training process used in 

this study, improving the generalization capability of the models created. 

Additionally, such a dataset would be representative of images captured in a 

practical, real-world scenario. 

 

2. Both RGB image and corresponding depth image data was required.  This was 

essential for two reasons.  First the manual landmarking procedure required access 

to the 2D images.  For example, locating the labiale superius requires 

identification of the vermilion of the upper lip, where the red of the lip tissue meets 

the philtrum. A secondary requirement related to this is the potential to identify 

the tragus and exocanthion.  This would be useful in future work as an alternative 

method to quantify head posture angle. 

 

The dataset selected was the Notre Dame University ND-Collection J2 Ear profile dataset 

(Yan and Bowyer, 2007), consisting of 2413 RGBD (with corresponding two dimensional 
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RGB) head profile images with the ear visible. Each scanned head profile image 

comprises of one colour, RGB image of size 640x480 pixels and one 2.5D scan of size 

640x480 pixels. Image data was acquired with a Minolta Vivid 910 range scanner 

(Minolta, 2001).  

 

The Minolta Vivid 910 is a 3D scanner with camera that uses light sectioning 

triangulation to acquire depth information and has been used in several other 3D head and 

face detection and recognition studies (Phillips et al., 2005; Liang et al., 2008). Examples 

of the raw data are shown in Figure 5-1. The left image, (a) is a two-dimensional left 

profile image and the right, (b) is the corresponding three-dimensional depth image. The 

subjects are positioned approximately 1.5 metres from the camera. 

 

The first half of the dataset was used in this study.  It composed of 985 images (both 3D 

scans and 2D colour images) of 127 individuals.  All were left profile images taken at 

different times and with slight variations in composition, such as minor changes to the 

profile pose or translations in camera framing. 

 

The right depth image of Figure 5-1 (b) shows depth coded as a grey-scale (range 0 to 

255) with pixels a lighter shade of grey indicating objects closer to the camera and darker 

pixels, objects further from the camera.  Note where hair has scattered or attenuated the 

light beam towards the top of this image resulting in no reflected rays being detected by 

the sensor. There is also evidence of scattering or attenuation near the upper eyelid. On 

the left image, near the eye, there is evidence of separation of the RGB colour 

components. Scanning of an object using this device can take over two seconds so 

subjects are expected to avoid any movement during the capturing process. Failure to do 

this can result in a misalignment of the 2D and 3D images.  During the landmarking 

process, it was observed that images with excess colour separation tended to correlate 

with landmarks offset from the extracted contour.  As the contour was derived from the 

3D image, it is assumed movement of the subject during image capture was to blame. 
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(a)                                                                  (b) 

Figure 5-1:  Example images of the ND- N2 Ear collection dataset (Yan and Bowyer, 2007).  

(a) 2D colour  image; (b) 3D depth image. 

The majority of the images are of useable quality, however several are poorly framed 

with, for example, parts of the profile cropped, poorly oriented head pose or an arm 

occluding part of the profile.  Facial hair may also occlude part of the profile in some 

images and, as shown above, scattering or attenuation artifacts often corrupt the 3D 

image. This limited the usable contour range for this study to be from the gnathion up to 

the sellion.   

 

The dataset stored RGB images and 3D depth information in separate folders with 

corresponding images linked by a common filename but different file name extension.  

Unfortunately, a significant minority of these files were mis-named which reduced the 

number of useable images in the study. Section 5.8.1 provides details of the final profile 

contour dataset derived from the Notre Dame N2 dataset. 

 

5.3 Labelling landmarks 

An important goal of this study is the accurate estimation of head posture.  In order to 

achieve this using profile contouring it is sufficient to efficiently and accurately identify 

a small number of landmarks to act as reference points for measurement.  Anthropometric 

landmarks are an attractive option since they are, by design, easy to identify and have 

obvious characteristics, particularly high curvature.  As previously noted, they are also 

well studied and there are significant databases of anthropometric measurements of the 

face that include the mean and variance of relative distances between landmarks. These 
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statistics may be helpful to identify landmarks once the profile has been segmented.  

Several landmarks are concentrated in a small part of the head profile, between eye level 

and the chin. Not all are needed to achieve the goal of measuring head posture, it is 

sufficient to select three or four of these.  They could then be used together with the tragus 

to measure the rotation of the head about the tragus. Alternatively, they could be used 

with segmented regions of interest to describe the whole face pose. 

 

Selecting stable landmarks for measuring head posture ensures measurements are 

repeatable and accurate.  Stable here means that a landmark will remain unchanged when 

the facial expression changes or when the head rotates in the frontal axis about the tragus 

in the sagittal plane. Three landmarks that have these properties are the sellion (where the 

eyebrows meet), the pro-nasale (tip of the nose) and the sub-nasale (where the 

cartilaginous lowest point of the nose meets the flesh of the upper lip).   

 

When a neutral, unchanging expression is adopted then other landmarks can be used as 

reference points too.  For example, the stomion (contact point where closed lips meet), 

the labiale inferius (in profile this corresponds to lower vermilion lip), the labiale superius 

(in profile this corresponds to upper vermilion lip)  and the sublabiale (the midpoint of 

the labiomental groove).  Where a landmark occurs near fleshy areas such as the gnathion 

at the bottom of the chin, there may be movement of that landmark under gravity so 

measurements may be unreliable if the subject is measured in different positions, for 

example in the upright then supine positions. For this reason such landmarks were 

excluded. 

 

5.3.1 Chosen landmarks 

The review of craniofacial anthropometric regions and landmarks in section 2.9.2 

together with a visual inspection of the images in the Notre Dame dataset indicates the 

profile below the eye including the pronasale, the subnasale, the labiale superius, the 

stomion and the labiale inferius are good canditates for localisation since they have the 

characteristics discussed above and are typically unoccluded. Additionally, as already 

observed, the three-dimensional scans of this dataset have few deleterious artifacts such 

as scattering and attenuation in this region.  All ears of this dataset are clearly visible so 

the tragus can be included as a landmark to identify too, since this will feature in future 
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work and acts as a point of rotation as discussed in section 2.9.3. Figure 5-2 shows these 

anthropometric landmarks applied to an example profile image from the dataset. 

 

gl: glabella, between the 

eyebrows;  

se: sellion, deepest point between 

nose and forehead but not the 

nasion;  

exc: exocanthion, outer canthus 

where eyelids meet (termination 

of the white part of the eye);  

prn: pronasale, tip of nose;  

sn: subnasale, where nose joins 

the lips;  

ls: labiale superius, in profile this corresponds to 

upper vermilion lip; 

sto: stomion, contact point where closed lips 

meet;  

li: labiale inferius, in profile this corresponds to 

lower vermilion lip;  

sl: sublabiale, the midpoint of the labiomental 

groove;  

gn: gnathion, the bottom of the chin;  

tr: tragus or tragion. 

Figure 5-2: Profile image together with labelled anthropometric landmarks. 

 

5.3.2 Landmark capturing software 

Landmarking was done in two phases.  First images were manually landmarked. After all 

images had been landmarked and checked by a second expert a further process was 
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applied to automatically improve the accuracy of the landmark locations.  This second 

process is detailed in section 5.5. The following discussion refers to the initial, manual 

landmarking process. 

 

In order to successfully annotate the images a suite of software tools was developed.  

These tools were to be used to landmark images. The essential requirements for this 

software are identified in Table 5-1, together with justification for each requirement. 

 

 
Table 5-1: Landmarking software requirements. 

Requirement 

Number  

Requirement Description Justification 

1 View the dataset. Each image requires initial 

screening by the land-marker 

prior to landmarking. 

2 Manually annotate the RGB 

image with the relevant 

landmark label selected from a 

list. Edit and adjust incorrect 

landmark positions should the 

need arise. 

Once selected, each image needs 

labelling. The annotator needs to 

have the option to adjust 

landmark positions until satisfied. 

3 Save: 

i) a list of landmark positions 

as a list of pairs of co-

ordinates corresponding to 

pixel positions within an 

image, 

ii) the landmark names, 

iii) a reference to the image file 

name. 

Saved annotations should be kept 

in a separate database to protect 

the original image and ensure the 

annotation database can be stored 

and distributed independently. 

4 Review annotated images and/or 

adjust incorrect landmark 

positions should the need arise. 

The option to update the 

database must be provided. 

For quality purposes, the 

annotator must be able to revisit 

saved image annotations and data 

to both view and edit landmark 

positions until the correct 

position has been located.   

5. No images should be changed. 

Instead, the facility to overlay 

the landmarks on the 
corresponding RGB image 

should be provided. 

In order to adhere to the licence 

agreement, the original dataset 

must not be corrupted or altered. 
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Landmarking was undertaken by a local trained expert over a period of several months. 

Images were randomly chosen from the first half of the Notre Dame dataset. Overall, 985 

images were labelled. 

Labelling images manually is both time consuming and error prone.  In order to minimise 

errors, the annotator was trained prior to beginning the process. A subset of images and 

landmarks were then re-checked and any necessary adjustments were made to incorrectly 

positioned or missing landmarks.  Despite this additional step in quality control, the 

landmarking process cannot produce perfect results. There will always be some variance, 

although, as reviewed in section 2.9, anthropometric measurements using direct and 

indirect methods such as photogrammetry are reliable. A sample result of the landmarking 

process is shown in Figure 5-2. 

 

5.4 Extracting Profile Contours 

There are several approaches to extracting contours within an image.  Previous chapters 

identified classic computer vision algorithms for segmentation and edge detection such 

as Canny edge detection, watershed algorithms and so on (Canny, 1986; Meyer and 

Beucher, 1990; Woods and Gonzalez, 2017). The advantage of the Notre Dame dataset 

is that it includes a 3D depth image which can be used to extract relevant parts of the 

profile efficiently. Using a 3D depth image to extract a contour has other advantages too.  

Camouflaging or skin colour has no effect on the method, neither does changes in lighting 

shade, contrast, or backlighting.  

 

Section 2.4 explained how a 3D image can be sectioned along a plane using a plane 

equation and plane-point distance tests.  The resulting curve intersecting this plane then 

represents the head profile contour. For the images used in this study a simple camera to 

point distance depth test can be employed. The plane of interest here would have its 

normal parallel with the z-axis and pointing out of screen space towards the viewer.  

Although this is sufficient for this study, the 3D dataset used here can also be used to 

extract contours from profiles using planes that are not parallel with the camera’s viewing 

plane. This could be useful should a head profile be slightly rotated about the vertical y-

axis.  In this study, this is not investigated further, leaving it as future work. 

 



 

101 

 

Often, and as is the case with the Minolta scanner, a binary mask is encoded as part of the 

file standard used. This can be used to extract the profile and determine the contour with 

no further pre-processing necessary.  This is the method used here with the Notre Dame 

dataset. The 3D depth ASCII files were read, the masks converted to a suitable binary 

image using bespoke C++ and MATLAB scripts and stored in a convenient format, a .png 

file here.  

 

These binary files were examined manually to determine the quality of the profile, 

focusing on the region between the eye and chin.  Of the 2436 NDJ2D Dataset images 

converted, 67 images had unusable contours and some poses were not usable, for example 

part of the head profile was cropped. A few hundred images were incorrectly named, 

hence the correspondence between an RGB camera image and its associated scan was 

incorrect, reducing the available useable image samples.  Figure 5-3 shows an example 

profile image of the subject shown in Figure 5-2 above. Note the artifacts due to 

attenuation and scattering. Once the 3D images had been converted to a 2D binarized 

format, the next phase was to find the profile contour. 

 

 

Figure 5-3: Binarized Image profile of previous image. 

 

The algorithm selected is Moore’s algorithm described in section 2.4. Images were 

opened and read, an outline border was placed around the image and a starting point was 

found by scanning from left to right/top-to bottom until an outline pixel was detected.  

The algorithm assumes pixels are 8-connected and walks the contour in a clockwise 
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direction.  The framing prevents the contour moving beyond the image extremities.  The 

result of this process is illustrated in Figure 5-4. 

 

 

Figure 5-4: Illustration of the contour found using Moore’s algorithm applied to the binary 

image of Figure 5-3. 

 

As the contour algorithm progresses, the contour is stored as a vector of (x, y) co-ordinates 

representing the whole contour. Only a subset of this contour is required.  Extracting this 

region is achieved initially by empirically selecting a sub-set of co-ordinate values and 

later, once the dataset was labelled, by selecting a start and end point identified as the 

nearest co-ordinate to the gnathion and sellion, respectively.  This contour subset, together 

with the manually labelled dataset further extends the Notre Dame dataset.  Once the 

subset of the contour has been identified and cropped, it is saved along with the file name 

of the processed image.  This file name then acts to uniquely identify the contour and 

links to the generating image. This final dataset can now be input to the procedure to 

automatically adjust the manually labelled dataset. 

 

5.5 Adjusting Landmarks 

A significant finding of this study is that it is possible to automatically improve the 

accuracy of the landmarking process by adding a further procedure. Other researchers 

have also attempted to use various approaches based on the concavity and convexity of 

curvature to either identify landmarks directly or improve the accuracy of manually 

labelled landmarks (Efraty et al., 2009). These ideas were reviewed in section 2.5. The 

approach used here differs from these in that the curvature is calculated at all points and 
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relevant maxima and minima are identified based upon their locality to the manually 

labelled landmark.  

 

The approach is based on first observing that the3D dataset has additional 3D information 

that has not yet been used. In particular, the contour profile corresponding to each RGB 

2D image is available for further processing.  Next, we recognise that the landmarks 

identified above have useful properties related to the information contained within the 

contour.  In particular, these landmarks are placed at points of high curvature, and this 

means that two additional and automatic steps can be added to the landmarking process 

to produce a semi-automatic method.  First, any manually labelled landmark that does not 

sit exactly on the head profile contour can be automatically placed on the profile by 

selecting the nearest contour point.   

 

A second enhancement would be to then calculate the curvature of the contour and move 

the point to the nearest maxima or minima of curvature. Whether the point is moved to a 

maxima or minima depends upon the particular landmark being moved. If the landmark’s 

curvature is convex, then the point is moved to the nearest significant maxima and if 

concave it is moved to the nearest significant minima.  The remainder of this section 

details this automatic landmark adjustment process, beginning with the extraction of the 

profile contours from the image datasets.  

 

The image size is 480x640.  To place this in context of a typical profile from the dataset, 

the number of sampled pixels required to represent the profile contour from the sellion 

down to the gnathion is about 270 to 300 pixels depending upon the composition of the 

scene. This results in a rather jagged contour as shown in Figure 5-5a which is a close up 

taken from the synthetic profile head mockup shown in Figure 5-5b. 

 

Applying derivative and curvature operations directly to this contour can lead to errors as 

described in section 2.6  as step changes at the pixel level within a sampled contour lead 

to errors in calculating the derivative at finer scales and so low pass filtering of a sampled 

curve is advisable prior to calculating its derivatives (Farid and Simoncelli, 2004). 
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              (a)                                                                        (b) 

Figure 5-5: Synthetic profile head mockup (b) and a close up (a). 

 

The previous chapter had demonstrated that the Gaussian function has the necessary 

properties to both smooth and find derivatives efficiently in one or two dimensions.  A 

further attractive feature of the Gaussian kernel is that of separability.  This can be taken 

advantage of to efficiently smooth the contour.  Also, when calculating derivatives, as 

will be needed when calculating curvature, both smoothing and differentiation can be 

achieved in one pass as described and used in chapters 2 and 4.  

 

To illustrate the effect of filtering the profile contour, a Gaussian kernel was applied 

separately to each co-ordinate of a profile contour extracted from a binary image. A 

Gaussian kernel was applied to the x co-ordinates of the contour, then separately to the y 

co-ordinates.  Figure 5-6 shows the resulting close-up of the smoothed contour 

superimposed upon the raw, unfiltered profile contour. The standard deviation, σ = 2.83 

pixels here. 

 

 

 



 

105 

 

 

Figure 5-6: Smoothed contour (red) overlayed on raw sampled image (blue). 

 

Although this demonstrates the separability of the Gaussian kernel well and shows it is 

possible to effectively smooth the raw sampled image, it is important to emphasize that 

the image contours were not pre-smoothed.  Instead, the ideas developed in Chapter 2 are 

applied, as they were in Chapter 4, to make the calculation of curvature more efficient by 

combining both smoothing and derivative calculations into one convolution using either 

the DoG or LoG. 

 

Here, a recapitulation of the DoG and LoG process to calculate first and second 

derivatives, and curvature is offered in the context of a contour curve comprising of a list 

of (x,y) co-ordinates.  The procedure used is shown in the following pseudocode: 

 

function CalcCurvature(𝜎,contour) returns contour_curvature 

DoGKernelWidth ← 8𝜎 + 1     

DoG ←  InitializeDoGKernel(DoGKernelWidth)  

LoGKernelWidth ← 9𝜎 + 1    

LoG ← InitializeLoGKernel(LoGKernelWidth)  

contour_dx ← Convolve(DoG, contourXcoords) 

contour_d2x ← Convolve(LoG, contourXcoords) 

contour_dy ← Convolve(DoG, contourYcoords) 

contour_d2y  ← Convolve(LoG, contourYcoords) 

contour_curvature ← Curvature(Contour_dx, Contour_d2x, Contour_dy, Contour_d2x) 

return contour_curvature 

 

Pronasal (nose tip) 

Stomion (where lips meet) 
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Next, a hand-crafted system was developed to finalize the location of the labelled 

landmarks based on local maxima and minima. This approach was then used to finalize 

the location of the regressed landmarks on all profile contours. This procedure requires 

as input: a landmark co-ordinate, L; a list of head profile contour points, P and a 

corresponding profile curvature list, C, calculated from P using the curvature algorithm 

above.  

L is automatically adjusted as follows: 

 

For each L: 

1. Search the list P for the contour point nearest L using the Euclidian distance 

measure (L2-norm). Let this point on the contour be P[i] where,  

      𝒊 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

|𝑳 − 𝑷[𝑥]|.  

2. Starting at C[i], search C for the nearest significant local minimum or maximum 

of curvature (depending upon the convex or concave nature of the given landmark 

– see table below). Let j be the index to this located list element. Therefore C[j] 

will contain the corresponding maximum/minimum curvature value. 

3. Let L = P[j]. 

 

With regard to the convexity or concavity of the curvature around specific landmarks, 

Table 5-2 lists the landmarks indicating whether each is convex or concave.  Note the 

notion of convexity and concavity here is arbitrary and depends upon the initial 

presentation of the curve to the algorithm. 

 
Table 5-2: Concavity or convexity of face profile landmarks. 

 

Number Landmark Concavity/Convexity 

1 Sellion (se) Concave 

2 Exocanthion (exc) Not on contour 

3 Pronasale (prn) Convex 

4 Subnasale (sn) Concave 

5 Labiale superius (ls) Convex 

6 Stomion (sto) Concave 

7 Labiale inferius (li) Convex 

8 Sublabiale (si) Concave 

10 Gnathion (gn) Concave 
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5.6 Adjustment Algorithm Results and Discussion 

Figure 5-7 and Figure 5-8 demonstrate the effect of applying the automatic adjustment 

method described above. Notice that the landmarks have successfully been moved onto 

the contour and then further adjusted, when necessary to locate the highest point of 

curvature that relates to the landmark’s true location. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7: Extracted profile curve curvature overlayed with manually labelled landmarks 

(top). Extracted profile curvature and landmarks after adjustment using the automatic process 

(bottom).         

 

 

 

 

 

 

 

 

Landmark 

abbreviations 

gl glabella 

se sellion 

exc exocanthion 

prn pronasale 

sn subnasale 

ls labiale 

superius 

sto stomion 

li labiale 

inferius 

sl  sublabiale 

gn gnathion 
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Figure 5-8:  Extracted profile contour overlayed with manually labelled landmarks (top). 

Extracted profile contour and landmarks after adjustment using the automatic process 

developed here (bottom).  

 

 

Landmark 

abbreviations 

gl glabella 

se sellion 

exc exocanthion 

prn pronasale 

sn subnasale 

ls labiale 
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li labiale 

inferius 

sl  sublabiale 

gn gnathion 
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Whilst the automatic landmark adjustment algorithm laid out here works well with this 

dataset, there are limitations to its use as a method for accurately positioning landmarks 

around the chin, lips and nose.  In particular, facial hair such as moustaches and beards 

may cause problems if they occlude a landmark.  Naturally, this is also a problem when 

manually annotating images of this kind and sometimes only an estimate can be made by 

the expert annotator. Figure 5-9 illustrates how the adjustment algorithm works with a 

pre-labelled image of a bearded face profile.  

 

Scanning of hair often results in aberrations due to attenuation and scattering of the 

scanner’s incident light. This is apparent in the figure.  Nevertheless, the algorithm 

performs well, locating the nearest points on the contour and searching for significant 

points of curvature to locate landmarks.   

 

The smoothing process acts to reduce spurious curvature and results in some reasonable 

adjustments to the landmarks particularly around the nose, upper and lower lip areas. 

 

The Minolta camera/scanner used with this dataset can take up to 2 seconds to complete 

the 3D scan. As already noted, any head movement can cause problems with accurate 

sampling.  The profile of Figure 5-10 show an offset which illustrates this idea.  The 

adjustment algorithm deals with these kinds of error effectively and relocates landmarks 

onto the contour accurately. 
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Figure 5-9:Application of the adjustment algorithm upon a bearded profile image.  Top: before 

adjustment; bottom: after application of automatic adjustment algorithm. 

 

Landmark 

abbreviations 

gl glabella 

se sellion 

exc exocanthion 

prn pronasale 

sn subnasale 

ls labiale 

superius 

sto stomion 

li labiale 

inferius 

sl  sublabiale 

gn gnathion 
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Figure 5-10: Extracted profile contour overlayed with manually labelled landmarks (top). Note 

the scanning inaccuracy leading to contour/RGB image overlay mismatch.  Note the adjustment 

algorithm deals with this well (bottom), relocating the landmarks correctly on the contour at the 

expected points.  

 

A final, important consideration is the effect of the automatic adjustment algorithm on 

the labiale superius. In the anthropometric literature this landmark represents the border 

of the vermillion line with the upper lip. This also corresponds to a point of high convex 

curvature which is used by the algorithm to place this landmark.  In many individuals this 

corresponds to the true labial superius, however in many other individuals there 

Landmark 

abbreviations 

gl glabella 

se sellion 

exc exocanthion 

prn pronasale 

sn subnasale 

ls labiale 

superius 

sto stomion 

li labiale 

inferius 

sl  sublabiale 

gn gnathion 
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commonly appears a second, higher curvature point located slightly below the labiale 

superius on the upper lip itself but above the stomion which the adjustment algorithm 

gravitates towards.  This is illustrated in Figure 5-11. 

 

Figure 5-11: Adjusted landmarks, illustrating points of curvature located on the upper lip. 

 

This point of curvature is stable and the algorithm repeatably locates it when it exists in 

an individual.  However, it is not the true labiale superius.  In order to select the true 

labiale superius during the adjustment process the algorithm was modified to provide a 

choice when selecting the point of convex curvature. 

 

Either point can be used. Traditionally the labiale superius has been used as it is easily 

located by an expert viewing a colour image.  This study has the advantage of being able 

to calculate profile curvature for every point of the profile contour and so curvature as a 

feature has been used to guide the final positioning of the landmarks. For this study, the 

highest point of curvature on the upper lip is used as a landmark.  

 

This is sometimes the true labiale superius and sometimes the highest point of curvature 

on the upper lip itself.  To avoid confusion, in this thesis the highest point of curvature is 

referred to as the labiale superius.   

 

In order to provide some flexibility in the choice of local minima or maxima, the 

adjustment algorithm is extended to include an upper and lower maximum range at which 
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point the algorithm will stop searching for better local maxima or minima.  This range is 

termed the extent of the search and is set empirically to ± 9 pixels.  Finally, for this 

algorithm a range of σ values between 1 and 3 were used to smooth the curve.  A value 

of σ = 3 gave the best results for use with the automatic adjustment algorithm.  This was 

probably due to the reduction in local minima near a target landmark. 

 

At this point the extended dataset comprises of: 

1.  A dataset of semi-automatically adjusted landmark co-ordinates related to the 

original Notre Dame dataset images,  

2. a profile contour curve subset extending from around the sellion to the gnathion. 

(again the co-ordinates of each point correspond the Notre Dame image dataset), 

3. the corresponding curvature values for each point on the profile contour curve. 

 

Having identified the best choices for the parameters used in the automatic landmark 

adjustment algorithm, and having completed the creation this new dataset, the dataset can 

now be further processed to generate candidate features that can be used to train a 

classifier to segment face profile contours and regress local landmarks.  The following 

section discusses the methods used to achieve this and describes the implementation of a 

suitable classifier used to segment the profile. A selection of features informed by the 

experiments of chapter 4 are used here. For each feature, or combination of features, the 

accuracy of the resulting classifier/segmenter is subsequently analyzed and evaluated. 

 

5.7 Segmenting profiles 

Once the semi-automatic process of labelling key landmarks has been completed then the 

dataset can be used to engineer features and train suitable classifiers.  The labels 

themselves can be used as inputs in combination with the contour and engineered features, 

or the dataset could be further segmented into specific regions which would increase the 

amount of useful information available to guide the training of a classifier. This latter 

approach was used in the previous chapter to good effect with a uniformly sampled 

dataset and it is repeated here. 

 

To achieve this the dataset is further extended by defining regions of interest delimited 

by the landmarks.  Regions between these labels are segmented resulting in all points 
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between labels being classified as belonging to its accorded region. The result of this 

process is an additional vector of categorical variables equal in length to the profile 

contours with each point labelled with its relevant categorical variable. The following 

discussion details the relevant data structures used in the segmentation process. 

 

Each profile contour consists of a vector of contour co-ordinates, each co-ordinate 

represents a pixel on the image profile. The size of the contour could vary but is set to a 

length of n=361  in order to capture all relevant landmarks.  It is noted that the positioning 

of all subjects in the dataset is relatively constant and so profile sizes, whilst they do vary, 

approximately occupy a similar space. The vector is illustrated in Figure 5-12.  Note each 

co-ordinate is a two dimensional vector and is referenced by the contour element number, 

which corresponds approximately to the parameterized arc-length of the curve. 

 

 
Figure 5-12: Contour vector containing screen co-ordinates of the two-dimensional image. 

 

The labelled landmarks are referenced by the contour element that corresponds to the 

landmark co-ordinates. The regions identified for segmentation are listed in Table 5-3 and 

are delimited by the labelled landmarks.  For example, the Philtrum extends from the 

labiale superius to the subnasale. 

 
Table 5-3: Definition of regions for profile segmentation. 

1 2 3 4 5   n-2 n-1 n 

x y x y x y x y x y     x y x y x y 

Region (label used) Start Point End Point 

n/a (Not defined) Contour beginning Gnathion (gn) 

Chin (chin up to lower lip) Gnathion (gn) Labiale inferius (li) 

Lower lip Labiale inferius (li) Stomion (sto) 

Upper lip Stomion (sto) Labiale superius (ls) 

Philtrum Labiale superius (ls) Subnasale (sn) 

Columella Subnasale (sn) Pronasale (prn) 

Dorsum nasi Pronasale (prn) Sellion (se) 

n/a (Not defined) Sellion (se) Contour end 
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Using the labelled landmarks and the contour vector described here, a further vector mask 

was generated labelling each point on the contour with its designated region as shown in 

Figure 5-13. The resulting mask was of equal length to the contour.  Figure 5-14 illustrates 

a profile image segmented using the regions defined in Table 5-3 above.  Note that the 

chin region label incorporates the region between the gnathion and labiale inferius.  This 

was done in order to simplify the labelling of the region. 

 

 

Figure 5-13: Example segmentation mask generated from contour and region labels. 

 

Both the regions of interest identified here and the landmarks describe the profile posture. 

The landmarks useful here are those that remain unchanged with posture, whether the 

subject be supine or prone and no matter what facial expression or pose is held by the 

subject. However, all subjects will be expected to have a neutral expression during the 

inference stage when classifying the head posture of a new, never before seen, subject. 

 

At this point the dataset is ready to be used to train and analyze a new classifier.  In the 

next section we design, implement and analyze a profile segmenter using a LSTM RNN 

using this dataset of segmented contours. 

Element 1 2 3 4 5    n-2 n-1 n 

Label Mask n/a n/a n/a gn gn    se se se 

Co-ordinates x y x y x y x y x y       x y x y x y 
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Figure 5-14: An example profile segmented into regions. 

 

5.8 Curve Segmentation using LSTM Neural Network 

Due to the relatively small profile contour dataset available it was deemed essential to 

engineer suitable, effective features to train the network since it was assumed that 

development of an end-to-end classifier that could learn the required features from the 

raw dataset would rely upon a large training dataset.  Additionally, as one aim of this 

study is to identify fast methods for posture estimation and measurement it would also 

make sense to develop an efficient classifier capable of fast inference.  For example, a 

deep neural network that is capable of learning both the necessary features and locations 

of landmarks given only the raw input contour, would require not just a large training 
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dataset but also a more complex architecture which would require additional calculations 

during inference. 

 

As a simpler network would be the more desirable option, the emphasis is on engineering 

suitable features for training and inference. This section explores this approach, using 

both the ideas documented in chapter 4 and the region segmentation methods developed 

in this chapter to inform the engineering of features and assess their effectiveness in 

segmenting and regressing landmarks in an LSTM network. 

 

5.8.1 Dataset Description 

The dataset of segmented and labelled profile contours created previously in this chapter 

was used to generate suitable features to train the LSTM network.  The dataset initially 

consisted of 693 segmented and labelled contours comprising of 86832 categorically 

labelled points.  These were generated from the Notre Dame dataset and includes a 

minority of images that have occlusions, missing regions or are poorly framed profiles.  

These were included to improve the generalization properties of the LSTM network. 

Errors in file naming of corresponding 2D and 2.5D depth files further reduced the 

number of images used to 648.  Of these, the test set comprised of 194 images and the 

training set 454. This remained unchanged during the investigation detailed in this study. 

 

Segmented profiles consist of seven regions as illustrated in Figure 5-14.  These were 

listed in Table 5-3. 

 

Class imbalance is an important consideration in pre-processing datasets. The dataset is 

mildly imbalanced, with the columella of the nose having the largest support. Class size 

ratios for philtrum:columella is 2:3, upper lip:columella 2:3 and lower lip:columella 1:2.  

This imbalance is by no means extreme and the results of this section show the models 

generated still produced good results. 

 

Since the aim of the segmenter is to accurately identify a small number of landmarks that 

remain invariant under transformation and facial expression, then only a subset of the 

profile is required.  This means the longer “n/a” labelled parts of the profile can be 

trimmed improving the balance of the data categories. Additionally, the chin region is 

superfluous since it contains no useful landmarks and in comparison to other regions it 
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also adds to data imbalance. Consequently, the segmented contour profile dataset has 

been adjusted. Table 5-4 shows the regions used after adjusting the segmented profile to 

take into account these changes. 

 

 
Table 5-4: Adjusted segmented contour profile. Compare with Table 5-3 above. 

 

The resulting dataset now consists of contours of varying length, from approximately 14 

sample points up to 155. 

 

5.8.2 Feature Choices 

The features generated here are informed by those used in Chapter 4 to segment the 

univariate ECG signal. The proposed features used to evaluate accuracy of the segmenting 

LSTM network are enumerated Table 5-5 overleaf. 

 

The features are grouped by the dimensionality of the feature vectors and a brief outline 

of the purpose for selecting these features is also included. 

 

 

 

 

 

 

 

 

Region (label used) Start Point End Point 

n/a (Not defined) 7 samples before the 

Gnathion 

Gnathion (gn) 

Lower lip Labiale inferius (li) Stomion (sto) 

Upper lip Stomion (sto) Labiale superius (ls) 

Philtrum Labiale superius (ls) Subnasale (sn) 

Columella Subnasale (sn) Pronasale (prn) 

Dorsum nasi Pronasale (prn) Sellion (se) 

n/a (Not defined) Sellion (se) 7 samples after the sellion 
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One and two dimensional input feature vector 

 Feature Purpose 

1 Raw profile contour curve Provides baseline for 

comparison. 

2 Normalized, curvature of Gaussian filtered signal, 

𝜎=3 

Assess the effect of 

standard deviation, 𝜎 filter 

parameter on accuracy of 

network and evaluate 

accuracy of curvature as 

an input feature. 

3 Normalized, curvature of Gaussian filtered signal, 

𝜎=2 

4 Normalized, curvature of Gaussian filtered signal, 

𝜎=1 

5 First order derivative of Gaussian filtered signal. Evaluate its effectiveness 

as an input feature. 

6 Second order derivative of Gaussian filtered 

signal. 

Three and four dimensional input feature vector 

7 1st + 2nd order derivatives Evaluate the effectiveness 

of combinations of 1st 

order derivative, 2nd order 

and curvature as input 

features. 

8 Curvature and 1st derivative 

9 Curvature and 2nd derivative 

Five dimensional input feature vector 

10 Curvature, 1st, and 2nd derivatives Evaluate the effectiveness 

of curvature, the 1st order 

derivative and the 2nd 

order derivative as an 

input feature. 

 
Table 5-5: Proposed features used to evaluate accuracy of a recurrent LSTM Network in 

segmenting face profiles. 

 

5.8.3 LSTM DNN architecture and training 

The LSTM RNN architecture is that used in chapter 4.  Only the input layer is adjusted 

to alter the number of inputs to take into account the two dimensional (x, y) co-ordinates 

of the curve and combinations of input features.   
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The network comprises of: 

• 150 hidden units;  

• a fully connected output layer with 5 outputs corresponding to, 

o  n/a (not defined), 

o lower lip, 

o upper lip, 

o philtrum, 

o columella, 

• a softmax layer. 

 

The network is trained using mini-batches with an adam optimiser and a minibatch size 

of 45. Training of the network stops after 15 epochs since, for each feature or combination 

of features used, the testing accuracy has plateaued. 

 

For each feature or feature combination we train and test the LSTM RNN using a 70:30 

train:test dataset ratio. The dataset size was 648 landmarked contours.  Of these, the test 

set comprised of 194 images and the training set 454. 

 

All experiments were performed on machine with an Intel core i7-7700 CPU with 32GB 

RAM and an Nvidia 1080Ti GPU. 

 

5.8.4 Results and Comparisons of Network Accuracy 

This section follows the experimental methods used in section 4.3.4 and discussed in 

chapter 3. Here, the network architecture parameters remain fixed as defined in section 

5.8.3. In each experiment a multi-class confusion matrix is generated for each 

network/feature combination of a trained LSTM RNN and from this an overall accuracy 

figure is calculated along with, for each class, its precision, recall and F1 score. The 

support is also stated for each class’s test data. 

 

The LSTM network architecture remains fixed except for the occasions where the input 

feature vector changes dimension.  Then the input layer is modified accordingly. The 

following section details the results obtained for each of the features and feature 
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combinations identified in Table 5-5. Following this an analysis and discussion of the 

results is provided.  

 

5.8.4.1 Raw profile contour 

The raw face contour profile curve is a two dimensional vector of sampled (x, y) image 

pixels and the accuracy of the network trained on this feature was to be the benchmark 

against which the remaining networks are compared.  Table 5-6 summarizes these results. 

The network has very little success in classifying the regions of interest during the 

segmentation process with a 51.33% overall accuracy and a macro F1 score of 37.5% 

indicating that its performance is better than random guessing from 5 classes but is still 

not good.  It fails to correctly identify any points within the philtrum region. Since this 

feature is not effective as an input to the classifier the following curvature features form 

an initial basis for comparison in this section. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-6: Evaluation of LSTM network with raw profile contour curve as input feature. 

 

5.8.4.2 Normalized curvature (σ=3) feature 

Curvature is a one-dimensional vector describing the curvature of the contour profile 

curve.  It is calculated using the full curvature equation of  (2-6). The overall accuracy of 

the classifier has improved significantly to 76.42% with a macro F1 score of 76.47%.    

 

The architecture of the classifier remained unchanged, and the size of the feature vector 

has halved in comparison with the raw curve feature, yet its accuracy at the class level 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 94.73 50.41 65.80 6112 

Philtrum 0.00 0.00 0.00 3859 

LowerLip 64.99 54.56 59.32 3028 

n/a 5.15 50.36 9.35 2716 

UpperLip 55.23 51.24 53.16 4298 

Overall 

Accuracy 

(%) 

51.33 Macro F1 

Score (%) 
37.53 20013 
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and overall macro-F1 score has improved significantly when compared with the raw 

curve input feature.  

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 82.41 76.99 79.61 6112 

Philtrum 63.75 65.93 64.82 3859 

LowerLip 84.28 90.05 87.07 3028 

n/a 76.14 75.53 75.83 2716 

UpperLip 73.89 76.20 75.03 4298 

Overall 

Accuracy 

(%) 

76.42 Macro F1 

Score (%) 
76.47 20013 

 

Table 5-7: Evaluation of LSTM network using normalized curvature with σ=3 as input feature. 

 

5.8.4.3 Normalized Curvature (𝜎=2) Feature 

When the standard deviation is changed from 3 to 2 we see a decrease in the overall 

accuracy of about 1.5% in Table 5-8.  Interestingly the classifier has poor recall.  The 

confusion matrix related to this table reveals that it confuses the “nose tip” and the “none 

of the above” (n/a) labelled points with nose tip incorrectly predicted 1354 times and the 

n/a class correctly predicted 1362 times.  A poor result. The columella class’s recall has 

increased by 7.3% at the expense of precision. Otherwise, though slightly lower, the recall 

and precision follow similar patterns to the previous classifier using the σ=3 curvature 

feature. This is important as it emphasizes the correct choice of σ can be significant given 

the scale of an image.  
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Table 5-8: Evaluation of LSTM network with Normalized Curvature as input feature (𝜎=2). 

 

5.8.4.4 Normalized Curvature (𝜎=1) Feature 

Using curvature as a feature with 𝜎=1 provides the best classification of this group of 

curvature features with an overall accuracy of 79% and a macro F1 score of 78%. Table 

5-9 shows the upper lip’s F1 score has increased by over 6%, the philtrum’s by 6.5% and 

the lower lip’s by 5.5% The n/a class still has poor recall as in the previous section’s 

results. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-9: Evaluation of LSTM network with Normalized Curvature as input feature (𝜎=1). 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 89.79 70.13 78.75 6112 

Philtrum 61.05 63.52 62.26 3859 

LowerLip 86.06 90.33 88.14 3028 

n/a 50.15 99.71 66.73 2716 

UpperLip 74.06 75.30 74.67 4298 

Overall 

Accuracy 

(%) 

74.93 Macro F1 

Score (%) 
74.11 20013 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 91.59 72.91 81.19 6112 

Philtrum 68.93 68.50 68.72 3859 

LowerLip 93.10 93.62 93.36 3028 

n/a 51.29 95.67 66.78 2716 

UpperLip 78.08 84.22 81.03 4298 

Overall 

Accuracy 

(%) 

79.08 Macro F1 

Score (%) 
78.22 20013 
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5.8.4.5 First Derivative of Gaussian Feature 

Building on the work of the previous chapter, the first derivative of the profile curve was 

investigated next. The previous chapter required only a one-dimensional derivative vector 

as the ECG data used there was sampled uniformly.  Here, a two-dimensional vector is 

used as the derivatives were taken with respect to the parameterized arc length of both 

the x and y sampled positions which made up the profile contour curve.   

 

Table 5-10 shows it achieved an accuracy of 87.57% and an F1 score of 87.89%.  This is 

a significant improvement of approximately 8% on the best curvature feature. 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 94.93 89.08 91.91 6112 

Philtrum 78.28 75.68 76.96 3859 

LowerLip 95.64 92.64 94.12 3028 

n/a 90.65 100.00 95.09 2716 

UpperLip 77.80 85.31 81.38 4298 

Overall 

Accuracy 

(%) 

87.57 Macro F1 

Score (%) 
87.89 20013 

 

Table 5-10: Evaluation of LSTM network with DoG First Derivative as input feature (𝜎=3). 

As also noted in the equivalent experiment in the previous chapter, this result is also 

significant as, together with the observation that the DoG both filters and calculates the 

1st derivative in one pass, it also demonstrates that the DoG  is a feature capable of fast 

classification of regions of interest on any contour curves extracted from a two 

dimensional image. 

 

5.8.4.6 The Laplacian of Gaussian Second Derivative Feature 

The LoG feature does not perform as well as the first derivative, DoG.  In fact the DoG 

feature’s accuracy and macro-F1 scores are approximately 8% better than this feature.  

However, it is on a par with the curvature feature in performance. 

 

The dataset used here appears to rely more on first derivatives than second derivatives for 

landmark classification and segmentation. The second derivative indicates the 
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concavity/convexity of curvature and where it is located, whilst the first derivative 

encodes the degree of curvature at any particular point on the curve.  

 

The philtrum’s recall figure of 57.35% is below the rest, however the n/a recall figure is 

high, indicating that further combinations of features is warranted.  Indeed, the following 

experiment shows the results of combining both first and second derivatives, since, when 

used together, these improve the accuracy of the segmentation process as was discovered 

in the previous chapter.  

 

 

 

 

 

 

 

 

 

 

 
Table 5-11: Evaluation of LSTM network with LoG Second Derivative as input feature (𝜎=2). 

 

5.8.4.7 Combined DoG and LoG Derivative Features 

Using the LoG and DoG as a 2-dimensional input vector to the network produces a good 

result and is only slightly less accurate than the overall best feature identified in this series 

of experiments (see the next sub-section for details of this).  It improves upon the DoG’s 

overall accuracy by 1.6% and its macro-F1 score by 1.8%  (see Table 5-12). 

 

 

 

 

 

 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 90.76 81.25 85.74 6112 

Philtrum 57.35 61.08 59.16 3859 

LowerLip 83.16 89.32 86.13 3028 

n/a 94.85 100.00 97.35 2716 

UpperLip 70.92 73.13 72.01 4298 

Overall 

Accuracy 

(%) 

79.46 Macro F1 

Score (%) 
80.08 20013 
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Table 5-12: Evaluation of LSTM network with First and Second Derivative as input feature 

(𝜎=2). 

 

5.8.4.8 Combined Curvature, DoG and LoG Derivative Features 

The results of this feature combination are slightly better than those of the previous 

section’s DoG and LoG feature combination and are detailed in Table 5-13 below. In the 

previous chapter, adding an additional feature (curvature) did not improve the results. 

There is additional information in a useable form that can help the classification process 

in this experiment. This is due to the curvature calculation improving the generalization 

of the classifier. Once again, this result is important to this study as curvature was 

originally hypothesized to be a good choice as a feature for classification. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-13: Evaluation of LSTM network with First and Second Derivative, and curvature as 

input feature (𝜎=3). 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 94.45 93.26 93.85 6112 

Philtrum 79.89 74.67 77.19 3859 

LowerLip 95.74 94.71 95.22 3028 

n/a 99.52 100.00 99.76 2716 

UpperLip 78.87 86.26 82.40 4298 

Overall 

Accuracy 

(%) 

89.18 Macro F1 

Score (%) 
89.69 20013 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 95.50 92.71 94.08 6112 

Philtrum 78.80 76.03 77.39 3859 

LowerLip 96.43 94.99 95.71 3028 

n/a 99.41 99.82 99.61 2716 

UpperLip 79.20 86.44 82.66 4298 

Overall 

Accuracy 

(%) 

89.45 Macro F1 

Score (%) 
89.89 20013 
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5.8.4.9 Curvature with either first or second derivatives 

The previous experiment combined curvature with both first and second derivatives of 

the contour curve.  Two further investigations were carried out to evaluate the effect of 

curvature alone with DoG and then curvature alone with LoG.  Both combinations 

provided poorer results, although the DoG in combination with the curvature feature 

performs well when compared with the curvature, DoG and LoG features together.   

 

The overall accuracy and macro F1 scores for both combinations are shown in Table 5-14. 

These results indicate the first derivative, DoG feature contains significant information to 

guide the training and inference of the classifier. 

 

 

 

 

 

 

 
Table 5-14: Overall Accuracy and macro-F1 score for Curvature with DoG and curvature with 

LoG. 

 

5.8.5 Summary of overall accuracy and F1 scores  

 Table 5-15 summarizes the results of section 5.8.4 and the graph of Figure 5-15 presents 

a visual summary. The overall accuracy is presented along with the macro F1 score for 

each class. As discussed in section 2.7 and Appendix D, the macro-F1 score treats each 

of the multi-class F1 scores equally ignoring the support for each class and avoiding 

biases due to unequal sample sizes.  It is found that features that include the DoG and, to 

a lesser extent, the LoG, either alone or in combination, result in an improvement in the 

classifier’s overall accuracy and macro F1 score. The DoG appears to be the most 

powerful feature and the strategy of including LoG and curvature with DoG improves the 

overall performance of the classifier by 1.5% to 2%. 

 

The raw curve alone has very little predictive power when used with this classifier and 

dataset.  The relevant information is contained within it (i.e., the DoG, LoG and curvature) 

but it appears that with this classifier, and the relatively small dataset used, it has been 

 Overall 

Accuracy 
Macro-F1 

Score 

Curvature & DoG 88.68% 89.05% 

Curvature & LoG 83.75% 84.19% 
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unable to extract the necessary information for learning the mappings between the inputs 

and the classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-15: Summary of Accuracy and macro-F1 scores. 

 

 

Figure 5-15: Summary of Macro-F1 and Overall Accuracy. 

3
7
.5

7
6
.5

7
4
.1

7
8
.2 8

7
.9

8
0
.1 8

9
.7

8
9
.9

8
9
.1

8
4
.2

5
1
.3

7
6
.4

7
4
.9

7
9
.1 8
7
.6

7
9
.5 8

9
.2

8
9
.5

8
8
.7

8
3
.8

0
10
20
30
40
50
60
70
80
90

100

M
ac

ro
 F

1
 s

co
re

 a
n
d
 

O
v
er

al
l 

ac
cu

ra
cy

 (
%

)

Features

Summary Of Macro-F1 And Overall 

Accuracy

Macro F1 score

Overall Accuracy (%)

 Feature Accuracy Macro-

F1 score 

1 Raw profile 37.53% 51.33% 

2 Normalized, curvature of Gaussian filtered 

signal, 𝜎=1 

79.08% 78.22% 

3 Normalized, curvature of Gaussian filtered 

signal, 𝜎=2 

74.93% 74.11% 

4 Normalized, curvature of Gaussian filtered 

signal, 𝜎=3 

76.42% 76.47% 

5 First order derivative of Gaussian filtered 

signal (DoG). 

87.57% 87.89% 

6 Second order derivative of Gaussian 

filtered signal (LoG).  

79.46% 80.08% 

7 1st + 2nd order derivatives (DoG and LoG). 89.18% 89.69% 

8 Curvature, 1st, and 2nd derivatives (DoG 

and LoG). 

89.45% 89.89% 

9 Curvature and 1st derivative (DoG). 88.68% 89.05% 

10 Curvature and 2nd derivative (LoG). 83.75% 84.19% 
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Two datasets have been used so far in this study, the ECG dataset of the previous chapter 

and the profile contour dataset generated and described in this chapter. Whilst this dataset 

set is very small in comparison to the ECG dataset, it has been able to generate results 

that are, in general, equally good.  This supports the argument that a well-engineered 

feature set enables a classifier to learn effectively on smaller datasets.  If the features can 

be calculated efficiently, as has been demonstrated previously, then this is an additional 

benefit too. 

 

The choice of classifier would change the results as would the adjustment of the hyper-

parameters and architecture of the classifier. To ensure a fair comparison between the 

ECG segmenter and the profile contour segmenter, no modification to the architecture of 

the classifier or hyper-parameters was attempted in this section. In the next section some 

adjustment of the hyperparameters was attempted to fine tune the classifier. 

 

5.9 Effect of parameter adjustment on the LSTM network 

5.9.1 Changes to the LSTM RNN architecture and training 

Here, the effect of changes to training hyper-parameters and network architecture were 

investigated.  

 

The network architecture used in the previous section was the starting point. As before, 

the input layer was adjusted to alter the number of inputs to take into account the two 

dimensional (x, y) co-ordinates of the curve and combinations of input features, and the 

network comprised of: 

• 150 hidden units;  

• a fully connected output layer with 5 outputs corresponding to, 

o  n/a (Not defined), 

o lower lip, 

o upper lip, 

o philtrum, 

o columella, 

• a softmax layer. 
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For each feature or feature combination we train and test the LSTM RNN using a 70:30 

train:test dataset ratio. The dataset size was 648 images.  Of these, the test set comprised 

of 194 images and the training set 454.  

 

Originally the mini-batch size had been set to 45 as this was the value used in the original 

published network used to train the large ECG dataset. Le-Cun cites Masters and Luschi 

(2018), observing that better performance is obtained by reducing the mini-batch size to 

as low a level as possible.  This observation is documented too by Wilson and Martinez 

(2003).  A consequence of using a smaller mini-batch size in this work is a significant 

increase in the training time, however as the profile contour dataset is reasonably small it 

was possible to reduce the mini-batch size down to single figures without unduly 

increasing the time allotted to complete the analysis of the networks investigated in this 

study. A mini-batch size of 1 was selected. That is, on-line training was used.  This had 

the greatest, positive effect on the testing dataset’s overall accuracy and F1 scores. 

 

The effect of changing the architecture of the LSTM network was investigated next.  The 

number of LSTM units in the hidden layer was adjusted.  The network performance 

increased slightly and peaked at approximately 500 units and began to fall off marginally 

after this. Consequently, the number of hidden units was set to 500.  This would reduce 

the inference speed.  As noted in section 4.4, and is also the case here, there is always a 

trade-off between speed and accuracy.  Here we concentrate on the accuracy of the 

classifier. 

 

The final adjusted architecture and hyper-parameters are shown below. 

 

Input Layer Adjusted as required to accommodate the dimensions of the input 

features. 

Hidden units 500. 

Minibatch size 1. 

Output layers Fully connected with 5 outputs corresponding to: n/a (Not 

defined), lower lip, upper lip, philtrum and columella with a final 

softmax layer. 

 

Table 5-16: Adjusted LSTM RNN architecture. 
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5.9.2 Results and Comparisons of Modified Network Accuracy 

This section also follows the experimental methods detailed in chapter 3 and in section 

4.3.4. Here, the network architecture parameters remain fixed as defined in the previous 

section and each experiment generates a multi-class confusion matrix from which overall 

accuracy figure is calculated along with, for each class, its precision, recall and F1 score.  

 

The support is also stated for each class’s test data. The following section details the 

results obtained for each of the features and feature combinations identified  Table 5-17 

below. The features identified here are a subset of those used in Table 5-5.  Following 

this an analysis and discussion of the results is provided. 

 

 
Table 5-17: Proposed features used to evaluate accuracy of a modified recurrent LSTM network 

in segmenting face profiles. 

 

One and two dimensional input feature vector 

 
Feature Purpose 

1 
Raw profile contour curve. Establishes whether the modified network is 

able to learn important features. 

2 
Normalized, curvature of 

Gaussian filtered signal, 𝜎=1. 

Acts as a comparison for curvature.  Does 

the modified network significantly improve 

upon the previous architecture? 

The best performing 𝜎 is chosen (𝜎=1). 

3 
First order derivative of 

Gaussian filtered signal. 

Acts as a comparison. Does the modified 

network significantly improve upon the 

previous architecture? 

 
4 

Second order derivative of 

Gaussian filtered signal. 

Four dimensional input feature vector 

5 
1st + 2nd order derivatives. Acts as a comparison. Does the modified 

network significantly improve upon the 

previous architecture? 

Five dimensional input feature vector 

6 
Curvature, 1st, and 2nd 

derivatives. 

Acts as a comparison. Does the modified 

network significantly improve upon the 

previous architecture? 
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5.9.2.1 Raw profile contour 

The network trained on the raw profile data was not successful.  It mis-classified to the 

extent that two classes contained no true positive results. As previously, the following 

curvature features form an initial basis for comparison in this section. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-18: Evaluation of LSTM network with raw profile contour curve as input feature. 

 

5.9.2.2 Normalized curvature (σ=1) feature 

Curvature is a one-dimensional vector describing the curvature of the contour profile 

curve.  It is calculated using the full curvature equation of  (2-6). The overall accuracy of 

the classifier has improved significantly on the previous architecture with accuracy 

increasing from 76.42% to 87.31% and the macro F1 score increasing also by 

approximately 10% to 87.68%. 

 

 

 

 

 

 

 

 

 

 

 

Table 5-19: Evaluation of LSTM network using normalized curvature with σ=1 as input feature. 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 86.44 45.41 59.54 6112 

Philtrum 0 0 0 3859 

LowerLip 0 0 0 3028 

n/a 9.72 96.35 17.66 2716 

UpperLip 55.91 29.65 38.75 4298 

Overall 

Accuracy 

(%) 

39.72 Macro F1 

score (%) 

19.66 20013 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 93.18 90.24 91.68 6112 

Philtrum 78.47 72.72 75.48 3859 

LowerLip 95.74 93.40 94.55 3028 

n/a 93.15 96.20 94.65 2716 

UpperLip 77.29 87.33 82.00 4298 

Overall 

Accuracy 

(%) 

          87.31 Macro F1 

Score (%) 
87.68 20013 
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5.9.2.3 First Derivative of Gaussian Feature 

Table 5-20 shows the modified architecture achieved an improvement in accuracy of 

2.5% on the previous architecture. The macro-F1 score also increased from 87.89% to 

90.57%.  These improvements are not as impressive as the curvature feature’s above but 

nevertheless 2.5% is significant given the starting point is already quite high at 87%.  As 

also noted in the equivalent experiment in the previous chapter, this result is also 

significant as, together with the observation that the DoG both filters and calculates the 

1st derivative in one pass, it also demonstrates that this feature is capable of fast 

classification of regions on any contour curves extracted from a two-dimensional image. 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 95.86 94.58 95.21 6112 

Philtrum 80.59 76.53 78.51 3859 

LowerLip 96.07 96.04 96.05 3028 

n/a 99.96 99.85 99.91 2716 

UpperLip 80.34 86.20 83.16 4298 

Overall 

Accuracy 

(%) 

90.17 Macro F1 

Score (%) 
90.57 20013 

  

Table 5-20: Evaluation of LSTM network with DoG First Derivative as input feature (𝜎=2). 

 

5.9.2.4 The Laplacian of Gaussian Second Derivative Feature 

Here the LoG performs significantly better than previously with an improvement of 

around 10% on both the overall accuracy and marcro-F1 scores as shown in Table 5-21. 

The LoG feature still does not perform as well as the first derivative, DoG. The following 

shows the results of combining both first and second derivatives. 
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Table 5-21: Evaluation of LSTM network with LoG Second Derivative as input feature (𝜎=2). 

 

5.9.2.5 Combined DoG and LoG Derivative Features 

The adjusted network again improves on the previous architecture’s results with an overall 

accuracy of 90.83% and macro F1 score of 91.26%, an improvement of about 1.5%.  This 

combination of features, architecture, and hyper-parameter selection results in the overall best 

performance as a segmenter and so this model was used to analyze the capability of the 

segmenter as a landmark regressor.  This process and analysis is detailed in section 5.10. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-22: Evaluation of LSTM network with First and Second Derivative as input feature 

(𝜎=2). 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 94.78 93.38 94.07 6112 

Philtrum 78.34 75.03 76.65 3859 

LowerLip 96.07 94.76 95.41 3028 

n/a 99.71 99.93 99.82 2716 

UpperLip 79.60 85.53 82.45 4298 

Overall 

Accuracy 

(%) 

89.21 Macro F1 

Score (%) 
89.68 20013 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 96.01 95.17 95.59 6112 

Philtrum 81.76 77.35 79.49 3859 

LowerLip 96.30 97.79 97.04 3028 

n/a 99.93 100.00 99.96 2716 

UpperLip 82.01 86.57 84.23 4298 

Overall 

Accuracy 

(%) 

90.83 Macro F1 

Score (%) 
91.26 20013 
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5.9.2.6 Combined Curvature, DoG and LoG Derivative Features 

The results of this feature combination are slightly worse than those of the previous section’s 

DoG and LoG feature combination, although there is very little difference. 

 

 

 

 

 

 

 

 

 

 

 
Table 5-23: Evaluation of LSTM network with First and Second Derivative, and curvature as 

input feature (𝜎=3). 

 

5.9.3 Summary of overall accuracy and F1 scores  

Table 5-24 summarizes the results of section 5.9.2 and the plot in Figure 5-16 presents a 

visual summary of these results. The overall accuracy is presented with the macro F1 

score for each class investigated in this section.  

 

 Feature Accuracy Macro-

F1 score 

1 Raw profile 39.72% 19.66% 

2 Normalized, curvature of Gaussian filtered 

signal, 𝜎=1 

87.89% 87.68% 

3 First order derivative of Gaussian filtered 

signal (DoG). 

90.17% 90.57% 

4 Second order derivative of Gaussian 

filtered signal (LoG).  

89.21% 89.68% 

5 1st + 2nd order derivatives (DoG and LoG). 90.83% 91.26% 

6 Curvature, 1st, and 2nd derivatives (DoG 

and LoG). 

90.66% 91.09% 

 

Table 5-24: Summary of overall accuracy and macro-F1score. 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 

Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 96.70 94.00 95.33 6112 

Philtrum 81.21 77.10 79.10 3859 

LowerLip 96.07 98.24 97.14 3028 

n/a 100.00 100.00 100.00 2716 

UpperLip 80.83 87.20 83.89 4298 

Overall 

Accuracy 

(%) 

90.66 Macro F1 

Score (%) 
91.09 20013 
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It is found that features that include the DoG and, to a lesser extent, the LoG, either alone 

or in combination, result in an improvement in the classifier’s overall accuracy and macro 

F1 score. This mirrors the finding of section 5.8.4. The DoG appears to be the most 

powerful feature, however, the strategy of including LoG and curvature with DoG does 

not improve the overall performance of the classifier.  The overall best classifier, albeit 

marginally, is the adjusted network with DoG and LoG feature inputs with the DoG, LoG 

and curvature a very close second.  As before, the raw curve alone has no useful predictive 

power when used with this classifier and dataset. 

 

  

Figure 5-16: Summary of Macro-F1 and overall accuracy for adjusted network. 

 

Finally, an overall comparison between the performance of the two networks is 

summarized in the plot shown in Figure 5-17. 
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Figure 5-17: Comparison of the original LSTM network and the modified LSTM network. 

 

This figure provides a visual comparison of the original and modified LSTM networks’ 

macro-F1 and overall accuracy scores. In both networks use of the DoG and LoG features 

improve accuracy and F1 scores dramatically compared to the raw dataset alone.  

Curvature as a feature is interesting.  The modified LSTM network with curvature as an 

input feature clearly performs significantly better than the original network did with the 

same curvature input feature.  The reason is not clear but could be related to the increased 

complexity of the network.  Overall, the best classifiers benefit from the additional 

changes, but at what cost? Training took approximately 8 to 10 times longer and the 

inference time of the modified network will be increased due to the result of increasing 

the complexity of the architecture’s hidden layer to 500 from the original 150 units.  For 

an increase in performance of 1 to 1.5%, its worth will depend upon the context of the 

problem space. 

 

Considering the class F1 scores of the best performing network (the modified LSTM with 

combined LoG and DoG   features) individually, the n/a region classes perform best.  This 

can be attributed to the design of the experiment.  The contours were “bookended” on 
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both sides by a fixed number of  n/a labels and the result was the network was able to 

easily learn this simple rule.  A better approach would be to randomize the number of n/a 

labels or use the untrimmed contour.  This would require a significantly larger dataset 

with which to train the network.   

 

Having a fixed amount of “n/a” points also impacted on the adjacent regions.  The 

columella, for example had few incorrectly predicted points where it joins the n/a region.  

Similarly, the lower lip benefited from this too.  Nevertheless, the philtrum and upper lip 

segmentation performed well with only the precision of the classifier falling below 80% 

for the philtrum.  What effect does this have on the segmenter’s ability to regress 

landmarks?  This is investigated next. 

 

5.10 From segmentation to regression 

Accurate profile estimation is an aim of this study.  So far, the face profile has been 

segmented, and this can be used to describe the various regions of the face and hence the 

posture of the head with respect to the camera’s reference frame, or with respect to a 

common axis of rotation, eg the tragus if available, or to see a change in posture between 

images in a video for example.  However, the precision and accuracy of the transition 

between regions of interest has not been analysed yet.  The question, “how well does the 

model locate landmarks on the contour?” has yet to be answered and so this section 

attempts this. 

 

5.10.1 Locating region transitions 

As there is an ordinal relationship between landmarks, the segmenter quickly learned to 

differentiate between regions and, after manual review, the prediction errors were seen to 

occur at the transition between regions. 

 

To identify the landmarks delimiting the regions of the segmented contours predicted 

during the testing of the segmenter, each contour was programmatically analysed and the 

transition between regions noted.  This was achieved by searching for transitions and 

marking the contour position at which the transitions occurred. References to the original 

file image were included to examine outliers later during analysis of the results. 
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5.10.2 Evaluation of predicted landmark accuracy 

The error was evaluated by determining the difference between the predicted value and 

the adjusted expert, ground truth value for all landmarks used by the segmenter.  This was 

repeated for all image profile contours in the dataset. Both the ME and MAE were 

calculated. These errors were calculated on results generated using the segmenter trained 

with the first and second derivatives as input features. 

 

MAE was used instead of the mean squared error (MSE) since MSE exaggerates the 

importance of outliers. The majority of outliers examined included badly framed profiles; 

badly positioned head posture, for example looking away or toward the camera and not 

at 90 degrees to it; and occlusion. These issues should have been resolved at the point of 

image capture so the test dataset should ideally have such anomalies removed – in fact, 

arguably, they should not be present in the first place. It should also be noted that during 

the training process imperfect images as described above were purposefully left in the 

dataset to aid the model’s generalisation properties. One or two images had high 

reflectance which interfered with the contour capturing process.  Where an outlying RGB 

2D image showed no obvious problems that should have been corrected at the time of 

image capture, it was not removed from the test dataset.  Additionally, the precision of 

the measurements was used as a second metric to describe the quality of the model.  The 

standard deviation of the errors in pixels was used to measure precision. Table 5-25 

summarizes the accuracy and precision of the landmark position derived from the 

segmenter. 

 

 
Table 5-25: Summary of Errors and precision for best segmentation model (measurements in 

pixels). 

 

Landmark Label Mean Absolute Error Mean Error Precision (as described 

by standard deviation) 

Labiale inferius 0 0 0 

Stomion 0.542 0.045 2.333 

Labiale superius 5.277 0.791 6.898 

Subnasale 1.548 0 3.587 

Pronasale 0.011 -0.011 0.0106 
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Histograms of the measurement error for the stomion, labiale superius and subnasale are 

provided below in Figure 5-18, Figure 5-19 and Figure 5-20. 

 

 

 

 

 

 

 

 

 

 

Figure 5-18: Histogram showing distribution of errors in landmark prediction 

against expert annotator for the stomion landmark. 

 

   

 

 

 

 

 

 

 

 

 

Figure 5-19: Histogram showing distribution of errors in landmark prediction 

against expert annotator for the labiale superius landmark. 
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Figure 5-20: Histogram showing distribution of errors in landmark prediction 

against expert annotator for the subnasale landmark. 

 

The pronasale and labiale inferius are located with high accuracy and precision and so are 

not plotted here.  This is due to the fixed amount of n/a labels surrounding the contour.  

Nevertheless, the stomion is located with sub-pixel resolution (bear in mind the image is 

480 pixels in height and 640 pixels in width), and the subnasale has an MAE of less than 

2 pixels and shows good precision. 

 

The classifier has a lower accuracy and precision when predicting the location of the 

labiale superius.  This may be related to this issue described in an earlier section 

discussing the automatic adjustment of the labiale superius landmark in section 5.5.  The 

algorithm uses the highest point of curvature at the vermillion of the upper lip, and this 

varies depending upon the anatomy of the individual.  This assumption will need further 

investigation.  Additionally, the training and testing datasets do include some individuals 

wearing beards and moustaches.  This could have affected the training and also the 

inference accuracy of the classifier. 
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Based upon this discussion it appears that the subnasale and stomion are good candidate 

landmarks to use in estimating head profile posture.  Of these two landmarks, the 

subnasale has the advantage that it moves very little during changes of expression when 

compared with the stomion.  However, if a neutral expression is posed then either or both 

can be used. 

 

5.11 LSTM Classification Runtime Results and Comparisons 

This section investigates the inference speed of both chosen network designs using the 

input features identified in the previous sections.  The timing procedure described in the 

methodology chapter, section 3.8 was used here.  As before, all variables were cleared 

before timing took place and Matlab’s parallel pool, which makes use of the GPU, was 

not used. 

 

Four tests were carried out for each feature input combination: 

1. Original network with 150 hidden units and minibatch hyper-parameter set to 45. 

2. Original network with 150 hidden units and minibatch hyper-parameter set to 1. 

3. Adjusted network with 500 hidden units and minibatch hyper-parameter set to 45. 

4. Adjusted network with 500 hidden units and minibatch hyper-parameter set to 1. 

 

Each test used all 194 test data contour samples. 

 

Table 5-26, overleaf, shows the results for each test.  The rows represent the hyper- 

parameters and the columns the number of hidden units used.  Times are in milliseconds 

and give the time to classify all images in the test dataset. 

 

 A further test using just the best performing combination of input features was 

undertaken. This involved classifying just one sample image’s contour.  The aim here 

was to assess the time required to initialize the classifier using the chosen network before 

inference of the single contour. 
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Table 5-26: Inference times for the original and modified LSTM network.  All times are in 

milliseconds. 

 

The results show that the timings were very similar across each feature combination used 

and so independent of the number of features used as inputs to the classifiers. With regard 

to batch classification, decreasing the mini-batch hyperparameter to 1 causes an 

approximate 12-fold increase in the classification time since the LSTM classifier needs 

to know the min-batch size used for training.  Changing the number of hidden units from 

150 to 500 causes an increase in inference time by a factor of approximately 1.5. 
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For the best performing modified network (the LoG and DoG combined using 500 hidden 

units and with the mini-batch hyperparameter set to 1) as identified in the previous 

section, the inference time for one sample contour based on the batch classification of the 

whole dataset was 3ms on average, including the one-off initialization of the network. 

Run-time speed vs classification accuracy is always a tradeoff as discussed in section 4.4, 

but sacrificing 1-2% of accuracy in the network by selecting the original, unmodified 

LSTM network with 150 hidden units and a minibatch size of 45 yields an improved 

inference time of 150μs per sample.  

 

Focusing on the modified network, the time required to classify one contour alone, 

including the initialization of the classifier, increased to approximately 5.8ms and for the 

original network it was still 3.7ms.  This is assumed to be due to the overhead in 

initializing the classifier in order to classify one sample.  In a well-designed piece of 

software this point will always need to be addressed in order to ensure fast inference if 

images are processed online. This could be achieved by initializing the classifier just once 

and reusing it whenever a new image is presented for processing. 

 

5.12 Discussions and Conclusions 

This section summarizes the findings of this chapter, compares the results and draws 

conclusions from these. 

 

The experiments undertaken here have all relied upon the same dataset, in this case the 

Notre Dame J2 dataset.  The Notre Dame dataset had some attributes that are 

advantageous.  It contains 2.5D images (RGB images with additional depth information), 

and it is the nature of this additional depth data that has been useful in this study. In 

particular the depth information has not been pre-processed and so any flaws due to 

reflections and attenuations have been kept.  This ensured that any algorithms or ML 

based models would be forced to deal with flawed depth information. 

 

Several relevant observations were gathered from this: 

1. Hair can cause unwanted attenuation and reflections causing errors in depth 

measurements.  Lighting of some subjects caused skin reflections that also 

affected depth measurements. 
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2. Consequently, there were no complete head profile depth images.  Only a segment 

of a profile was useable.  This limited the useful depth information to the face 

region, between the sellion at the top of the nose down to the gnathion at the chin. 

3. The useable dataset contained flawed images, for example missing subjects, 

occluded faces, badly framed subjects, etc. 

4. Many images that had been labelled manually could not be used as the dataset 

provided had errors in file names that linked 2D RGB images to their respective 

depth information files. 

5. As a consequence of points 3 and 4 above, the original portion of the dataset used 

was reduced from 985, then 693 and after discovering the issue enumerated in 

point 4, then down to just 648 images.  Of these, the test set comprised of 194 

images and the training set 454.  

6. On a few images, subject head movement caused a mismatch in the captured depth 

profile information and the RGB 2D image. 

7. The automatic landmark adjustment process was able to solve the problem 

associated with point 6. 

8. The automatic adjustment process also improved (based on visual investigation) 

the accuracy of the expert manual annotation process. 

9. Despite the flawed nature of the depth information data, the segmentation and 

regression models, together with the adjustment algorithms, showed good results.  

The modified model using DoG and LoG as input features was used to regress 

landmarks.  It had an overall accuracy and macro-F1 score of around 91%. 

 

Interestingly, the raw data did not make a good feature for either LSTM network. Both 

networks were unable to extract useful information directly from the raw input. However, 

use of the LoG and DoG operators together with curvature significantly improved the 

performance of both the original LSTM network and the modified version. The modified 

network worked best when the LoG and DoG operations, with their inherent smoothing, 

were used as feature inputs.   

 

Putting aside the networks that used just the raw signal feature, and reviewing the inter-

class precision and recall for both the original and modified LSTM network, it is clear 

that there was a consistency in the way all network variations performed.  The n/a class 

was classified very well (often 100% recall and precision).  This was due to the way the 



 

146 

 

contours were pre-processed - adding a fixed amount of n/a labelled points to both ends 

of the profile contour curve. The classes adjacent to the n/a signals, the columella and the 

lower lip, benefited from this approach to a certain extent, and still performed well with 

F1 scores in the mid to high 90’s. The philtrum and upper lip regions were nevertheless 

segmented well with F1 scores of 79% and 84% respectively. 

 

The curvature signal alone performed better in the modified network with an increase in 

performance of 12% when compared with the original network.  This was due, perhaps, 

to the additional complexity of this network. As was the case with the ECG signal, 

networks using curvature alone as a feature were out-performed by networks using the 

first and second derivative features either alone or together.  This is, again, hypothesized 

to be due to loss of relevant information when both first and second derivatives are 

combined into a single scalar value.  

 

Regression of landmark locations produced good results.  The accuracy and precision of 

these results, as measured using MAE and standard deviation, also reflected the network 

segmentation results.  The labiale inferius and pronasale landmarks had near perfect 

accuracy and precision due to their positioning at the extremities of the contour curve. 

The stomion accuracy was at a sub-pixel resolution with high precision. This was 

probably due to its very recognizable curvature shape.  Regression of the subnasale 

performed well too, however regression of the labiale superius performed worst with a 

wider standard deviation and larger MAE caused, it is hypothesized, by two competing 

local minima of curvature.  These minima are related to an individual’s anatomy and the 

adjustment algorithm would need further modifications, perhaps, to improve this. 

 

The inference times investigated in the previous section show that there is a trade off 

between accuracy and speed, but a reduction in accuracy by 1-2% yields an order of 

magnitude improvement in runtime performance.  Classifier initialization is important 

and should be optimized where possible. 

 

In summary, the derivatives of the contour profile are good input features capable of 

accurately segmenting these regions when used with the LSTM classifiers developed 

here. They are also fast to calculate. Using both the first and second derivatives as input 

features together in an LSTM RNN segmenter-classifier produces the best classification 
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accuracy. DoG, LoG and curvature based features are still worth considering depending 

upon a project’s requirements. 

 

Curvature alone was hypothesized in this study to be a good feature to use for profile 

segmentation, and whilst the experimental results indicate it has capability in this regard, 

it is still nevertheless outperformed by segmenters using the LoG and DoG features. 

 

The best performing network used LoG and DoG features, had 500 hidden units and a 

mini-batch size of one. Minimizing the mini-batch hyper-parameter improved network 

classification performance by two percentage points but at the expense of an increased 

training time. 

 

In the next chapter we consider end-to-end ML approaches to segmenting and regressing 

contours using a CNN.  A 1DTCNN is developed and its performance at segmentation 

and regression is investigated and its performance with respect to the recurrent LSTM 

networks used previously is analyzed.  
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6 Segmenting face profile contours with 1DTCNN Networks 

 

In this chapter the suitability of a 1DTCNN network is investigated to solve the contour 

profile segmentation and regression problem studied in previous chapters. This kind of 

network was selected for a number of reasons:  

1. It uses convolutional dilation layers to provide feature recognition at multiple 

scales. 

2. It can deal with sequences of varying length. 

3. It can output sequences of equal length to the input sequence and, 

4. It is an example of a more complex neural network that can act as a suitable choice 

to explore the power of an end-to-end learning approach and contrast it with the 

LSTM network, developed in chapter 5, that was used to segment and regress the 

profile contours dataset. 

Here, the effectiveness of a 1DTCNN network on segmenting and regressing the head 

profile dataset is explored and its accuracy and runtime efficiency is compared with the 

LSTM RNNs used in previous chapters.  In particular the 1DTCNN network is first 

trained with the raw feature set (i.e. the contour curve co-ordinates) and subsequently 

with the curvature feature and finally with the best-performing engineered feature 

combination identified in the previous chapter. The segmentation and regression ability 

of these networks is assessed, and the resources required to train this network and the 

time to classify profiles is compared with the equivalent models developed in chapter 5.  

Conclusions are drawn from these results. 

 

6.1 1DTCNN architecture and training 

The 1DTCNN architecture is based upon that described in Bai, which in turn follows the 

work of  Oord et al. ( 2016) and it is implemented using Matlab. The network is made up 

of three cascaded residual blocks using the ideas outlined in section 2.8 and Appendix C.  

The filter size, k=3, and the dilation factor, d at each level is increased exponentially, that 

is, at level 1, d=1, at level 2, d=2 and at level 3 d=4.  Scaling could also be adjusted by 

altering the size of the convolution filter, k, but it is left constant here. 
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The network is trained using mini-batches of size one for 15 epochs. Training of the 

network stops after 15 epochs since, for each feature or combination of features used, the 

loss has leveled off. In order to make the comparisons between networks as balanced as 

possible, the values chosen for these hyper-parameters also match those used by the 

LSTM network investigated in chapter 5. This network randomizes the order of the 

samples during the training process so 3 iterations were carried out and the median 

selected.  During the testing period there were no outlying results, that is, no model 

generated performed exceptionally better or worse than those in its group. 

 

For each feature or feature combination we train and test the 1DTCNN using a 70:30 

train:test dataset ratio. As previously, the test set comprises of 194 images and the training 

set 454 images. 

 

All experiments were performed on machine with an Intel core i7-7700 CPU with 32GB 

RAM and an Nvidia 1080Ti GPU. 

 

6.2 Results and Comparisons of Network Accuracy 

As before, this section follows the experimental methods used in section 4.3.4 but focuses 

on three features, the raw curvature data co-ordinates, curvature and the best performing 

feature combination of chapter 5, that is the first and second derivatives of the curve.  The 

network architecture parameters defined in the previous section remain fixed for both 

these experiments.  In these experiments, as before, a multi-class confusion matrix is 

generated and from this an overall accuracy figure is calculated along with, for each class, 

its precision, recall and F1 score. The support is also stated for each class’ test data.  

 

A change to the architecture’s input layer is required for each feature investigated as the 

input feature vector changes dimension for each experiment. The raw curve co-ordinates 

are 2-dimensional, representing the pixel x and y co-ordinates; the first and second 

derivative combination feature is a 4-dimensional vector comprising of the first 

derivatives of the x and y co-ordinates with respect to the arc length, and the second 

derivatives of the x and y co-ordinates, again, with respect to the arc length.  Curvature is 



 

150 

 

simply a one-dimensional vector. The following section details the results obtained for 

each of these feature sets. 

 

6.2.1 Raw profile curvature 

Table 6-1 shows results obtained when using the raw profile co-ordinates alone. The 

network achieves a high overall accuracy (91.07%) and macro-F1 score (91.41%) when 

classifying the regions of interest during the segmentation process and contrast starkly 

with the corresponding results for the raw feature used with the LSTM network of Chapter 

5. The LSTM network had an overall accuracy of 51.33% and an overall macro-F1 score 

of 37.53%.  This is due to the higher complexity of the 1DTCNN network giving it the 

ability to learn the requisite features as discussed in section 2.8.  This comes at the expense 

of a lower classification speed and a longer training time.   

 

 

 

 

 

 

 

 

 

Table 6-1: Evaluation of 1DTCNN with raw profile contour curve as input feature. 

 

6.2.2 Combined DoG and LoG Derivative Features 

Table 6-2 summarizes the results when using the first and second derivatives of the profile 

contour curve. The network achieves a slightly better overall accuracy (91.58%) and 

macro-F1 score(91.9%) when compared with the raw feature used with the 1DTCNN 

network. As indicated already, this ability to learn the features required for good 

segmentation comes at a cost.  Inference is slower, as is training.  This is covered in 

section 6.3. 

 

Profile Class Recall  

(%) 

Precision 

(%) 

F1 Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 97.17 95.21 96.18 6112 

Philtrum 81.47 78.90 80.16 3859 

LowerLip 96.70 96.83 96.76 3028 

n/a 99.71 99.71 99.71 2716 

UpperLip 81.92 86.94 84.36 4298 

Overall 

Accuracy 

(%) 

91.14 Macro F1 

Score (%) 
91.43 20013 
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Table 6-2: Evaluation of 1DTCNN with First (DoG) and Second (LoG) Derivative, and 

curvature as input feature (𝜎=3). 

 

6.2.3 Normalized curvature  (σ=1) 

Table 6-3 summarizes the results when using the curvature of the profile contour curve 

as an input feature with σ=1. The network achieves a slightly poorer overall accuracy 

(90.53%) and macro-F1 score (90.80%) when compared with the raw feature used with 

the 1DTCNN. The recall figure for the Philtrum is 76.5% which is 5% lower than that 

achieved with the raw dataset and 7% lower than that achieved with the combined DoG 

and LoG features. The curvature feature is a one-dimensional sequence compared with 

the other features.  With this is in mind, it represents a surprisingly good result. 

 

 

 

 

 

 

 

 

 

 

 
Table 6-3 Evaluation of 1DTCNN with normalized curvature as input feature (𝜎=1). 

 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 97.57 95.78 96.66 6112 

Philtrum 83.31 79.86 81.55 3859 

LowerLip 96.20 98.45 97.31 3028 

n/a 100 100 100 2716 

UpperLip 81.92 86.17 83.99 4298 

Overall 

Accuracy 

(%) 

91.58 Macro F1 

Score (%) 
91.90 20013 

Profile 

Class 

Recall  

(%) 

Precision 

(%) 

F1 Score 

(%) 

Support  

TP/(TP+FN) TP/(TP+FP) 

Columella 96.96 93.56 95.23 6112.00 

Philtrum 76.50 80.79 78.58 3859.00 

LowerLip 97.09 97.13 97.11 3028.00 

n/a 98.12 99.07 98.59 2716.00 

Upperlip 84.57 84.38 84.48 4298.00 

Overall 

Accuracy 

(%) 

90.53 Macro F1 

Score (%) 
90.80 20013.00 
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6.2.4 Summary of overall accuracy and F1 scores  

 Table 6-4 summarizes the results of section 6.2 and Figure 6-1 provides a visualization 

of the overall accuracy and macro-F1 scores for the 1DTCNN.   

 

 

 

 

 

 

 

 
Table 6-4: Summary of accuracy and macro-F1 scores. 

 

 

 
Figure 6-1: Comparison of Macro-F1 and overall accuracy for 1DTCNN. 

 

It’s clear from this comparison that the features used as input to the 1DTCNN network 

compare well with a range of about 1.5 percent.  This indicates the network is good at 

learning the underlying information necessary for good classification and, when 

compared with the use of raw features as input, it demonstrates well the end-to-end 

learning capability of the 1DTCNN network, however the DoG and LoG  features do 

confer an advantage. Curvature as a feature performs least well, however it is interesting 

to see that this feature is a simple scalar value, and the 1DTCNN network is capable of 

extracting a lot of useful information from this simple feature. 
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6.3 Evaluation of runtime results and training times 

Here, the run-time inference speed of the 1DTCNN is evaluated together with the training 

times.  The measurements are made for networks trained on the raw profile contour co-

ordinates, curvature and with the combined first and second derivative (DoG and LoG) 

feature. As used with the best performing LSTM RNN, the 1DTCNN network mini-batch 

hyper-parameter was set to a size of 1 and the number of epochs was set to 15. 

 

Training of this network took significantly longer that the LSTN DNN investigated in 

previous chapters. For the LSTN DNN network with a mini-batch size of 1 and trained 

for 15 epochs, training times were 2.5 minutes.  For the 1DTCNN network training times 

took approximately 12 minutes. 

 

The inference time for the 1DTCNN network was an order of magnitude slower that the 

LSTM DNN networks used previously.  For the network trained with the raw profile 

curve co-ordinates, the median 1DTCNN network inference time was 4.32 seconds for 

all 194 profile contours, including a one-off median classifier initialisation period of 

17ms. Inference times using the curvature feature were similar with results of 4.66 

seconds for all 194 contours. 

 

Similar results were achieved when using the DoG and LoG features as inputs.  Here the 

median inference time of the classifier was 4.85 seconds with an initialisation time of 

33ms. The timings were conducted without MATLAB’s parallel pool, GPU support. 

 

6.4 From Segmentation to Regression 

The same method as that of section 5.10 was used to regress landmark positions on the 

contour curve, that is, the arc length was traversed to find a transition point between 

regions and this point then represented the corresponding landmark that defines the 

transition. For example, the stomion delineated the labiale inferius and labiale superius 

regions.  As before the accuracy and precision were measured by calculating the MAE 

and the standard deviation.   The ME was also included.  The error is defined here as the 

difference between the ground truth test value and the estimated value determined at 

inference.  
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6.4.1 Evaluation of predicted landmark accuracy 

Results are presented for a network trained with the raw profile curve co-ordinates, with 

curvature and then the combined first and second derivative features (DoG and LoG). 

 

6.4.1.1 Raw profile contour 

 Histograms are included here to visualise the distribution error.  Table 6-5 summarizes 

the results and Figure 6-2 to Figure 6-4 below and overleaf, show the distributions.  Note 

where there is little or no variance in the measurements, then the histogram is not 

included. 

 

 
Table 6-5: Summary of Errors and precision for 1DTCNN, Raw contour input feature 

(measurements in pixels). 

 

 

 

 

 

 

 

 

 

 

Figure 6-2: Distribution of errors in 1DTCNN landmark prediction for stomion landmark. 

 

Landmark Label Mean Absolute Error 

(pixels) 

Mean 

Error 

(pixels) 

Precision (as 

described by 

standard deviation) 

(pixels) 

Labiale inferius 0 0 0 

Stomion 0.52 0.37 3.61 

Labiale superius 5.09 0.19 8.64 

Subnasale 1.74 0.34 6.77 

Pronasale 0.045 -0.02 0.58 

Distribution of Segmenter Prediction Errors for Stomion 

 

Error (in pixels) 
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Figure 6-3: Distribution of errors in 1DTCNN landmark prediction for labiale superius 

landmark. 

 

 

 

 

 

 

 

 

 

 

Figure 6-4: Distribution of errors in 1DTCNN landmark prediction for subnasale landmark. 

 

The labiale superius landmark shows a lower precision and accuracy than the other 

landmarks.  This was also the case when using the best performing LSTM RNN of 

Chapter 5 which showed a similar performance in regressing this landmark.  The 

histogram shows a significant number of measurements offset from the ground truth 

values.  This, as before, is conjectured to be a result of the adjustment algorithm and the 

nature of the anatomy variances amongst individuals, or due to the lower support of the 

region classes on either side of this landmark (upper lip and philtrum). The stomion and 

subnasale, on the other hand, show higher accuracy and precision. 
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6.4.1.2 Normalized Curvature feature (σ=1) 

Histograms are included here also, and Table 6-6 summarizes these results. Figure 6-5 to 

Figure 6-7 show the distributions.  Note where there is little or no variance in the 

measurements, then the histogram is not included.  These results are similar to those of 

the raw profile contour input feature results, but they do have an improved precision for 

the labiale superius and subnasale. 

 

 
Table 6-6: Summary of Errors and precision for 1DTCNN, curvature feature (σ=1), 

(measurements in pixels). 

  

 

 

 

 

 

 

 

 

 
Figure 6-5: Distribution of errors in 1DTCNN landmark prediction for stomion landmark. 

 

 

 

 

Landmark Label Mean Absolute Error 

(pixels) 

Mean 

Error 

(pixels) 

Precision (as 

described by 

standard deviation) 

(pixels) 

Labiale inferius 0 0 0 

Stomion 0.32 0.08 1.02 

Labiale superius 4.8 0.10 6.28 

Subnasale 1.79 0.84 6.00 

Pronasale 0.35 -0.16 0.60 
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Figure 6-6: Distribution of errors in 1DTCNN landmark prediction for labiale superius. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6-7: Distribution of errors in 1DTCNN landmark prediction for subnasale. 

 

6.4.1.3 Combined DoG and LoG derivative features  

Histograms are included here also, and Table 6-7 summarizes the results. Figures overleaf 

show the distributions.  Note where there is little or no variance in the measurements, 

then the histogram is not included.  These results are similar to those of the raw profile 

contour input feature results and further demonstrate the end-to-end learning capability 

of the 1DTCNN network when using the raw curvature co-ordinates. These results show 

a small increase in precision. 

Distribution of Segmenter Prediction Errors for Labiale Superius

 

Error (in pixels) 

Distribution of Segmenter Prediction Errors for Subnasale

 

F
re

q
u
en

cy
 

F
re

q
u
en

cy
 

Error (in pixels) 



 

158 

 

 
Table 6-7: Summary of Errors and precision for 1DTCNN (measurements in pixels). 

 

 

 

 

 

 

 

 

 

 

Figure 6-8: Distribution of errors in 1DTCNN landmark prediction for stomion. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-9: Distribution of errors in 1DTCNN landmark prediction for labiale superius. 

Landmark Label Mean Absolute Error 

(pixels) 

Mean 

Error 

(pixels) 

Precision (as 

described by 

standard deviation) 

(pixels) 

Labiale inferius 0 0 0 

Stomion 0.33 0.08 1.52 

Labiale superius 4.89 1.81 6.40 

Subnasale 1.39 -0.05 3.81 

Pronasale 0 0 0 
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Figure 6-10: Distribution of errors in 1DTCNN landmark prediction for subnasale. 

As in the previous sub-section, the labiale superius landmark shows an improved 

precision and accuracy than the raw landmarks and, in particular, the subnasale precision 

is the best result from all three features used. 

 

6.5 Regression results and comparisons 

This section discusses the accuracy and precision of regressing landmarks using the 

1DTCNN network and the three features investigated in the previous section. Figure 6-11 

compares the MAE of the three 1DTCNN networks, that is the raw profile curve co-

ordinates as an input feature, the combined feature consisting of the first derivatives 

(DoG) and second derivatives (LoG) of the profile contour curve, and finally the curvature 

feature alone.  Similarly, Figure 6-12 shows comparisons for the precision. The labiale 

inferius is not included here since it has zero error and perfect precision. 
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Figure 6-11: Comparison of MAE of 1DTCNN using raw input, curvature and combined LoG 

and DoG. 

 

 

 
Figure 6-12: Comparison of precision of 1DTCNN using raw inputs, curvature and combined 

LoG and DoG. 
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The network trained on the raw data performs well and is comparable with the results 

obtained for the curvature, and DoG and LoG feature combination. The pronasale has 

zero MAE and almost perfect precision.  Results are comparably low for the network 

trained on the DoG and LoG combination as well as the curvature.  These results are 

expected given that the contour labels are bookended with a fixed amount of n/a labels.  

As choices for landmarks to use in head posture measurement, these should be avoided 

as the network learns the number of n/a labels at the start and end of the contour. 

Nevertheless, other landmarks within the contour are localised well. As before, the 

localisation of the labiale superius performs least well. 

 

The greatest improvement is achieved when training with the DoG and LoG combination.  

Here, the precision of key landmarks is significantly improved. When compared to the 

raw input feature, the standard deviation that is used to quantify the precision has been 

more than halved for the stomion and is over 44% less for the subnasale. The labilale 

superius’ precision remains quite high but has been improved by a factor of 26% when 

also compared with the raw input feature. 

 

Interestingly, the curvature has performed very well given it is only a one-dimensional 

input vector, compared with the 4 dimensions used to represent the DoG and LoG.  The 

curvature feature outperforms the DoG and LoG features for regressing the stomion and 

labiale superius, though the key subnasale landmark is still regressed best by the network 

using the DoG and LoG feature input combinations. 

 

6.6 Comparison of LSTM Results with 1DTNN 

The plots of Figure 6-13 and Figure 6-14 compare the precision and accuracy of the best 

performing LSTM RNN investigated in Chapters 5 and 6 with the 1DTCNN network.  

The 1DTCNN network does performs better than the best LSTM RNN when the hand-

crafted DoG and LoG features are used for both networks.   
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Figure 6-13: Comparison of the precision (in standard deviations) of the best LSTM with the 

1DTCNN. 

 

 

 

Figure 6-14: Comparison of the accuracy (measured using MAE) of the best LSTM with the 

1DTCNN. 
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Figure 6-15 shows there is also little difference between the performance of the raw input 

feature 1DTCNN network and the best performing LSTM network with regard to 

classification accuracy and macro F1 scores.  Both score around 91% in each category. 

The LSTM network that uses the engineered features of LoG and DoG compares 

favourably with the results produced using an end-to-end approach of the 1DTCNN. 

Additionally, the LSTM network has the advantage of faster training and inference times 

when compared with the 1DTCNN network. 

 

 

 

Figure 6-15: Comparison of accuracy and macro-F1 scores for features used with the 1DTCNN 

network and with the best performing LSTM. 

Regarding the regression accuracy calculated using MAE, for the stomion and labial 

superius there is a difference between the 1DTCNN network and the LSTM network, 

with the 1DTCNN network improving on the LSTM’s MAE score by about 4% in both 

cases. Conversely, the LSTM network improves upon the 1DTCNN network by 10% 

when regressing the subnasale landmark. Regarding the pronasale landmark, both 

networks have a very low, sub-pixel resolution MAE, so a percentage comparison does 

not help here.  The 1DTCNN network has an MAE of 0.001 pixels and the LSTM an 

MAE of 0.045 pixels. 
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6.7 Discussions and conclusions 

Looking at the results obtained in the experiments of this chapter a clear conclusion is 

that the 1DTCNN network is capable of good end-to-end learning using just the raw 

contour profile co-ordinates.  However, engineering features prior to training still confers 

an advantage, especially with regard to improved precision. 

 

The downside of using this network to learn the underlying features from the raw data is 

the additional time required both to train the network and to regress landmark locations.  

Regressing landmarks required an order of magnitude increase in inference time when 

compared to the LSTM DNN used in chapter 5. As concluded in previous investigations 

in the study, there is a clear trade-off between execution speed and accuracy of 

classification and regression.  The choice depends upon the problem context, for example, 

where landmarks need to be regressed in real-time then it would be appropriate to choose 

faster feature engineering and regression whilst sacrificing some accuracy. It is better to 

have results that meet some baseline accuracies in real time rather than no results at all. 

 

Regressing the location of the first and last landmarks (the labiale inferius and the 

pronasale) is trivial for these networks given the fixed number of n/a labels adjacent to 

these. This can be attributed to the design of the experiments and the model, and needs to 

be addressed in future work.  However, as remarked upon previously, the remaining 

landmarks have been successfully localised using this network and whilst the landmarks 

are ordered, their precise locations are dependent upon the anatomy of each individual. 

 

Consequently, the conclusion here, as in Chapter 5, is that the best choice of landmark 

for estimating posture, should head posture estimation be the aim, is the subnasale since 

it is the most stable, unchanging, landmark when head position or when face expression 

changes and the 1DTCNN using the DoG and LoG input feature combination locates it 

well with a MAE of 1.29 pixels and a precision of 3.81 pixels. 

 

There is an issue here with some outlying results.  Further investigation is required in 

order to locate the reason for the regression errors.  It may be due to mislabeling, the result 

of poorly hand-labelled, ground truth images or the test set still including images that are 

flawed in some other way. 
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Regarding run-time efficiency, the 1DTCNN network does not perform well when 

compared with the LSTM DNN network.  The 1DTCNN network takes between 4.6 and 

4.9 seconds to segment all 197 contours.  That corresponds to about 25ms to segment one 

contour plus a one-off initialization time of 33ms recorded for the combined DoG and 

LoG feature. Overall, the 1DTCNN network is approximately 10 times slower than the 

best LSTM DNN network. 

 

These results have been achieved with a reasonably small dataset of 454 image profile 

contours.  The more sophisticated 1DTCNN network will certainly perform better with a 

larger dataset.  To achieve this, the contours could be augmented by creating a contour 

profile derived from a combination of two randomly selected contours and applying 

established methods used in the graphics field, for example, morphing (Beier and Neely, 

1992) and in particular a 2D process based upon the idea of “tweening” (Hill Jr. and 

Kelley, 2006).  Since there are 454 available training images then by selecting two images 

with replacement, it is possible to choose over a hundred thousand combinations and so 

generate an additional one hundred thousand images. 

 

The following chapter concludes the thesis, bringing together key findings and 

conclusions from both this chapter as well as chapters 5 and 6.  It identifies the 

contributions of this thesis to the field as well identifying some limitations of the work.  
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7 Conclusions and Recommendations 

 

This chapter draws together conclusions and considers the contributions of this thesis and 

its limitations. Contributions to knowledge are detailed in section 7.1 and thesis 

conclusions are presented in Section 7.2. 

 

7.1 Contributions 

A number of novel ideas were used that contributed to the overall aim of this thesis. An 

evaluation of the effectiveness of curvature and derivatives was produced that 

demonstrated the utility of the proposed features in the fast segmenting of head profile 

contours and the regressing of landmarks (see the published paper of Appendix A). 

Additionally, a new dataset of labelled face profile contours was created for use in 

evaluating the features created. In order to automatically improve the accuracy of the 

annotations, a novel approach was developed in this context based upon the curvature 

properties of selected anthropometric landmarks and the head profile contour curve itself. 

 

Extending the work of chapter 4 and using the head profile contour dataset created in this 

study resulted in a new procedure and model that can accurately achieve fast face 

segmentation of head profile images.  An evaluation of this procedure documented both 

the accuracy of the approach and its run-time efficiency when used with two LSTM 

RNNs.  Additionally, this method was extended once more to develop a method to regress 

landmarks from the segmented profile contour with good accuracy and precision. To the 

best of the author’s knowledge this is the first use of RNNs to segment and regress head 

profile contours extracted from real world, un-processed, RGB-D images and has not 

been done elsewhere with the dataset generated as part of this thesis. 

 

Finally, a 1DTCNN network was applied to the problem of head profile contour 

segmentation and regression and demonstrated the power of end-to-end ML methods, 

showing they are effective but at the cost of a significantly slower inference time. To the 

best of the author’s knowledge a 1DTCNN network has not been used to segment and 

regress real-world, un-processed head profile contours before and not with the dataset 

generated as part of this thesis. 
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7.2 Conclusions 

Chapters 4, 5 and 6 discussed results and drew conclusions within the context of the 

experiments undertaken.  In this section these are considered from both the context of the 

aims, objectives and hypotheses of this thesis and also from a broader perspective.  The 

aims, objectives and hypotheses are restated here for the convenience of the reader and 

the extent to which these have been achieved is then discussed. 

 

The aim of this study was to: 

Explore extensively the suitability of curvature and its properties as features for fast 

regression and segmentation of parameterized plane curves, and in so doing, examine the 

effectiveness of these features in training deep neural networks to estimate head profile 

posture derived from 2.5D images. 

 

From this aim the following objectives were enumerated: 

1. To engineer and evaluate features derived from plane curves to train supervised 

machine learning models capable of efficiently segmenting regions of interest. 

 

2. To develop a dataset of accurately landmarked head profile contours. 

 

3. To develop and evaluate fast ML models capable of estimating head profile by 

segmenting profile contours into regions of interest and regressing key head 

profile landmarks. 

 

4. Demonstrate that engineered features, in the context of this thesis, compare well 

with end-to-end ML approaches. 

 

It was hypothesized that: 

1. Curvature and the related first and second derivatives of a curve can be efficiently 

calculated from a given plane curve and these features will enable the fast and 

accurate segmentation of a curve when used in conjunction with suitable ML 

models.   
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2. A second hypothesis is that the same ML models can also be used to efficiently 

regress points on a plane curve with high accuracy and precision.  

 

3. A final hypothesis is that, in the context of this thesis, these engineered features 

can produce results superior to an end-to-end ML approach. 

 

7.2.1 Review of Objectives 

The first objective of this thesis has been achieved.  Chapter 4 demonstrated that the 

engineered features developed and evaluated here were capable of accurately and 

efficiently segmenting a uniformly sampled time series dataset and provided justification 

for further investigations with overall F1 score and accuracy both achieving levels of 87% 

on the benchmark LSTM RNN.  These results surpassed those achieved using short time 

Fourier methods by approximately 1.5% and exhibited a run-time speed orders of 

magnitude faster. 

 

The second objective has also been achieved by annotating the Notre Dame dataset 

introduced in section 5.2 with anthropometric landmarks and extracting a dataset of 648 

useable head profile contours from the RGBD images.  The usable regions were limited 

to the face, and this was sufficient to accurately segment regions of interest and regress 

key landmarks.  A larger dataset can now be developed by landmarking further images 

from the Notre Dame dataset or augmenting it by creating artificial contours using the 

tweening concept discussed in chapter 6.  

 

Using these features as inputs to an LSTM DNN to segment regions of interest on a head 

contour and regress landmarks proved successful, too, with a further improvement of 4% 

percent achieved. However, the context of the problem is important and section 4.4 shows 

the effective quality of a selected feature needs to be evaluated by weighting the 

importance of speed and accuracy. The weighted L2 norm distance measure described 

here provided a numerical score of effectiveness and demonstrates that the best features 

to use depend both upon execution speed and desired accuracy. 

 

The network used to segment the ECG dataset in chapter 4 is, by necessity, identical to 

the architecture used in (Mathworks, 2020c) in order to ensure a valid comparison 

between the features used in that experiment and those engineered and used here.  Whilst 
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the results demonstrated an improvement, the author notes that different classifiers and 

network architectures, together with further tuning of hyper-parameters will improve 

upon the accuracy of these results.  For example, Moskalenko, Zolotykh and Osipov 

(2019) propose a superior UNet like convolutional deep neural network that claims F1 

scores of 97% and above on an ECG  dataset. 

 

Chapters 5 and 6 follow from the third objective of this thesis. They demonstrate that the 

selected features evaluated in chapter 4 could accurately segment regions and regress 

landmarks in a more generalised environment, that is, in any plane curve.  Here, head 

profile contours extracted from RGBD images were segmented and regressed and the 

results obtained demonstrate that good segmentation of regions is possible (the best 

performing feature combinations achieved a macro-F1 score of 91% and an overall 

accuracy of 91%) without extensive parametric investigation and architectural 

modification of the chosen network. 

 

The discussions of section 6.7 point out that the inference time for one contour using an 

LSTM network is 10 times faster than those of the 1DTCNN network, hence any 

decisions regarding the suitability of a given network still needs to consider both the 

desired accuracy as well as the classification times. 

 

In general, all networks and feature combinations perform least well when regressing the 

labiale superius.  The author concludes that this is due to the phenotypic diversity of the 

anatomy of the upper lip and philtrum of subjects within the dataset, together with the 

assumptions made in the automatic regression algorithm.  In contrast the pronasale and 

labiale inferius are located with near perfect accuracy and precision.  This can be 

attributed to the design of the experiments.  Placing a fixed number of “n/a” labels at the 

start and end of the contour was an imperfect design choice since the networks easily 

learned the “n/a” label positions and hence could accurately locate the first and last 

landmarks.  This, however, did not impact on the accuracy and precision of regressing 

the remaining landmarks. 

 

Extracting the head profile contour from a 2D image using classic computer vision 

algorithms adds additional pre-processing steps to the segmentation process.  Chapters 2 

and 5 note that RGB images with depth information allow fast head profile contour 
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extraction and so avoids these pre-processing steps.  Current technology also allows 

RGBD images to be captured at 30fps. 

 

Overall, the third objective has been achieved.  Accurate segmentation is possible as is 

fast classification of regions of interest.  Accurate regression of key landmarks is also 

possible, but the experimental results introduce additional complications indicating that 

further work is required.  This is discussed in the following chapter on future work. 

 

The fourth and final objective, demonstrating the effectiveness of engineered features 

when compared to the end-to-end machine learning approach, has been achieved and 

some additional results have emerged from this. The end-to-end ML approach initially 

used the raw contour data as an input feature to the 1DTCNN network of chapter 6 and 

was left to learn the relevant feature information.  Overall, it proved to learn features well 

from the raw data although at some cost. The best LSTM (using LoG and DoG features) 

significantly outperformed the 1DTCNN network in terms of inference time (the LSTM 

was 10 times faster).  Additionally, the regression precision of the 1DTCNN network 

when using just the raw data as input could not match that of the LSTM network. 

 

From the perspective of measuring accuracy and macro F1 scores alone, the 1DTCNN 

network produces slightly better results overall when engineered features are used, but 

the time required to train and classify is, again, significantly greater than the LSTM 

network.  Additionally, the use of curvature as a feature for the 1DTCNN network 

produced good results and, interestingly, used only a one-dimensional data structure, 

compared with a four dimensional one of the derivatives. 

 

7.2.2 Review of Hypotheses 

The hypotheses re-iterated at the start of this section are reviewed next. Whilst it was 

hypothesised that curvature would be a good feature to use with ML models and methods, 

it seems that, for the LSTM DNN networks used in chapter 4, the first and second 

derivatives, which themselves are used to calculate curvature, consistently produced 

results better than curvature alone.  They are also far quicker to compute than curvature. 

Hence it is concluded that the first hypothesis has been met, but DoG and LoG features 

are superior to curvature alone in terms of their predictive properties and speed of 

calculation when used with LSTM network. The modified LSTM network showed an 
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improvement when curvature was used alone as an input feature indicating it contained 

useful information and this was further confirmed by the experiments using the 1DTCNN 

network. The 1DTCNN network was able to use curvature alone to produce comparable 

macro F1 scores (90.83% for the LSTM network and 90.8% for the 1DTCNN network) 

and accuracy (91.26% for the LSTM network and 90.53% for the 1DTCNN network), 

which is a noteworthy result since it is the only scalar (one-dimensional) input feature. 

 

The second hypothesis focused on the regression capabilities of the deep learning models 

used and their features.  Analysis of the figures above show this hypothesis to be proven 

for the models used, however both regressors demonstrate poorer accuracy and precision 

for the labiale superius landmark. The conclusion here is that the dataset needs to be 

enlarged and the automatic landmark adjustment algorithm needs further work. 

Additionally, the experiments could benefit from modifying the length of the contours by 

adding a random amount of “n/a” labels at the beginning and end of the contours. 

 

With regard to the third hypothesis, it has been proven overall. The LSTM network with 

engineered features produced a faster segmenter and regressor with accuracy comparable 

to that of an end-to-end ML approach. Nevertheless, the results of chapter 6 demonstrated 

the power and potential usefulness of the end-to-end ML approach.  Equally it shows the 

value of engineering good features, as a significant speed up in classification was 

demonstrated in this thesis. The author notes that these results are dependent upon the 

processing hardware used. 

 

Next, the potential for future work is considered. 
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8 Future Work 

This chapter presents future work that could both improve and extend this thesis or that 

could become a focus for a new research project. 

 

8.1 A real-time profile landmarking application 

Primarily, the next step is to create a single application that can estimate head posture in 

real-time. This will combine the methods and ideas demonstrated here into a single 

application that can take real-time, 2D colour images, including depth information, to 

locate key landmarks and segment profiles as demonstrated in chapter 5.  The technology 

to produce real-time, 2D images with depth information is cheap and already available, 

for example Microsoft’s Azure Kinect device can work in real time and can produce high 

resolution 2D images with depth information at 30fps.  Measuring head posture angle 

would be an obvious goal.  This would require further work to regress the tragus of the 

ear and the C7 vertebra, or an alternative reference could be used instead, perhaps using 

markers if no other method was available.  Such an application would have uses in several 

fields as identified already in chapter 2. 

 

8.2 Investigate alternative networks 

The investigations of chapter 4 compared the engineered features developed in this thesis 

with those of a previously published experiment.  No attempt to investigate alternative 

models was undertaken since the purpose was to compare the features engineered here 

against an existing model, dataset and experiment.  Future work could continue this 

investigation by using alternative networks, architectures and hyperparameters. 

 

8.3 Augment the developed dataset 

The head profile contour dataset is not large but could easily be augmented using the 

“tweening” concept discussed in chapter 6 and then investigating the effect of a larger 

dataset on the networks developed here already. For example, a further study to evaluate 

any improvement in the accuracy of the segmentation process and regression capability 

of both the LSTM  RNN and 1DTCNN network models would be of interest. 
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8.4 Creation of a new dataset 

Whilst the Notre Dame dataset was invaluable for this thesis, the creation of a labelled, 

higher resolution 2D head profile image dataset with depth information would be an 

important goal as image capturing technologies have significantly evolved since the 

creation of the Notre Dame dataset and the resulting, new data set would be likely to have 

fewer flawed images. Extending this approach into real-time video would allow the use 

of additional methods such as motion tracking, for example, including Kalman filter 

(Stratonovich, 1959) and particle filter methods (Gordon, Salmond and Smith, 1993).  

 

8.5 Extend and refine the landmarking algorithm 

Whilst the method used to regress the landmark locations on the profile produces some 

reasonable results, it could be improved.  Currently the method searches for the first 

transition and assumes the ordinal nature of the sequence has been learned by the model. 

This has not been proven here.  Hence a statistical approach might benefit the regression 

process, for example, by looking at the landmarks around the transition zone and choosing 

an average or median value. 

 

8.6 Investigate multi-scale input features 

It is observed that the 1DTCNN network makes explicit use of dilation layers to capture 

scale dependent features.  The LSTM RNN models used features that had a fixed scale 

determined by the standard deviation, σ, used in the curvature and derivative calculations.  

Using, for example, three DoG features with scales of σ=1, 2 and 3 at the same time, 

would, it is hypothesised, improve the accuracies of the classes segmented. 

 

8.7 Investigate the energy efficiency of approaches used in this research 

Finally, with a wide range of hardware becoming available such as GPUs, dedicated 

camera systems, multi-core microprocessors and so on, it will be worthwhile to study the 

efficiency of the approaches used in this thesis from the context of power consumption. 
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This is pertinent given the increased use of mobile based hardware and, more generally, 

the limited resources available to power these devices.  
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Appendix A: Publications 

The following paper (Dickers et al., 2021) has been accepted for publication as a direct 

result of the research discussed in this thesis: 
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Appendix B: Estimating derivative errors with Taylor’s theorem 

 

Equation (B1) shows Taylor’s theorem. 

 

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

 𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

 
(B-1) 

 

f is (n + 1) times differentiable and 𝑓(𝑛)(𝑎) is the nth derivative of f with respect to x, 

evaluated at x=a.  

 

If xi  is a point on the curve then Taylor’s theorem can approximate f(xi+1), where xi+1   is 

another point on the curve separated by a small distance h = xi+1 - xi .   Substituting into 

(B-1), letting x= xi+1, a = xi. , noting that xi+1 = xi + h and then expanding the series gives,  

 

𝑓(𝑥𝑖 + ℎ) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)ℎ +
1

2
𝑓′′(𝑥𝑖)ℎ2 +

1

6
𝑓′′′(𝑥𝑖)ℎ3

+ 
1

𝑛!
𝑓(𝑛)(𝑥𝑖)ℎ𝑛  + 𝑅𝑛 

(B-2) 

 

where the truncation error, Rn = 
1

𝑛+1!
𝑓(𝑛+1)( 𝜉)ℎ𝑛  and 𝜉is a number on the open interval 

between xi and xi+1. Truncating the Taylor series above after the 1st derivative gives    

𝑓(𝑥𝑖 + ℎ) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)ℎ + 𝑅1, where 𝑅1 =
1

2
𝑓′′( 𝜉)ℎ2 

 

Rearranging and dividing throughout by h gives the exact forward difference, 𝑓′(𝑥𝑖)ℎ 

 

 𝑓′(𝑥𝑖)  =
𝑓(𝑥𝑖 + ℎ)  −  𝑓(𝑥𝑖)

ℎ
 −  

𝑅1

ℎ
 

Or 

𝑓′(𝑥𝑖)  =
𝑓(𝑥𝑖 + ℎ)  −  𝑓(𝑥𝑖)

ℎ
 +  𝑂(ℎ) 

(B-3) 
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Where O(h) is the complexity of the 1st derivative approximation and so is proportional 

to the step size, h .  Here, halving the step size will halve the error associated with the 

derivative. 

 

Similarly the backward difference can be found by noting h= xi - xi-1, f(xi-1)= f(xi - h) and 

using Taylor’s theorem to find f(xi - h). 

 

𝑓(𝑥𝑖  −  ℎ) = 𝑓(𝑥𝑖)  − 𝑓′(𝑥𝑖)ℎ +
1

2
𝑓′′(𝑥𝑖)ℎ2  − 

1

6
𝑓′′′(𝑥𝑖)ℎ3

+ 
1

𝑛!
𝑓(𝑛)(𝑥𝑖)ℎ𝑛  + 𝑅1 

(B-4) 

and, 

𝑓′(𝑥𝑖)  =
𝑓(𝑥𝑖 )  −  𝑓(𝑥𝑖 −  ℎ)

ℎ
 +  𝑂(ℎ) 

(B-5) 

 

Again, the truncation error is also of order O(h). 

 

The central difference 1st order derivative is found by and subtracting (B-2) and (B-4)  

𝑓(𝑥𝑖 + ℎ) −  𝑓(𝑥𝑖  −  ℎ) = 2𝑓′(𝑥𝑖)ℎ + 𝑅2 and the local truncation error, 

 R2 = 
1

6
𝑓′′′(𝜉3

′ )ℎ3, where 𝜉3
′  is found from the truncation errors of (B-2) and (B-4) using 

the intermediate value theorem. Dividing by 2h gives,  

 

𝑓(𝑥𝑖+ℎ)− 𝑓(𝑥𝑖 − ℎ)

2ℎ
= 𝑓′(𝑥𝑖) +  𝑅2/2ℎ         

 

The truncation error, 𝑅2/2ℎ is of the order O(h2) so halving the step size will make the 

error associated with the derivative four times smaller. 

 

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 + 𝑂(ℎ2) 

(B-6) 

 

Therefore, the central difference approach to finding the error is more accurate for small 

step sizes. 
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Appendix C: Theory underpinning Sequential DNNs 

 

Recurrent Neural Networks 

 

Unlike feedforward networks whose connections are constrained to link forward to 

neurons deeper in the network, recurrent networks include links feeding back to earlier 

parts of the network. Interpreting these feedback links as outputs from a previous time 

step, and chaining these stages together, allows learning across several time steps.  Hence 

the network can learn patterns across time or sequences of data. Figure C-1 shows the 

overall structure of a single recurrent neuron, typically referred to as a cell. Several of 

these cells can be combined together to form a more complex cell. 

 

Figure C-1: Structure of a recurrent neural network cell. 

Training of a RNN can be achieved by using the idea of “unrolling through time” 

(Staudemeyer and Morris, 2019; Sherstinsky, 2020) as shown in figure C-2. When seen 

like this, the back propagation algorithm can be applied in the normal way to calculate 

gradients through the network and is referred to as back propagation through time (BPTT) 

in the literature.  Hence, from the perspective of the BPTT algorithm, there are two sets 

of inputs and their associated weights that correspond to both the normal input vector 

weights and also the weights for the previous time step’s output state, typically referred 

to as h where h refers to the word “hidden” since this state is contained within the network. 

Y is the output of the cell. 
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Figure C-2: A recurrent neural network cell unrolled through time. 

Typically, RNNs are used in a number of configurations: vector to sequence; sequence to 

sequence; sequence to vector or as an encoder-decoder, that is sequence to vector 

followed by a vector to sequence.  These architectures and their uses are detailed in 

several texts (Goodfellow, Ian, Bengio, Yoshua, and Courville, 2016; Géron, 2019) and 

so their detailed theoretical underpinning is not repeated here, though figure C-2 is an 

example of a sequence-to-sequence network with the output sequence (Y(0)-Y(2))  being 

the same length as the input sequence (X(0)-X(2)). 

 

Sequence to sequence and sequence to vector RNNs allow an output sequence to be learnt 

from a labelled dataset of input sequence vectors.  The output sequence can be configured 

to be of a different length to the input sequence or it could be the same length, depending 

on the problem scenario. Variable lengths can be accommodated by, for example, 

padding, however the majority of modern neural network libraires include options for 

variable length sequences (Chollet and Others, 2015; Abadi et al., 2016; Mathworks, 

2020a). An aim of this thesis is the segmentation of a contour curve, hence the focus here 

is on the essential concepts related to a sequence-to-sequence network where the input 

and output sequences are the same length, although, depending upon the features used the 

dimension of the input sequence vector may change. For example, a univariate time series 

or a scalar feature such as curvature would have a dimension of 1, a profile’s x and y co-

ordinates, on the other hand, would have a dimension of 2. Additionally, the length of 

each training or test sequence may also vary.  

 

RNNs can be used for segmentation by adding additional layers to the output as is 

common in other neural network architectures.  Typically a fully connected layer 
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followed by a softmax layer is used to convert the real valued output state to a finite 

number of classes.  The purpose of the softmax layer is to calculate and associate a 

probability value between zero and one for each of the multiclass outputs. A true/false 

decision boundary is chosen, usually a probability of 0.5 or greater is regarded as true. It 

normalises the probability distribution over the output classes, hence the total class 

probabilities sum to one (Russell and Norvig, 2020). 

 

The output sequence may consist of a sequence of labels classifying each input of the 

sequence.  For example, a single input from a long sequence might be a co-ordinate (x,y) 

pair representing a point on a curve, whilst the corresponding output at that time would 

be a region label, for example, “upper lip”. 

 

RNNs have a limited memory, the literature often states 10 time/sequence steps and 

attribute this to both vanishing gradients or exploding gradients that cause some 

oscillation in the gradient magnitudes during back propagation.  This led to the 

development of LSTM RNNs that attempted to address these limitations.  LSTMs 

introduce a memory component that allows internal state to be remembered or forgotten 

through the use of a gate structure and expands the internal states to include the hidden 

state h() vector (also referred to as hidden units) and an additional cell state, C() vector.  

The hidden state corresponds to the short-term memory and the cell state to the long term 

memory.  An LSTM cell is shown in figure C-3. 

 

Figure C-3: LSTM Cell. 
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The functions i(t), f(t), o(t), g(t), c(t) and y(t) correspond to the matrix equations (C-1) to 

(C-6) respectively.  Note that both x(t) and y(t) are weighted and activation functions σ() 

and tanh() are applied as in a normal feed forward neural network (FFNN).  σ() 

corresponds to the sigmoid activation function and tanh() to the hyperbolic activation 

function.  These have the effect of “squashing” the output ranges to ±1. The ⊗ operator 

defines element-wise vector multiplication (also known as the Hadamard product). 

 

𝒊(𝑡) = 𝜎(𝐖𝒙𝒊 ∙ 𝐱(𝑡)  +  𝐖𝒉𝒊 ∙ 𝐡(𝑡 − 1) +  𝐛𝑖) (C-1) 

𝒇(𝑡) = 𝜎(𝐖𝒙𝒇 ∙ 𝐱(𝑡)  + 𝐖𝒉𝒇 ∙ 𝐡(𝑡 − 1) +  𝐛𝑓) (C-2) 

𝒐(𝑡) = 𝜎(𝐖𝒐𝒊 ∙ 𝐱(𝑡)  + 𝐖𝒐𝒊 ∙ 𝐡(𝑡 − 1) +  𝐛𝑜) (C-3) 

𝒈(𝑡) = 𝑡𝑎𝑛ℎ(𝐖𝒙𝒈 ∙ 𝐱(𝑡)  + 𝐖𝒉𝒈 ∙ 𝐡(𝑡 − 1)  + 𝐛𝑔) (C-4) 

𝒄(𝑡) = 𝒇(𝑡) ⊗ 𝐜(𝑡 − 1)  +  𝒊(𝑡) ⊗  𝒈(𝑡)  (C-5) 

𝒚(𝑡) = 𝒉(𝑡) = 𝒐(𝑡) ⊗ 𝑡𝑎𝑛ℎ(𝐜(𝑡)) (C-6) 

 

As can be seen the hidden state, h() corresponds to the output of one cell.  Look at equation 

(C-3) and (C-6) the dimensions of these states depend upon the design choices and 

represent the cell’s output at one point in time or, equivalently, just one sampled sequence 

value.  i(t), f(t), o(t) and g(t) are in a form where the backpropagation algorithm can now 

be applied, and the weight matrices W** elements learnt in the usual manner. Typically 

an LSTM can learn relationships spread across hundreds of time steps (Hochreiter and 

Schmidhuber, 1997) so any design will need to take this into account. 

 

There are several variants of LSTMs, for example the Gated Recurrent Unit (GRU) (Cho 

et al., 2014), that aims to simplify the architecture of the gate.  This is currently a very 

popular network choice. Staudemeyer and Morris (2019) suggest GRUs outperform 

LSTMs, however Shewalkar (2019), for instance, presents empirical evidence that 

indicates they are comparable in speech applications, though the GRU is faster to train. 

 

The next section reviews the use of CNNs in processing sequential and time series data, 

focusing on 1DTCNNs. 
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Convolutional neural networks 

 

A two-dimensional CNN layer, as used in image detection, typically uses many small 

kernels or filters that are moved across the input image, performing convolutions at each 

pixel.  Each kernel’s convolutions creates a single two-dimensional feature map as it 

moves across the image. Together, these feature maps form a single layer.  The kernels 

each encode a particular feature that is representative of part of the image to be 

recognised.  As each kernel has effectively scanned the image looking for its feature, the 

resulting feature map encodes where that feature (or multiple versions of it) lie within the 

image.  Hence the use of the word “map.”  Multiple scales are accommodated by adding 

a pooling layer afterwards to downsize or subsample the layer above. Hence a CNN has 

the ability to localise an object within an image and at multiple scales.  The back 

propagation algorithm is used to train the kernels. More detailed descriptions of CNNs 

and their variations are provided in Goodfellow, Ian, Bengio, Yoshua, and Courville 

(2016) and Géron (2019). 

 

One dimensional neural networks work in a similar manner to the more common 2D 

CNN.  Convolutions are one dimensional in nature and multiple layer subsampling is 

referred to as dilation, where layers have a dilation rate, for example a dilation factor of 

2, samples every other input of the layer above.  This is efficient since n dilations allows 

features of up to length 2n to be recognised in n layers, should a constant dilation rate of 

2 be used, as is common. 

 

The wavenet architecture introduced by Oord et al. (2016) applies these ideas and 

includes a temporal feature that prevents looking ahead.  The authors grouped 10 

convolutional layers with dilation rates of 1, 2, 4, …,256 and 512.  They created three 

such groups and stacked them on top of each other.  They justified this by pointing out 

that each group represented an efficient implementation of a convolutional layer with 

kernel size of 1024. Figure C-4(a) (Bai, Kolter and Koltun, 2018) shows the architecture 

of a 1DTCNN network. Figure C-4(a) shows a dilated causal convolution with dilation 

factors, d = 1, 2 and 4 and kernel filter size k = 3 (blue lines). Figure C-4(b) shows a 

residual block that includes two of the dilated causal convolutions of figure C-4(a). A 1x1 

convolution is added to ensure the residual input and outputs have the same dimensions. 
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Figure C-4(c) shows an example residual connection where the dilation factor is one and 

the kernel filter has a size of three (see blue lines). Classification is achieved with the use 

of a fully connected output and softmax layer. 

 

 

Figure C-4(a): Architectural elements of a 1DTCNN network (Bai, Kolter and Koltun, 2018).  

   

Figure C-4(b): Residual block that includes 

two of the dilated causal convolutions of 

Figure C-4(a). 

 

Figure C-4(c): An example residual 

connection where the dilation factor is 1 and 

the kernel filter has size 3 (see blue lines). 
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Appendix D: Evaluation metrics in machine learning classification 

 

This appendix provides a review of evaluation metrics commonly used in the evaluation 

of machine learning classifiers. Typically, a dataset used is split into two parts – a training 

set and a smaller test set.  The test set it placed to one side and will not be used during the 

training process.  The training set may be further split into a training set and a smaller 

validation set.  The training set is used to train the classifier whilst the validation set is 

used to assess the classifier as training takes place. Use of the validation set can help 

prevent over-training of the data using the idea of early stopping, a regularisation method 

that Geoffrey Hinton referred to as a “beautiful free lunch” (Ruder, 2016).  Over-training 

occurs when the model has been trained for too long on the training set and has effectively 

memorised it.  It is then unable to generalise when new data is presented for inference 

(classifying).  The validation set can then detect when overtraining is likely by testing the 

model on the validation set as training goes on.  Note the test dataset is never used for this 

purpose.  Only when the model is ready to be used is the test data applied and evaluation 

takes place. Without a validation set (for example, in the case where there is a small 

dataset), manual inspection of the training loss as training progresses is necessary to 

prevent overtraining.   

 

Once trained the classifier needs to be evaluated.  The following sections discuss the most 

commonly used approaches. 

 

 

The confusion matrix 

A confusion matrix is used to present the results of the performance of a binary classifier 

but it can also be extended to present results of a multiclass classifier.  There is no set 

standard for organizing the layout of the matrix so care should be taken when interpreting 

a confusion matrix. 

 

In the confusion matrix of figure D-1, the rows contain instances of the correct expected 

results.  The top row contains instances that should have been classified as true.  The total 

number of the instances in this row is denoted by P, for positive.  The top left cell contains 

a value representing the number of instances that were correctly predicted by the 

classifier, and these are known as the true positives (TP).  The top right cell contains a 
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value representing the number of actual, true instances that were misclassified as false by 

the classifier.  They are called false negatives (FN).  Hence P =TP + FN. 

 

Similarly, the second row also contains totals of actual observations that should have been 

classified as negative. The total number of these in this row is denoted by N for negative. 

The bottom left cell contains false positives (FP), these should have been classified as 

negative but were wrongly classified as positive.  The bottom right contains a value 

representing the number of instances that were correctly classified as negative and are 

referred to as true negatives (TN).  Hence N= TN + FP. 

 

Note the true positives and true negatives are always found in the leading diagonal of the 

matrix. 

 

 
Classifier 

Predicted:  
YES 

Classifier 
Predicted:  
NO 

 𝑭𝑷 𝒓𝒂𝒕𝒆

=
𝑭𝑷

𝑵
 

𝑻𝑷 𝒓𝒂𝒕𝒆 =
𝑻𝑷

𝑷
 

Actual: YES 

(observation) 

True 

Positives 
(TP) 
(correct 

result) 

False 

Negatives 
(FN) 
(unexpected 

result) 

  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 

=
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Actual: NO 

(observation) 

False 

Positives 
(FP) 
(unexpected 

result) 

True 

Negatives 

(TN) 
(correct 

result)  

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 

 

=
𝑻𝑷 + 𝑻𝑵

𝑷 + 𝑵
 

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆 

 

=
𝟐

𝟏
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

+
𝟏

𝒓𝒆𝒄𝒂𝒍𝒍

 

 

Figure D-1: Binary classifier confusion matrix (see following sections for definitions of 

equations). 

The terms “positive” and “negative” refer to the classifier’s prediction. The terms “true” 

and “false” refer to whether the prediction corresponds to the actual observation- what it 

really is.  

The total number of actual, expected results for a class is called the support. In figure D-

1 the Yes class’ (top row) support is given by P= TP+FN.  The No class’s support is given 

by N = TN+FP. Some useful metrics can now be calculated from the confusion matrix. 
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Accuracy 

The overall accuracy of the classifier can be determined by first finding the total number 

of instances correctly classified by the classifier and then dividing by the total number of 

instances in the dataset, both true and false.  That is, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

(D-1) 

 

Accuracy is often used to give an overview of a classifier’s performance but can be 

misleading.  For example, if a dataset was heavily skewed (misbalanced) with 95 true 

instances and 5 false then a bad classifier that classifies all results as a positive class would 

achieve 95% accuracy.  Precision, recall (also known as the true positive rate), and the 

false positive rate are metrics that aim to avoid this problem. 

 

False positive rate 

The false positive rate is defined in equation (D-2).  In the previous example the classifier 

will be revealed as a poor one when the false positive rate is calculated.  This figure gives 

an idea of often the classifier incorrectly classifies a true instance – 100% of the time in 

our previous example. 

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

(D-2)  

Recall 

Recall is defined by equation (D-3).  It is also known as the true positive rate and is the 

complement of the false positive rate.  It gives a sense of how often the classifier was 

right when classifying genuinely positive instances. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(D-3)  

 

 

Precision 

Precision is defined in equation (D-4). It aims to explain accurately how often the 

classifier correctly classifies genuinely true instances, that is how many of the positive 

predictions are correct. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(D-4)  
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Using any of the above metrics alone can be misleading. Often precision and recall are 

used together as an increase in precision can cause a decrease in recall and vice versa.  To 

see this, the diagram in figure D-2 below shows the distribution of a classifier’s positive 

and negative predictions together with a plane (here a vertical line) representing a decision 

boundary. 

 

The classifier’s positive predictions are represented by the red distribution and its 

negative predictions by the blue distribution. Blue instances to the left of the decision 

boundary are correctly classified, they are true negatives (TN), whilst the remaining blue 

instances to the right of the boundary are incorrectly classified.  These are false positives 

(FP).  Similarly, the red instances (positive predictions) to the right of the decision 

boundary are correctly classified, they are true positives (TP), whilst the remaining red 

instances to the left of the boundary are incorrectly classified.  These are false negatives 

(FN).   

Moving the decision boundary to the left will increase the number of TP but decrease the 

number of FN. That is, the recall will increase. However, moving the boundary like this 

will also increase the number of FP and reduce the precision. It would be better to improve 

the classifier, if possible, by instead reducing the overlap of distributions. With a clear 

gap between distributions the classifier would have a 100% precision and recall. 

 

Figure D-2: Distribution of positive and negative instances predicted by a binary classifier. 

Distribution of positive and negative instances predicted by a classifier 

 

Key:  Blue distribution = true negatives. 

 Red distribution = true positives. 

Vertical line = decision boundary. 
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The F1 Score 

The F1 score combines the recall and precision values into one average value. The 

average is the harmonic mean which is used when averaging values representing ratios 

such as speed for example and, in this case precision and recall.  The harmonic mean of 

the two values of recall and precision is given in equation (D-5).  Williams (2021) notes 

that precision and recall, and hence F1 scores are dependent upon class balance and hence 

where comparisons are made across different scenarios or datasets then class ratios should 

be maintained. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

 
(D-5)   

 

Multi-class confusion matrix 

The multi-class confusion matrix extends the binary confusion matrix to work with 

several classes. TP, TN, FP and FN values exist for each class as before.  Given a class, 

for example, class A, shown in figure D-3,  the metrics described above are calculated by 

labelling the TP,TN,FP and FN as shown in the confusion matrix.  So here, classes that 

are not class A are all considered to be the complement of A, that is, not A. The support 

for each class is calculated by summing the entries horizontally for each row. Williams 

(2021)  notes that use of the F1 score to compare different models with varying inter-

model class support can be problematic. When using F1 scores ratios of class support size 

should be consistent between models (as is the case with the dataset used in this thesis).  

 

  Predicted 
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Predicted 

Positive Class B 

Predicted 

Positive Class C 

Actual 

Positive Class A 

 

TP 

 

 

 

 

Actual 
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Figure D-3: Multiclass confusion matrix. 
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Macro F1 score 

F1 scores for each class of a multiclass classifier can be calculated in the manner 

described above, but it is also possible with multi-class models to assign an overall F1 

score for the classifier by calculating the average of the F1 scores.  Here all classes are 

given equal weighting. This is useful if the classes are imbalanced as each is given equal 

representation. A weighted average F1 score could also be calculated to provide 

additional weighting to a given class based upon its size. 
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Appendix E: Application for Ethical Approval Form Summary 

 

Ethical approval for this research has been granted by the University’s Ethics 

Committee. Summary sections of the approved application are documented on the 

following pages with personal information redacted. 
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