

Fast head profile estimation using curvature, derivatives and deep learning

methods

Gordon Alexander Dickers, MSc (Dist), PGCE(FE), BSc (hons)

Supervised by: Professor John Rees, Dr Kemi Ademoye and Dr Tim Bashford

This research was undertaken under the auspices of

the University of Wales Trinity Saint David

Submitted in partial fulfilment for the award of the degree of Doctor of

Philosophy

University of Wales

2021

i

Declaration

This work has not previously been accepted in substance for any degree and is not

being concurrently submitted in candidature for any degree.

Signed (candidate)

Date: 21st August 2021

STATEMENT 1

This thesis is the result of my own investigations, except where otherwise stated.

Where correction services have been used the extent and nature of the correction is

clearly marked in a footnote(s). Other sources are acknowledged by footnotes giving

explicit references. A bibliography is appended.

Signed (candidate)

Date: 21st August 2021

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for deposit in the

University’s digital repository.

Signed (candidate)

Date: 21st August 2021

ii

Abstract

Fast estimation of head profile and posture has applications across many disciplines, for

example, it can be used in sleep apnoea screening and orthodontic examination or could

support a suitable physiotherapy regime. Consequently, this thesis focuses on the

investigation of methods to estimate head profile and posture efficiently and accurately,

and results in the development and evaluation of datasets, features and deep learning

models that can achieve this. Accordingly, this thesis initially investigated properties of

contour curves that could act as effective features to train machine learning models.

Features based on curvature and the first and second Gaussian derivatives were evaluated.

These outperformed established features used in the literature to train a long short-term

memory recurrent neural network and produced a significant speedup in execution time

where pre-filtering of a sampled dataset was required. Following on from this, a new

dataset of head profile contours was generated and annotated with anthropometric cranio-

facial landmarks, and a novel method of automatically improving the accuracy of the

landmark positions was developed using ideas based on the curvature of a plane curve.

The features identified here were extracted from the new head profile contour dataset and

used to train long short-term recurrent neural networks.

The best network, using Gaussian derivatives features achieved an accuracy of 91% and

macro F1 score of 91%, an improvement of 51% and 71% respectively when compared

with the un-processed contour feature. When using Gaussian derivative features, the

network was able to regress landmarks accurately with mean absolute errors ranging from

0 to 5.3 pixels and standard deviations ranging from 0 to 6.9, respectively. End-to-end

machine learning approaches, where a deep neural network learns the best features to use

from the raw input data, were also investigated. Such an approach, using a one-

dimensional temporal convolutional network was able to match previous classifiers in

terms of accuracy and macro F1 score, and showed comparable regression abilities.

However, this was at the expense of increased training times and increased inference

times. This network was an order of magnitude slower when classifying and regressing

contours.

iii

Acknowledgments

I would like to thank my supervisors, Professor John Rees, Dr. Kemi Ademoye and Dr.

Tim Bashford for their continued support, guidance, and advice throughout the period of

my PhD research. Also, I’d like to thank Professor Ian Wells, Dr Glen Jenkins and Dr John

Beaton who encouraged, supervised, and advised me in the initial stages of this work.

I am grateful to the University of Wales, Trinity St. David for providing the opportunity to

engage in this research and I thank my colleagues in the School of Applied Computing for

their advice and encouragement during this time.

To Ceri and Elen, I say thank you for your tolerance and unconditional support.

Thank you.

iv

Publications

The following paper (see Appendix A) has been accepted for publication as a direct

result of the research conducted in this thesis:

G. Dickers, J. Rees, T. Bashford, O. Ademoye, “Effectiveness of Curvature and Signal

Derivatives in Fast Curve Segmentation”, Conference Proceedings UKSim2021, AIMS2020/21,

International Journal of Simulation Systems, Science & Technology, vol. 22, 202.

doi: 10.5013/IJSSST.a.22.01.12

v

Table of Contents

Declaration ... i

Abstract ... ii

Acknowledgments .. iii

Publications .. iv

Table of Contents .. v

Table of Illustrations ... x

List of Tables.. xiii

List of Abbreviations.. xvi

1 Introduction ... 1

1.1 Why Measure Head Posture? ... 2

1.2 Cameras: 2D or not 2D, that is the question ... 4

1.3 Anthropometry ... 5

1.4 Landmarking and posture estimation from RGB-D images 6

1.5 Additional requirements ... 7

1.6 Research Question .. 8

1.7 Aims, Objectives and Hypotheses .. 8

1.7.1 Aims .. 8

1.7.2 Objectives .. 8

1.7.3 Hypotheses .. 9

1.8 Ethical Approval and Risks .. 9

1.9 Contributions to the literature ... 9

1.10 Layout of Thesis ... 10

2 Literature Review .. 12

2.1 Introduction .. 12

2.2 2D Face Landmarking and Feature Detection .. 12

vi

2.2.1 Face Landmarking Databases ... 12

2.2.2 Landmark Annotation Schemes .. 14

2.2.3 Face Landmarking methods and algorithms ... 16

2.3 Profile landmarking and curve segmentation ... 18

2.4 Object Contours from RGB-D data .. 20

2.5 Curvature .. 21

2.6 Derivatives of a sampled curve .. 27

2.6.1 Finite differences ... 27

2.6.2 Gaussian Filters and Derivatives ... 29

2.7 Evaluation metrics in machine learning ... 33

2.8 Machine Learning with Neural Networks .. 34

2.8.1 RNNs for sequential data .. 35

2.8.2 Sequential data processing using convolutional neural networks 37

2.9 Anthropometry and facial landmarking.. 38

2.9.1 Direct and indirect anthropometry .. 40

2.9.2 Landmarks used in craniofacial anthropometry .. 43

2.9.3 Neck and upper body landmarks ... 45

2.10 Summary of gaps in knowledge and contributions 46

2.11 Summary ... 48

3 Research Methodology.. 49

3.1 What type of research? ... 49

3.2 What Research Method?... 49

3.3 Experimental Research ... 50

3.4 Experimental Methodology .. 50

3.5 Machine Learning Process ... 51

3.6 Apparatus .. 52

3.7 Evaluation Metrics.. 52

3.7.1 Classifier Evaluation ... 52

vii

3.7.2 Regressor Evaluation .. 53

3.8 Run-time Efficiency Evaluation ... 54

3.8.1 Timing procedure .. 54

3.9 Common Experimental Methodologies .. 56

3.9.1 Training LSTM and 1DTCNN models. .. 56

3.9.2 Testing and Evaluation of LSTM and 1DTCNN models.......................... 59

3.10 Summary ... 61

4 Segmenting uniformly sampled datasets with RNNs.. 62

4.1 Comparison of Gaussian derivatives and central difference methods.............. 62

4.2 Efficient filtering and derivative calculations using Gaussian kernels 66

4.2.1 Comparison of numerical and analytical curvature calculations. 67

4.2.2 Effect of Gaussian derivative kernel size on long data samples 68

4.3 Curve segmentation using LSTM RNNs .. 72

4.3.1 Dataset Description ... 72

4.3.2 Feature choices .. 74

4.3.3 LSTM DNN architecture and training .. 75

4.3.4 Results and Comparisons of Network Accuracy 76

4.3.5 Summary of overall accuracy and F1 scores... 83

4.3.6 Runtime Results and Comparisons ... 84

4.4 Estimating the effectiveness of the feature pre-processing 86

4.5 Discussion and Conclusions ... 89

5 Segmenting face profile contours with RNNs .. 92

5.1 Procedure and toolchain ... 92

5.2 The Notre Dame J2 Dataset .. 94

5.3 Labelling landmarks ... 96

5.3.1 Chosen landmarks ... 97

5.3.2 Landmark capturing software ... 98

5.4 Extracting Profile Contours .. 100

viii

5.5 Adjusting Landmarks ... 102

5.6 Adjustment Algorithm Results and Discussion .. 107

5.7 Segmenting profiles .. 113

5.8 Curve Segmentation using LSTM Neural Network 116

5.8.1 Dataset Description ... 117

5.8.2 Feature Choices ... 118

5.8.3 LSTM DNN architecture and training .. 119

5.8.4 Results and Comparisons of Network Accuracy 120

5.8.5 Summary of overall accuracy and F1 scores... 127

5.9 Effect of parameter adjustment on the LSTM network 129

5.9.1 Changes to the LSTM RNN architecture and training 129

5.9.2 Results and Comparisons of Modified Network Accuracy..................... 131

5.9.3 Summary of overall accuracy and F1 scores... 135

5.10 From segmentation to regression .. 138

5.10.1 Locating region transitions .. 138

5.10.2 Evaluation of predicted landmark accuracy .. 139

5.11 LSTM Classification Runtime Results and Comparisons 142

5.12 Discussions and Conclusions .. 144

6 Segmenting face profile contours with 1DTCNN Networks 148

6.1 1DTCNN architecture and training .. 148

6.2 Results and Comparisons of Network Accuracy .. 149

6.2.1 Raw profile curvature .. 150

6.2.2 Combined DoG and LoG Derivative Features .. 150

6.2.3 Normalized curvature (σ=1) ... 151

6.2.4 Summary of overall accuracy and F1 scores... 152

6.3 Evaluation of runtime results and training times .. 153

6.4 From Segmentation to Regression.. 153

ix

6.4.1 Evaluation of predicted landmark accuracy .. 154

6.5 Regression results and comparisons ... 159

6.6 Comparison of LSTM Results with 1DTNN.. 161

6.7 Discussions and conclusions .. 164

7 Conclusions and Recommendations ... 166

7.1 Contributions .. 166

7.2 Conclusions .. 167

7.2.1 Review of Objectives .. 168

7.2.2 Review of Hypotheses... 170

8 Future Work .. 172

8.1 A real-time profile landmarking application .. 172

8.2 Investigate alternative networks ... 172

8.3 Augment the developed dataset .. 172

8.4 Creation of a new dataset ... 173

8.5 Extend and refine the landmarking algorithm .. 173

8.6 Investigate multi-scale input features ... 173

8.7 Investigate the energy efficiency of approaches used in this research 173

References ... 175

Appendix A: Publications ... 194

Appendix B: Estimating derivative errors with Taylor’s theorem 200

Appendix C: Theory underpinning Sequential DNNs .. 202

Appendix D: Evaluation metrics in machine learning classification 208

Appendix E: Application for Ethical Approval Form Summary 214

x

Table of Illustrations

Figure 2-1 Popular landmarking schemes (Sagonas et al., 2016). 15

Figure 2-2: Moore’s Boundary algorithm. Left: the binary image with Moore’s

algorithm applied. Right: A close up of spiral centre showing 8-connectivity. 21

Figure 2-3: Curvature as the derivative of the tangential angle, ∅ wrt arc length, s 22

Figure 2-4: Curvature, 𝜅 = 1𝑟 described by the osculating circle of radius, r. 24

Figure 2-5: Approximating highest point of curvature between two points, after (Efraty

et al., 2009). ... 25

Figure 3-1: Stages involved in the ML process (iterative phases not shown). 51

Figure 3-2: Example of a single segmented head profile contour. 57

Figure 4-1: Comparison of Curvature Calculations. Upper using Gaussian derivative, . 64

Figure 4-2: Comparison of Curvature Calculations across 250 000 samples. Upper using

Gaussian Derivative, lower using central difference method. .. 65

Figure 4-3: Curvature of sine wave: Top- Analytically Calculated, Bottom- DoG used.

 ... 68

Figure 4-4: Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±3𝜎 + 1,

b) ±3.5𝜎 + 1. ... 69

Figure 4-5: Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±4𝜎 + 1,

 ... 70

Figure 4-6: Curvature of sin(x) calculated using LoG: 𝜎 = 2: a) s = ±3𝜎 + 1; 71

Figure 4-7: P wave, QRS complex and T wave regions of an electrocardiogram

(Yochum, Renaud and Jacquir, 2016). .. 73

Figure 4-8: Summary of Macro F1 and Overall Accuracy. .. 84

Figure 4-9: Overall accuracy of the feature pre-processing algorithms vs their run-time

speed measured as reciprocal time. ... 86

Figure 5-1: Example images of the ND- N2 Ear collection dataset (Yan and Bowyer,

2007). (a) 2D colour image; (b) 3D depth image. ... 96

Figure 5-2: Profile image together with labelled anthropometric landmarks. 98

Figure 5-3: Binarized Image profile of previous image. ... 101

Figure 5-4: Illustration of the contour found using Moore’s algorithm applied to the

binary image of Figure 5-3. ... 102

Figure 5-5: Synthetic profile head mockup (b) and a close up (a). 104

Figure 5-6: Smoothed contour (red) overlayed on raw sampled image (blue). 105

xi

Figure 5-7: Extracted profile curve curvature overlayed with manually labelled

landmarks (top). Extracted profile curvature and landmarks after adjustment using the

automatic process (bottom). .. 107

Figure 5-8: Extracted profile contour overlayed with manually labelled landmarks

(top). Extracted profile contour and landmarks after adjustment using the automatic

process developed here (bottom). ... 108

Figure 5-9:Application of the adjustment algorithm upon a bearded profile image. Top:

before adjustment; bottom: after application of automatic adjustment algorithm. 110

Figure 5-10: Extracted profile contour overlayed with manually labelled landmarks

(top). Note the scanning inaccuracy leading to contour/RGB image overlay mismatch.

Note the adjustment algorithm deals with this well (bottom), relocating the landmarks

correctly on the contour at the expected points. .. 111

Figure 5-11: Adjusted landmarks, illustrating points of curvature located on the upper

lip... 112

Figure 5-12: Contour vector containing screen co-ordinates of the two-dimensional

image. .. 114

Figure 5-13: Example segmentation mask generated from contour and region labels. 115

Figure 5-14: An example profile segmented into regions. .. 116

Figure 5-15: Summary of Macro-F1 and Overall Accuracy. .. 128

Figure 5-16: Summary of Macro-F1 and overall accuracy for adjusted network. 136

Figure 5-17: Comparison of the original LSTM network and the modified LSTM

network. ... 137

Figure 5-18: Histogram showing distribution of errors in landmark prediction against

expert annotator for the stomion landmark. .. 140

Figure 5-19: Histogram showing distribution of errors in landmark prediction against

expert annotator for the labiale superius landmark. .. 140

Figure 5-20: Histogram showing distribution of errors in landmark prediction against

expert annotator for the subnasale landmark. ... 141

Figure 6-1: Comparison of Macro-F1 and overall accuracy for 1DTCNN. 152

Figure 6-2: Distribution of errors in 1DTCNN landmark prediction for stomion

landmark. ... 154

Figure 6-3: Distribution of errors in 1DTCNN landmark prediction for labiale superius

landmark. ... 155

xii

Figure 6-4: Distribution of errors in 1DTCNN landmark prediction for subnasale

landmark. ... 155

Figure 6-5: Distribution of errors in 1DTCNN landmark prediction for stomion

landmark. ... 156

Figure 6-6: Distribution of errors in 1DTCNN landmark prediction for labiale superius.

 ... 157

Figure 6-7: Distribution of errors in 1DTCNN landmark prediction for subnasale. 157

Figure 6-8: Distribution of errors in 1DTCNN landmark prediction for stomion. 158

Figure 6-9: Distribution of errors in 1DTCNN landmark prediction for labiale superius.

 ... 158

Figure 6-10: Distribution of errors in 1DTCNN landmark prediction for subnasale. .. 159

Figure 6-11: Comparison of MAE of 1DTCNN using raw input, curvature and

combined LoG and DoG. .. 160

Figure 6-12: Comparison of precision of 1DTCNN using raw inputs, curvature and

combined LoG and DoG. .. 160

Figure 6-13: Comparison of the precision (in standard deviations) of the best LSTM

with the 1DTCNN. .. 162

Figure 6-14: Comparison of the accuracy (measured using MAE) of the best LSTM

with the 1DTCNN. .. 162

Figure 6-15: Comparison of accuracy and macro-F1 scores for features used with the

1DTCNN network and with the best performing LSTM. ... 163

xiii

List of Tables

Table 2-1: Anthropometric landmarks and regions of the head. 44

Table 2-2: Summary of gaps in knowledge. ... 46

Table 2-3: Summary of Contributions cross referenced to gaps in knowledge (see Table

2-2). ... 47

Table 3-1: Computer hardware specification. ... 52

Table 3-2: Segmented contour profile... 58

Table 4-1: Proposed features used to evaluate accuracy of a recurrent LSTM Network.

 ... 75

Table 4-2: Evaluation of LSTM Network with Raw ECG signal as input feature. 77

Table 4-3 Evaluation of LSTM Network with Bandpass Filtered ECG as input feature.

 ... 77

Table 4-4: Evaluation of LSTM Network with Normalized Curvature as input feature

(𝜎=1). .. 78

Table 4-5: Evaluation of LSTM Network with Normalized Curvature as input feature

(𝜎=2). .. 78

Table 4-6: Evaluation of LSTM Network with DoG First Derivative as input feature

(𝜎=2). .. 79

Table 4-7: Evaluation of LSTM Network with Central Difference First Derivative as

input feature. ... 80

Table 4-8: Evaluation of LSTM Network with Filtered Central Difference Derivative as

input... 80

Table 4-9: Evaluation of LSTM Network with LoG Second Derivative as input feature

(𝜎=2). .. 81

Table 4-10: Evaluation of LSTM Network with First and Second Derivative as input

feature (𝜎=2). .. 81

Table 4-11: Evaluation of LSTM Network with First and Second Derivative, and

curvature as input feature (𝜎=2). .. 82

Table 4-12: Evaluation of LSTM Network with 40 dimensional FSST vector as input

feature. ... 82

Table 4-13: Summary table of accuracy and macro-F1 scores. 83

Table 4-14: Algorithm execution times to process dataset of size N. 85

Table 4-15: Measure of each feature pre-processing’s QL2 plotted in Figure 4-9. 87

Table 4-16: Ranking Algorithms as a function of the relevance factor, r = 0.5.............. 88

xiv

Table 4-17: Ranking Algorithms as a function of the relevance factor, r = 0................. 88

Table 4-18: Ranking Algorithms as a function of the relevance factor, r=1................... 88

Table 5-1: Landmarking software requirements. .. 99

Table 5-2: Concavity or convexity of face profile landmarks. 106

Table 5-3: Definition of regions for profile segmentation. ... 114

Table 5-4: Adjusted segmented contour profile. Compare with Table 5-3 above. 118

Table 5-5: Proposed features used to evaluate accuracy of a recurrent LSTM Network in

segmenting face profiles. .. 119

Table 5-6: Evaluation of LSTM network with raw profile contour curve as input feature.

 ... 121

Table 5-7: Evaluation of LSTM network using normalized curvature with σ=3 as input

feature. ... 122

Table 5-8: Evaluation of LSTM network with Normalized Curvature as input feature

(𝜎=2). .. 123

Table 5-9: Evaluation of LSTM network with Normalized Curvature as input feature

(𝜎=1). .. 123

Table 5-10: Evaluation of LSTM network with DoG First Derivative as input feature

(𝜎=3). .. 124

Table 5-11: Evaluation of LSTM network with LoG Second Derivative as input feature

(𝜎=2). .. 125

Table 5-12: Evaluation of LSTM network with First and Second Derivative as input

feature (𝜎=2). .. 126

Table 5-13: Evaluation of LSTM network with First and Second Derivative, and

curvature as input feature (𝜎=3). ... 126

Table 5-14: Overall Accuracy and macro-F1 score for Curvature with DoG and

curvature with LoG. .. 127

Table 5-15: Summary of Accuracy and macro-F1 scores. .. 128

Table 5-16: Adjusted LSTM RNN architecture. ... 130

Table 5-17: Proposed features used to evaluate accuracy of a modified recurrent LSTM

network in segmenting face profiles. .. 131

Table 5-18: Evaluation of LSTM network with raw profile contour curve as input

feature. ... 132

Table 5-19: Evaluation of LSTM network using normalized curvature with σ=1 as input

feature. ... 132

xv

Table 5-20: Evaluation of LSTM network with DoG First Derivative as input feature

(𝜎=2). .. 133

Table 5-21: Evaluation of LSTM network with LoG Second Derivative as input feature

(𝜎=2). .. 134

Table 5-22: Evaluation of LSTM network with First and Second Derivative as input

feature (𝜎=2). .. 134

Table 5-23: Evaluation of LSTM network with First and Second Derivative, and

curvature as input feature (𝜎=3). ... 135

Table 5-24: Summary of overall accuracy and macro-F1score. 135

Table 5-25: Summary of Errors and precision for best segmentation model

(measurements in pixels)... 139

Table 5-26: Inference times for the original and modified LSTM network. All times are

in milliseconds. ... 143

Table 6-1: Evaluation of 1DTCNN with raw profile contour curve as input feature. .. 150

Table 6-2: Evaluation of 1DTCNN with First (DoG) and Second (LoG) Derivative, and

curvature as input feature (𝜎=3). ... 151

Table 6-3 Evaluation of 1DTCNN with normalized curvature as input feature (𝜎=1). 151

Table 6-4: Summary of accuracy and macro-F1 scores. ... 152

Table 6-5: Summary of Errors and precision for 1DTCNN, Raw contour input feature

(measurements in pixels)... 154

Table 6-6: Summary of Errors and precision for 1DTCNN, curvature feature (σ=1),

(measurements in pixels)... 156

Table 6-7: Summary of Errors and precision for 1DTCNN (measurements in pixels). 158

xvi

List of Abbreviations

1DTCNN One-dimensional temporal convolutional neural network

2D Two dimensional

3D Three dimensional

2.5D Two dimensional with depth information

AAM Active appearance models

AFLW Annotated Facial Landmarks in-the-Wild

AFW Annotated Faces in-the-Wild

ANSUR 2012 Anthropometric Survey of Army Personnel of 2012

ASM Active Shape Models

BPTT Back propagation through time

CA Classical manual anthropometric assessments

CAESAR Civilian American And European Surface Anthropometry Resource

CGI Computer generated imagery

CLM Constrained local models

CNN Convolutional neural network

CVA Cranio-vertebral angle

DFT Discrete Fourier transform

DNN Deeply layered neural networks

DoG Derivative of the Gaussian

DPM Deformable parts models

DTW Dynamic time warping

ECG Electrocardiogram

exc Exocanthion

FHP Forward head posture

FN False negatives

FFNN Feed forward neural network

FP Contains false positives

FSST Fourier Synchrosqueezed Transform

FWHM Full width at half maximum

gn Gnathion

GPU Graphics programming unit

xvii

Abbreviations (continued)

HOG Histogram of Gradients

LFPW Labelled Face Parts in the wild

LFW Labelled Faces in the wild

li Labiale inferius

LoG Laplacian of the Gaussian

LSTM Long short-term memory

ls Labiale superius

ME The mean error

MAE Mean absolute error

ML Machine learning

MSE Mean squared error

n/a Not defined

prn Pronasale

RGB Reg, Green, Blue image channels

RGB-D Reg, Green, Blue and Depth image channels

RNN Recurrent neural network

RoI Regions of interest

se Sellion

sl Sublabiale

sn Subnasale

sto Stomion

TN True negatives

ToF Time of Flight

TP True positives

1

1 Introduction

Accurately locating and identifying the features of an individual’s face is an intuitive

ability in humans requiring little thought or effort; so too is classifying gender, age,

emotion, pose and other more abstract attributes. It is not, however, a trivial task. These

human abilities are the product of millions of years of evolution and, while current

machine vision state of the art tools and hardware can match human performance in a

narrow range of predefined image recognition activities, in general they cannot compare.

Given the ease with which a human can detect and recognize objects, it is not surprising

that the computer vision community turned to the biological sciences for inspiration in

developing artificial vision systems capable of competing with or replicating human

vision capability. Early computer vision research was guided by existing investigations

into the structure of animal neurological systems. This research was informed by the

discovery of regions of the brain that appeared to specialize in identifying low level visual

primitives (Hubel and Wiesel, 1959). Hierarchies of further structures had also been

located in the primate brain (Kruger et al., 2013) that process these visual primitives in

order to identify more complex objects and this layered approach to feature detection and

segmentation was then co-opted into computer vision research (Fukushima, 1980). More

recently, the design of deeply layered convolutional neural networks (CNNs) used in deep

learning is also underpinned by this insight (LeCun et al., 1998; Zhang, Zhao and LeCun,

2015).

Whether the activity of locating and identifying features is done by a machine or an

animal, the early processing of the image to identify suitable primitives underpins any

vision system. Once these features are available, they can then be used by other

algorithms to solve problems in classification or regression.

Traditional image processing and computer vision methods attempted to solve the feature

recognition problem using the ingenuity and skill of the researcher to create custom made

algorithms with some notable early successes in detecting low level features such as

corners, edges and contours, and in segmentation and region/object labelling (Abdou and

Pratt, 1979; Otsu, 1979; Canny, 1986). Latterly, these have been combined with

2

optimization methods to identify higher level features, solve alignment problems, model

form and so on (Hough, 1962; Lowe, 2004; Bay, Tuytelaars and Gool, 2006; Rosten and

Drummond, 2006). The more recent successes of deep learning approaches have

surpassed this earlier work in some areas (Krizhevsky, Sutskever and Hinton, 2012), but

the effort expended in for example, face detection and recognition is immense, relying on

the availability of vast image datasets scraped from the internet and then, in many

instances, laboriously hand labelled. Compiling and labelling huge datasets of images is

not a trivial task, and the computing time required to train a face detection system using

such datasets is also significant, but often worthwhile.

With these thoughts in mind, the focus of this work involves using computer vision and

machine learning (ML) ideas together with the mathematical concepts of curvature and

curve derivatives to identify salient craniofacial landmarks of profile head images in order

to accurately measure head posture at speeds fast enough for use in real-time systems. An

important requirement of this process is the development of a suitably labelled head

profile dataset that can be used to train suitable classifiers and regressors.

1.1 Why Measure Head Posture?

For this study we refer to head posture in the context of physiological measurement of

the head using anthropometric methods. In particular, anthropometric landmarks are

identified that could help accurately define the posture, as are specific regions of the face,

such as the philtrum, the region between the top of the upper lip (the labiale superius) up

to the bottom of the nose (the subnasale). These landmarks and regions that are

identifiable from a profile image, together with other landmarks such as the tragus of the

ear, can quantify position, that is, define the head’s posture. This can be extended to

measure forward head posture (FHP), should additional body landmarks be available. For

example, landmarks on the upper shoulders and neck.

There are also clear advantages to accurate, real-time, automatic head posture

measurement across a range of disciplines. For example, in a clinical setting, a system

capable of fast acquisition of facial landmarks can speed up the process of posture

measurement and provide near instantaneous feedback to the clinician and patient alike.

Moreover, such a tool can make use of established 2D and 3D photogrammetric

3

technologies which claim to afford highly repeatable and precise measurements on a par

with direct anthropometry (Aldridge et al., 2005; Ozsoy et al., 2009; Dindaroğlu et al.,

2015).

It has been found that qualitative assessment of head posture by observation can suffer

from poor intra-observer and inter-observer reliability and validity (Silva, Punt and

Johnson, 2010). Here, the application of a real-time head posture measurement system

based on 2D and 3D photogrammetry concepts and emerging deep learning methods

could improve the validity and accuracy of qualitative posture assessments.

A real-time posture measurement system could also facilitate posture modification and

control in a range of settings. FHP in adults is correlated with neck pain and a limited

cervical range of motion (Fawzy Mahmoud et al., 2019) and this has become more

common as mobile devices and desktop computers have risen in popularity. Here,

immediate feedback from a real-time system could support a suitable physiotherapy

regime and in general, real-time posture measurement has potential in all aspects of head

and craniofacial anthropometry where accurate location of facial landmarks is crucial.

Additionally, localized craniofacial landmarks may be used directly within a medical

setting, prior to calculating posture, for example in sleep apnoea screening (Deberry-

Borowiecki, Kukwa and Blanks, 1988; Lam et al., 2005; Eastwood et al., 2020) or in

orthodontic examination, harmony assessment and treatment planning (Lippold et al.,

2014).

Realtime measurement of head and shoulder posture may also prove useful outside a

clinical setting, for example, to support voice control in singing, aspects of dance posture

and so on.

The success of the approach relies not only on the development of fast and accurate

algorithms that can solve the landmarking problem in this context, but also upon camera

technology capable of capturing real-time image data that contains enough useful

information and is low in cost.

4

1.2 Cameras: 2D or not 2D, that is the question

Before a face profile can be landmarked it must first be found within an image. There are

several existing computer vision approaches that could be used to detect faces from a 2D

image. Popular methods are based upon the Viola-Jones algorithm (Viola and Jones,

2001), histogram of gradients (HOG) (Dalal and Triggs, 2005), active appearance models

(AAM) and more recently deeply layered neural networks (DNN), and in particular

deeply layered convolutional neural networks, for example RetinaFace (Deng et al.,

2019), though most of these methods perform best with frontal or near frontal face poses.

Once detected, landmarking prior to pose estimation can begin. Again, recent work on

landmarking and shape estimation has focused on AAMs and DNNs, with DNNs

currently achieving best performance across several competitions and challenges

(Russakovsky et al., 2015; Wang et al., 2015; Deng et al., 2019).

What has this got to do with camera choices? It is apparent that the majority of effort

recently has been applied to 2D image land-marking and whilst the results are impressive

there is significant processing involved in identifying landmarks. So, could depth

information improve the efficiency of landmarking? Depth information can be binarized

and used to infer contours of the profile face in controlled environments such as those

discussed earlier in this introduction. This information can be used to generate a 2D

contour from which curvature can be calculated and, following on from this, salient

landmarks identified. Key areas of this thesis will focus upon the use of profile contours

extracted in this way and use features related to curvature to identify head landmarks and

face regions that in turn can be used to describe head posture.

A 3D camera provides RGB values and an additional depth image, often such an image

is referred to as an RGB-D or RGBD image. Several technologies exist that achieve this

in different ways. Light sectioning or sheet of light triangulation methods emit a

horizontal stripe of light and the reflected light from the object is converted by

triangulation into depth information (Minolta, 2001). Stereophotogrammetry where

multiple cameras, carefully aligned with matched optical parameters, are available but

here the correspondence problem needs to be solved, that is, common points on each

image need to be aligned and this takes valuable processing time. They also have the

disadvantage of being relatively expensive and less compact than emerging alternatives

such as structured light and Time of flight (ToF) cameras.

5

Structured light (active stereo) cameras illuminate the scene with a specific infrared light

pattern and an image of the scene is then captured. Depth is calculated by processing this

image. A second RGB camera also captures colour information. An alternative is ToF

depth cameras. Here a light pulse is sent out and reflects off objects in the scene. These

reflections are received at the camera’s infra-red image depth sensor and the depth is

inferred from the time it takes for the reflected ray to make the round trip. A second RGB

camera is also used here to capture colour information, though the pixel densities of the

cameras are typically different.

Recent advances in camera technologies have resulted in widely available, compact and

low cost devices, such as Intel’s RealSense Depth Camera (Intel, 2018) or, more recently,

the Microsoft Azure Kinect that allow high definition colour images with depth

information to be captured in real time at up to 30 frames per second (Microsoft, 2019).

Additionally, laser and infrared light used for depth measurement is largely unaffected by

local changes in the lighting of the scene which results in a more robust depth capturing

process. Depth information captured by these devices are generally independent of the

background scene and so segmentation of the regions of interest is not a problem. This

is a significant advantage when fast processing of the scene information is paramount.

ToF cameras are also beginning to be integrated into mobile devices which suggests that

this technology will become significantly cheaper and widespread.

1.3 Anthropometry

Accurate and reliable identification of anthropometric landmarks is the foundation of

anthropometry. Manual anthropometric measurement made by expert technicians has

traditionally been regarded as the gold standard. However, digital anthropometry that uses

photogrammetric methods based on 2D camera images and, more recently on 2.5/3D

cameras and scanners, has become popular with many studies in the literature comparing

the efficacy of both manual and digital approaches and, whilst each has distinct

advantages and disadvantages (see section 1.2 above), both are regarded as being capable

of generating valid data and outcomes.

6

By studying craniofacial anthropometry and related photogrammetric methods we can

identify candidate landmarks suitable for measuring head posture and use the results of

this investigation to inform the design of our algorithms and related models.

Additionally, as is reviewed in section 2.9, there is an abundance of anthropometric data

and statistics available from several sources that can also be used to define constraints

when searching for landmark parameters.

1.4 Landmarking and posture estimation from RGB-D images

There is already a mature research field in face landmarking for 2D images in controlled

and un-controlled (“in the wild”) (Wang et al., 2015; Johnston and de Chazal, 2018; Deng

et al., 2019) with many datasets of annotated images available and open competitions

encouraging research, for example the Menpo 300W faces in the wild challenge (Sagonas

et al., 2016). There is, however, no agreed single standard for facial landmark annotation

and additionally some profile datasets use their own labelling standards with many points

not corresponding to established anthropometric landmarks (Sagonas et al., 2016).

There also appear to be few 3D datasets or 2D datasets with depth information, although

a limited number of controlled environment, 3D head profile datasets have been generated

(Yan and Bowyer, 2007).

As outlined earlier in this introduction, RGB-D profile images lend themselves to fast

contour extraction. Couple this with the observation that many anthropometric landmarks

have, necessarily, points of high curvature, then extraction of curvature from the profile

contour and the analysis of this to locate landmarks would seem sensible. Indeed

curvature has previously been used in analyzing 2D shape (Belongie, Malik and Puzicha,

2001), face recognition (Kakadiaris et al., 2008) and in face gesture recognition (Pantic

et al., 2005).

Suitably landmarked training data can be used in training several ML regression

algorithms including CNNs. The accuracy of these will depend not just upon the size of

the dataset and the sophistication of the model but also upon the accuracy of the

landmarking, and manual human landmarking will always be a source of measurement

7

error. This thesis notes that it may be possible to correct mislabelled landmarks by taking

advantage of the underlying curvature properties of a profile. Such an approach is

conjectured and investigated in chapter 5. Here, a novel, semi-automatic method is

proposed that will allow the approximate placing of landmarks by a skilled operator

followed by an automatic correction phase based on local curvature analysis. This

annotated dataset may then be used to train selected algorithms as in (Wang et al., 2015).

A curvature dataset parameterized on arc length opens up additional opportunities for

time-series analysis. The literature here is mature and practitioners have already

investigated the efficacy of time-series analysis methods in silhouette identification

(Fawaz et al., 2019).

1.5 Additional requirements

An attractive feature of a system capable of locating landmarks and using these to

measure posture is the ability to explicitly follow the process by which a set of pixel

values and depth measurements translate into a measured posture, that is, to answer the

question “how does it do that?” This is a useful trait as it gives confidence in the reliability

of a measurement and of future measurements. A neural network might be able to regress

a landmark within an image but it is not yet possible to fully identify what, where or how

distinct processes take place within the network and, given the non- linear nature of neural

networks, whether points nearby in the input space will map to points nearby in the output

space.

The trained network alone might be deterministic but, in isolation, it is not possible to

know what it has been trained with. Whilst many would sacrifice deterministic confidence

for accurate results most of the time, all other things being equal, it is nice to know how

it does what it does, if only because one can replicate its action and thereby gain

confidence in its reliability or otherwise.

8

1.6 Research Question

This introduction identifies the focus for this work and outlines approaches that will be

of use in achieving the goal of creating methods for the fast and accurate measurement of

head posture and the challenges involved.

Using depth information from a 2.5D camera it is possible to efficiently extract precise

2D geometric information of the shape of the head and shoulders in profile and so, given

this assumption, the research question becomes:

“When used as features for deep DNNs, to what extent can curvature and its properties

such as the first and second derivatives of a curve be useful in segmenting and regressing

points on the occluding head profile?”

From this question aims, objectives and hypotheses can be identified.

1.7 Aims, Objectives and Hypotheses

1.7.1 Aims

The aim of this research is to:

 Explore extensively the suitability of curvature and its properties as features for

fast regression and segmentation of parameterized plane curves, and in so doing,

examine the effectiveness of these features in training deep neural networks to

estimate head profile posture derived from 2.5D images.

1.7.2 Objectives

From this aim the following objectives can be enumerated:

1. To engineer and evaluate features derived from plane curves to train supervised

machine learning models capable of efficiently segmenting regions of interest.

2. To develop a dataset of accurately landmarked head profile contours.

9

3. To develop and evaluate fast ML models capable of estimating head profile by

segmenting profile contours into regions of interest and regressing key head

profile landmarks.

4. Demonstrate that engineered features, in the context of this thesis, compare well

with end-to-end ML approaches.

1.7.3 Hypotheses

From the research question and aim it is hypothesized that curvature and the related first

and second derivatives of a curve can be efficiently calculated from a given plane curve

and these features will enable the fast and accurate segmentation of a curve when used in

conjunction with suitable ML models. A second hypothesis is that the same ML models

can also be used to efficiently regress points on a plane curve with high accuracy and

precision. A final hypothesis is that, in the context of this, these engineered features can

produce results superior to an end-to-end ML approach.

1.8 Ethical Approval and Risks

Ethical approval was sought for the research and experimental work underpinning this

thesis and, as such, was considered and approved by the University’s ethics committee.

A summary of the approved Ethics proposal is included in Appendix E.

1.9 Contributions to the literature

The following contributions are identified and enumerated below:

i) This study provides an evaluation of the effectiveness of curvature and related

features used to efficiently identify regions of interest in a uniformly sampled

sequential dataset. This includes the generation of new algorithms, software and

tools to evaluate the accuracy of a recurrent neural network (RNN) that uses the

features engineered here. Additionally, an investigation of the run-time efficiency

of the engineered features is provided.

10

ii) An existing RGB-D dataset is extended, by extracting head profile contours so

creating a new database of face profile contour curves. Additionally, a new set of

manual annotations are generated identifying key anthropometric landmarks on

both the RGB images and profile contour curves.

iii) A novel approach is developed in this context to automatically improve the

accuracy of the annotations based upon the curvature properties of selected

anthropometric landmarks.

iv) The findings of i) above are extended to work with the head profile contour dataset

created in this study resulting in a new procedure that can accurately achieve fast

face segmentation of head profile images. An evaluation of this procedure

documents both the accuracy of the approach and its run-time efficiency when

used with two RNNs.

v) The procedure used in iv) is further extended to develop a method to regress

landmarks from the segmented profile contour and the accuracy and precision of

this method is evaluated and documented.

vi) Finally, the effectiveness of an end-to-end learning approach is investigated using

a one-dimensional temporal convolutional neural network (1DTCNN) to achieve

the same goals of iv) and v) and the findings of this investigation presented with

recommendations.

1.10 Layout of Thesis

Chapter 2 reviews previous work related to head posture estimation from perspectives of

anthropometry and machine vision fields. Here, methods of extracting profile contours

from 2D and 2.5D image data are reviewed and the theory behind curvature of a sampled

plane curve is covered including methods used to efficiently calculate curvature and

signal derivatives. Related work that uses curvature as a feature for classification and

regression is identified and its relevance to this study assessed. Existing datasets used in

both anthropometry and machine vision are also identified and the selection of suitable

landmarks discussed. This chapter also includes essential theory related to ML and deep

11

neural network ideas used in this work and references more detailed discussions in the

relevant appendices.

Chapter 3 provides a review of the research methodology and common methods used in

the thesis and provides details and justifications for their use.

Chapter 4 applies the ideas of curvature and other related features to segmenting a

uniformly sampled time series dataset. A RNN is used in conjunction with a range of

engineered features and their run-time efficiency and segmentation efficiency are

evaluated using established metrics and conclusions made.

Chapter 5 introduces the Notre Dame J2 dataset and details the methods used to extract

profile contour information from the dataset. It includes a description of the manual

annotation process and tools developed to generate a new dataset. Here, suitable

anthropometric landmarks are selected for annotating the 2D RGB images and methods

for extracting curvature and enhancing landmark accuracy are explained and

implemented. These methods are evaluated, and their usefulness and limitations

discussed. In the second part of the chapter, two RNNs are trained using a variety of

features and the effectiveness of the segmentation process is evaluated, as previously for

both networks, before settling on a best choice for features, network architecture and

training hyper-parameters. Finally, the segmented profile contour is subjected to a further

process to regress landmark positions and the accuracy and precision of the estimated

landmarks is determined and evaluated using a held-out dataset.

In Chapter 6 a more complex 1DTCNN is used with a subset of features developed in

previous chapters. Its accuracy, precision and execution speed are evaluated and

compared with the approaches used in chapter 5. This chapter also examines the

effectiveness of the end-to-end ML approach when compared with a more traditional

methodology that emphasizes feature engineering.

Finally, in Chapters 7 and 8 we summarize our findings, make recommendations and

present possible future work.

12

2 Literature Review

2.1 Introduction

This chapter begins by reviewing the notion of contours and contour curvature followed

by an examination of how curvature can be calculated from 2D binary images.

Limitations of 2D image capture devices are identified and the necessary image

processing operations required prior to curvature calculation are then discussed. An

overview of facial landmarking from two perspectives, anthropological and machine

vision is provided. Useful datasets generated in both fields that are relevant to this thesis

are identified. Classical optimising-based model fitting methods related to time series

datasets and shape estimation are reviewed and then the chapter shifts attention to deep

learning methods. The aim here is to recognize, review and contextualise selected

methods pertinent to this thesis.

2.2 2D Face Landmarking and Feature Detection

2.2.1 Face Landmarking Databases

2D facial landmarking is a relatively mature field with many approaches developed to

identify facial landmarks from two dimensional images. Facial landmarking algorithms

take an un-labelled image as input and attempt to generate a list of landmarks specific to

the algorithm’s landmarking scheme. Typically landmarking methodologies rely on the

existence of benchmark datasets with high quality annotated sets of landmarks, for

example (Belhumeur et al., 2011; Le et al., 2012; Köstinger et al., 2011; Sagonas et al.,

2013, 2016; Zhu and Ramanan, 2012) and more recently Deng, et al. (2019).

Many large scale face image databases exist that have limited or no landmarking, for

example the Labelled Faces in the Wild database (LFW) (Huang et al., 2008) and RGC-

V2 (Phillips et al., 2005). More recently the overwhelming success of recent deep

learning methods has driven the development of large face and object databases. This

began with the success of AlexNet in the 2012 ImageNet (Russakovsky et al., 2015)

object detection competition which saw the beginning of the current deep learning

approach to face and object detection using CNNs together with multiple layers of feature

13

extraction and transformation. The success of AlexNet propelled a growth in face

recognition DNN architectures such as Facebooks’s DeepFace, DeepID, Google’s

FaceNet and VGGNet for example, which have been best performers in face recognition

challenges. All these deep face recognition networks require large databases of images

for training and testing. Most commercial face databases are private but the recent public

release of the CASIA-Webface database (Wang et al., 2007; Yi et al., 2014) allowed

researchers to train, evaluate and compare models. These databases usually have limited

annotations, typically a bounding box to identify a face or, in the case of celebrity

databases, a person ID too. So, researchers in face landmarking do have choices: use

existing face landmarking databases, develop new databases of landmarked annotated

images or annotate existing public databases with landmarks. The databases used in deep

face recognition that have been identified here are covered in more detail by Wang and

Deng (2021) which also provides a good survey of face recognition.

Putting aside databases that have not been annotated with face landmarks the following

paragraphs concentrate on existing face landmarking databases and their landmarking

schemes.

 Sagonas et al. (2016) provides a clear overview of popular face landmarking databases

categorised by the conditions under which the images were captured, namely controlled

conditions databases and un-controlled conditions databases. The controlled conditioned

databases are captured in indoor environments, often with controlled lighting conditions,

background and camera position. Typically, there are several images per subject where

the subject is asked to assume a range of facial expressions and there is no face occlusion,

though where near side facing images exist there is, naturally, some degree of self-

occlusion. Whilst Köstinger et al. (2011) focused on faces-in-the-wild for their AFLW

database they also identify constrained databases as well as unconstrained databases in

their review of existing databases.

Constrained condition databases identified by Sagonas and Köstinger include: Multi-Pie

(Gross et al., 2010), XM2VTS (Messer et al., 1999), FRGC-V2 (Phillips et al., 2005),

AR (Martinez and Benavente, 1998) and The BioID Face Database (Jesorsky, Kirchberg

and Frischholz, 2001). The unconstrained databases (often referred to as “in the wild”)

are typically images scraped from the web and manually annotated by local experts.

14

Popular in-the-wild databases include Annotated Facial Landmarks in-the-Wild (AFLW)

(Köstinger et al., 2011), Annotated Faces in-the-Wild (AFW) (Zhu and Ramanan, 2012),

HELEN (Le et al., 2012), IBUG (Sagonas et al., 2013, 2016), Labelled Face Parts in-

the-wild (LFPW) (Belhumeur et al., 2011) and most recently the Mempo 2D and 3D

Facial Landmark Databases (Zafeiriou et al., 2017; Deng et al., 2019).

The majority of these databases concentrate on annotating frontal or near frontal face

images, though some such as Multi-Pie and the Mempo 2D annotated databases also

include profile annotations using their own landmark configuration scheme. Occlusion is

common in these databases.

2.2.2 Landmark Annotation Schemes

The list of face landmarks used when annotating a face is called the annotation scheme.

There is no standard annotation scheme but the labels used by popular or successful

algorithms appear to be re-used most frequently by subsequent researchers. The

landmarks used include those derived from established anthropometrical practice as well

as more ad-hoc choices.

Phimoltares, Lursinsap and Chamnongthai (2007), Çeliktutan, Ulukaya and Sankur

(2013) and Wu and Ji (2019) also identify a range of commonly used landmarks, suggest

suitable groupings and provide criteria for their selection, this is helpful to this study

when identifying potential datasets and landmarking schemes for profile based

landmarking datasets.

The fundamental characteristic of a good face landmark is its ability to be uniquely

identified. This is true whether the chosen landmark is identified by an anthropometric

practitioner or by an automatic landmark detecting algorithm. Such landmarks are called

primary landmarks in the literature and will have clear features that aid their detection

such as points of extremity, gradient information related to areas of high curvature,

corners and edges, and texture or other local information. Where primary landmarks are

unaffected by changes of expression or orientation they can be used as reliable landmarks

or datums for guiding landmark search. Such primary landmarks are often referred to as

fiducial landmarks in the literature. Other less obvious landmarks can still be identified

but they rely upon their spatial relationship with nearby primary and fiducial landmarks.

15

These landmarks are often called secondary landmarks. There is some evidence that

extending the number of landmarks used can improve accuracy for some methods, for

example Milborrow and Nicolls (2008) note improved accuracy of their extended Active

Shape Model when additional landmarks were added.

The number of selected landmarks differs significantly across databases, Multi-PIE,

XM2VTS and the IBUG (200-W, faces in the wild) use 68 landmarks based on the Muli-

PIE scheme; AR annotates 22 landmarks (Ding and Martinez, 2010); AFW uses only 6

(but these are multi-view and used for testing, with training of their method done on

Multi-PIE); FRGC-V2 just 5; AFLW has 21; LFPW has 35 and HELEN uses 194.

 Sagonas et al. (2016) illustrates the position of these landmarks as illustrated in Figure

2-1.

Figure 2-1 Popular landmarking schemes (Sagonas et al., 2016).

16

Çeliktutan, Ulukaya and Sankur (2013) note 17 primary landmarks, known as the m17

landmarks in some literature. They correspond to the landmarks of the AR database after

removal of the face’s five outline landmarks.

A goal of this study is to accurately quantify profiles using suitable landmarks. The

landmarks catalogued in Figure 2-1 identify potential profile landmarks, especially those

landmarks intersecting the mid-sagittal plane, that is the vertical midline of the faces

above. Ideally these will also be primary landmarks – that is landmarks that, in profile

have high curvature and/or are points of extremity. Looking at the landmarking schemes

shown in Figure 2-1, there are many landmarks along this vertical midline that may be

suitable, and in particular the schemes used by MultiPIE/IBUG, XM2VTS, LFPW and

HELEN appear to be good candidates. These databases could also be useful in evaluating

the accuracy of the methods used later in this thesis to regress profile landmarks. It’s

clear that databases that include profile images might be suitable in assessing the

performance of methods used in this thesis, assuming of course, the annotation of the

databases is both accurate and consistent.

2.2.3 Face Landmarking methods and algorithms

Reviews of face landmarking approaches within the computer vision community have

identified various categorizations to better present, classify, understand, and compare

methods and techniques used. Phimoltares suggest five categories: geometry-based

methods, colour-based approaches, appearance-based methods, motion-based methods

and edge-based methods whilst Çeliktutan suggest two basic categories – model-based

methods (or shape-based methods) and texture-based methods. Here model-based

methods use the whole face image together with facial landmark groupings to help guide

the algorithms in regressing landmarks. Typically, such algorithms use a pre-labelled

training set of images. In comparison texture-based methods locate facial landmarks

independently without the use of global information encoded in an idealised model and

as Çeliktutan points out there can be overlap between these categories.

The model based methods would include, for example, those of Cootes, Edwards and

Taylor (1998, 2001) and encompass Active Appearance Models (AAM) and Active

Shape Models (ASM) (Cootes et al., 1995) which, together with their variants (Milborrow

and Nicolls, 2008; Tresadern et al., 2009), have been used with great success since their

17

introduction in the mid 90’s. AAM and ASM both use statistical information generated

from the image to modify or morph an ideal model, fitting it to the image by optimizing

the model parameters using optimization methods, for example gradient descent. The

model based methods would also include neural network models where the model

information is implicitly encoded in the network weightings.

The successes demonstrated by recent developments in neural networks have eclipsed

AAM methods. For example, Johnston and de Chazal, (2018) note the first two 300W

faces in the wild landmarking competition (Sagonas et al., 2016) received few deep neural

network submissions whilst the 2017 Menpo Facial Landmark Localisation Challenge

(Zafeiriou et al., 2017) comprised wholly of submissions based on deep learning methods

and the organizers note that deep learning methods can lead to excellent results when

trained with large datasets (Deng et al., 2019).

A third categorization by Wu and Ji (2019) has three categories: holistic (generative)

methods, constrained local models (CLM) and regression-based methods. The holistic

methods model the appearance of the whole face in the image and include information

about the shape of the face as defined by the face landmarks and their inter-relationships

and includes AAMs identified above. CLM methods use local patch information and face

shape information, and regression-based methods use either or both local patches and/or

the whole face image.

Jin and Tan (2016) identify two classifications: holistic (generative) methods as described

above and also discriminative methods which include CLMs, deformable parts models

(DPM), cascaded regression and deep neural networks.

However one decides to group and classify these approaches, there are limitations to the

methods used particularly in real-time scenarios where processor resources are limited.

Álvarez Casado and Bordallo López (2021) note such limitations become problematic

when dealing with occlusions, extreme poses, and so on.

As the review above indicates, a single, agreed classification standard does not exist.

However, these attempts at creating taxonomies of facial landmarking methods can be

useful here for several reasons, even though this study concentrates instead on contour

18

curves of the mid sagittal plane. They help to identify algorithms and methods based on

similar approaches and specify characteristics and properties of the image data used by a

method or algorithm. This, in turn, helps guide this study in promising directions,

searching out methods or algorithms suitable for accurate landmarking given the available

data.

The taxonomies described above concentrate on two dimensional methods to locate

landmarks and regions of interest. In contrast, the data used in this thesis is a contour

curve extracted from an image using depth information. As the taxonomies of facial

landmark algorithms and methods discussed above assume two-dimensional, multi-

channel, image data (three channels for colour or one for greyscale), then not all the

methods identified and evaluated in the reviews are relevant, though some ideas remain

pertinent to sequential data such as the need to select regions of interest (RoI) and to apply

image smoothing operations prior to applying any landmarking algorithm. Additionally,

the principles of adjusting and fitting features to a standard size (Procrustes methods) are

relevant when dealing with sequential data in the form of contour curves, for example, as

well as two dimensional images.

The excellent results obtained in the last few years using 2D images makes the use of

deep neural networks both attractive and relevant to regressing facial landmarks using

both two dimensional image information as well one dimensional data. Given the

enormous success in 2D landmarking and the focus here on profile contours, section 2.8

further investigates suitable emerging neural network varieties that have been

successfully used with sequential data sets.

The next section looks at profile contours and, interpreting this as a data sequence,

reviews algorithms that have capability in feature generation for regression and region

classification.

2.3 Profile landmarking and curve segmentation

A profile contour and its curvature, once extracted from a binary image, can be used as

an input to an algorithm to regress selected facial profile landmarks. Promising methods

used to locate landmarks might include classical optimization problems that locate local

19

maxima and minima within a curve. These can be used with additional information

describing the relative ordering of local landmarks to regress co-ordinates on the binary

image. Distance based similarity measures such as Euclidian and Mahalanobis distance

are regularly used to estimate the similarity of the shape of a candidate curve with that of

an architype, either locally on a sub-sequence of the contour, or globally. Such measures

can be used here to quantify errors, similarity, and so on.

Interpreting the profile contour curve and its curvature as an abstract sequence of sampled

data allows other well studied methods to be investigated. For example, there are several

approaches to curve fitting found in the time series analysis literature that have already

been used to solve similar problems. Cross-correlation is a simple approach that can work

well on similar data sets and is an attractive idea, however it does not perform well when

the series to be matched are at different scales and have been stretched or compressed in

a non-linear fashion at a local scale. Since this non-linearity is evident in the phenotypic

diversity of faces then more sophisticated methods are required here.

Dynamic time warping (DTW) (Sakoe, 1978) attempts to solve this problem. It uses a

mapping of two vectors found by minimizing the distance between them using dynamic

programming methods and has often been used successfully in time series analysis, for

example in speech processing, handwriting and gesture recognition, time series

clustering, protein sequencing and, as will be seen soon, in both electrocardiogram

analysis and profile recognition.

Hidden Markov models (HMM) and other Bayesian methods are also used in time series

analysis in similar areas to DTW. They have been a mainstay of classical speech analysis

since the 1950s where they attempt to deal with scaling, stretching and compression of

data samples by using the trained model’s state transition probabilities to guide the

evolution of state space.

More recently RNNs have successfully been applied to sequential data and have been

responsible for the impressive advances seen in speech recognition. These methods

currently eclipse in performance HMMs and related Bayesian methods (Graves et al.,

2006; Graves, Mohamed and Hinton, 2013).

20

2.4 Object Contours from RGB-D data

The primary advantage of using 2.5 dimensional RGB-D image data is the relative ease

of extracting profile contours in a controlled environment. There are several proprietary

RGB-D data formats in use and typically they include colour image RGB data stored in

a suitable format, for example .png or .bmp file types together with depth information

stored separately in a binary or text based format. The depth information may or may not

be sampled at the same resolution as the colour image data, however each depth sample

typically includes (x, y, z) spatial co-ordinate values for each point and may also include

binary image data. The binary data consists of a set of binary true or false (1 or 0) values

corresponding to image pixel values where a logical true (1) indicates that a valid depth

sample has been captured and its related x, y and z value corresponds to width, height and

depth, respectively. A logical false (0) indicates an invalid sampled pixel where no depth

range information has been returned by the camera. Typically, this will occur when an

object is beyond the range of the camera, when incident light has been attenuated or

scattered and no reflected ray has been received by the camera, or when there has been

interference between light reflected from multiple surfaces, see Microsoft (2019) for

further details.

Binary data can also be created from valid depth pixels by removing all points which are

to one side of an arbitrary two-dimensional plane. For example, assuming a right handed

co-ordinate frame and a plane with a normal vector, 𝒏̂ = (0,0,1) and a point, p on the

plane, p=(0, 0, -1) then all points with a depth value, z, less than -1 can be selected and

all others culled.

Once a binary image has been captured then its contour can be found. Moore’s algorithm

(Moore, 1968) as described by Woods and Gonzalez (2017) reliably finds the outer

boundary of objects in a binary image where the background pixels are labelled with zeros

and the foreground with ones. It is useful to place a boundary frame of logical false (zero)

pixel values around the image to prevent errors should the object not be totally contained

within the image. The resulting contour is a data structure containing a sequential list of

(x, y) pixel locations describing the contour of the object.

21

This algorithm assumes a clockwise orientation and eight-connected pixel neighbours,

that is any object pixel has at least one adjacent pixel that is either horizontally adjacent,

vertically adjacent, or diagonally adjacent. Figure 2-2 shows an example binary image

and the resulting, overlaid contour (in red) produced by an implementation of Moore’s

algorithm in C++ created for this study.

Figure 2-2: Moore’s Boundary algorithm. Left: the binary image with Moore’s algorithm

applied. Right: A close up of spiral centre showing 8-connectivity.

The resulting contour curve can then be further processed to determine points of interest

as discussed in section 2.3. In particular, points of prominence can be located, and areas

of high curvature calculated using the ideas discussed next.

2.5 Curvature

In sections 1.4 and 2.3 it was noted that many anthropometric landmarks are placed at

points of high magnitude of curvature so this section reviews the idea of curvature and

describes how to determine the curvature at any point on a given contour. The calculated

curvature at every point can then be used as a feature to describe and identify specific

landmarks.

A plane curve is any curve that is contained in a two-dimensional plane. Here an equation

for the curvature of a plane curve is developed together with a method to calculate the

curvature at sampled points on the contour of a two-dimensional binary image. Sampled

points present their own difficulties so an approach is proposed that will reduce the

introduction of systemic noise related to the sample space.

22

The following review of curvature and the development of the curvature formula that

follows is based upon established works on differential geometry, for example (Gray,

Abbena and Salamon, 2017).

The arc length, s of a plane curve is defined as the distance between two points as one

moves along the curve and the curvature, κ is given as d∅/ds where ∅ is the tangential

angle. Figure 2-3 shows this relationship.

Figure 2-3: Curvature as the derivative of the tangential angle, ∅ wrt arc length, s

If the plane curve is given by the Cartesian parametric equations x=x(t) and y=y(t) then,

κ can be represented in terms of the parameter t as

𝑑∅

𝑑𝑡
𝑑𝑠

𝑑𝑡

.

Cauchy showed in 1826 (Gray, Abbena and Salamon, 2017; Kline, 1972) that

𝑑𝑠

𝑑𝑡
= √(

𝑑𝑥

𝑑𝑡
)

2

+ (
𝑑𝑦

𝑑𝑡
)

2

 so,

𝜅 =
𝑑∅

𝑑𝑡

√(
𝑑𝑥

𝑑𝑡
)

2
+(

𝑑𝑦

𝑑𝑡
)

2

or using the notation,

 𝑥‘ =
𝑑𝑥

𝑑𝑡
 and 𝑦‘ =

𝑑𝑦

𝑑𝑡
 then,

s1

s2

∅2

∅1

𝛥∅

𝛥𝑠
=

∅2 − ∅1

s2 − s1

 and in the limit as 𝛥𝑠 → 0

𝜅 =
 𝑑∅

𝑑𝑠

23

𝜅 =

𝑑∅
𝑑𝑡

√𝑥‘2 + 𝑦‘2

 (2-1)

Next, note that the derivative
𝑑∅

𝑑𝑡
 can be represented using the identity tan(∅) =

𝑑𝑦

𝑑𝑥
 and that

tan(∅) =

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

, then,

𝑡𝑎𝑛(∅) =
𝑦‘

𝑥‘

 (2-2)

Now let g = tan(∅) and differentiating with respect to t using the chain rule,

𝑑𝑔

𝑑𝑡
 =

𝑑𝑔

𝑑∅

𝑑∅

𝑑𝑡
 then,

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡
 =𝑠𝑒𝑐2∅

𝑑∅

𝑑𝑡
 and re-arranging this for

𝑑∅

𝑑𝑡
 gives,

𝑑∅

𝑑𝑡
=

1

𝑠𝑒𝑐2∅

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡

(2-3)

Differentiating equation (2-2) using the quotient rule gives,

𝑑(𝑡𝑎𝑛∅)

𝑑𝑡
=

𝑥‘𝑦‘‘ − 𝑦‘𝑥‘‘

𝑥‘2

(2-4)

Combining equations (2-3) and (2-4) and noting

1

𝑠𝑒𝑐2∅
=

1

1+𝑡𝑎𝑛2∅
 yields,

𝑑∅

𝑑𝑡
=

1

1+𝑡𝑎𝑛2∅

𝑥‘𝑦‘‘ − 𝑦‘ 𝑥‘‘

𝑥‘2
 ,

 =
1

1+
𝑦‘2

𝑥‘2

𝑥‘ 𝑦‘‘ − 𝑦‘ 𝑥‘‘

 𝑥‘2
 and,

24

𝑑∅

𝑑𝑡
=

𝑥‘ 𝑦 ‘‘ − 𝑦‘ 𝑥‘‘

𝑥‘2 + 𝑦‘2

(2-5)

Finally, combining equations (2-1) and (2-5) gives the curvature, 𝜅 of the curve at point

(x(t),y(t)).

𝜅 =
𝑥‘ 𝑦 ‘‘ − 𝑦‘ 𝑥‘‘

(𝑥‘2 + 𝑦‘2)
3
2

(2-6)

where 𝑥‘, ‘‘, 𝑦‘ 𝑎𝑛𝑑 𝑦‘‘ are the first and second derivatives of x and y with respect to the

parameter t.

Equivalently and more intuitively the curvature, κ is given by 𝜅 =
1

𝑟
 where r is the radius

of the osculating circle, see Figure 2-4.

Figure 2-4: Curvature, 𝜅 =
1

𝑟
 described by the osculating circle of radius, r.

To see this note that if a circle specified as 𝑥 = 𝑟 cos(𝑡) and 𝑦 = 𝑟 sin(𝑡) is tangent to

a curve at a given point then

 𝑥‘ = −𝑟 𝑠𝑖𝑛(𝑡) , 𝑥‘‘ = −𝑟 𝑐𝑜𝑠(𝑡) , 𝑦‘ = 𝑟 𝑐𝑜𝑠(𝑡) 𝑎𝑛𝑑 𝑦‘‘ = −𝑟 𝑠𝑖𝑛(𝑡),

and so from equation (2-6),

 𝜅 =
𝑟2 sin2(𝑡)+ 𝑟2 cos2(𝑡)

(𝑟2 sin2(𝑡)+𝑟2 cos2(𝑡))
3
2

 , and therefore,

25

𝜅 =
1

𝑟

(2-7)

where r is the radius of the osculating circle.

Curvature can also be found numerically by using the radius of curvature by fitting an

osculating circle to each point in the curve. Fitting can also be performed using a linear

least-squares regression technique (Hopp et al., 2015).

It is worthwhile pointing out that the curvature is dependent on both first and second

derivatives and these properties have been used alone by some authors to identify face

landmarks with moderate success. Lippold et al. (2014) compared first and second

derivatives of an outline face profile and reported successful landmark localization using

just the second derivative. Pantic, Patras and Rothkruntz (2002) uses first and second

derivatives individually to locate landmarks but also uses a priori knowledge of the

positions of landmarks and their convexities and concavities. Also, the first and second

derivatives of points within a 2D image are used extensively in traditional computer

vision and image processing fields for example in filtering and edge detection, in Canny

edge detection (Canny, 1986), with the Sobel operator (Szeliski, 2010), etc.

Curvature has been used already to identify landmarks. Efraty et al. (2009) calibrate and

enhance the manual landmarks using an automatic process that assumes the furthest point,

P1 is the point of highest curvature, as shown in Figure 2-5. Here, Pa and Pb form a vector

located on the plot of the curvature calculated from the profile. Pa and Pb must lie on

either side of P1. Their position is determined by handcrafted rules.

Figure 2-5: Approximating highest point of curvature between two points, after (Efraty et al.,

2009).

P1

Pb
Pa

26

Bottino and Cumani (2008) find landmarks in profile by using curvature also. Their

algorithm also uses a handcrafted approach that identifies landmarks by knowledge of

their relative positions, for example the stomion is between the labiale inferius and labiale

superius. The algorithm then identifies points of opposite curvature, i.e., concavity and

convexity, to locate the landmark position. Their process requires the orientation of the

head profile to be first approximated and three reference points, the nasion, pronasale and

gnathion, located prior to further landmark localization. This requires additional pre-

processing of the profile, for example they need to find the two-dimensional centre of

gravity of the profile and uses further hand-crafted rules to identify extremities prior to

applying their approach.

Bhanu and Zhou (2004), and Zhou and Bhanu (2005) have also focused on curvature as

a means to recognize faces from profiles in both still images and images extracted from

video. They use Gaussian functions and convolution to smooth and extract derivatives

for curvature calculation of the entire profile before applying dynamic time warping to

match a face’s profile with a database of image profiles.

Lipoščak and Lončarić (1999, p. 245) use the curve and its first and second derivatives to

create a scale space interpretation of a face profile using Gaussian functions.

Significantly, They note that “at any value of variance (σ2), the extrema in the nth

derivative of the smoothed signal are given by the zero-crossings in the (n+1)th

derivative.” This means it is possible to locate high points of curvature using both the

curvature of a point on a curve and also derivatives of the smoothed curve.

The ideas discussed here are used extensively throughout this thesis where Gaussian

filters are used as a means to smooth and differentiate curves simultaneously to create

suitable features for supervised machine learning classifiers.

In this study curvature as a feature (amongst others) is used to identify common

anthropometric landmarks and so the aim is to match the accuracy of an expert annotator

who has the tools to identify a landmark at pixel resolution. Pragmatically it makes sense

to use all the information available, so initially in this study, curvature will be calculated

at every sampled point on the smoothed contour. Hence it is useful to represent the plane

curve by the Cartesian parametric equations x=x(t) and y=y(t) as detailed in the preceding

27

proof. If follows that, the parameterized curve, C will be given by C(t) = (x(t),y(t)) where

𝑡 ∈ ℕ: 𝑡 <= 𝑁 and N is the number of sampled points in the contour. Equation (2-6) can

then be used to solve for 𝜅 where the parameter t represents the sampled arc length from

the beginning of the sampled curve. To do this the first and second derivatives of both x

and y co-ordinates with respect to arc length need to be calculated.

Finding derivatives of functional plane curves at given points parameterized by arc length

for example, requires a closed form representation or a series of piece-wise fit functions

that are continuous, smooth, and which clearly need to be twice differentiable.

Unfortunately, the contour datasets used in this thesis, and in the vast majority of image

processing systems, are sequences of points sampled from 2 dimensional images, so

before considering the calculation of curvature at any point on the curve, the question,

“how can we reliably and effectively calculate derivatives on the sampled contour curve”

needs to be answered. The answer to this can be found in the relevant literature and the

following sections detail several well studied approaches that are used extensively in the

fields of numerical methods and image processing.

2.6 Derivatives of a sampled curve

There are several numerical methods that can be used to find the derivatives of planar

curves. This section considers three popular methods and outlines their advantages and

disadvantages before selecting the most suitable given the problem context.

2.6.1 Finite differences

Finite differences can be used to approximate derivatives numerically. In the limit the

derivative of a function f(x) is defined as,

𝑓‘(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

If h is nonzero and small then the derivative is approximated as,

𝑓‘(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ

(2-8)

28

and this is known as the forward difference. Similarly, the backward difference

approximates the derivative as,

𝑓‘(𝑥) ≈
𝑓(𝑥) − 𝑓(𝑥 − ℎ)

ℎ

(2-9)

and the central difference approximates the derivative as,

𝑓‘(𝑥) ≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ

(2-10)

Taylor’s theorem can be used to estimate the order of the error of the forward, backward

and central difference methods. Appendix B provides details of how this is achieved.

In particular the error in approximating the first derivative using the forward difference

method is O(h) and so is proportional to the step size, h. Here, halving the step size will

halve the error associated with finding the derivative. Similarly, for the backward

difference method the approximation error is also O(h) and here, too, halving the step size

also halves the error.

When calculating the first derivative using the central difference method, however, the

error is of order O(h2) so halving the step size will make the error associated with the

derivative four times smaller. Therefore, the central difference approach to finding the

gradient is more accurate for small step sizes and so is the preferred of these three

methods.

The central difference method can be implemented by convolving the sampled image

with the kernel [-1/2 0 1/2] but the small kernel size can lead to errors when estimating

the shape of a sampled curve. Step changes at the pixel level within a sampled contour

lead to errors in calculating the derivative at finer scales and so low pass filtering of a

sampled curve is advisable prior to calculating its derivatives (Farid and Simoncelli,

2004). Bouma, et al. (2007) also suggest that the method used to find the derivative should

be rotation invariant as well as twice differentiable as otherwise the shape of the pixel

grid will be measured instead. This leads to noisy and inaccurate curvature calculations.

29

Gaussian filtering and Gaussian derivatives are discussed next as they not only have these

properties, but they also benefit from other qualities useful for filtering and, as it turns

out, for fast curvature estimation. Gaussian derivatives also have the additional benefit

of efficiently smoothing the sampled contour as the convolution kernel used encodes both

the smoothing and derivative operations as discussed next in 2.6.2. Finally, when

represented as a convolution kernel, their size can easily be adapted to suit the image

scale.

2.6.2 Gaussian Filters and Derivatives

The Gaussian function has several attractive properties that make it a useful differential

operator and filter (Marr and Hildreth, 1980). It is smooth and band-limited in the

frequency domain and exhibits spatial localization. It is also smooth and localized in the

spatial domain. The Gaussian filter is the only filter capable of this since the Fourier

transform of a Gaussian is another Gaussian. There are many other interesting properties

of the Gaussian and its derivatives. This chapter covers properties and theory relevant to

this thesis and many of the ideas are covered in existing Computer Vision texts.

Romeny’s text, Front-End Vision and Multi-Scale Image Analysis (Romeny, 2008) acts

as a good reference and several of the ideas covered here are to be found in this text.

The Gaussian function is also separable, that is, a bi-variate Gaussian function can be

represented as the product of two, uni-variate Gaussians, and the two-dimensional kernel

of a bi-variate Gaussian is also separable into two, one-dimensional kernels. This property

is regularly used in the image processing and computer vision community when filtering

a 2D image as it reduces the time complexity of this operation from O(n2) to O(n). Since

this thesis concentrates on processing contour curves embedded on a two-dimensional

plane it is worth while emphasizing that a contour curve is represented in this study as a

list of (x, y) co-ordinates and that 1D Gaussian kernels are applied to each co-ordinate

separately when calculating derivatives and curvature.

A univariate Gaussian is defined as,

𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥−μ)2

2σ2

30

where σ2 is the variance, σ the standard deviation (measured in pixels) which controls the

scale and μ is the average (expected) value which acts to offset the function along the

independent variable axis, x. The Gaussian filter is symmetric and if centred at zero, μ is

zero giving,

𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥)2

2σ2
(2-11)

The bi-variate Gaussian is given by

𝐺σ(𝑥, 𝑦) =
1

√2πσ2
𝑒

−
(𝑥+𝑦)2

2σ2

(2-12)

and the Gaussian filter can be extended into higher dimensions as required.

Filtering is usually performed by creating a kernel of the sampled Gaussian and

convolving this Gaussian kernel with the sampled dataset. In this study, a contour

extracted from a binary image is to be filtered. Recall from section 2.5, the contour is

represented as a parameterized curve given by C(t) = (x(t),y(t)) where 𝑡 ∈ ℕ: 𝑡 <= 𝑁 and

N is the number of sampled points on the contour.

Smoothing C is achieved by convolving with a suitable Gaussian kernel, 𝐺σ. We

convolve x(t) and y(t) with 𝐺σ separately to give us xs = 𝐺σ*x(t) and ys = 𝐺σ*y(t).

To find the first and second derivatives of xs and ys we note that differentiation of xs with

respect to t can be written as
𝑑

𝑑𝑡
(𝑥𝑠) =

𝑑

𝑑𝑡
(𝐺σ ∗ 𝑥(𝑡)) and so from the commutative

properties of convolution,

𝑑

𝑑𝑡
(𝑥𝑠) = 𝑥(𝑡) ∗

𝑑

𝑑𝑡
(𝐺σ)

(2-13)

and by the same argument,

31

𝑑

𝑑𝑡
(𝑦𝑠) = 𝑦(𝑡) ∗

𝑑

𝑑𝑡
(𝐺σ)

(2-14)

So, both differentiation and smoothing may be achieved with just one convolution on the

unfiltered, sampled contour curve, C. The kernel that represents the Gaussian derivative,

𝑑

𝑑𝑡
(𝐺σ) can be constructed efficiently from the coefficients of the Hermite polynomials

or by sampling the derivative curve,
𝑑

𝑑𝑡
(𝐺σ). We will refer to the Gaussian Derivative as

the “Derivative of the Gaussian” and use the abbreviation, DoG, to remain consistent with

existing image processing literature.

Analytically, the DoG is obtained by differentiating the Gaussian,

𝑑

𝑑𝑡
(𝐺σ(𝑥)) =

𝑑

𝑑𝑡
(

1

√2πσ2
𝑒

−
(𝑥)2

2σ2)
(2-15)

So,

Similarly, the second order derivative of the Gaussian is obtained by a second

differentiation of the DoG. This is referred to in the literature as the Laplacian of the

Gaussian, LoG.

LoG =
(𝑥2 − σ2)

σ4√2πσ2
𝑒−

(𝑥)2

2σ2
(2-17)

The scale of the Gaussian smoothing operator is given by σ and needs to be chosen

carefully to ensure that the range of pixels involved in the smoothing operation is neither

too small nor too large. If it is too small, then the derivative kernel will introduce noise

based upon the sampling grid structure, too high then the features of interest will be

removed. The choice of this value depends very much upon the image sample grid and

the regions of interest. Where the scale of the regions of interest differs, σ and hence the

smoothness of the Gaussian can be adapted.

DoG =
𝑥

−σ2√2πσ2
𝑒

−
(𝑥)2

2σ2
(2-16)

32

The size of the kernel depends upon the choice of σ. Since the tails of the Gaussian are

close to zero beyond ±3σ there is little point in using kernel coefficients beyond this

range.

Truncating coefficients beyond this range keeps the calculation computationally efficient

and introduces little error. The number of coefficients will naturally be odd to ensure

symmetry around the smoothing point and so the value of 3σ should be rounded up

accordingly to the nearest odd number. The coefficients themselves will need to sum to

unity to prevent any scaling errors. The final kernel will therefore range from −3σ to +3σ

and will have a size of 6σ + 1.

Choice of σ can be empirically estimated but should the number of pixels of the region

of interest be known through prior observation of typical image contours, for instance,

then the standard deviation, σ can be estimated using the relationship between standard

deviation and the notion of bandwidth. For the Gaussian filter, the bandwidth is often

described by the term “the full width at half maximum” (FWHM). The FWHM is

2σ√2𝑙𝑛2 ≈ 2.355σ pixels.

The scale of the filter is given by σ and so it is helpful when experimenting with the effect

of smoothing upon a region of interest to note that the repeated application of consecutive

Gaussian kernels can be made more efficient since;

𝐺σ1 ∗ 𝐺σ2 = 𝐺√σ12+σ22
 (2-18)

Here 𝐺σ1 𝑎𝑛𝑑 𝐺σ2 represent Gaussian functions and the superscripts

σ1 and σ2 represent their standard deviations. Note convolution of the Gaussian

functions result in another Gaussian, 𝐺√σ12+σ22
 with a standard deviation of √σ12 + σ22.

This property can be used to improve calculation efficiency when applying repeated

convolutions on an image or other function. To see this imagine the convolution

𝐶σ1 = 𝐶0 ∗ 𝐺σ1, with (σ1 < σ2) where 𝐶0 is the curve discussed in the previous section,

had already been calculated and next a convolution at a scale σ2, was required. Instead

33

of performing the convolution 𝐶σ2 = 𝐶0 ∗ 𝐺σ2 , instead 𝐶σ2 = 𝐶σ1 ∗ 𝐺√σ22 − σ12
 is

calculated since 𝐺σ1 ∗ 𝐺√σ22 − σ12
= 𝐺√σ12+σ22−σ12

, and so,

𝐺σ1 ∗ 𝐺√σ22 − σ12
= 𝐺σ2

This is more efficient because the kernel size of the Gaussian with σ = √σ22 − σ12 is

smaller in the number of its elements and so the convolution is faster.

This section has covered methods to efficiently and accurately smooth, differentiate

sampled curves and subsequently determine curvature. These methods will be used in this

thesis later to develop algorithms to efficiently calculate features used with supervised

ML models. The next section covers key ML concepts that are used in this thesis,

including metrics used to evaluate a ML model’s quality.

2.7 Evaluation metrics in machine learning

Machine learning models can be classified in numerous ways. This thesis aims to develop

machine learning models that can segment samples prior to regressing landmarks. This

implies the use of a model that can classify a sequence of samples into one of several

discrete classes. A contiguous group of like classes is regarded as a region which has

been segmented. Additionally, a labelled dataset will be used to train the classifier. Such

a training method is called supervised training. Hence the machine learning model used

is a classifier and the learning method is supervised training.

In order to assess the quality of the classifier several approaches could be used. Kamiri

and Mariga (2021) provide a good review of machine learning methods and identifies

several methods and metrics used in evaluating ML models. These methods are used in

many disciplines and consequently terminology and presentation of results is not

consistent across fields. Appendix D brings together and details methods and metrics

used to evaluate machine learning models used for classification in this thesis. It outlines

concepts, terms and the choice of formatting and presentation of data as they are used in

this thesis, and draws from several sources including the Scikit-learn python project

(Pedregosa et al., 2012), TensorFlow (Abadi et al., 2016), Keras documentation (Chollet

34

and others, 2015), Géron (2019), Russell and Norvig (2020) and Bishop (2006). The

following methodology chapter provides details of the choice of metrics and their

application in this thesis.

2.8 Machine Learning with Neural Networks

This section provides an overview of related work covering the use of the perceptron,

RNNs, CNNs and 1DTCNNs, focusing on their use with sequential data and time series

signals.

The introduction to this thesis and the literature review so far has already identified the

relevance of deep neural networks and their recent successes in areas such as face

recognition and face detection. The successes of the past decade have been attributed to

the convergence of existing theoretical ideas with several technological advances:

• The ubiquity of affordable and powerful computing technologies, especially

graphics programming units (GPUs) driven by the rise of computer games and

computer generated imagery (CGI) in general.

• The Internet and worldwide web;

• Availability of open source, powerful programming languages together with well

designed software libraries that enable the development of ML applications and

DNNs, for example Python and ML packages such as Keras, Tensorflow, Café,

PyTorch and Scikit-learn.

However, the theoretical concepts underpinning deep neural networks had been

developed some decades before. In fact, the area of neural networks has a long history

within the subject of computer science (Russell and Norvig, 2020) beginning with work

done by McCulloch and Pitts (1943); the formalisation of neural networks within the

broader field of AI beginning at the seminal 1956, Dartmouth Summer Research Project

on Artificial Intelligence (McCarthy et al., 2006); and the introduction of the perceptron

by Rosenblatt (1958). However, it was the development of the efficient back propagation

algorithm in 1970 by Seppo Linnainmaa (1976), although not focused on neural networks

(Schmidhuber, 2015), and its popularisation by Hinton and Rumelhart (Rumelhart et al.,

1986) in the 1980’s that kicked started the renaissance of neural networks and the growth

of deep learning techniques.

35

The past decade saw many successful applications of deep neural networks in many areas

but especially in two domains: sequential data processing and two-dimensional image

classification. RNNs, often in the form of long short-term memory (LSTM) RNNs (Gers

and Schmidhuber, 2000; Hochreiter and Schmidhuber, 1997), revolutionised sequential

data processing in numerous fields from speech translation and recognition to time series

prediction and healthcare applications, whilst CNNs (Fukushima, 1980; LeCun et al.,

1998; LeCun et al., 1989) have been shown to be capable of impressive image recognition

and detection on a par with human ability (Krizhevsky, Sutskever and Hinton, 2012; He

et al., 2016). Since their introduction the CNNs have also been used to solve sequential

and time series related problems with some success, either in their own right or in

combination with RNNs (Shi et al., 2015; Bradbury et al., 2016; Oord et al., 2016;

Sejnowski and Rosenberg, 1987). Bai, Kolter and Koltun (2018) provide a detailed

comparison of DNNs and CNNs used for sequence modelling and, for instance, describes

the architecture of 1DTCNNs suitable for sequence processing.

The following sections briefly review RNNs and 1DTCNNs that are suited for achieving

the aims of this study. A more detailed explanation of the underlying theory and operation

of these DNNs is provided in appendix C of this thesis.

2.8.1 RNNs for sequential data

Unlike feedforward networks whose connections are constrained to link forward to

neurons deeper in the network, RNNs include links feeding back to earlier parts of the

network. Interpreting these feedback links as outputs from a previous time step, and

chaining these stages together, allows learning across several time steps. Hence the

network can learn patterns across time or sequences of data.

Typically, RNNs are used in a number of configurations: vector to sequence; sequence to

sequence; sequence to vector or as an encoder-decoder, that is sequence to vector

followed by a vector to sequence. These architectures and their uses are detailed in

Appendix C and in several texts, (Goodfellow, Bengio and Courville, 2016; Géron, 2019)

and so their detailed theoretical underpinning is not repeated here.

36

Sequence to sequence and sequence to vector RNNs allow an output sequence to be learnt

from a labelled dataset of input sequence vectors. The output sequence can be configured

to be of a different length to the input sequence or it could be the same length, depending

on the problem scenario. Variable lengths can be accommodated by, for example,

padding, however the majority of modern neural network libraires include options for

variable length sequences (Chollet and Others, 2015; Abadi et al., 2016; Mathworks,

2020a).

An aim of this thesis is the segmentation of a contour curve, and so a sequence-to-

sequence network is a candidate worth considering. Here the input and output sequences

are the same length, although, depending upon the number of features used the dimension

of the input sequence vector may change. For example, a univariate time series or a scalar

feature such as curvature would have a dimension of 1, a profile’s x and y co-ordinates,

on the other hand, would have a dimension of 2. Additionally, the length of each training

or test sequence can also be varied.

RNNs can be used for segmentation by adding additional layers to the output as is

common in other neural network architectures. Typically, a fully connected layer

followed by a softmax layer is used to convert the real valued output state to a finite

number of classes. A probability value is associated with each of the multiclass outputs

and a decision boundary is chosen (usually a probability of 0.5 or greater is regarded as

true). The output sequence may consist of a sequence of labels classifying each input of

the sequence. For example, a single input from a long sequence might be a co-ordinate

(x,y) pair representing a point on a curve, whilst the corresponding output at that time

would be a region label, for example, “upper lip”.

RNNs have a limited memory, the literature often states 10 time/sequence steps and

attribute this to both vanishing gradients or exploding gradients that cause some

oscillation in the gradient magnitudes during back propagation. This led to the

development of LSTM RNNs that attempted to address these limitations. LSTMs

introduce a memory component that allows internal state to be remembered or forgotten

through the use of a gate structure and expands the internal states to include a hidden state

h() vector (also referred to as hidden units) and an additional cell state, C() vector. The

37

hidden state corresponds to the short-term memory and the cell state to the long-term

memory.

There are several variants of LSTMs, for example the Gated Recurrent Unit (GRU) (Cho

et al., 2014), that aims to simplify the architecture of the gate. This is currently a very

popular network choice. Staudemeyer and Morris (2019) suggest GRUs outperform

LSTMs, however Shewalkar (2019), for instance, presents empirical evidence that

suggests they are comparable in speech applications, though the GRU can be faster to

train.

LSTMs, with their ability to learn longer sequences and their previous successes in

segmenting sequential data, are a good choice for segmenting profile contours and so their

use can contribute toward achieving the aim of this thesis.

The next section reviews the use of CNNs in processing sequential and time series data,

focusing on 1DTCNNs.

2.8.2 Sequential data processing using convolutional neural networks

A two-dimensional CNN layer, as used in image detection, typically uses many small

kernels or filters that are moved across the input image, performing convolutions at each

pixel. Each kernel’s convolutions creates a single two-dimensional feature map as it

moves across the image. Together, these feature maps form a single layer. The kernels

each encode a particular feature that is representative of part of the image to be

recognised. As each kernel has effectively scanned the image looking for its feature, the

resulting feature map encodes where that feature (or multiple versions of it) lies within

the image. Hence the use of the word “map.” Multiple scales are accommodated by

adding a pooling layer afterwards to downsize or subsample the layer above. Hence a

CNN has the ability to localise an object within an image and at multiple scales. The

back propagation algorithm is used to train the kernels. More detailed descriptions of

CNNs and their variations are provided in Goodfellow, Bengio and Courville (2016) and

Géron (2019).

One dimensional CNNs work in a similar manner to the more common two dimensional

CNNs. Convolutions become one dimensional in nature and multiple layer subsampling

38

occurs, and is referred to as dilation. This property is useful where a range of features at

differing scales need to be recognised, as is the case in this study, where the aim is to

segment the head profile contour.

The wavenet architecture introduced by Oord et al. (2016) apply these ideas and

additionally includes a temporal feature that prevents looking ahead. This sequential,

ordinal property is useful where features to be segmented are constrained by their order,

as is the case also for head profile contours. For example, the lower lip is below the upper

lip, which is itself below the nose. This, together with the multi-scale property described

above also makes this DNN a good candidate for segmenting the head profile contour

studied in this thesis.

Bai, Kolter and Koltun (2018) provide a detailed explanation of the operation and

architecture of 1DTCNN networks. As with the LSTM, the 1DTCNN performs

classification using a fully connected output and softmax layer. Appendix C of this thesis

also provides further details of 1DTCNNs along with a description of their architecture.

2.9 Anthropometry and facial landmarking

Section 2.2.2 reviewed face landmark annotation schemes used in the computer vision

community. Recall, also, the introduction to the thesis included a brief overview of

anthropometry. This section builds on these ideas, focusing on the anthropometric

literature related to facial landmarking and identifies potential landmarks, statistics and

related datasets that may prove useful in achieving the aim of this thesis related to

landmark localisation. With this in mind, this section also reviews the literature related

to indirect anthropometric methods used in photogrammetry in order to assess the

reliability of those methods.

Anthropometry is the study of the measurements and proportions of the human body and

can be divided into two branches, craniofacial anthropometry whose focus is the

measurements of the head and face, and somatometry which is the measurement of the

body (Salkind, 2007).

39

As anthropometric measurements rely on the accurate and repeatable identification of

landmarks, then it would be sensible to select candidates from the set of established

landmarks studied in the anthropometric literature. The observation made in section 1.4

is worth reiterating here, that points of high curvature correlate remarkably well with

craniofacial anthropometric landmarks.

To help inform the choices of candidate landmarks used in this study, a very brief history

of anthropometry is provided next and is followed by a survey of modern head and upper

body anthropometry and the methods and tools used to capture measurements.

Anthropometry has a long history. The techniques used were originally developed by

Johann Sigismund Elsholtz in 1654 (Kolar and Salter, 1997), and his ideas were still used

extensively in the 19th century to quantify human development and morphology. During

this time the work of Paul Broca in the field of physical anthropology and that of the

French policeman Alphonse Bertillon, who was searching for a reliable method to identify

criminals, helped standardise physical measurements and practices. As the 19th century

progressed a separate German school of Anthropometry had emerged which was

formalised in the 1882 Frankfurt Convention and it is worth noting that this convention

gives its name to the “Frankfort horizontal plane” which is a reference line or plane still

in use in modern craniofacial anthropometry (Salkind, 2007, p. 36).

During the early 20th Century anthropometry was linked with pseudo-scientific ideas

related to scientific racism and the now discredited eugenics movements and

consequently its use in the study of human populations declined, however the practice of

anthropometric methods in the study of human growth and development continued and

its application in other disciplines increased. Anthropometric tools and techniques are

now used in ergonomics, biometrics and security, in several medical disciplines including

physiology, dysmorphology, dentistry, surgery, physiotherapy, anthropological

medicine, kinanthropometry, forensic science and so on.

 An important element of modern anthropometry is quantifying norms of human

measurements to facilitate further comparative investigations using appropriate statistical

methods. Modern cranio-facial anthropometry has been fuelled by the clinical

community’s desire for high quality datasets of population norms. Uses for these datasets

40

include understanding disease, informing plastic surgery and so on. Accordingly, research

groups have created datasets of anthropometric data of the head and body (Farkas, 1994;

Robinette et al., 2002; Lipira et al., 2010; Gordon et al., 2014; Weinberg et al., 2016)

that use a variety of technologies and tools to capture the data. Typically, researchers

report summary statistics of standardised measurements of the human face, and some

include additional collections of 3D normative craniofacial images. Some published

datasets include both craniofacial and somapometric results, the US Army’s

Anthropometric Survey of Army Personnel of 2012 (ANSUR 2012) (Gordon et al., 2014)

and the Civilian American And European Surface Anthropometry Resource (CAESAR)

(Robinette et al., 2002) are good examples. As new methods have evolved for capturing

anthropometric data researchers have been keen to compare the efficacy of these

emerging methods (Farkas, Bryson and Klotz, 1980; Weinberg et al., 2004; Robinette

and Daanen, 2006; Ghoddousi et al., 2007; Dindaroğlu et al., 2015). A principal

limitation of all these datasets relates to the paucity of ethnographic data. Most datasets

concentrate on white Caucasian ethnography which is a problem recognised by

researchers in the field and attempts are being made to address it (Weinberg et al., 2016).

For the purpose of this review these methods can be separated into three broad categories:

those derived from digital 3D imaging technologies, those derived from 2D images and

those derived using direct (manual) anthropometric methods and instruments such as

callipers, goniometers and so forth. The first two methods are indirect methods and are

forms of 3D photogrammetry and 2D photogrammetry, respectively. The third method

is termed direct anthropometry.

2.9.1 Direct and indirect anthropometry

Modern direct craniofacial anthropometry was pioneered by Leslie Farkas (1915-2008)

(Naini, 2010) who developed an empirical system of facial measurements and over his

career compiled a huge database of craniofacial “norms.” He was the first to recognise

and subsequently emphasise the importance of the relative proportions of craniofacial

measurements. In direct anthropometry, measurements are made using callipers,

goniometers, rulers, and tape measures and these rely on trained and experienced

practitioners to obtain accurate and repeatable results. This process is time-consuming

and requires direct contact and so also the compliance of the subject (Jayaratne and

Zwahlen, 2014). Despite these difficulties direct anthropometry remains the touchstone

41

against which other methods are compared, for example evaluations of 3D stereo-

photogrammetry and 2D photogrammetry.

Photogrammetry is the art, science, and technology of obtaining reliable information

about physical objects and the environment through processes of recording, measuring,

and interpreting photographic images and patterns of recorded radiant electromagnetic

energy and other phenomena (McGlone, 2004). Farkas, Bryson and Klotz (1980) studied

the reliability of 2D photogrammetry in anthropometry as long ago as 1980 and its use in

cranio-facial anthropometry is well documented in the literature (Aldridge et al., 2005;

Ozsoy et al., 2009; Aksu, Kaya and Kocadereli, 2010; Dindaroğlu et al., 2015).

Fundamental to its use is the correct calibration of the camera.

Software based calibration processes are used to correct distortions generated by the

camera’s optical system. 2D photogrammetric measurement software, for example, often

runs on desk-top machines and uses a range of plug-in cameras, so correct calibration

remains an important procedure in setting up such software. Typically, this process uses

a standardised object, for example, a printed chessboard pattern whose image is captured

in various orientations and transformations on the image are then calculated that remove

distortion generated by the camera optics. On the other hand, RGBD cameras and self-

contained, proprietary photogrammetric instruments are typically calibrated during

manufacture and may need little user calibration, or, where necessary, occasional user

based calibration using supplied calibration equipment. The use of 2D and 3D

photogrammetric instruments in anthropometry are well studied, and typically these

studies compare their results with measurements made using direct anthropometry

(Nechala, Mahoney and Farkas, 1999; Aldridge et al., 2005; Weinberg et al., 2006;

Ghoddousi et al., 2007; Ozsoy et al., 2009; Dindaroğlu et al., 2015; Kim et al., 2015). All

conclude that the accuracy and repeatability of the photogrammetric methods compare

favourably with direct anthropometry, a significant finding for this study as it supports

the use of indirect 2D and 3D photogrammetry in measuring head posture.

Direct physical contact between the subject and the measuring instruments can lead to

underestimates as pressure applied by the instrument will cause indentation of the soft

tissue. Use of photogrammetric methods avoids this potential operator error. On the other

hand, a significant advantage of direct anthropometry is the opportunity to locate

42

landmarks using soft tissue palpation. Indirect photogrammetric methods may exclude

landmarks if palpation is necessary to locate them or require them to be first located using

soft tissue palpation and the skin marked accordingly (Weinberg et al., 2004; Ghoddousi

et al., 2007). Where palpation is necessary, crudely marked landmarks may also be a

source of measuring error (Farkas, 1994). Consequently, landmarks that require palpation

for accurate location may not be the best candidates for use in this thesis.

In direct as well as indirect photogrammetry Ozsoy et al. (2009, p. 288) note “..accurate

location of landmarks and user skill are important factors to achieve reliable data” and

“the period of interaction with the subject is potentially shorter” with indirect methods.

Consequently, an automatic, indirect method of identifying landmarks would provide an

additional advantage and this itself is a motivating factor in this research.

Whilst photogrammetric methods can produce accurate results, typically equipment used

does require some user interaction to define and locate landmark positions, measure

distances and angles, and so on. A 2016 study by Kuehnapfel et al. (2016) observed that

whilst the 3D scanning equipment used produced generally excellent reliability with

comparable intra-rater and inter-rater results, overall it was slightly more time consuming

to use but was better accepted than classical manual anthropometric assessments (CA).

However, many more measurements were obtained in the same amount of time than with

CA.

Aldridge et al. (2005) reports image acquisition times of 2ms using a 3D imaging system

but landmark location and measurement was done manually. Whilst image acquisition is

generally very fast, no head anthropometric photogrammetric systems have been

identified in this literature review that report accurate, real-time and automatic landmark

localization. The review of landmark localization in section 2.2 identified several

methods used to localize landmarks using various methods based on AAMs, and more

recently, deep learning based approaches. Clearly there is an overlap here and a potential

for cross fertilization across fields, however clinical acceptance of these innovations is

necessary before these ideas can gain acceptance.

43

2.9.2 Landmarks used in craniofacial anthropometry

Whilst Farkas described 47 craniofacial landmarks (Farkas, 1994), modern 3D stereo

photogrammetry methods typically use a smaller subset, for example FaceBase

(Weinberg et al., 2016) uses a subset of 24 of Farkas’ original landmarks. The criteria for

the selection of these is informed by the nature of 3D methods and their limitations. For

example, as noted earlier, in order to reliably locate some traditional direct

anthropometric landmarks, the practitioner needs to palpate soft tissue which is not

possible using 3D photogrammetry. Previously sections reviewed datasets used for face

detection and noted that up to 68 landmarks were used yet only a few of these were

established craniofacial anthropometric landmarks.

Next, the established landmarks used in head and face anthropometry are identified,

landmarks useful for this study are selected and include two additional landmarks that are

not normally regarded as craniofacial landmarks but will be of potential use in future

work.

The landmarks selected here are used for three purposes. Their first use is for estimating

the relationship between landmarks in terms of their relative distances. Mean values

between identified landmark pairs and their variance may be useful in providing

constraints and have potential in guiding the design of the identification and selection

algorithms used in this thesis. The variance and average distance between recognised

landmarks can be obtained from tables of craniofacial norms published by Farkas and

others identified earlier in this section.

Their second purpose is to act as reliable reference points to measure face posture defined

by angle. This will allow, for example, the measurement of FHP.

Their third use is to act as delineation points when measuring regions of interest

associated with head and face profile estimation, for example, the upper lip, nose, chin

and so on. Such points of delineation are used later in this thesis to regress landmark

positions from segmented head profile contours.

Table 2-1, overleaf, lists common established craniofacial landmarks used in the literature

(Kolar and Salter, 1997; Farkas, 1994).

44

It lists candidate landmarks considered for use in this study and these are highlighted and

italicised for this thesis. Those landmarks underlined were ultimately used in chapters 5

and 6 to segment face profiles.

Region Name Abr. Definition

Head Glabella G The most prominent midline between eyebrows.

Nose,

Columella
Nasion N The midpoint on the soft tissue contour of the base of the

nasal root at the level of the frontonasal suture.

Sellion Se The most posterior point of the frontonasal soft tissue

contour in the midline of the base of the nasal root.

 Pronasale Prn The most anterior midpoint of the nasal tip.

Subnasale Sn The midpoint on the nasolabial soft tissue contour between

the columella crest and the upper lip.

 Alare Al The most lateral point on each alar contour.

Columella apex c′ The most anterior, or the highest point on the columella

crest at the apex of the nostril

Eye Exocanthion Ex The soft tissue point located at the outer commissure of

each eye fissure

Endocanthion En The soft tissue point located at the inner commissure of

each eye fissure

Philtrum,

Lips and

mouth

Crista philtra Cph The point at each elevated margin of the philtrum just

above the vermilion line

Labiale

superius

Ls The midpoint of the vermilion line of the upper lip

 Cheilion Ch The point located at each labial commissure

Stomion Sto The midpoint of the labial fissure when the lips are closed

naturally

 Labiale inferius Li The midpoint of the lower vermilion line

 Sublabiale Sl The midpoint of the Labiomental sulcus

Chin Pogonion Pg The most anterior midpoint of the chin

Gnathion Gn The lowest median landmark on the lower border of the

mandible

Ears Tragion Tr The notch at the upper margin of the tragus

Table 2-1: Anthropometric landmarks and regions of the head.

45

2.9.3 Neck and upper body landmarks

Two axes of rotation related to head posture have been identified in the anthropometric

literature. The first is an axis of rotation about the tragus in the sagittal plane and a second

axis is located at the point of the C7 vertebra, again, in the sagittal plane. Authors typically

construct a line joining the tragus and exocanthion and measure the angle between this

construction and the horizontal or the Frankfort line. This angle is referred to as the gaze

angle. The second angle is measured by constructing a second line between the tragus and

the C7 vertebra and this angle is measured between this line and Frankfort line. This angle

is known as the cranio-vertebral angle (CVA). Head posture can then be defined by these

two angles (Youssef, 2016).

FHP describes the poor head posture resulting from the hyperextension of the upper

cervical vertebrae and forward translation of the cervical vertebrae is significantly

correlated with neck pain measures in adults and older adults (Fawzy Mahmoud et al.,

2019; Silva, Punt and Johnson, 2010). It is often measured using the CVA, although

several authors use the two angles described above to measure the extent of forward head

posture during examination as a greater gaze angle indicates a more extended position of

upper cervical spine (Youssef, 2016).

Accurately identifying head posture by means of regressing landmarks on the face profile

goes some way to measuring these angles, or an equivalent, since the landmarks provide

a reliable reference for construction lines. For example, the subnasale can be used in place

of the exocanthion in the above description. In order to achieve this, not only does the

subnasale landmark need to be located but, in addition, an automatic method of regressing

the position of the tragus is required as is the regression of the C7 vertebra position. An

alternative to the C7 vertebra is presented here. The suprasternal notch (jugular notch),

measured at the point of normal exhalation could be used if the C7 vertebra is not visible.

Relevant anthropometric head profile landmarks identified in this study could therefore

be used as a starting point to develop methods to automatically measure forward head

posture in real time.

46

2.10 Summary of gaps in knowledge and contributions

The first two chapters of this thesis have identified several opportunities to advance both

knowledge and understanding within this field of research. These are enumerated in Table

2-2.

 Gaps in Knowledge

1 No one has evaluated the effectiveness of curvature and related features that

could be used to efficiently identify regions of interest in a uniformly sampled

sequential dataset.

2 No-one has investigated the capability of head profile contours, derived from fast

depth cameras, to localize anthropometric landmarks.

3 A substantial body of work exists that has labelled 2D RGB images of front

facing faces, but not with depth information, and few include side profiles. Nor

does such work exclusively use anthropometric landmarks.

4 3D anthropometric datasets exist but these use slow, interactive capture methods,

and are subject to editing/post-processing.

5 Datasets exist of raw and unprocessed profile head images taken using fast depth

cameras, but none have been anthropometrically labelled.

6 There exist no reported publicly available datasets of raw, unprocessed head

profile contours.

7 Whilst landmark localisation of head profiles from 2D images has been

attempted, no evidence was available from the literature of the use of contours, in

their raw state, extracted using depth information.

8 Fast depth cameras (30fps) are now commonplace so contours could be extracted

in real-time, prior to landmark localisation. This approach has not yet been

attempted.

9 A comparison of the effectiveness and run-time efficiency of end-to-end ML

DNNs with that of DNNs that use engineered features has not been attempted

within the context of head profile contour segmentation and regression.

Table 2-2: Summary of gaps in knowledge.

47

The gaps in existing knowledge identified here have resulted in the following

contributions to knowledge detailed in Table 2-3. These contributions include an

evaluation of curvature and curve derivatives as features for uniformly sampled time

series datasets as well as more general contour curves sampled from images. They include

the generation of a new head profile contour dataset labelled with anthropometric

landmarks, as well as investigations of the effectiveness of DNNs in the segmentation of

head profile contour and the regression of profile landmarks. Chapters 4,5 and 6 of this

thesis detail the investigations carried out that resulted in these contributions.

Table 2-3: Summary of Contributions cross referenced to gaps in knowledge (see Table 2-2).

 Contributions

1

This study provides an evaluation of the effectiveness of curvature and related

features used to efficiently identify regions of interest in a uniformly sampled

sequential dataset. This includes the generation of new algorithms, software and

tools to evaluate the accuracy of a recurrent neural network (RNN) that uses the

features engineered here. Additionally, an investigation of the run-time efficiency

of the engineered features is provided (Table 2-2, gap 1).

2 An existing RGB-D dataset is extended, by extracting head profile contours so

creating a new database of face profile contour curves. Additionally, a new set of

manual annotations are generated identifying key anthropometric landmarks on

both the RGB images and profile contour curves (Table 2-2, research gaps 3,5,6).

3 A novel approach is developed in this context to automatically improve the

accuracy of the annotations based upon the curvature properties of selected

anthropometric landmarks (Table 2-2, research gaps 3,5,6).

4 The findings of 1, above, are extended to work with the head profile contour dataset

created in this study resulting in a new procedure that can accurately achieve fast

face segmentation of head profile images. An evaluation of this procedure

documents both the accuracy of the approach and its run-time efficiency when used

with two RNNs (Table 2-2, research gaps 2,4,7,8).

5 The procedure used in 4 is further extended to develop a method to regress

landmarks from the segmented profile contour and the accuracy and precision of

this method is evaluated and documented (Table 2-2, research gaps 2,4,7,8).

6 Finally, the effectiveness of an end-to-end learning approach is investigated using

a 1DTCNN to achieve the same goals of 4 and 5, above, and the findings of this

investigation presented with recommendations (Table 2-2, research gap 9).

48

2.11 Summary

The importance of landmark localisation was reviewed in the fields of 2D face recognition

and landmarking, and in indirect anthropometry and photogrammetry. This identified

candidate landmarks that could be applied to head profile contours and their properties.

A discussion of their usefulness as fiducial markers in head profiles was also included.

An overview of methods used to localize landmarks in 2D images identified potentially

useful approaches that could also be used for segmenting head profile contours. The use

of deep neural networks used in 2D face landmarking has had great success recently and

shows that the application of DNN concepts will be successful in this thesis. As head

profile contours can be regarded as a sequential series then the application of deep

learning methods such as RNNs and one dimensional temporal CNNs were reviewed and

their effectiveness in this area discussed. Since such methods will need to be evaluated

then a brief review of ML metrics was also outlined here.

Additionally, methods useful in extracting profile contours from RGBD images were

detailed and the success of curvature and curve derivatives as features in profile

recognition and landmark regression were reviewed. The features and the methods

identified here were hypothesised to be useful in fast and accurate classification and

regression and so efficient approaches to calculating these features were investigated in

this review also.

Finally, gaps in knowledge within this field were enumerated and the arising contributions

of this thesis were summarised.

The following chapter describes and justifies the research methodology used in the

investigations carried out in chapters 4, 5 and 6 of this thesis.

49

3 Research Methodology

This research explores the suitability of curvature and its properties as features for training

deep neural networks to estimate head profile posture. Previous chapters have explored

related work and identified opportunities to advance existing knowledge and research

arising from this. This chapter will describe the research methods used in the

investigative studies that follow. The chapter identifies and justifies the research methods

applicable to this research and follows on with a discussion of the chosen methodology,

and details the common methods used in the investigative studies of chapters 4, 5 and 6.

3.1 What type of research?

The aim of the research is to “explore extensively the suitability of curvature and its

properties as features for fast regression and segmentation of parameterized plane

curves, and in so doing, examine the effectiveness of these features in training deep neural

networks to estimate head profile posture derived from 2.5D images.” This aim, derived

from the research question, indicates the use of an exploratory investigation to prove or

disprove the identified hypotheses.

This research is applied research since it aims to solve a problem, that is, define head

posture position. Since the exploration also focuses on evaluating the effectiveness of

machine learning algorithms and their time efficiency, then the research is also of a

quantitative nature.

3.2 What Research Method?

Given that the research has been identified as exploratory, appropriate research method(s)

need to be reviewed that will suit an exploratory study. As the main focus of this study is

to explore the suitability of curvature and its properties as effective features for estimating

head posture, then ways of measuring this effectiveness need to be identified. Also, any

methods used must ensure relationships between selected variables are well defined,

quantifiable and that the measurements are repeatable. Additionally, the methods used

need to be appropriate for testing hypotheses in controlled conditions to deduce causal

50

inferences. The experimental research method meets these criteria (Maxion, 2009), and

so will be used in this study.

The aim of this thesis also requires the development and evaluation of various DNNs.

Typically, DNNs are considered part of the machine learning canon and development of

these models follow an established machine learning process which is an empirical

procedure and is experimental in nature.

3.3 Experimental Research

There are a range of experimental types used in experimental research. As this thesis aims

to evaluate the effectiveness of various features used to train a number of deep neural

networks, it is necessary to vary these features in a controlled and systematic way. This,

then, is a controlled experiment and is conducted within a setting that is especially created

for this investigation.

3.4 Experimental Methodology

In order to achieve the research aim identified in chapter 1, several objectives were

identified and enumerated along with corresponding experimental investigations. These

investigations are documented in chapters 4, 5 and 6. However, only the general

experimental design details and common methods which apply to all these experiments

will be discussed in this chapter. Details relevant only to a specific investigative study

will be reported in the corresponding chapter.

The experiments and investigations documented in this thesis focus on the development

and evaluation of various features as inputs to machine learning algorithms. Whilst the

investigation uses an experimental approach, the procedure used naturally follows that of

the machine learning process (Kumar and Sharma, 2017). This is described next and

accommodates within it opportunities to apply experimental methods during the phases

of feature selection, pre-processing, model optimization and model evaluation.

51

3.5 Machine Learning Process

As part of the investigative studies undertaken in this thesis, several deep learning models

were developed. This involved creating datasets, pre-processing existing datasets,

engineering features, designing and implementing DNN models, and was followed by

their supervised training and evaluation.

Several process standards related to developing machine learning and data science

systems have been documented in the literature (Wirth, 2000; Shearer, 2000; Studer et

al., 2021; Azevedo and Santos, 2008; Géron, 2019). Broadly they follow the same

approach as that shown in Figure 3-1 below.

Figure 3-1: Stages involved in the ML process (iterative phases not shown).

Once the dataset has been collected and collated, several candidate features are first

identified and transformed during the data pre-processing phase. This is referred to as

feature engineering in this study. The experiments relevant here include the evaluation of

the features and the transformations used.

In chapter 4 a study of feature transformations is undertaken, and their resulting run-time

efficiency is analyzed. During model training further experiments are undertaken to

establish the best features to use with the ML algorithms. The experiments of chapter 4

also have a confirmatory aspect since the deep learning model used and its architecture

and training parameters were specified in previous work (Mathworks, 2020c). The new

52

features explored in this experiment can then be evaluated against the previous published

results and the previous results can then be verified as part of this experiment.

Chapters 5 and 6 also undertake experiments as part of the ML process. Chapter 5

evaluates the model with newly engineered features (curvature and its derivatives) whilst

chapter 6 develops a different DNN ML model to demonstrate the effectiveness of an

end-to-end ML approach.

3.6 Apparatus

All experiments in this study were performed on a machine with the following

specification and development software.

Processor Intel core i7-7700 CPU

Memory 32GB RAM

GPU Nvidia 1080Ti GPU

Operating

System

Windows 10

Matlab

version

2019b (Chapter 3 and 4);

2020b (Chapter 5).

Table 3-1: Computer hardware specification.

3.7 Evaluation Metrics

Evaluation of the experiments fell broadly into three camps, classifier evaluation,

regressor evaluation and run-time efficiency evaluation. The classifiers of chapters 4, 5

and 6 are evaluated using the metrics discussed here.

3.7.1 Classifier Evaluation

Several metrics are used for evaluating classifiers, and whilst a single numerical value

that describes the overall accuracy of a classifier is desirable, a more thorough approach

is necessary.

53

Typically recall and precision are reported together with their harmonic mean (F1 score).

Overall accuracy and the macro F1 score are also reported. The experimental

investigations used in this thesis report per-class F1 scores, recall and precision together

with overall accuracy and macro F1 score. These metrics were calculated from multiclass

confusion matrices. These values and their significance are outlined in the previous

chapter with further details provided in Appendix D.

These metrics were chosen since they are well understood by the ML community and

results are normally reported using these metrics (Handelman et al., 2018; Kamiri and

Mariga, 2021).

3.7.2 Regressor Evaluation

Where experimental investigations evaluate the accuracy of facial landmark localization,

two measures are used, the precision and the accuracy (International Organization for

Standardization, 1994). Here, precision is described using the sample standard deviation

of the test results from the ground-truth facial landmark.

Accuracy is measured using the mean absolute error (MAE), and was used instead of the

mean squared error (MSE) since MSE exaggerates the importance of outliers thus

avoiding excessive skewing of results. The mean error (ME) is also reported as it gives

additional information (positive or negative values) indicating whether a landmark’s

estimated position is skewed below or above its true location. These metrics are also well

understood by the ML community and regularly used in the literature (International

Organization for Standardization, 1994; Handelman et al., 2018; Kamiri and Mariga,

2021).

The procedure followed regarding the inclusion of outliers here is that suggested by

typical ML dataset pre-processing methodologies (Géron, 2019). That is, outliers are

examined individually, and a decision is made as to whether they are included in the

dataset. For example, an image showing no profile at all would not represent a valid test

sample and so would not be included in the evaluation.

54

3.8 Run-time Efficiency Evaluation

A key objective of this study is to investigate candidate features suitable for fast

classification and segmentation of planar curves. These results inform the feature

engineering processes and algorithms used to train the LSTM time series segmenter of

chapter 4, the LSTM profile segmenter of Chapter 5 and the 1DTCNN of chapter 6.

Additionally, measuring the processing-time of various algorithms used in the

segmentation process is important for this study and, more generally, machine learning

researchers are beginning to focus more on run-time evaluations of their algorithms as

well as classification or regression performance (Handelman et al., 2018; Kamiri and

Mariga, 2021).

3.8.1 Timing procedure

The algorithms were implemented in MATLAB version 2019b and MATLAB version

2020b. MATLAB’s timeit() function was used to calculate the run-time of the MATLAB

scripts. The algorithms’ runtimes are tabulated, and relative comparisons are made. The

goal is to compare the speed of the algorithms against each other and not to measure

against an absolute reference. Consequently, they were not cross-compiled to C++ nor

other optimizations applied beyond MATLAB’s default settings.

A comparison of the timeit() function’s results with that of MATLAB’s built in code

profiler was also undertaken. Both methods produced comparable results. The timeit()

function was chosen and the procedure described here was used in the experiments

detailed chapters 4, 5 and 6.

Current processors are typically multicore which can affect accurate timing of algorithms

as operations may be shared across cores. Most modern applications such as MATLAB

take advantage of multi-threading techniques which are often out of the control of the

script writer. Additionally, modern processors make use of single instruction, multiple

data (SIMD) architectures. Here, operations such as multiplication and addition are

applied in parallel to a group of data. This can drastically improve execution time.

Convolutions and vector additions benefit from this architecture, for example, a

convolution involving 10 multiplications will take the same time as one involving 2

multiplications. This further complicates the problem of accurate timing of algorithms.

55

Consequently, a pragmatic approach was taken in choosing timing methods as described

next.

CPU clock cycle timing was considered and would have been preferred if a single core

machine without an SIMD architecture was being used. As this could not be guaranteed

in this study and would not be representative of the hardware used in a real situation, a

variation on a wall clock approach was considered using MATLAB’s timeit() function.

The timeit() function measures wall clock time but performs multiple runs of the specified

function and returns the median of results. This is done to reduce the effect of errors

introduced by multi-tasking operating systems. To summarize, the timeit() method was

chosen for the following reasons:

1. It returns the median of multiple timing measurements of a function,

2. times recorded are representative of typical use,

3. a brief review of researcher opinions and papers that report execution times

using MATLAB, use wall-time methods such as timeit() and tic/toc,

(Mathworks, 2020b).

4. the MATLAB profiler also returned results comparable with the timeit()

function.

The procedure used is detailed next:

1. Each feature pre-processing algorithm was encapsulated in a MATLAB function

with all requisite one-off initialization of variables completed outside the function

and before starting the timing tests.

2. Each algorithm was inserted inside the test function, enclosed in a for-loop and

executed 1000 times. The average time taken was calculated from the overall time

taken to complete 1000 runs.

3. Within each test function, each algorithm was applied to the same data-subsets.

4. All variables were cleared using the clear all command prior to timing.

Feature generation algorithms require the initialization of several parameters. Where

relevant, details of the initialization of parameters specific to run-time experiments are

discussed in the relevant chapters.

56

Regarding the timing of neural network inference times, the same procedure described

above was used. Where training times are reported, these were provided by MATLAB’s

neural network training functions. MATLAB’s GPU parallel pool was turned off when

measuring training and inference times.

3.9 Common Experimental Methodologies

Several investigative studies are detailed in this thesis, and the experiments undertaken

are, in general, specific to each investigation and documented in subsequent chapters.

However, there are some aspects of the experimental design and methods which are

common, for example the application of the machine learning procedures when training

and evaluating the DNN models of chapters 4, 5 and 6. This section describes these

common procedures. Details relevant to specific investigative studies will be omitted here

and reported in the corresponding chapter.

3.9.1 Training LSTM and 1DTCNN models.

Chapter 4 investigates the application of various features used to train an LSTM

segmenter using an ECG dataset. As this dataset is not used elsewhere in this thesis then

it is not discussed in this section. However, chapters 5 and 6 investigate various features

used to train DNNs capable of segmenting and regressing profile head contours. Hence,

the same head profile contour dataset is used in both chapters. Accordingly, discussions

of the dataset design that are common to both investigations are provided here.

Similarly, some common features are engineered from the head profile contour dataset

during the pre-processing period and applied to both the LSTM RNN and the 1DTCNN

of chapters 5 and 6. Consequently, the following sections summarize: the dataset used

and justification of the design, the features engineered from the dataset and applied to the

model, and finally, the common procedures used to train and evaluate the networks.

3.9.1.1 The head profile contour dataset

The creation of the head profile contour dataset is described in detail in chapter 5. It is

also used for the investigations of chapter 6 and so is outlined here. Figure 3-2 below

57

illustrates an example instance of a head profile contour that has been labelled with

landmarks that delineate the coloured regions.

Figure 3-2: Example of a single segmented head profile contour.

The number of contours in the dataset is 648. Segmented profiles consist of seven regions

as illustrated in Figure 3-2 and Table 3-2.

Class imbalance is an important consideration in pre-processing datasets. The dataset is

mildly imbalanced though not extremely so, with the columella of the nose having the

largest support. Class size ratios for philtrum:columella is 2:3, upper lip:columella 2:3

and lower lip:columella 1:2.

58

Table 3-2: Segmented contour profile.

Since the aim of the segmenter is to accurately identify a small number of landmarks that

remain invariant under transformation and facial expression, then only a subset of the

profile is required. The dataset used was trimmed accordingly, resulting in the number

of n/a labels being reduced to 14, 7 before the gnathion and 7 after the sellion. This means

the longer “n/a” labelled parts of the profile can be trimmed, thus improving the balance

of the data categories.

The chin region is not used in this study as it contains no useful anthropometric landmarks

and in comparison to other regions it also adds to data imbalance. Consequently, it was

removed from the dataset and the segmented contour profile dataset was adjusted

accordingly, thus further reducing dataset imbalance. The resulting dataset consists of

contours of varying length, from approximately 14 sample points up to 155. This dataset

is used to train the networks of chapters 5 and 6. Further information relating to the

generation of the dataset and choices made are specific to chapter 5 and so are not re-

produced here.

3.9.1.2 Model training

The ML models used to segment both the ECG dataset and the head profile contour

dataset is a supervised classifier trained on labelled datasets. For all the investigations of

chapters 4, 5 and 6, training follows the established machine learning approach.

Region (label used) Start Point End Point

n/a (Not defined) 7 samples before the

Gnathion

Gnathion (gn)

Lower lip Labiale inferius (li) Stomion (sto)

Upper lip Stomion (sto) Labiale superius (ls)

Philtrum Labiale superius (ls) Subnasale (sn)

Columella Subnasale (sn) Pronasale (prn)

Dorsum nasi Pronasale (prn) Sellion (se)

n/a (Not defined) Sellion (se) 7 samples after the sellion

59

Features are initially engineered from the relevant dataset and then the dataset is spilt into

a train:test ratio of 70:30. A validation subset is useful when a parametric optimization of

the model is crucial and can also be used during training to prevent over-fitting by using

early stopping as described in chapter 2 and appendix D. Since this study was focused

on the engineering of features suitable for a DNN segmenter, use of a validation subset

was not essential. The DNNs used did not need extensive optimizations since this was not

the focus of the study. The investigation of chapter 4 used a predefined experiment which

did not use a validation subset and so to ensure repeatability of the existing experiment

this constraint was observed also. Additionally, the head profile contour dataset used in

chapters 5 and 6 was small and removing a subset for validation would further reduce the

dataset size. Finally, overtraining was avoided by monitoring training and stopping once

the accuracy of the model plateaued. In summary, all experiments did not use a validation

data subset.

The features used to train and test the DNNs are specific to each investigation, however

the overall procedure is the same. For each engineered feature set input to a model the

following procedure was executed:

• Repeated training runs were undertaken to identify the number of epochs required

for each model to plateau.

• Five runs of each training procedure were carried out and the model with the

median accuracy was used.

3.9.2 Testing and Evaluation of LSTM and 1DTCNN models

The trained models were tested on their related test dataset. The DNN models investigated

in chapters 4, 5 and 6 outputted a sequence of classifications corresponding to each point

on a contour. All models used a softmax output layer corresponding to the number of

classes for each investigation. The softmax function and its use as an activation function

in neural networks is well documented in the literature (Russell and Norvig, 2020) and an

overview is presented in Appendix C.

60

In Chapters 5 and 6 the softmax outputs comprised of 5 classes:

• n/a (not defined),

• lower lip,

• upper lip,

• philtrum,

• columella.

For Chapter 4 the softmax layer had 4 output classes comprised of:

• n/a (not defined),

• P,

• QRS,

• T.

The softmax layer produces a probabilistic result for each class so an argmax operation

was applied to identify the class with the highest probability.

Consequently, a sequence of length, n applied to the trained models would result in an

output sequence of the same length, n but containing a sequence of classifications, one

for each point of the presented sequence.

3.9.2.1 Classifier evaluation

For a given engineered feature or feature combination, each model’s test outputs were

stored in MATLAB arrays and evaluated using the metrics and methods described in

section 3.7.1 as follows:

• For all test sequences, the labelled ground truth values and the model’s predicted

class values were used to calculate a multi-class confusion matrix.

• From this confusion matrix, the following metrics were calculated for each class:-

• The support,

• The recall,

• The precision,

• The F1 score.

• Using these results, the overall accuracy and macro-F1 scores were calculated.

61

Chapters 4, 5, and 6 present and discuss these results, and where relevant, detail any

investigation specific modifications to this method.

3.9.2.2 Regressor Evaluation

This section details the common methods used to evaluate landmark location regression

accuracy in both chapter 5 and 6. Chapter 5 provides full details of the approach used to

initially label ground truth landmark positions and documents the method used to predict

landmark positions from segmented head profile contours.

A predicted landmark position occurs at a transition between regions of a contour. Each

point on a contour represents a pixel position and the contour is a list of adjacent pixels.

The distance between a predicted and a ground-truth contour position is an integer value,

measured in pixels and corresponds to a simple count along the contour line. For

example, if the difference between a ground-truth landmark and the model’s predicted

landmark position is one pixel, then they are adjacent.

The metrics discussed in section 3.7.2 are used to evaluate landmark position. These are

MAE, ME and precision. These results are calculated using the full test dataset. The

precision is calculated using the sample standard deviation. Results are tabulated and

histograms generated to show the distribution of test dataset values. This visualization

was included to identify any bi-modal or related artifacts existing within the test results.

3.10 Summary

This chapter presented and considered the experimental research methods adopted in the

investigations of the following chapters. It provided details of the common methods used

to train and evaluate ML models. The methods identified and detailed here are used to

measure the effectiveness and efficiency of both classifiers and regressors.

In the following chapters, several experiments are undertaken that use the ideas

considered here to evaluate the effectiveness and efficiency of curvature and curve

derivatives as features for a RNN capable of segmenting a uniformly sampled time series

dataset. The best of these features are then selected for further investigations in

subsequent chapters.

62

4 Segmenting uniformly sampled datasets with RNNs

This chapter considers approaches used to efficiently calculate 1st and 2nd order

derivatives and the plane curvature of a uniform time-series dataset (Mathworks, 2020c).

Algorithms are developed that calculate these features efficiently and their effectiveness

in classifying a publicly available time series dataset is evaluated and compared with other

commonly used alternative features derived from that dataset. All features are used as

inputs to a LSTM RNN which is used as the classifier in these experiments.

4.1 Comparison of Gaussian derivatives and central difference methods

In this section the central difference method is compared with the DoG methods for

calculating signal derivatives on unfiltered univariate times series data and the advantages

and disadvantages of both methods are discussed.

The central difference method of calculating derivatives and defined in equation (2-10)

is considered first.

This can be implemented by convolving a 1D sample with the kernel [-½ 0 ½]. This

approach is fast and requires just 2 multiplications and one addition per sample.

However, previously it was noted that sudden step changes as might occur between

sampled points, on an image or univariate waveform, can lead to errors in calculating the

derivative at finer scales and so low pass filtering of a sampled curve is advisable prior to

calculating the derivative (Farid and Simoncelli, 2004; Bouma et al., 2007). This

additional filtering step reduces the speed of the process; however, the central difference

method is still commonly used to calculate derivatives despite the small support of its

kernel and its subsequent sensitivity to noise, even after filtering.

Since an aim of this study is to assess the suitability of derivatives and curvature as

features for regression, classification and segmentation, it is still worth considering the

central difference method since the limitations of the method may be inconsequential

when used as a feature for classification. It may, or may not, be a suitable candidate

feature for a classifier when used alone on the raw data, or with pre-filtered data, or when

used to calculate curvature, so a further analysis is appropriate.

63

To determine this initially, a visual comparison is made between the central difference

method and the Gaussian derivatives discussed in section 2.6.2. First, both methods are

used to calculate curvature then a visual inspection of the resulting curvature graphs is

undertaken to confirm whether or not the central difference method produces results

comparable to the DoG.

 To assess the quality of these methods for computing derivatives a sample dataset is

required. Here the chosen dataset is taken from the publicly available Research Resource

for Complex Physiologic Signals’ QT Database ECG dataset (Goldberger et al., 2000)

which is used throughout this chapter to evaluate the effectiveness of features used to

segment ECG signals and is described in detail in section 4.3.1.

To assess the central difference method of calculating the curvature we load an arbitrary

ECG signal comprising of 250 000 samples and first filter this by convolving it with a

Gaussian kernel with a standard deviation, σ = 3. The kernel is a one dimensional array

of 6σ + 1 = 19 elements, sampled from the Gaussian function.

The curvature is next calculated using equation (2-6), repeated here for convenience:

𝜅 =
𝑥′𝑦′′ − 𝑦′𝑥′′

(𝑥′2 + 𝑦′2)
3
2

This equation requires the calculation of the first and second derivatives of the x co-

ordinate with respect to arc length and the first and second derivatives of the y coordinate

also with respect to arc length. Since this is a univariate curve, the x values increment

uniformly by one for each sample. Hence 𝑥′ = 1 and 𝑥′′ = 0 and this equation simplifies

to:

𝜅 =
𝑦′′

(1 + 𝑦′2)
3
2

64

Next, a random section of the smoothed curve is selected then 𝑦′ and 𝑦′′ are calculated

by using the central difference method and the resulting curvature is plotted and then

visually inspected, see Figure 4-1 (lower).

For comparison, the curvature is then calculated using the DoG (upper), again, with σ=3.

The second derivative is calculated here by applying the DoG twice.

Figure 4-1: Comparison of Curvature Calculations. Upper using Gaussian derivative,

lower using central difference method on a Gaussian smoothed (σ=3) signal.

As can be seen, the lower plot is more sensitive to changes and exaggerates curvature,

despite the signal being filtered with the Gaussian smoothing kernel (σ=3). However, it

does reproduce the curvature characteristics obtained by using Gaussian derivatives and

in particular, minima and maxima of curvature occur at the same arc-length sample

locations. The randomly selected points shown demonstrate this.

Figure 4-2 visualizes the distribution and range of the curvature calculations for each

method using a sample size of 5000. Note the range of the central difference method is

approximately twice that of the Gaussian method and exaggerates changes in curvature.

ECG Curvature using Gaussian Derivatives (σ=3)

65

Figure 4-2: Comparison of Curvature Calculations across 250 000 samples. Upper using

Gaussian Derivative, lower using central difference method.

The conclusion is, the central difference method, despite being applied to a filtered signal

is more susceptible to local changes in curvature due to its small support, compared with

a Gaussian derivative. However, it is still capable of locating important curvature

features. As a result, the central difference method is not discarded here but is

investigated further and its usefulness as a feature for segmenting an ECG signal is

evaluated in later sections of this chapter. Its major disadvantage appears to be the need

to pre-filter the signal before differentiation. The question of whether pre-filtering is

required for the purposes of segmentation is answered in section 4.3.

ECG Curvature using Gaussian Derivatives (σ=3)

66

The next section of this chapter focuses on the efficiencies that can be achieved using the

properties of the Gaussian function, in particular its ability to achieve both filtering and

derivative calculations in one pass. A procedure to efficiently calculate curvature-based

features suitable for training a classifier to segment a time series dataset is then presented.

4.2 Efficient filtering and derivative calculations using Gaussian kernels

Having compared the central difference method with the DoG to calculate derivatives in

section 4.1, this section now focuses on applying Gaussian smoothing to a one-

dimensional time series dataset and the calculation of first and second order derivatives.

In particular, it focuses on how these operations can be combined into a single Gaussian

derivative kernel. Chapter 2 presented the necessary theory required to achieve this and

whilst the focus is on a uniformly sampled time series in this chapter, the procedure is

equally valid when the dataset represents any curve on a two-dimensional plane.

Recall from section 2.6.2 the Gaussian function, 𝐺σ(𝑥) =
1

√2πσ2
𝑒

−
(𝑥)2

2σ2 ,

its first order derivative, DoG =
𝑥

−σ2√2πσ2
𝑒

−
(𝑥)2

2σ2 ,

and the second order derivative, LoG =
(𝑥2 − σ2)

σ4√2πσ2
𝑒

−
(𝑥)2

2σ2 .

Gaussian smoothing and filtering were achieved in one efficient operation by convolving

the DoG with the unfiltered curve, C. This gives the first derivative of the smoothed (low

pass filtered) curve, C′. To obtain the second derivative either convolve the Gaussian

second derivative kernel, that is, the LoG with C, or convolve C′ with the DoG kernel

once more.

To achieve this, first create a Gaussian kernel of the required support by sampling the

normalized Gaussian function as previously described. The kernel size is 6σ + 1 and the

Gaussian is sampled from x= −3σ to +3σ on integer steps. This range is sufficient to

ensure the sampled Gaussian is close to zero at ±3σ. The samples are scaled to ensure

there is no magnification of the signal, that is the kernel elements sum to one. Note the

DoG is the Gaussian function scaled by −𝑥σ−2. As the DoG goes to zero a little more

slowly than the Gaussian, then kernel size may benefit by extending the support to ± the

ceiling of 3.5σ + 1 or higher, depending upon the series length and sample rate.

67

Determining the appropriate support is explored next, when curvature calculation

methods are investigated.

4.2.1 Comparison of numerical and analytical curvature calculations.

Although the curvature equation can be simplified to a univariate function as described

in section 4.1 when samples are taken periodically, the curvature is determined by using

the full curvature equation given by equation (2-6). In this section the first and second

derivatives (with respect to arc length) of each data point will be calculated prior to

completing the curvature calculation of equation (2-6). As a sanity check, the curvature

of a sine wave was determined analytically and then compared with curvature determined

using derivatives calculated using DoG and LoG methods.

The equation for the curvature of a sine wave is derived from the curvature equation (2-6).

After differentiating the relevant terms, it is,

𝑘 =
sin(𝑥)

√(1+𝑐𝑜𝑠2(𝑥))3

(4-1)

A plot of the curvature and the sinewave itself is shown in Figure 4-3 overleaf. The left

figure shows curvature calculated analytically and the right using DoG and LoG.

These plots show that the DoG method re-produces the analytical plots faithfully. MAE

of the normalized range of the analytic and DoG calculations is 0.0077 and the Pearson

correlation coefficient is 0.9997 showing a very close agreement and provides some

confidence that this numerical method gives accurate results.

68

Figure 4-3: Curvature of sine wave: Top- Analytically Calculated, Bottom- DoG used.

4.2.2 Effect of Gaussian derivative kernel size on long data samples

Directly filtering and calculating the 2nd derivative using the LoG is sensitive to the size

of the kernel and the support needs to be sufficient to ensure consistent results when

convolving with a large number of samples. This assumption is examined and illustrated

next. A sampled sinewave of length 5000 is used as this is the size of the feature vectors

used with the LSTM RNN investigated in the next sections. DoG and LoG methods are

used to calculate the curvature with a kernel range from – cutoff up to +cutoff where

cutoff is defined as the ceiling of (sσ + 1). In this experiment the variable, s is set

variously to 3, 3.5, 4 and finally 5; σ is set to a constant value of 2. The results are shown

in Figure 4-4, Figure 4-5 and Figure 4-6. It was observed that the lower support values

of s=3 and 3.5, used with the LoG method introduced an error in the calculated curvature

Sampled sinewave (radians)

Sampled sinewave (radians)

S
am

p
le

d
 s

in
ew

av
e

S
am

p
le

d
 s

in
ew

av
e

Calculated curvature, k, of sin(x) using DoG

Analytical curvature, k, of sin(x)

 __ Curvature
 __ sin(x)

 __ Curvature

 __ sin(x)

69

proportional to the magnitude of the x co-ordinate – see Figure 4-6. At 𝜎 = 2, an s value

of 4 is sufficient to remove the error. This gives a kernel size of 2cutoff +1 = 2*9+1= 19.

 (a)

 (b)

Figure 4-4: Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±3𝜎 + 1,

b) ±3.5𝜎 + 1.

Sampled sinewave (radians)

Sampled sinewave (radians)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

Cutoff = ±(3.5σ + 1)

Cutoff = ±(3σ + 1)

70

(a)

(b)

Figure 4-5: Curvature calculated using Derivative of Gaussian, 𝜎 = 2. (a) s = ±4𝜎 + 1,

(b) s= ±5𝜎 + 1.

Sampled sinewave (radians)

Sampled sinewave (radians)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

Cutoff = ±(5σ + 1)

Cutoff = ±(4σ + 1)

71

 (a) (b)

(c) (d)

Figure 4-6: Curvature of sin(x) calculated using LoG: 𝜎 = 2: a) s = ±3𝜎 + 1;

b) s = ±3.5𝜎 + 1; c) s= ±4𝜎 + 1; d) s= ±5𝜎 + 1.

Figure 4-5 (a) and Figure 4-5 (b) show no changes in amplitude as the magnitude of x

increases. In comparison, the LoG method illustrated in Figure 4-6 (a) and (b) is

susceptible to changes in amplitude for large sample sizes when the kernel width is too

small. This occurs when the derivatives of the Gaussian taking longer to decay to zero

and the independent variable, x has a high magnitude.

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

C
u
rv

at
u
re

 (
1
/(

ra
d
iu

s)

Sampled sinewave (radians) Sampled sinewave (radians)

Sampled sinewave (radians) Sampled sinewave (radians)

Cutoff = ±(4σ + 1) Cutoff = ±(5σ + 1)

Cutoff = ±(3σ + 1) Cutoff = ±(3.5σ + 1)

72

The findings of section 4.2 are twofold. First, the curvature calculated using LoG and

DoG methods accurately reflect curvature calculated analytically for the example

sinewave and second, a kernel size of length 2cutoff +1 where cutoff = 4σ + 1 ensures

there is no amplification of longer signals when calculating curvature using LoG and

DoG.

These findings inform the design and implementation of the experiments in the following

section where an LSTM RNN is trained to segment curves. Its performance is analyzed

using a range of engineered features that include DoG, LoG and curvature.

4.3 Curve segmentation using LSTM RNNs

The review of section 2.8 introduced the LSTM RNN. This kind of neural network was

explicitly developed to work with data-series where dependencies between information

is distributed across the data, often in a causal manner. This neural network therefore

seems an appropriate choice to investigate the efficacy of curvature and derivatives as

input features to a classifier. In this case they will be used to segment a times series,

though, equally, this approach could be extended to a two-dimensional dataset and this is

explored in the following chapter when a head profile contour dataset is segmented.

In this section an LSTM RNN is trained on a range of features and feature combinations

and their effectiveness in segmenting electrocardiogram (ECG) signals is evaluated.

Section 4.3.1 describes the dataset and 4.3.2 discusses feature choices and combinations

in detail. Following on from this in section 4.3.3, combinations of these features are used

to train the network. The trained networks are then tested and the efficacy of the features

and feature combinations are discussed, compared and evaluated.

4.3.1 Dataset Description

The chosen dataset is based upon the publicly available Research Resource for Complex

Physiologic Signals’ QT Database ECG dataset (Goldberger et al., 2000). The derived

dataset consists of 210 ECG recordings sampled at 250Hz and segmented by an

automated expert system (Laguna, Jané and Caminal, 1994). Recordings are taken from

73

105 separate subjects, and each is of approximately a quarter hour each in length. Figure

4-7 (Yochum, Renaud and Jacquir, 2016) shows a segmented EGC signal delineating the

QRS and T regions of an ECG signal. The coloured circles identify the peaks and troughs

of the respective waves and the black circles represent the boundaries of the P, QRS and

T regions.

Figure 4-7: P wave, QRS complex and T wave regions of an electrocardiogram (Yochum,

Renaud and Jacquir, 2016).

This dataset has properties useful for analysing the effectiveness of curvature and plane

curve derivatives. The curvature of these signals also has similar ranges and scales to the

contours derived from the two-dimensional head profile image dataset that forms the

focus of later chapters in this study.

Focusing on the present ECG dataset, the properties of the dataset that are useful here are:

1. Samples are taken from a wide variety of subjects;

2. ECG signals have recognisable regions- the P wave, QRS complex and the T wave

and the aim is, typically, to segment these regions into distinct subsets;

3. these regions are recognisable by their local curvature patterns;

V
E

C
G

(m

V
)

74

4. local signal derivatives have been used in previous work to isolate the regions

(Laguna, Jané and Caminal, 1994);

5. these signals display a wide range of concave and convex curvature.

6. The labelled regions include n/a labels representing a “none-of-the-above”

classification.

Another reason for using this dataset is related to previous work where the ECG dataset

was used to demonstrate the effectiveness of LSTM RNNs (Mathworks, 2020c). The

following discussion documents the reproduction of this work and the features used as

inputs to the LSTM RNN and extends it to evaluate the effectiveness of curvature and

curve derivatives as input features. In the next sections the selection of features for use

with an LSTM recurrent network is discussed, the network architecture and any necessary

modifications are defined, and the results of the classification accuracies are presented.

In addition, the run-time efficiency of the feature pre-processing and generation

algorithms is analysed and compared with the methods used in Mathworks (2020b).

4.3.2 Feature choices

The proposed features used to evaluate the accuracy of the recurrent LSTM network are

enumerated in Table 4-1 overleaf, together with a brief outline of the purpose for selecting

these features. The replication of the results of previous work is important as it will

provide some confidence that the neural network implementation and results are reliable,

and it will also provide a benchmark for assessing the features identified in the table.

Additionally, curvature as a feature is investigated at a range of scales; methods of

calculating both first and second derivatives as features are investigated as is their

effectiveness as input features; and combinations of these features as inputs to the LSTM

are also evaluated.

75

One dimensional input feature vector

 Feature Purpose

1 Raw ECG signal Replicate results of previous work

(Mathworks, 2020c).
2 Band pass filtered signal

3 Normalized, curvature of Gaussian

filtered signal, 𝜎=3

Assess the effect of standard

deviation, 𝜎 filter parameter on

accuracy of network and evaluate

accuracy of curvature as an input

feature.

4 Normalized, curvature of Gaussian

filtered signal, 𝜎=2

5 Normalized, curvature of Gaussian

filtered signal, 𝜎=1

6 Central difference of raw data Evaluate effectiveness of central

difference method derivative as a

feature and additionally evaluate the

effect of pre-filtering signal.

7 Central difference of Gaussian filtered

signal, 𝜎=3

8 First order derivative of Gaussian

filtered signal.

Evaluate its effectiveness as an input

feature.

9 Second order derivative of Gaussian

filtered signal.

Two dimensional input feature vector

10 1st + 2nd order derivatives Evaluate the effectiveness of

combinations of 1st order derivative,

2nd order and curvature as input

features.

11 Curvature and 1st derivative

12 Curvature and 2nd derivative

Three dimensional input feature vector

13 Curvature, 1st, and 2nd derivatives Evaluate the effectiveness of

curvature, the 1st order derivative and

the 2nd order derivative as an input

feature.

40 dimensional input feature vector

14 FSST of raw ECG signal. Replicate results of previous work

(Mathworks, 2020c).

Table 4-1: Proposed features used to evaluate accuracy of a recurrent LSTM Network.

4.3.3 LSTM DNN architecture and training

This section defines the network architecture, the training and testing procedure, and

explains the choice of network parameters. Since the LSTM network replicates the

experiment of Mathworks (2020c), the LSTM RNN architecture is not adjusted except to

alter the number of inputs when combining features.

76

The network comprises of:

• 200 hidden units;

• a fully connected output layer with 4 outputs corresponding to,

o the P segment,

o the QRS complex,

o the T segment and a neutral, none of the above, classification;

• and a softmax layer.

The network is trained using mini-batches with an adam optimiser and a minibatch size

of 45. Shuffle at every epoch is set to true. The initial learning rate is set to 0.01, the

learning rate drop period is set to 3 and the gradient threshold is 1. The learning rate

schedule is set to ‘piecewise.’ Training of the network stops after 10 epochs since, for

each feature or combination of features used, the testing accuracy has plateaued.

For each feature or feature combination we train and test the LSTM RNN using a 70:30

train:test dataset ratio. The entire dataset comprises of approximately 46 million samples.

4.3.4 Results and Comparisons of Network Accuracy

The network architecture parameters remain fixed. A multi-class confusion matrix is

generated for each network/feature combination of a trained LSTM RNN and from this

an overall accuracy figure is calculated along with, for each class, its precision, recall and

F1 score. The support is also stated for each class’s test data. A review of precision, recall,

F1 scores, support and accuracy was provided in section 2.7 and Appendix D and the

results shown here use these metrics to evaluate the classifiers’ success in segmenting the

dataset.

The LSTM network architecture remains fixed except for the occasions where the input

feature vector changes dimension and then the input layer is modified accordingly.

4.3.4.1 Raw ECG signal

The accuracy of the Raw ECG signal forms the benchmark against which the remaining

networks are compared. Table 4-2 summarizes the results. The network has some success

in classifying the regions of interest during the segmentation process with a 70.3% overall

77

accuracy and a macro F1 score of 65.5% indicating that it has moderate success as a

classifier. There is some variation between interclass scores and there is some imbalance

between class sample size (see the support column of the tables for details). The variation

in support is due to the nature of the dataset and its segmentation. For example, the QRS

complex is shorter in duration and so has less samples belonging to this class.

Nevertheless, its individual shape has resulted in the classifier attaining a higher

Precision, Recall and F1 score than the P and T cycles of the ECG.

Table 4-2: Evaluation of LSTM Network with Raw ECG signal as input feature.

4.3.4.2 Bandpass Filtered ECG signal

The filter used here is that defined in (Mathworks, 2020c). It is an IIR bandpass elliptic

filter with 60dB roll-off, 0.1dB ripple, with a pass band between 0.5Hz and 40Hz. The

sample rate of the filtered signal is 250Hz.

Table 4-3 shows an improvement in each class’s F1 score and is probably due to the

removal of base line, low frequency movement due to breathing and a reduction in

sampled noise.

Table 4-3 Evaluation of LSTM Network with Bandpass Filtered ECG as input feature.

ECG Class Recall (%)

TP/(TP+FN)

Precision (%)

TP/(TP+FP)

F1 Score (%) Support

P 39.26 74.56 51.44 1528375
QRS 60.76 79.75 68.97 2039160

T 57.77 78.68 66.62 3686542
n/a 86.97 65.75 74.89 6780923

Overall Accuracy 70.30%

ECG Class Recall (%)

TP/(TP+FN)

Precision (%)

TP/(TP+FP)

F1 Score (%) Support

P 50.46 65.99 57.19 1528453

QRS 72.74 77.50 75.04 2039082
T 75.30 79.60 77.40 3686542
n/a 80.67 73.27 76.79 6780923

Overall Accuracy 74.81%

78

4.3.4.3 Normalized Curvature (𝜎=1) Feature

The curvature feature is calculated directly from the raw ECG signal data and improves

on the bandpass filtered signal as an input feature with an increase in accuracy of 1.94%.

QRS complex and T wave F1 scores differ marginally (about +0.41% and -1.19% for T

and QRS wave respectively) though the P and n/a F1 scores improve by +4.5% and

+3.03% respectively.

This is an improvement. Curvature is calculated using a kernel of length 19 compared

with the bandpass filter that has 46 coefficients. Note that the curvature calculation also

includes within it an automatic filtering operation as described in section 4.2.

Table 4-4: Evaluation of LSTM Network with Normalized Curvature as input feature (𝜎=1).

4.3.4.4 Normalized Curvature (𝜎=2) Feature

When the standard deviation, 𝜎, is changed from 1 to 2 we see a slight decrease in the

overall accuracy of about 0.75%, the slight changes in the P,QRS, T and n/a F1 scores

reflect this. This is important as it emphasizes the correct choice of σ for a time series

signal or, if used in the special domain, the scale of an image.

Table 4-5: Evaluation of LSTM Network with Normalized Curvature as input feature (𝜎=2).

ECG Class Recall (%)

TP/(TP+FN)

Precision (%)

TP/(TP+FP)

F1 Score (%) Support

P 53.84 72.22 61.69 1528453

QRS 71.65 76.18 73.85 2038562

T 73.88 82.19 77.81 3687062

n/a 85.01 75.22 79.82 6780923
Overall Accuracy 76.75%

ECG Class Recall (%)

TP/(TP+FN)

Precision (%)

TP/(TP+FP)

F1 Score (%) Support

P 54.68 69.06 61.03 1528453
QRS 73.68 74.14 73.91 2038562
T 74.21 79.0 76.53 3687062
n/a 82.42 76.20 79.19 6780923
Overall Accuracy 75.98%

79

4.3.4.5 First Derivative of Gaussian Feature

Since the 1st derivative has been used in previous work (Laguna, Jané and Caminal, 1994)

as part of a hand-crafted expert system used to segment ECG signals, then the DoG

feature was expected to perform well. It achieved a surprisingly good accuracy of

85.28%. A significant jump from the baseline ECG raw signal accuracy of 70.3% and,

also, it improves upon the curvature feature. This result, together with the observation

that the DoG both filters and calculates the 1st derivative in one pass, is significant as it

supports the use of the DoG as a feature capable of fast classification of regions of interest

on curves. This finding will be further explored in the context of a 2-dimensional head

profile curve to be investigated in the following chapters.

Table 4-6: Evaluation of LSTM Network with DoG First Derivative as input feature (𝜎=2).

4.3.4.6 First Derivative Using Central Difference Method

Replacing the DoG derivative with the central difference method to calculate the first

derivative gives a good result, though it does not perform as well as the DoG with a

difference of 3.64% in overall accuracy. This is an important finding for this study since,

for this dataset at least, the DoG method improves upon the central difference method.

This could be related to the lack of smoothing. This hypothesis is investigated in the next

section by prefiltering the signal using a Gaussian kernel before the central difference

method is applied.

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 74.15 83.30 78.46 1528453

QRS 86.27 92.60 89.33 2038562

T 82.63 84.87 83.74 3687062

n/a 88.93 83.91 86.34 6780923

Overall Accuracy 85.28%

80

Table 4-7: Evaluation of LSTM Network with Central Difference First Derivative as input feature.

4.3.4.7 First Derivative of Pre-smoothed Signal Using Central Difference Method

Pre-filtering the signal before applying the central difference derivative feature has further

improved the accuracy of the feature and it is now almost identical to that of the DoG

method (see next section). Note there is an additional step required to smooth the signal

prior to application of the central difference derivative. Here the smoothing function was

achieved by first convolving the signal with a Gaussian kernel.

Once more this is a significant finding as the central difference method is worth

considering but only if the dataset used has already been pre-filtered. If it is to be used

in a fast or real-time application and the signal needs to be filtered, then its use should be

avoided and the DoG method considered instead.

Table 4-8: Evaluation of LSTM Network with Filtered Central Difference Derivative as input

feature.

4.3.4.8 The Laplacian of Gaussian Second Derivative Feature

The LoG feature performs equally as well as the first derivative in terms of its overall

accuracy. This is an interesting result as the second derivative describes the

concavity/convexity of curvature whilst the first derivative encodes the degree of

curvature at any particular point on the curve. The implication here is that both first and

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 61.47 78.35 68.89 1528453
QRS 82.33 86.90 84.56 2038562
T 82.27 82.54 82.41 3687062
n/a 85.64 80.33 82.90 6780923
Overall Accuracy 81.64%

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 74.25 83.06 78.49 1528453
QRS 86.83 92.71 89.68 2038562
T 83.77 85.63 84.69 3687062
n/a 89.43 84.77 87.04 6780923
Overall Accuracy 85.91%

81

second derivates, when used together improve the accuracy of the segmentation process.

The next section confirms this hypothesis.

Table 4-9: Evaluation of LSTM Network with LoG Second Derivative as input feature (𝜎=2).

4.3.4.9 Combined DoG and LoG Derivative Features

Using the LoG and DoG as a 2 dimensional input vector to the network produces the overall

best result, improving upon the FSST’s overall accuracy by 2% (see Table 4-12). This

combination of features also outperforms the FSST feature vector in three out of the four, per

class F1 scores. The FSST improves on the P class F1 score, alone, by 0.69%. This result

demonstrates that it is possible to match and improve upon methods that use frequency

domain information as features for classification and that, as demonstrated later, a significant,

order of magnitude speedup in feature generation is possible.

Table 4-10: Evaluation of LSTM Network with First and Second Derivative as input feature

(𝜎=2).

4.3.4.10 Combined Curvature, DoG and LoG Derivative Features

The results of this feature combination are similar to those of the previous section’s DoG and

LoG feature combination, though the accuracy and F1 scores are slightly less across all

classes. This is surprising since adding an additional feature (curvature) was expected to

improve the results. This may be due to the nature of the dataset, however, it is more likely

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 78.20 82.71 80.39 1528453
QRS 88.06 93.28 90.60 2038562
T 80.24 83.92 82.04 3687062
n/a 88.62 84.17 86.34 6780923
Overall Accuracy 85.20%

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 79.23 84.96 81.99 1528453
QRS 89.99 94.01 91.95 2038562
T 85.24 85.02 85.13 3687062
n/a 89.19 86.87 88.01 6780923
Overall Accuracy 87.18%

82

to be due to the curvature calculation combining both the first and second derivatives into a

single scalar feature and therefore losing some salient information. Once again, this result is

important to this study as curvature was originally hypothesized to be a good choice as a

feature for classification.

Table 4-11: Evaluation of LSTM Network with First and Second Derivative, and curvature as

input feature (𝜎=2).

4.3.4.11 40 dimensional FSST Vector Feature

Frequency domain features are also used in time-series classification and image

segmentation. For example, frequencies corresponding to the first 5 peaks in amplitude

of the discrete Fourier transform (DFT) have been used as a multi-dimensional feature

for classifying human activity (Altun, Barshan and Tunçel, 2010). Additionally,

extracting time-frequency features allows a classifier to use local time and frequency

information together. The Fourier Synchrosqueezed Transform (FSST) (Auger et al.,

2013) used here achieves this, but this additional information comes at a cost as, for each

sample, a 40 dimensional vector encoding local time and frequency information needs to

be calculated. The FSST used here produces some excellent results with an overall

accuracy of 85.48%, second only to the DoG and LoG feature combination.

Table 4-12: Evaluation of LSTM Network with 40 dimensional FSST vector as input feature.

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 76.77 85.30 80.81 1528453

QRS 89.38 94.14 91.67 2038562
T 84.57 85.24 84.90 3687062
n/a 89.82 86.21 87.98 6780923
Overall Accuracy 86.96

ECG Class Recall (%)

TP/(TP+FN)
Precision (%)

TP/(TP+FP)
F1 Score (%) Support

P 82.21 83.16 82.68 1528453
QRS 90.45 91.90 91.17 2039082
T 82.09 84.43 83.25 3686542
n/a 86.57 84.67 85.06 6780923
Overall Accuracy 85.48%

83

4.3.5 Summary of overall accuracy and F1 scores

 Table 4-13 summarizes the results of section 4.3 and the plot in Figure 4-8 presents a

visual summary of these results.

 Feature Accuracy Macro-F1 score

1 Raw ECG signal 70.30% 65.48%

2 Band pass filtered signal 74.81% 71.61%

3 Normalized, curvature of

Gaussian filtered signal, 𝜎=1

76.75% 73.29%

4 Normalized, curvature of

Gaussian filtered signal, 𝜎=2

75.98% 72.67%

5 First order derivative of

Gaussian filtered signal.

85.28% 84.47%

6 Central difference of raw data 81.64% 79.69%

7 Central difference of Gaussian

filtered signal, 𝜎=3

85.91% 84.95%

8 Second order derivative of

Gaussian filtered signal.

85.20% 84.84%

9 1st + 2nd order derivatives 87.18% 86.77%

10 Curvature, 1st, and 2nd

derivatives

86.96% 86.35%

11 FSST of raw ECG signal. 85.48% 85.54%

 Table 4-13: Summary table of accuracy and macro-F1 scores.

The overall accuracy is presented but, in addition, the macro F1 score for each class is

also presented. The macro F1 score is used in this summary chart as it represents an

average of all four class F1 scores without weighting, by sample size, for each class.

Thus, it treats each of the multi-class F1 scores equally ignoring the support for each class

and avoiding biases due to unequal class sizes.

It is found that features that include the DoG or the LoG, either alone or in combination,

result in a significant improvement in the classifier’s overall accuracy and macro F1

score.

Additionally, the curvature, which also uses the DoG and LoG, first and second

derivatives as part of its calculation does not perform as well. This is probably due to the

84

curvature combining both the first and second derivatives into a single scalar feature. This

becomes clear when the DoG and LoG features are interpreted as a two-dimensional

vector. Reducing this vector to a scalar value loses the directional information encoded

by the vector.

Figure 4-8: Summary of Macro F1 and Overall Accuracy.

The choice of classifier would change the results and no-doubt, further adjustment of the

architecture and tuning of the LSTM RNN attributes will also improve the accuracy of

the network for all the pre-processed features. Bear in mind, the purpose here is to assess

the suitability of the various features as inputs to a given classifier so no further

modification of the classifier was attempted. Additionally, this study is based on just one

existing dataset. Consequently, more work using a range of datasets is needed to assess

the effectiveness of curvature, DoG and LoG used in time series segmentation.

4.3.6 Runtime Results and Comparisons

Having evaluated the accuracy of the segmentation network, the focus of this section now

becomes the evaluation of the execution time of the pre-processing algorithms used to

generate the input features for the LSTM network.

6
5

.4
8

7
1

.6
1

7
2

.6
7

7
3

.2
9

7
9

.6
9

8
4

.4
7

8
4

.8
4

8
5

.5
4

8
4

.9
5

8
6

.3
5

8
6

.7
7

7
0

.3
0

7
4

.8
1

7
5

.9
8

7
6

.7
5

8
1

.6
4

8
5

.2
8

8
5

.2
0

8
5

.4
8

8
5

.9
1

8
6

.9
6

8
7

.1
8

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

M
a

cr
o

 F
1

 s
co

re
 a

n
d

O
v
er

a
ll

 A
cc

u
ra

cy
 (

%
)

Features

Summary of Macro-F1 and Overall Accuracy

Macro F1-score: Overall Accuracy

85

4.3.6.1 Timing procedure

The timing procedures used here are detailed in the methodology chapter, section 3.8.

The features evaluated in this section had their parameters initialized as follows.

For these timing tests σ was set to 3, both the 1st and 2nd derivative’s kernel size was set

to 27 (cutoff =4*σ+1, kernel length = 2*cutoff +1), there were 48 filter coefficients used

in the bandpass filter and the datasets used were of size 112 000, 56 000 and 28 000

samples. The results of these tests are shown Table 4-14.

Table 4-14: Algorithm execution times to process dataset of size N.

These results are then further combined together where necessary. For example, the

pre-filtered, central difference derivative feature’s execution time is obtained by adding

the filter’s execution time to the central difference’s execution time (284.9μs + 2.12ms =

2.4049ms), and so on.

From the table and the discussion of these algorithms the time complexity of the 1st and

2nd derivative features is O(nm) where n is the size of the dataset and m is the kernel size,

but since n>>m then the complexity is O(n). The curvature algorithm calculates both the

first and second derivatives and uses both square roots and 2nd and 3rd powers in the

calculation which accounts for a slower run-time. The timings show an approximate

complexity of O(n) for the derivatives and curvature.

Note MATLAB’s gradient() function was originally used to calculate the derivative using

the central difference algorithm, however this function appeared to run very slowly in

comparison the DoG and LoG algorithms. Consequently, the central difference algorithm

Dataset Size, N 112 000 56 000 28 000

1st Derivative (DoG) 188.4μs 103.6μs 57.8μs

2nd Derivative (LoG) 186.0μs 100.7μs 57.1μs

1st Derivative (Central Difference method) 284.9μs 124.5 μs 67.3 μs

Filter 2.12ms 1.08ms 559.8μs

Curvature 3.72ms 1.92ms 973.6μs

FSST 1.37s 684.7ms 340.9ms

86

was re-coded and the times recorded in Table 4-14 reflect this. Nevertheless, given the

central difference method’s smaller kernel size, the result here appears to be slower than

expected (although approximately the same as the DoG and LoG methods). The central

difference method coded here could be optimized further.

4.4 Estimating the effectiveness of the feature pre-processing

Choosing a feature engineering algorithm for fast and accurate classification is often a

tradeoff. Ideally the fastest algorithm is not the most accurate and vice versa. To help

guide the engineer we summarize the timing and overall accuracy results here as a plot in

Figure 4-9.

The top right of the plot is where one would find the ideal feature pre-processor. The

higher the point is located, the better the accuracy and the further to the right the faster

the algorithm runs. To achieve this, accuracy was plotted against the normalized

reciprocal of the run-time.

Note the FSST algorithm is not shown as its runtime is several orders of magnitude greater

than the other algorithms.

Figure 4-9: Overall accuracy of the feature pre-processing algorithms vs their run-time speed

measured as reciprocal time.

87

A measure of the algorithm’s quality would then be the Euclidian distance, given by the

L2 norm and called here, QL2.

𝑄𝐿2 = √𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 + 𝑁𝑜𝑟𝑚𝑆𝑝𝑒𝑒𝑑2 (4-2)

Table 4-15 shows the QL2 for the feature preprocessors of Figure 4-9. Ultimately the

choice depends upon the application.

Table 4-15: Measure of each feature pre-processing’s QL2 plotted in Figure 4-9.

We could improve upon this quality estimate by including an additional parameter to

encode the perceived importance of accuracy or speed, let us call this parameter the

relevance, r. It acts to generalize the quality estimate of the algorithm used. We can

modify the QL2 to incorporate this. Equation (4-3) shows how we might do this.

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑄𝐿2 = √(2(1 − 𝑟)𝑠)2 + (2𝑎𝑟)2 (4-3)

Here, s is the execution speed, a is accuracy and r is the relevance parameter that ranges

from 0 to unity. Table 4-16, Table 4-17 and Table 4-18 show the sorted adjusted QL2 for

r = 1, r = 0 and r = 0.5. When r = 0 the accuracy is ignored, and the execution speed is

used to rank the algorithms.

Ranking QL2 Feature

1 131.37 2nd deriv (LOG)

2 130.51 1st deriv (DoG)

3 117.74 1st deriv (C Diff)

4 98.52 LoG and DoG together

5 87.15 DoG, LoG and Curvature

6 86.39 1st deriv (C Diff) filtered

7 76.97 curvature(σ = 1)

8 76.20 curvature(σ = 2)

9 75.50 IIR filtered

88

Ranking

Adjusted

QL2

Algorithm

Relevance = 0.5

1 1 2nd deriv (LOG)

2 0.993399 1st deriv (DoG)

3 0.896251 1st deriv (C Diff)

4 0.749961 LoG and DoG

together

5 0.663436 DoG, LoG and

Curvature

6 0.657599 1st deriv (C Diff)

filtered

7 0.585915 curvature(σ = 1)

8 0.580071 curvature(σ =2)

9 0.574713 IIR filtered

Table 4-16: Ranking Algorithms as a

function of the relevance factor, r = 0.5.

Ranking

Adjusted

QL2

Algorithm

Relevance = 0

1 1 2nd deriv (LOG)

2 0.987889 1st deriv (DoG)

3 0.84844 1st deriv (C Diff)

4 0.459003 LoG and DoG

together

5 0.102001 IIR filtered

6 0.091054 1st deriv (C Diff)

filtered

7 0.058648 curvature(σ = 1)

8 0.058648 curvature(σ = 2)

9 0.058648 DoG, LoG and

Curvature

Table 4-17: Ranking Algorithms as a

function of the relevance factor, r = 0.

 Ranking

Adjusted

QL2

Algorithm

Relevance = 1

1 1 LoG and DoG together

2 0.997482 DoG, LoG and Curvature

3 0.985432 1st deriv (C Diff) filtered

4 0.978206 1st deriv (DoG)

5 0.977288 2nd deriv (LOG)

6 0.936453 1st deriv (C Diff)

7 0.880362 curvature(σ = 1)

8 0.87153 curvature(σ = 2)

9 0.85811 IIR filtered

Table 4-18: Ranking Algorithms as a function of the

relevance factor, r=1.

89

Notice the algorithms are ordered by execution speed alone. When r = 0.5 both accuracy

and execution speed have equal relevance and the rankings match those shown in

Table 4-15. When r = 1 the execution speed is ignored and the accuracy is used

exclusively to rank the algorithms. The results shown are normalized. Using the adjusted

quality distance estimate outlined here we can see that the calculated distance when r is 0

has a wide range which reflects the wide range of execution speeds and with r = 1 we see

the range now reflects that of the accuracies of the pre-processors. Note these results

occupy the top three quarters of the accuracy range, that is, they all have accuracies

around 75% and above.

Since this study is investigating approaches to fast and accurate segmentation, these

results show that DoG and LoG based features are ranked highly even when there are

changes to the application requirements, for example if hardware and processor choices

limit the executions speed, then one should still be considering LoG and DoG based

features. As an aim of this study is to identify and develop fast features that are also

accurate classifiers then, r is set to 0.5 to reflect their equal relevance.

This measure can also be useful in specifying a system’s requirements as weighting a

requirement’s importance in a project is often a qualitative decision so using a quantitative

method to rank requirements based on measurable attributes and perceived relevance can

simplify decision making.

4.5 Discussion and Conclusions

The accuracy of the network depends very much upon the chosen features. The raw ECG

signal alone shows an accuracy of 70.3%, but pre-processing of the raw ECG signal has

been shown to be worthwhile. Using the filtered signal as an input feature to the LSTM

RNN provides an overall accuracy increase of (74.81 -70.3)/70.3 = 4.51%, however use

of the curvature feature improves on this again, with an increased accuracy of (75.98 -

70.3)/70.3 = 5.68%. For this additional 1.17% improvement there is a time penalty, as

the curvature takes approximately 1.75 times as long to calculate as the filtered signal.

Note the curvature algorithm contains within it an inherent smoothing due to the LoG and

DoG operations.

90

Using the derivatives of the ECG signal as input features to the LSTM network provides

the best performance and efficiency improvements. Using the LoG to calculate the

filtered second derivative provides an overall accuracy of 85.28%, an impressive

improvement of 85.28-70.3/(70.3)=21.31% over the use of the raw signal as an input

feature. Notably, this algorithm runs over 9 times faster than the filter pre-processor and

17 times faster than the curvature calculation. The second derivative performs equally as

well as the first derivative in terms of speed and overall accuracy. The filtered first and

second derivatives of the signal match the overall accuracy of the FSST of the raw signal

input feature. Finally, when combined together the LoG and DoG features provide an

improvement in accuracy of (87.18 – 70.4)/70.4 = 23.87%. This outperforms the FSST

by 2%.

The FSST 40 dimensional vector does show some good results. As discussed, it is a close

second to the combined LoG and DoG input feature, but the cost in run-time performance

is excessive. The FSST feature extractor is about two orders of magnitude slower than

all the other candidate feature pre-processing algorithms analysed here.

Looking at the individual classes, the FSST, LoG and DoG features have similar F1 scores

with little separating them. In general, for all features used as input to the LSTM RNN,

the P segment remains the most difficult to classify. In this regard, the FSST feature

performs marginally better, however the input feature is a 40-dimensional vector and

takes considerably more time to calculate than any of the other input features.

The curvature, whilst performing better than both the raw and filtered features, was out-

performed by the first and second derivative features either alone or together. This is

hypothesized to be due to loss of relevant information when both first and second

derivatives are combined into a single scalar value.

Figure 4-9 allows the reader to visually compare the algorithms by their attributes

(accuracy and execution speed), however, where a simple quantitative estimate is required

the QL2 and adjusted QL2 formulae of (4-2) and (4-3), respectively, may be helpful. The

example rankings shown in Table 4-16 to Table 4-18 give a simple quantitative label that

reflects the pre-processors’ suitability for the task, given the selected relevance, r,

indicating the importance of the feature’s accuracy and speed attributes.

91

In summary, the derivatives of ECG signals are good indicators of the onset of the

P/QRS/T complexes, accurately segment these regions and are fast to calculate. Using

both the first and second derivatives as input features together in an LSTM RNN

segmenter-classifier produces the best classification accuracy results of all the input

features evaluated here and outperforms the second-best classifier’s execution time by

two orders of magnitude. Should either accuracy or execution speed relevance change

due to project considerations, then DoG and LoG based features are still excellent choices.

The choice of classifier would change the results and adjusting the architecture and tuning

the LSTM RNN attributes will also improve the accuracy of the network for all the pre-

processed features. Bear in mind, the purpose here is to assess the suitability of the various

features as inputs to a given classifier, not to optimize the classifier alone.

Additionally, this study is based on just one existing dataset. Consequently, more work

using a range of datasets is needed to assess the effectiveness of curvature, DoG and LoG

derivatives used in time series segmentation.

In the next chapter we consider segmenting and regressing head profile contours extracted

from a 2D binary image using the ideas developed here for the uniformly sampled,

univariate ECG dataset.

92

5 Segmenting face profile contours with RNNs

This thesis proposes novel methods to segment and regress co-ordinates on face contour

profiles. In the previous chapter fast and effective feature processing algorithms were

developed that could segment a univariate time series dataset. In this chapter these

methods are developed further with the aim of designing, implementing and evaluating a

more sophisticated process capable of segmenting face profiles and regressing landmarks

accurately, given an unseen image. To achieve this, chapter 4’s feature processors and

underlying algorithms are extended and applied to a plane curve, consisting of a list of

two-dimensional co-ordinates that represent sampled points on a face profile’s contour.

These contours must first be extracted from a 2.5D image dataset. This chapter also

includes a description of the profile image dataset used and the creation of a new dataset

of labelled, profile contours.

The outline of this chapter is as follows. An overview of the method and procedures

involved is outlined first. The image dataset used in this study is introduced in section

5.2. Section 5.3 describes the method and apparatus used to pre-process and label the

dataset. Section 5.4 details the process of extracting the profile contours. Sections 5.5

and 5.6 explains how the manual landmarking accuracy can be automatically improved.

Section 5.7 details the method used to segment the dataset and section 5.8 details the

design, implementation, training, and testing of a suitable classifier used to segment

profile images. 5.9 investigates how changes to the LSTM network can improve accuracy,

5.10 demonstrates how landmark positions can be regressed using the segmented dataset

and 5.11 evaluates the runtime efficiencies of both LSTM networks. Finally, section

5.12 discusses results and presents conclusions of this chapter.

5.1 Procedure and toolchain

This section identifies the process required to achieve the aim of segmenting and locating

landmarks on a face profile contour. Initially, a suitable profile image dataset was

identified, reviewed and pre-processed to remove unusable images (see section 5.2).

Next, a software tool was developed to automatically extract profile contours from

images. The curves extracted from the profiles were no longer a set of uniformly sampled

93

univariate time series as was considered in the previous chapter, but instead represented

a plane curve as sampled points with each point represented by a pair of co-ordinate

values. Following on from this, the RGB image was manually annotated by an expert to

produce a list of profile landmarks associated with each image.

At this point the dataset now comprised of:

1. a set of profile images,

2. a set of corresponding landmarks,

3. a set of corresponding profile contour curves.

Next, a second software tool was created that could automatically adjust landmark co-

ordinates on the profile contours with the aim of reducing positioning errors. To achieve

this, a novel process used the curvature of the profile contours to guide the positioning of

the landmarks. At this point the extensions to the dataset consisted of a set of 2-

dimensional vectors of x and y co-ordinates describing contour curves of face profiles

together with labelled anthropometric landmarks. This dataset now stands alone and can

be used to both train and test a suitable classifier or segmentation process in its current

form.

The previous chapter described the successful application of an LSTM RNN to segment

an ECG dataset. Since this method was able to segment data with good accuracy then it

would make sense to implement a similar experiment using the labelled profile dataset.

Consequently, a final pre-processing step was required to modify the contour profile

dataset. This step involved segmenting the contour profiles into regions of interest such

as upper and lower lips, chin, and so on. In order to achieve this, a further bespoke

application was developed that used a profile contour and its associated landmarks to

segment the regions of interest. From here the extended and processed dataset could be

used to train and test a suitable classifier to segment face profiles and regress landmark

position co-ordinates.

The final stage of the procedure to automatically segment face contour profiles is the

training and testing of a suitable LSTM RNN. This is detailed in sections 5.8 and 5.9 of

this chapter. Regression of landmarks is detailed in section 5.10.

94

In summary, the method and software tools outlined above extend the original dataset and

so create a new stand-alone dataset. The extensions comprise of:

1. an anthropometrically labelled set of 2D RGB images,

2. an anthropometrically labelled set of face profile contours,

3. an anthropometrically labelled set of segmented face profile contours.

This dataset is then used to train and test an LSTM RNN. These results are then analyzed

and discussed.

5.2 The Notre Dame J2 Dataset

In order to segment a profile and regress landmark co-ordinates a suitable classifier needs

to be trained on a dataset of labelled face profile contours. A review of publicly available

datasets failed to identify any useable, existing datasets; however, one candidate dataset

was identified that could be extended with sufficient effort. The criteria used here to

select an appropriate database was twofold:

1. It had to be a “real-world” dataset, that is, the images captured were not pre-

processed and any flaws or “holes” in the images must not have been removed.

The raw un-processed nature of such a dataset is an advantage for two reasons.

First, it would be beneficial during the supervised ML training process used in

this study, improving the generalization capability of the models created.

Additionally, such a dataset would be representative of images captured in a

practical, real-world scenario.

2. Both RGB image and corresponding depth image data was required. This was

essential for two reasons. First the manual landmarking procedure required access

to the 2D images. For example, locating the labiale superius requires

identification of the vermilion of the upper lip, where the red of the lip tissue meets

the philtrum. A secondary requirement related to this is the potential to identify

the tragus and exocanthion. This would be useful in future work as an alternative

method to quantify head posture angle.

The dataset selected was the Notre Dame University ND-Collection J2 Ear profile dataset

(Yan and Bowyer, 2007), consisting of 2413 RGBD (with corresponding two dimensional

95

RGB) head profile images with the ear visible. Each scanned head profile image

comprises of one colour, RGB image of size 640x480 pixels and one 2.5D scan of size

640x480 pixels. Image data was acquired with a Minolta Vivid 910 range scanner

(Minolta, 2001).

The Minolta Vivid 910 is a 3D scanner with camera that uses light sectioning

triangulation to acquire depth information and has been used in several other 3D head and

face detection and recognition studies (Phillips et al., 2005; Liang et al., 2008). Examples

of the raw data are shown in Figure 5-1. The left image, (a) is a two-dimensional left

profile image and the right, (b) is the corresponding three-dimensional depth image. The

subjects are positioned approximately 1.5 metres from the camera.

The first half of the dataset was used in this study. It composed of 985 images (both 3D

scans and 2D colour images) of 127 individuals. All were left profile images taken at

different times and with slight variations in composition, such as minor changes to the

profile pose or translations in camera framing.

The right depth image of Figure 5-1 (b) shows depth coded as a grey-scale (range 0 to

255) with pixels a lighter shade of grey indicating objects closer to the camera and darker

pixels, objects further from the camera. Note where hair has scattered or attenuated the

light beam towards the top of this image resulting in no reflected rays being detected by

the sensor. There is also evidence of scattering or attenuation near the upper eyelid. On

the left image, near the eye, there is evidence of separation of the RGB colour

components. Scanning of an object using this device can take over two seconds so

subjects are expected to avoid any movement during the capturing process. Failure to do

this can result in a misalignment of the 2D and 3D images. During the landmarking

process, it was observed that images with excess colour separation tended to correlate

with landmarks offset from the extracted contour. As the contour was derived from the

3D image, it is assumed movement of the subject during image capture was to blame.

96

(a) (b)

Figure 5-1: Example images of the ND- N2 Ear collection dataset (Yan and Bowyer, 2007).

(a) 2D colour image; (b) 3D depth image.

The majority of the images are of useable quality, however several are poorly framed

with, for example, parts of the profile cropped, poorly oriented head pose or an arm

occluding part of the profile. Facial hair may also occlude part of the profile in some

images and, as shown above, scattering or attenuation artifacts often corrupt the 3D

image. This limited the usable contour range for this study to be from the gnathion up to

the sellion.

The dataset stored RGB images and 3D depth information in separate folders with

corresponding images linked by a common filename but different file name extension.

Unfortunately, a significant minority of these files were mis-named which reduced the

number of useable images in the study. Section 5.8.1 provides details of the final profile

contour dataset derived from the Notre Dame N2 dataset.

5.3 Labelling landmarks

An important goal of this study is the accurate estimation of head posture. In order to

achieve this using profile contouring it is sufficient to efficiently and accurately identify

a small number of landmarks to act as reference points for measurement. Anthropometric

landmarks are an attractive option since they are, by design, easy to identify and have

obvious characteristics, particularly high curvature. As previously noted, they are also

well studied and there are significant databases of anthropometric measurements of the

face that include the mean and variance of relative distances between landmarks. These

97

statistics may be helpful to identify landmarks once the profile has been segmented.

Several landmarks are concentrated in a small part of the head profile, between eye level

and the chin. Not all are needed to achieve the goal of measuring head posture, it is

sufficient to select three or four of these. They could then be used together with the tragus

to measure the rotation of the head about the tragus. Alternatively, they could be used

with segmented regions of interest to describe the whole face pose.

Selecting stable landmarks for measuring head posture ensures measurements are

repeatable and accurate. Stable here means that a landmark will remain unchanged when

the facial expression changes or when the head rotates in the frontal axis about the tragus

in the sagittal plane. Three landmarks that have these properties are the sellion (where the

eyebrows meet), the pro-nasale (tip of the nose) and the sub-nasale (where the

cartilaginous lowest point of the nose meets the flesh of the upper lip).

When a neutral, unchanging expression is adopted then other landmarks can be used as

reference points too. For example, the stomion (contact point where closed lips meet),

the labiale inferius (in profile this corresponds to lower vermilion lip), the labiale superius

(in profile this corresponds to upper vermilion lip) and the sublabiale (the midpoint of

the labiomental groove). Where a landmark occurs near fleshy areas such as the gnathion

at the bottom of the chin, there may be movement of that landmark under gravity so

measurements may be unreliable if the subject is measured in different positions, for

example in the upright then supine positions. For this reason such landmarks were

excluded.

5.3.1 Chosen landmarks

The review of craniofacial anthropometric regions and landmarks in section 2.9.2

together with a visual inspection of the images in the Notre Dame dataset indicates the

profile below the eye including the pronasale, the subnasale, the labiale superius, the

stomion and the labiale inferius are good canditates for localisation since they have the

characteristics discussed above and are typically unoccluded. Additionally, as already

observed, the three-dimensional scans of this dataset have few deleterious artifacts such

as scattering and attenuation in this region. All ears of this dataset are clearly visible so

the tragus can be included as a landmark to identify too, since this will feature in future

98

work and acts as a point of rotation as discussed in section 2.9.3. Figure 5-2 shows these

anthropometric landmarks applied to an example profile image from the dataset.

gl: glabella, between the

eyebrows;

se: sellion, deepest point between

nose and forehead but not the

nasion;

exc: exocanthion, outer canthus

where eyelids meet (termination

of the white part of the eye);

prn: pronasale, tip of nose;

sn: subnasale, where nose joins

the lips;

ls: labiale superius, in profile this corresponds to

upper vermilion lip;

sto: stomion, contact point where closed lips

meet;

li: labiale inferius, in profile this corresponds to

lower vermilion lip;

sl: sublabiale, the midpoint of the labiomental

groove;

gn: gnathion, the bottom of the chin;

tr: tragus or tragion.

Figure 5-2: Profile image together with labelled anthropometric landmarks.

5.3.2 Landmark capturing software

Landmarking was done in two phases. First images were manually landmarked. After all

images had been landmarked and checked by a second expert a further process was

99

applied to automatically improve the accuracy of the landmark locations. This second

process is detailed in section 5.5. The following discussion refers to the initial, manual

landmarking process.

In order to successfully annotate the images a suite of software tools was developed.

These tools were to be used to landmark images. The essential requirements for this

software are identified in Table 5-1, together with justification for each requirement.

Table 5-1: Landmarking software requirements.

Requirement

Number

Requirement Description Justification

1 View the dataset. Each image requires initial

screening by the land-marker

prior to landmarking.

2 Manually annotate the RGB

image with the relevant

landmark label selected from a

list. Edit and adjust incorrect

landmark positions should the

need arise.

Once selected, each image needs

labelling. The annotator needs to

have the option to adjust

landmark positions until satisfied.

3 Save:

i) a list of landmark positions

as a list of pairs of co-

ordinates corresponding to

pixel positions within an

image,

ii) the landmark names,

iii) a reference to the image file

name.

Saved annotations should be kept

in a separate database to protect

the original image and ensure the

annotation database can be stored

and distributed independently.

4 Review annotated images and/or

adjust incorrect landmark

positions should the need arise.

The option to update the

database must be provided.

For quality purposes, the

annotator must be able to revisit

saved image annotations and data

to both view and edit landmark

positions until the correct

position has been located.

5. No images should be changed.

Instead, the facility to overlay

the landmarks on the
corresponding RGB image

should be provided.

In order to adhere to the licence

agreement, the original dataset

must not be corrupted or altered.

100

Landmarking was undertaken by a local trained expert over a period of several months.

Images were randomly chosen from the first half of the Notre Dame dataset. Overall, 985

images were labelled.

Labelling images manually is both time consuming and error prone. In order to minimise

errors, the annotator was trained prior to beginning the process. A subset of images and

landmarks were then re-checked and any necessary adjustments were made to incorrectly

positioned or missing landmarks. Despite this additional step in quality control, the

landmarking process cannot produce perfect results. There will always be some variance,

although, as reviewed in section 2.9, anthropometric measurements using direct and

indirect methods such as photogrammetry are reliable. A sample result of the landmarking

process is shown in Figure 5-2.

5.4 Extracting Profile Contours

There are several approaches to extracting contours within an image. Previous chapters

identified classic computer vision algorithms for segmentation and edge detection such

as Canny edge detection, watershed algorithms and so on (Canny, 1986; Meyer and

Beucher, 1990; Woods and Gonzalez, 2017). The advantage of the Notre Dame dataset

is that it includes a 3D depth image which can be used to extract relevant parts of the

profile efficiently. Using a 3D depth image to extract a contour has other advantages too.

Camouflaging or skin colour has no effect on the method, neither does changes in lighting

shade, contrast, or backlighting.

Section 2.4 explained how a 3D image can be sectioned along a plane using a plane

equation and plane-point distance tests. The resulting curve intersecting this plane then

represents the head profile contour. For the images used in this study a simple camera to

point distance depth test can be employed. The plane of interest here would have its

normal parallel with the z-axis and pointing out of screen space towards the viewer.

Although this is sufficient for this study, the 3D dataset used here can also be used to

extract contours from profiles using planes that are not parallel with the camera’s viewing

plane. This could be useful should a head profile be slightly rotated about the vertical y-

axis. In this study, this is not investigated further, leaving it as future work.

101

Often, and as is the case with the Minolta scanner, a binary mask is encoded as part of the

file standard used. This can be used to extract the profile and determine the contour with

no further pre-processing necessary. This is the method used here with the Notre Dame

dataset. The 3D depth ASCII files were read, the masks converted to a suitable binary

image using bespoke C++ and MATLAB scripts and stored in a convenient format, a .png

file here.

These binary files were examined manually to determine the quality of the profile,

focusing on the region between the eye and chin. Of the 2436 NDJ2D Dataset images

converted, 67 images had unusable contours and some poses were not usable, for example

part of the head profile was cropped. A few hundred images were incorrectly named,

hence the correspondence between an RGB camera image and its associated scan was

incorrect, reducing the available useable image samples. Figure 5-3 shows an example

profile image of the subject shown in Figure 5-2 above. Note the artifacts due to

attenuation and scattering. Once the 3D images had been converted to a 2D binarized

format, the next phase was to find the profile contour.

Figure 5-3: Binarized Image profile of previous image.

The algorithm selected is Moore’s algorithm described in section 2.4. Images were

opened and read, an outline border was placed around the image and a starting point was

found by scanning from left to right/top-to bottom until an outline pixel was detected.

The algorithm assumes pixels are 8-connected and walks the contour in a clockwise

102

direction. The framing prevents the contour moving beyond the image extremities. The

result of this process is illustrated in Figure 5-4.

Figure 5-4: Illustration of the contour found using Moore’s algorithm applied to the binary

image of Figure 5-3.

As the contour algorithm progresses, the contour is stored as a vector of (x, y) co-ordinates

representing the whole contour. Only a subset of this contour is required. Extracting this

region is achieved initially by empirically selecting a sub-set of co-ordinate values and

later, once the dataset was labelled, by selecting a start and end point identified as the

nearest co-ordinate to the gnathion and sellion, respectively. This contour subset, together

with the manually labelled dataset further extends the Notre Dame dataset. Once the

subset of the contour has been identified and cropped, it is saved along with the file name

of the processed image. This file name then acts to uniquely identify the contour and

links to the generating image. This final dataset can now be input to the procedure to

automatically adjust the manually labelled dataset.

5.5 Adjusting Landmarks

A significant finding of this study is that it is possible to automatically improve the

accuracy of the landmarking process by adding a further procedure. Other researchers

have also attempted to use various approaches based on the concavity and convexity of

curvature to either identify landmarks directly or improve the accuracy of manually

labelled landmarks (Efraty et al., 2009). These ideas were reviewed in section 2.5. The

approach used here differs from these in that the curvature is calculated at all points and

103

relevant maxima and minima are identified based upon their locality to the manually

labelled landmark.

The approach is based on first observing that the3D dataset has additional 3D information

that has not yet been used. In particular, the contour profile corresponding to each RGB

2D image is available for further processing. Next, we recognise that the landmarks

identified above have useful properties related to the information contained within the

contour. In particular, these landmarks are placed at points of high curvature, and this

means that two additional and automatic steps can be added to the landmarking process

to produce a semi-automatic method. First, any manually labelled landmark that does not

sit exactly on the head profile contour can be automatically placed on the profile by

selecting the nearest contour point.

A second enhancement would be to then calculate the curvature of the contour and move

the point to the nearest maxima or minima of curvature. Whether the point is moved to a

maxima or minima depends upon the particular landmark being moved. If the landmark’s

curvature is convex, then the point is moved to the nearest significant maxima and if

concave it is moved to the nearest significant minima. The remainder of this section

details this automatic landmark adjustment process, beginning with the extraction of the

profile contours from the image datasets.

The image size is 480x640. To place this in context of a typical profile from the dataset,

the number of sampled pixels required to represent the profile contour from the sellion

down to the gnathion is about 270 to 300 pixels depending upon the composition of the

scene. This results in a rather jagged contour as shown in Figure 5-5a which is a close up

taken from the synthetic profile head mockup shown in Figure 5-5b.

Applying derivative and curvature operations directly to this contour can lead to errors as

described in section 2.6 as step changes at the pixel level within a sampled contour lead

to errors in calculating the derivative at finer scales and so low pass filtering of a sampled

curve is advisable prior to calculating its derivatives (Farid and Simoncelli, 2004).

104

 (a) (b)

Figure 5-5: Synthetic profile head mockup (b) and a close up (a).

The previous chapter had demonstrated that the Gaussian function has the necessary

properties to both smooth and find derivatives efficiently in one or two dimensions. A

further attractive feature of the Gaussian kernel is that of separability. This can be taken

advantage of to efficiently smooth the contour. Also, when calculating derivatives, as

will be needed when calculating curvature, both smoothing and differentiation can be

achieved in one pass as described and used in chapters 2 and 4.

To illustrate the effect of filtering the profile contour, a Gaussian kernel was applied

separately to each co-ordinate of a profile contour extracted from a binary image. A

Gaussian kernel was applied to the x co-ordinates of the contour, then separately to the y

co-ordinates. Figure 5-6 shows the resulting close-up of the smoothed contour

superimposed upon the raw, unfiltered profile contour. The standard deviation, σ = 2.83

pixels here.

105

Figure 5-6: Smoothed contour (red) overlayed on raw sampled image (blue).

Although this demonstrates the separability of the Gaussian kernel well and shows it is

possible to effectively smooth the raw sampled image, it is important to emphasize that

the image contours were not pre-smoothed. Instead, the ideas developed in Chapter 2 are

applied, as they were in Chapter 4, to make the calculation of curvature more efficient by

combining both smoothing and derivative calculations into one convolution using either

the DoG or LoG.

Here, a recapitulation of the DoG and LoG process to calculate first and second

derivatives, and curvature is offered in the context of a contour curve comprising of a list

of (x,y) co-ordinates. The procedure used is shown in the following pseudocode:

function CalcCurvature(𝜎,contour) returns contour_curvature

DoGKernelWidth ← 8𝜎 + 1

DoG ← InitializeDoGKernel(DoGKernelWidth)

LoGKernelWidth ← 9𝜎 + 1

LoG ← InitializeLoGKernel(LoGKernelWidth)

contour_dx ← Convolve(DoG, contourXcoords)

contour_d2x ← Convolve(LoG, contourXcoords)

contour_dy ← Convolve(DoG, contourYcoords)

contour_d2y ← Convolve(LoG, contourYcoords)

contour_curvature ← Curvature(Contour_dx, Contour_d2x, Contour_dy, Contour_d2x)

return contour_curvature

Pronasal (nose tip)

Stomion (where lips meet)

106

Next, a hand-crafted system was developed to finalize the location of the labelled

landmarks based on local maxima and minima. This approach was then used to finalize

the location of the regressed landmarks on all profile contours. This procedure requires

as input: a landmark co-ordinate, L; a list of head profile contour points, P and a

corresponding profile curvature list, C, calculated from P using the curvature algorithm

above.

L is automatically adjusted as follows:

For each L:

1. Search the list P for the contour point nearest L using the Euclidian distance

measure (L2-norm). Let this point on the contour be P[i] where,

 𝒊 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑥

|𝑳 − 𝑷[𝑥]|.

2. Starting at C[i], search C for the nearest significant local minimum or maximum

of curvature (depending upon the convex or concave nature of the given landmark

– see table below). Let j be the index to this located list element. Therefore C[j]

will contain the corresponding maximum/minimum curvature value.

3. Let L = P[j].

With regard to the convexity or concavity of the curvature around specific landmarks,

Table 5-2 lists the landmarks indicating whether each is convex or concave. Note the

notion of convexity and concavity here is arbitrary and depends upon the initial

presentation of the curve to the algorithm.

Table 5-2: Concavity or convexity of face profile landmarks.

Number Landmark Concavity/Convexity

1 Sellion (se) Concave

2 Exocanthion (exc) Not on contour

3 Pronasale (prn) Convex

4 Subnasale (sn) Concave

5 Labiale superius (ls) Convex

6 Stomion (sto) Concave

7 Labiale inferius (li) Convex

8 Sublabiale (si) Concave

10 Gnathion (gn) Concave

107

5.6 Adjustment Algorithm Results and Discussion

Figure 5-7 and Figure 5-8 demonstrate the effect of applying the automatic adjustment

method described above. Notice that the landmarks have successfully been moved onto

the contour and then further adjusted, when necessary to locate the highest point of

curvature that relates to the landmark’s true location.

Figure 5-7: Extracted profile curve curvature overlayed with manually labelled landmarks

(top). Extracted profile curvature and landmarks after adjustment using the automatic process

(bottom).

Landmark

abbreviations

gl glabella

se sellion

exc exocanthion

prn pronasale

sn subnasale

ls labiale

superius

sto stomion

li labiale

inferius

sl sublabiale

gn gnathion

108

Figure 5-8: Extracted profile contour overlayed with manually labelled landmarks (top).

Extracted profile contour and landmarks after adjustment using the automatic process

developed here (bottom).

Landmark

abbreviations

gl glabella

se sellion

exc exocanthion

prn pronasale

sn subnasale

ls labiale

superius

sto stomion

li labiale

inferius

sl sublabiale

gn gnathion

109

Whilst the automatic landmark adjustment algorithm laid out here works well with this

dataset, there are limitations to its use as a method for accurately positioning landmarks

around the chin, lips and nose. In particular, facial hair such as moustaches and beards

may cause problems if they occlude a landmark. Naturally, this is also a problem when

manually annotating images of this kind and sometimes only an estimate can be made by

the expert annotator. Figure 5-9 illustrates how the adjustment algorithm works with a

pre-labelled image of a bearded face profile.

Scanning of hair often results in aberrations due to attenuation and scattering of the

scanner’s incident light. This is apparent in the figure. Nevertheless, the algorithm

performs well, locating the nearest points on the contour and searching for significant

points of curvature to locate landmarks.

The smoothing process acts to reduce spurious curvature and results in some reasonable

adjustments to the landmarks particularly around the nose, upper and lower lip areas.

The Minolta camera/scanner used with this dataset can take up to 2 seconds to complete

the 3D scan. As already noted, any head movement can cause problems with accurate

sampling. The profile of Figure 5-10 show an offset which illustrates this idea. The

adjustment algorithm deals with these kinds of error effectively and relocates landmarks

onto the contour accurately.

110

Figure 5-9:Application of the adjustment algorithm upon a bearded profile image. Top: before

adjustment; bottom: after application of automatic adjustment algorithm.

Landmark

abbreviations

gl glabella

se sellion

exc exocanthion

prn pronasale

sn subnasale

ls labiale

superius

sto stomion

li labiale

inferius

sl sublabiale

gn gnathion

111

Figure 5-10: Extracted profile contour overlayed with manually labelled landmarks (top). Note

the scanning inaccuracy leading to contour/RGB image overlay mismatch. Note the adjustment

algorithm deals with this well (bottom), relocating the landmarks correctly on the contour at the

expected points.

A final, important consideration is the effect of the automatic adjustment algorithm on

the labiale superius. In the anthropometric literature this landmark represents the border

of the vermillion line with the upper lip. This also corresponds to a point of high convex

curvature which is used by the algorithm to place this landmark. In many individuals this

corresponds to the true labial superius, however in many other individuals there

Landmark

abbreviations

gl glabella

se sellion

exc exocanthion

prn pronasale

sn subnasale

ls labiale

superius

sto stomion

li labiale

inferius

sl sublabiale

gn gnathion

112

commonly appears a second, higher curvature point located slightly below the labiale

superius on the upper lip itself but above the stomion which the adjustment algorithm

gravitates towards. This is illustrated in Figure 5-11.

Figure 5-11: Adjusted landmarks, illustrating points of curvature located on the upper lip.

This point of curvature is stable and the algorithm repeatably locates it when it exists in

an individual. However, it is not the true labiale superius. In order to select the true

labiale superius during the adjustment process the algorithm was modified to provide a

choice when selecting the point of convex curvature.

Either point can be used. Traditionally the labiale superius has been used as it is easily

located by an expert viewing a colour image. This study has the advantage of being able

to calculate profile curvature for every point of the profile contour and so curvature as a

feature has been used to guide the final positioning of the landmarks. For this study, the

highest point of curvature on the upper lip is used as a landmark.

This is sometimes the true labiale superius and sometimes the highest point of curvature

on the upper lip itself. To avoid confusion, in this thesis the highest point of curvature is

referred to as the labiale superius.

In order to provide some flexibility in the choice of local minima or maxima, the

adjustment algorithm is extended to include an upper and lower maximum range at which

113

point the algorithm will stop searching for better local maxima or minima. This range is

termed the extent of the search and is set empirically to ± 9 pixels. Finally, for this

algorithm a range of σ values between 1 and 3 were used to smooth the curve. A value

of σ = 3 gave the best results for use with the automatic adjustment algorithm. This was

probably due to the reduction in local minima near a target landmark.

At this point the extended dataset comprises of:

1. A dataset of semi-automatically adjusted landmark co-ordinates related to the

original Notre Dame dataset images,

2. a profile contour curve subset extending from around the sellion to the gnathion.

(again the co-ordinates of each point correspond the Notre Dame image dataset),

3. the corresponding curvature values for each point on the profile contour curve.

Having identified the best choices for the parameters used in the automatic landmark

adjustment algorithm, and having completed the creation this new dataset, the dataset can

now be further processed to generate candidate features that can be used to train a

classifier to segment face profile contours and regress local landmarks. The following

section discusses the methods used to achieve this and describes the implementation of a

suitable classifier used to segment the profile. A selection of features informed by the

experiments of chapter 4 are used here. For each feature, or combination of features, the

accuracy of the resulting classifier/segmenter is subsequently analyzed and evaluated.

5.7 Segmenting profiles

Once the semi-automatic process of labelling key landmarks has been completed then the

dataset can be used to engineer features and train suitable classifiers. The labels

themselves can be used as inputs in combination with the contour and engineered features,

or the dataset could be further segmented into specific regions which would increase the

amount of useful information available to guide the training of a classifier. This latter

approach was used in the previous chapter to good effect with a uniformly sampled

dataset and it is repeated here.

To achieve this the dataset is further extended by defining regions of interest delimited

by the landmarks. Regions between these labels are segmented resulting in all points

114

between labels being classified as belonging to its accorded region. The result of this

process is an additional vector of categorical variables equal in length to the profile

contours with each point labelled with its relevant categorical variable. The following

discussion details the relevant data structures used in the segmentation process.

Each profile contour consists of a vector of contour co-ordinates, each co-ordinate

represents a pixel on the image profile. The size of the contour could vary but is set to a

length of n=361 in order to capture all relevant landmarks. It is noted that the positioning

of all subjects in the dataset is relatively constant and so profile sizes, whilst they do vary,

approximately occupy a similar space. The vector is illustrated in Figure 5-12. Note each

co-ordinate is a two dimensional vector and is referenced by the contour element number,

which corresponds approximately to the parameterized arc-length of the curve.

Figure 5-12: Contour vector containing screen co-ordinates of the two-dimensional image.

The labelled landmarks are referenced by the contour element that corresponds to the

landmark co-ordinates. The regions identified for segmentation are listed in Table 5-3 and

are delimited by the labelled landmarks. For example, the Philtrum extends from the

labiale superius to the subnasale.

Table 5-3: Definition of regions for profile segmentation.

1 2 3 4 5 n-2 n-1 n

x y x y x y x y x y x y x y x y

Region (label used) Start Point End Point

n/a (Not defined) Contour beginning Gnathion (gn)

Chin (chin up to lower lip) Gnathion (gn) Labiale inferius (li)

Lower lip Labiale inferius (li) Stomion (sto)

Upper lip Stomion (sto) Labiale superius (ls)

Philtrum Labiale superius (ls) Subnasale (sn)

Columella Subnasale (sn) Pronasale (prn)

Dorsum nasi Pronasale (prn) Sellion (se)

n/a (Not defined) Sellion (se) Contour end

115

Using the labelled landmarks and the contour vector described here, a further vector mask

was generated labelling each point on the contour with its designated region as shown in

Figure 5-13. The resulting mask was of equal length to the contour. Figure 5-14 illustrates

a profile image segmented using the regions defined in Table 5-3 above. Note that the

chin region label incorporates the region between the gnathion and labiale inferius. This

was done in order to simplify the labelling of the region.

Figure 5-13: Example segmentation mask generated from contour and region labels.

Both the regions of interest identified here and the landmarks describe the profile posture.

The landmarks useful here are those that remain unchanged with posture, whether the

subject be supine or prone and no matter what facial expression or pose is held by the

subject. However, all subjects will be expected to have a neutral expression during the

inference stage when classifying the head posture of a new, never before seen, subject.

At this point the dataset is ready to be used to train and analyze a new classifier. In the

next section we design, implement and analyze a profile segmenter using a LSTM RNN

using this dataset of segmented contours.

Element 1 2 3 4 5 n-2 n-1 n

Label Mask n/a n/a n/a gn gn se se se

Co-ordinates x y x y x y x y x y x y x y x y

116

Figure 5-14: An example profile segmented into regions.

5.8 Curve Segmentation using LSTM Neural Network

Due to the relatively small profile contour dataset available it was deemed essential to

engineer suitable, effective features to train the network since it was assumed that

development of an end-to-end classifier that could learn the required features from the

raw dataset would rely upon a large training dataset. Additionally, as one aim of this

study is to identify fast methods for posture estimation and measurement it would also

make sense to develop an efficient classifier capable of fast inference. For example, a

deep neural network that is capable of learning both the necessary features and locations

of landmarks given only the raw input contour, would require not just a large training

117

dataset but also a more complex architecture which would require additional calculations

during inference.

As a simpler network would be the more desirable option, the emphasis is on engineering

suitable features for training and inference. This section explores this approach, using

both the ideas documented in chapter 4 and the region segmentation methods developed

in this chapter to inform the engineering of features and assess their effectiveness in

segmenting and regressing landmarks in an LSTM network.

5.8.1 Dataset Description

The dataset of segmented and labelled profile contours created previously in this chapter

was used to generate suitable features to train the LSTM network. The dataset initially

consisted of 693 segmented and labelled contours comprising of 86832 categorically

labelled points. These were generated from the Notre Dame dataset and includes a

minority of images that have occlusions, missing regions or are poorly framed profiles.

These were included to improve the generalization properties of the LSTM network.

Errors in file naming of corresponding 2D and 2.5D depth files further reduced the

number of images used to 648. Of these, the test set comprised of 194 images and the

training set 454. This remained unchanged during the investigation detailed in this study.

Segmented profiles consist of seven regions as illustrated in Figure 5-14. These were

listed in Table 5-3.

Class imbalance is an important consideration in pre-processing datasets. The dataset is

mildly imbalanced, with the columella of the nose having the largest support. Class size

ratios for philtrum:columella is 2:3, upper lip:columella 2:3 and lower lip:columella 1:2.

This imbalance is by no means extreme and the results of this section show the models

generated still produced good results.

Since the aim of the segmenter is to accurately identify a small number of landmarks that

remain invariant under transformation and facial expression, then only a subset of the

profile is required. This means the longer “n/a” labelled parts of the profile can be

trimmed improving the balance of the data categories. Additionally, the chin region is

superfluous since it contains no useful landmarks and in comparison to other regions it

118

also adds to data imbalance. Consequently, the segmented contour profile dataset has

been adjusted. Table 5-4 shows the regions used after adjusting the segmented profile to

take into account these changes.

Table 5-4: Adjusted segmented contour profile. Compare with Table 5-3 above.

The resulting dataset now consists of contours of varying length, from approximately 14

sample points up to 155.

5.8.2 Feature Choices

The features generated here are informed by those used in Chapter 4 to segment the

univariate ECG signal. The proposed features used to evaluate accuracy of the segmenting

LSTM network are enumerated Table 5-5 overleaf.

The features are grouped by the dimensionality of the feature vectors and a brief outline

of the purpose for selecting these features is also included.

Region (label used) Start Point End Point

n/a (Not defined) 7 samples before the

Gnathion

Gnathion (gn)

Lower lip Labiale inferius (li) Stomion (sto)

Upper lip Stomion (sto) Labiale superius (ls)

Philtrum Labiale superius (ls) Subnasale (sn)

Columella Subnasale (sn) Pronasale (prn)

Dorsum nasi Pronasale (prn) Sellion (se)

n/a (Not defined) Sellion (se) 7 samples after the sellion

119

One and two dimensional input feature vector

 Feature Purpose

1 Raw profile contour curve Provides baseline for

comparison.

2 Normalized, curvature of Gaussian filtered signal,

𝜎=3

Assess the effect of

standard deviation, 𝜎 filter

parameter on accuracy of

network and evaluate

accuracy of curvature as

an input feature.

3 Normalized, curvature of Gaussian filtered signal,

𝜎=2

4 Normalized, curvature of Gaussian filtered signal,

𝜎=1

5 First order derivative of Gaussian filtered signal. Evaluate its effectiveness

as an input feature.

6 Second order derivative of Gaussian filtered

signal.

Three and four dimensional input feature vector

7 1st + 2nd order derivatives Evaluate the effectiveness

of combinations of 1st

order derivative, 2nd order

and curvature as input

features.

8 Curvature and 1st derivative

9 Curvature and 2nd derivative

Five dimensional input feature vector

10 Curvature, 1st, and 2nd derivatives Evaluate the effectiveness

of curvature, the 1st order

derivative and the 2nd

order derivative as an

input feature.

Table 5-5: Proposed features used to evaluate accuracy of a recurrent LSTM Network in

segmenting face profiles.

5.8.3 LSTM DNN architecture and training

The LSTM RNN architecture is that used in chapter 4. Only the input layer is adjusted

to alter the number of inputs to take into account the two dimensional (x, y) co-ordinates

of the curve and combinations of input features.

120

The network comprises of:

• 150 hidden units;

• a fully connected output layer with 5 outputs corresponding to,

o n/a (not defined),

o lower lip,

o upper lip,

o philtrum,

o columella,

• a softmax layer.

The network is trained using mini-batches with an adam optimiser and a minibatch size

of 45. Training of the network stops after 15 epochs since, for each feature or combination

of features used, the testing accuracy has plateaued.

For each feature or feature combination we train and test the LSTM RNN using a 70:30

train:test dataset ratio. The dataset size was 648 landmarked contours. Of these, the test

set comprised of 194 images and the training set 454.

All experiments were performed on machine with an Intel core i7-7700 CPU with 32GB

RAM and an Nvidia 1080Ti GPU.

5.8.4 Results and Comparisons of Network Accuracy

This section follows the experimental methods used in section 4.3.4 and discussed in

chapter 3. Here, the network architecture parameters remain fixed as defined in section

5.8.3. In each experiment a multi-class confusion matrix is generated for each

network/feature combination of a trained LSTM RNN and from this an overall accuracy

figure is calculated along with, for each class, its precision, recall and F1 score. The

support is also stated for each class’s test data.

The LSTM network architecture remains fixed except for the occasions where the input

feature vector changes dimension. Then the input layer is modified accordingly. The

following section details the results obtained for each of the features and feature

121

combinations identified in Table 5-5. Following this an analysis and discussion of the

results is provided.

5.8.4.1 Raw profile contour

The raw face contour profile curve is a two dimensional vector of sampled (x, y) image

pixels and the accuracy of the network trained on this feature was to be the benchmark

against which the remaining networks are compared. Table 5-6 summarizes these results.

The network has very little success in classifying the regions of interest during the

segmentation process with a 51.33% overall accuracy and a macro F1 score of 37.5%

indicating that its performance is better than random guessing from 5 classes but is still

not good. It fails to correctly identify any points within the philtrum region. Since this

feature is not effective as an input to the classifier the following curvature features form

an initial basis for comparison in this section.

Table 5-6: Evaluation of LSTM network with raw profile contour curve as input feature.

5.8.4.2 Normalized curvature (σ=3) feature

Curvature is a one-dimensional vector describing the curvature of the contour profile

curve. It is calculated using the full curvature equation of (2-6). The overall accuracy of

the classifier has improved significantly to 76.42% with a macro F1 score of 76.47%.

The architecture of the classifier remained unchanged, and the size of the feature vector

has halved in comparison with the raw curve feature, yet its accuracy at the class level

Profile

Class

Recall

(%)

Precision

(%)

F1 Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 94.73 50.41 65.80 6112

Philtrum 0.00 0.00 0.00 3859

LowerLip 64.99 54.56 59.32 3028

n/a 5.15 50.36 9.35 2716

UpperLip 55.23 51.24 53.16 4298

Overall

Accuracy

(%)

51.33 Macro F1

Score (%)
37.53 20013

122

and overall macro-F1 score has improved significantly when compared with the raw

curve input feature.

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 82.41 76.99 79.61 6112

Philtrum 63.75 65.93 64.82 3859

LowerLip 84.28 90.05 87.07 3028

n/a 76.14 75.53 75.83 2716

UpperLip 73.89 76.20 75.03 4298

Overall

Accuracy

(%)

76.42 Macro F1

Score (%)
76.47 20013

Table 5-7: Evaluation of LSTM network using normalized curvature with σ=3 as input feature.

5.8.4.3 Normalized Curvature (𝜎=2) Feature

When the standard deviation is changed from 3 to 2 we see a decrease in the overall

accuracy of about 1.5% in Table 5-8. Interestingly the classifier has poor recall. The

confusion matrix related to this table reveals that it confuses the “nose tip” and the “none

of the above” (n/a) labelled points with nose tip incorrectly predicted 1354 times and the

n/a class correctly predicted 1362 times. A poor result. The columella class’s recall has

increased by 7.3% at the expense of precision. Otherwise, though slightly lower, the recall

and precision follow similar patterns to the previous classifier using the σ=3 curvature

feature. This is important as it emphasizes the correct choice of σ can be significant given

the scale of an image.

123

Table 5-8: Evaluation of LSTM network with Normalized Curvature as input feature (𝜎=2).

5.8.4.4 Normalized Curvature (𝜎=1) Feature

Using curvature as a feature with 𝜎=1 provides the best classification of this group of

curvature features with an overall accuracy of 79% and a macro F1 score of 78%. Table

5-9 shows the upper lip’s F1 score has increased by over 6%, the philtrum’s by 6.5% and

the lower lip’s by 5.5% The n/a class still has poor recall as in the previous section’s

results.

Table 5-9: Evaluation of LSTM network with Normalized Curvature as input feature (𝜎=1).

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 89.79 70.13 78.75 6112

Philtrum 61.05 63.52 62.26 3859

LowerLip 86.06 90.33 88.14 3028

n/a 50.15 99.71 66.73 2716

UpperLip 74.06 75.30 74.67 4298

Overall

Accuracy

(%)

74.93 Macro F1

Score (%)
74.11 20013

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 91.59 72.91 81.19 6112

Philtrum 68.93 68.50 68.72 3859

LowerLip 93.10 93.62 93.36 3028

n/a 51.29 95.67 66.78 2716

UpperLip 78.08 84.22 81.03 4298

Overall

Accuracy

(%)

79.08 Macro F1

Score (%)
78.22 20013

124

5.8.4.5 First Derivative of Gaussian Feature

Building on the work of the previous chapter, the first derivative of the profile curve was

investigated next. The previous chapter required only a one-dimensional derivative vector

as the ECG data used there was sampled uniformly. Here, a two-dimensional vector is

used as the derivatives were taken with respect to the parameterized arc length of both

the x and y sampled positions which made up the profile contour curve.

Table 5-10 shows it achieved an accuracy of 87.57% and an F1 score of 87.89%. This is

a significant improvement of approximately 8% on the best curvature feature.

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 94.93 89.08 91.91 6112

Philtrum 78.28 75.68 76.96 3859

LowerLip 95.64 92.64 94.12 3028

n/a 90.65 100.00 95.09 2716

UpperLip 77.80 85.31 81.38 4298

Overall

Accuracy

(%)

87.57 Macro F1

Score (%)
87.89 20013

Table 5-10: Evaluation of LSTM network with DoG First Derivative as input feature (𝜎=3).

As also noted in the equivalent experiment in the previous chapter, this result is also

significant as, together with the observation that the DoG both filters and calculates the

1st derivative in one pass, it also demonstrates that the DoG is a feature capable of fast

classification of regions of interest on any contour curves extracted from a two

dimensional image.

5.8.4.6 The Laplacian of Gaussian Second Derivative Feature

The LoG feature does not perform as well as the first derivative, DoG. In fact the DoG

feature’s accuracy and macro-F1 scores are approximately 8% better than this feature.

However, it is on a par with the curvature feature in performance.

The dataset used here appears to rely more on first derivatives than second derivatives for

landmark classification and segmentation. The second derivative indicates the

125

concavity/convexity of curvature and where it is located, whilst the first derivative

encodes the degree of curvature at any particular point on the curve.

The philtrum’s recall figure of 57.35% is below the rest, however the n/a recall figure is

high, indicating that further combinations of features is warranted. Indeed, the following

experiment shows the results of combining both first and second derivatives, since, when

used together, these improve the accuracy of the segmentation process as was discovered

in the previous chapter.

Table 5-11: Evaluation of LSTM network with LoG Second Derivative as input feature (𝜎=2).

5.8.4.7 Combined DoG and LoG Derivative Features

Using the LoG and DoG as a 2-dimensional input vector to the network produces a good

result and is only slightly less accurate than the overall best feature identified in this series

of experiments (see the next sub-section for details of this). It improves upon the DoG’s

overall accuracy by 1.6% and its macro-F1 score by 1.8% (see Table 5-12).

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 90.76 81.25 85.74 6112

Philtrum 57.35 61.08 59.16 3859

LowerLip 83.16 89.32 86.13 3028

n/a 94.85 100.00 97.35 2716

UpperLip 70.92 73.13 72.01 4298

Overall

Accuracy

(%)

79.46 Macro F1

Score (%)
80.08 20013

126

Table 5-12: Evaluation of LSTM network with First and Second Derivative as input feature

(𝜎=2).

5.8.4.8 Combined Curvature, DoG and LoG Derivative Features

The results of this feature combination are slightly better than those of the previous

section’s DoG and LoG feature combination and are detailed in Table 5-13 below. In the

previous chapter, adding an additional feature (curvature) did not improve the results.

There is additional information in a useable form that can help the classification process

in this experiment. This is due to the curvature calculation improving the generalization

of the classifier. Once again, this result is important to this study as curvature was

originally hypothesized to be a good choice as a feature for classification.

Table 5-13: Evaluation of LSTM network with First and Second Derivative, and curvature as

input feature (𝜎=3).

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 94.45 93.26 93.85 6112

Philtrum 79.89 74.67 77.19 3859

LowerLip 95.74 94.71 95.22 3028

n/a 99.52 100.00 99.76 2716

UpperLip 78.87 86.26 82.40 4298

Overall

Accuracy

(%)

89.18 Macro F1

Score (%)
89.69 20013

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 95.50 92.71 94.08 6112

Philtrum 78.80 76.03 77.39 3859

LowerLip 96.43 94.99 95.71 3028

n/a 99.41 99.82 99.61 2716

UpperLip 79.20 86.44 82.66 4298

Overall

Accuracy

(%)

89.45 Macro F1

Score (%)
89.89 20013

127

5.8.4.9 Curvature with either first or second derivatives

The previous experiment combined curvature with both first and second derivatives of

the contour curve. Two further investigations were carried out to evaluate the effect of

curvature alone with DoG and then curvature alone with LoG. Both combinations

provided poorer results, although the DoG in combination with the curvature feature

performs well when compared with the curvature, DoG and LoG features together.

The overall accuracy and macro F1 scores for both combinations are shown in Table 5-14.

These results indicate the first derivative, DoG feature contains significant information to

guide the training and inference of the classifier.

Table 5-14: Overall Accuracy and macro-F1 score for Curvature with DoG and curvature with

LoG.

5.8.5 Summary of overall accuracy and F1 scores

 Table 5-15 summarizes the results of section 5.8.4 and the graph of Figure 5-15 presents

a visual summary. The overall accuracy is presented along with the macro F1 score for

each class. As discussed in section 2.7 and Appendix D, the macro-F1 score treats each

of the multi-class F1 scores equally ignoring the support for each class and avoiding

biases due to unequal sample sizes. It is found that features that include the DoG and, to

a lesser extent, the LoG, either alone or in combination, result in an improvement in the

classifier’s overall accuracy and macro F1 score. The DoG appears to be the most

powerful feature and the strategy of including LoG and curvature with DoG improves the

overall performance of the classifier by 1.5% to 2%.

The raw curve alone has very little predictive power when used with this classifier and

dataset. The relevant information is contained within it (i.e., the DoG, LoG and curvature)

but it appears that with this classifier, and the relatively small dataset used, it has been

 Overall

Accuracy
Macro-F1

Score

Curvature & DoG 88.68% 89.05%

Curvature & LoG 83.75% 84.19%

128

unable to extract the necessary information for learning the mappings between the inputs

and the classifications.

Table 5-15: Summary of Accuracy and macro-F1 scores.

Figure 5-15: Summary of Macro-F1 and Overall Accuracy.

3
7
.5

7
6
.5

7
4
.1

7
8
.2 8

7
.9

8
0
.1 8

9
.7

8
9
.9

8
9
.1

8
4
.2

5
1
.3

7
6
.4

7
4
.9

7
9
.1 8
7
.6

7
9
.5 8

9
.2

8
9
.5

8
8
.7

8
3
.8

0
10
20
30
40
50
60
70
80
90

100

M
ac

ro
 F

1
 s

co
re

 a
n
d

O
v
er

al
l

ac
cu

ra
cy

 (
%

)

Features

Summary Of Macro-F1 And Overall

Accuracy

Macro F1 score

Overall Accuracy (%)

 Feature Accuracy Macro-

F1 score

1 Raw profile 37.53% 51.33%

2 Normalized, curvature of Gaussian filtered

signal, 𝜎=1

79.08% 78.22%

3 Normalized, curvature of Gaussian filtered

signal, 𝜎=2

74.93% 74.11%

4 Normalized, curvature of Gaussian filtered

signal, 𝜎=3

76.42% 76.47%

5 First order derivative of Gaussian filtered

signal (DoG).

87.57% 87.89%

6 Second order derivative of Gaussian

filtered signal (LoG).

79.46% 80.08%

7 1st + 2nd order derivatives (DoG and LoG). 89.18% 89.69%

8 Curvature, 1st, and 2nd derivatives (DoG

and LoG).

89.45% 89.89%

9 Curvature and 1st derivative (DoG). 88.68% 89.05%

10 Curvature and 2nd derivative (LoG). 83.75% 84.19%

129

Two datasets have been used so far in this study, the ECG dataset of the previous chapter

and the profile contour dataset generated and described in this chapter. Whilst this dataset

set is very small in comparison to the ECG dataset, it has been able to generate results

that are, in general, equally good. This supports the argument that a well-engineered

feature set enables a classifier to learn effectively on smaller datasets. If the features can

be calculated efficiently, as has been demonstrated previously, then this is an additional

benefit too.

The choice of classifier would change the results as would the adjustment of the hyper-

parameters and architecture of the classifier. To ensure a fair comparison between the

ECG segmenter and the profile contour segmenter, no modification to the architecture of

the classifier or hyper-parameters was attempted in this section. In the next section some

adjustment of the hyperparameters was attempted to fine tune the classifier.

5.9 Effect of parameter adjustment on the LSTM network

5.9.1 Changes to the LSTM RNN architecture and training

Here, the effect of changes to training hyper-parameters and network architecture were

investigated.

The network architecture used in the previous section was the starting point. As before,

the input layer was adjusted to alter the number of inputs to take into account the two

dimensional (x, y) co-ordinates of the curve and combinations of input features, and the

network comprised of:

• 150 hidden units;

• a fully connected output layer with 5 outputs corresponding to,

o n/a (Not defined),

o lower lip,

o upper lip,

o philtrum,

o columella,

• a softmax layer.

130

For each feature or feature combination we train and test the LSTM RNN using a 70:30

train:test dataset ratio. The dataset size was 648 images. Of these, the test set comprised

of 194 images and the training set 454.

Originally the mini-batch size had been set to 45 as this was the value used in the original

published network used to train the large ECG dataset. Le-Cun cites Masters and Luschi

(2018), observing that better performance is obtained by reducing the mini-batch size to

as low a level as possible. This observation is documented too by Wilson and Martinez

(2003). A consequence of using a smaller mini-batch size in this work is a significant

increase in the training time, however as the profile contour dataset is reasonably small it

was possible to reduce the mini-batch size down to single figures without unduly

increasing the time allotted to complete the analysis of the networks investigated in this

study. A mini-batch size of 1 was selected. That is, on-line training was used. This had

the greatest, positive effect on the testing dataset’s overall accuracy and F1 scores.

The effect of changing the architecture of the LSTM network was investigated next. The

number of LSTM units in the hidden layer was adjusted. The network performance

increased slightly and peaked at approximately 500 units and began to fall off marginally

after this. Consequently, the number of hidden units was set to 500. This would reduce

the inference speed. As noted in section 4.4, and is also the case here, there is always a

trade-off between speed and accuracy. Here we concentrate on the accuracy of the

classifier.

The final adjusted architecture and hyper-parameters are shown below.

Input Layer Adjusted as required to accommodate the dimensions of the input

features.

Hidden units 500.

Minibatch size 1.

Output layers Fully connected with 5 outputs corresponding to: n/a (Not

defined), lower lip, upper lip, philtrum and columella with a final

softmax layer.

Table 5-16: Adjusted LSTM RNN architecture.

131

5.9.2 Results and Comparisons of Modified Network Accuracy

This section also follows the experimental methods detailed in chapter 3 and in section

4.3.4. Here, the network architecture parameters remain fixed as defined in the previous

section and each experiment generates a multi-class confusion matrix from which overall

accuracy figure is calculated along with, for each class, its precision, recall and F1 score.

The support is also stated for each class’s test data. The following section details the

results obtained for each of the features and feature combinations identified Table 5-17

below. The features identified here are a subset of those used in Table 5-5. Following

this an analysis and discussion of the results is provided.

Table 5-17: Proposed features used to evaluate accuracy of a modified recurrent LSTM network

in segmenting face profiles.

One and two dimensional input feature vector

Feature Purpose

1
Raw profile contour curve. Establishes whether the modified network is

able to learn important features.

2
Normalized, curvature of

Gaussian filtered signal, 𝜎=1.

Acts as a comparison for curvature. Does

the modified network significantly improve

upon the previous architecture?

The best performing 𝜎 is chosen (𝜎=1).

3
First order derivative of

Gaussian filtered signal.

Acts as a comparison. Does the modified

network significantly improve upon the

previous architecture?

4

Second order derivative of

Gaussian filtered signal.

Four dimensional input feature vector

5
1st + 2nd order derivatives. Acts as a comparison. Does the modified

network significantly improve upon the

previous architecture?

Five dimensional input feature vector

6
Curvature, 1st, and 2nd

derivatives.

Acts as a comparison. Does the modified

network significantly improve upon the

previous architecture?

132

5.9.2.1 Raw profile contour

The network trained on the raw profile data was not successful. It mis-classified to the

extent that two classes contained no true positive results. As previously, the following

curvature features form an initial basis for comparison in this section.

Table 5-18: Evaluation of LSTM network with raw profile contour curve as input feature.

5.9.2.2 Normalized curvature (σ=1) feature

Curvature is a one-dimensional vector describing the curvature of the contour profile

curve. It is calculated using the full curvature equation of (2-6). The overall accuracy of

the classifier has improved significantly on the previous architecture with accuracy

increasing from 76.42% to 87.31% and the macro F1 score increasing also by

approximately 10% to 87.68%.

Table 5-19: Evaluation of LSTM network using normalized curvature with σ=1 as input feature.

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 86.44 45.41 59.54 6112

Philtrum 0 0 0 3859

LowerLip 0 0 0 3028

n/a 9.72 96.35 17.66 2716

UpperLip 55.91 29.65 38.75 4298

Overall

Accuracy

(%)

39.72 Macro F1

score (%)

19.66 20013

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 93.18 90.24 91.68 6112

Philtrum 78.47 72.72 75.48 3859

LowerLip 95.74 93.40 94.55 3028

n/a 93.15 96.20 94.65 2716

UpperLip 77.29 87.33 82.00 4298

Overall

Accuracy

(%)

 87.31 Macro F1

Score (%)
87.68 20013

133

5.9.2.3 First Derivative of Gaussian Feature

Table 5-20 shows the modified architecture achieved an improvement in accuracy of

2.5% on the previous architecture. The macro-F1 score also increased from 87.89% to

90.57%. These improvements are not as impressive as the curvature feature’s above but

nevertheless 2.5% is significant given the starting point is already quite high at 87%. As

also noted in the equivalent experiment in the previous chapter, this result is also

significant as, together with the observation that the DoG both filters and calculates the

1st derivative in one pass, it also demonstrates that this feature is capable of fast

classification of regions on any contour curves extracted from a two-dimensional image.

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 95.86 94.58 95.21 6112

Philtrum 80.59 76.53 78.51 3859

LowerLip 96.07 96.04 96.05 3028

n/a 99.96 99.85 99.91 2716

UpperLip 80.34 86.20 83.16 4298

Overall

Accuracy

(%)

90.17 Macro F1

Score (%)
90.57 20013

Table 5-20: Evaluation of LSTM network with DoG First Derivative as input feature (𝜎=2).

5.9.2.4 The Laplacian of Gaussian Second Derivative Feature

Here the LoG performs significantly better than previously with an improvement of

around 10% on both the overall accuracy and marcro-F1 scores as shown in Table 5-21.

The LoG feature still does not perform as well as the first derivative, DoG. The following

shows the results of combining both first and second derivatives.

134

Table 5-21: Evaluation of LSTM network with LoG Second Derivative as input feature (𝜎=2).

5.9.2.5 Combined DoG and LoG Derivative Features

The adjusted network again improves on the previous architecture’s results with an overall

accuracy of 90.83% and macro F1 score of 91.26%, an improvement of about 1.5%. This

combination of features, architecture, and hyper-parameter selection results in the overall best

performance as a segmenter and so this model was used to analyze the capability of the

segmenter as a landmark regressor. This process and analysis is detailed in section 5.10.

Table 5-22: Evaluation of LSTM network with First and Second Derivative as input feature

(𝜎=2).

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 94.78 93.38 94.07 6112

Philtrum 78.34 75.03 76.65 3859

LowerLip 96.07 94.76 95.41 3028

n/a 99.71 99.93 99.82 2716

UpperLip 79.60 85.53 82.45 4298

Overall

Accuracy

(%)

89.21 Macro F1

Score (%)
89.68 20013

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 96.01 95.17 95.59 6112

Philtrum 81.76 77.35 79.49 3859

LowerLip 96.30 97.79 97.04 3028

n/a 99.93 100.00 99.96 2716

UpperLip 82.01 86.57 84.23 4298

Overall

Accuracy

(%)

90.83 Macro F1

Score (%)
91.26 20013

135

5.9.2.6 Combined Curvature, DoG and LoG Derivative Features

The results of this feature combination are slightly worse than those of the previous section’s

DoG and LoG feature combination, although there is very little difference.

Table 5-23: Evaluation of LSTM network with First and Second Derivative, and curvature as

input feature (𝜎=3).

5.9.3 Summary of overall accuracy and F1 scores

Table 5-24 summarizes the results of section 5.9.2 and the plot in Figure 5-16 presents a

visual summary of these results. The overall accuracy is presented with the macro F1

score for each class investigated in this section.

 Feature Accuracy Macro-

F1 score

1 Raw profile 39.72% 19.66%

2 Normalized, curvature of Gaussian filtered

signal, 𝜎=1

87.89% 87.68%

3 First order derivative of Gaussian filtered

signal (DoG).

90.17% 90.57%

4 Second order derivative of Gaussian

filtered signal (LoG).

89.21% 89.68%

5 1st + 2nd order derivatives (DoG and LoG). 90.83% 91.26%

6 Curvature, 1st, and 2nd derivatives (DoG

and LoG).

90.66% 91.09%

Table 5-24: Summary of overall accuracy and macro-F1score.

Profile

Class

Recall

(%)

Precision

(%)

F1

Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 96.70 94.00 95.33 6112

Philtrum 81.21 77.10 79.10 3859

LowerLip 96.07 98.24 97.14 3028

n/a 100.00 100.00 100.00 2716

UpperLip 80.83 87.20 83.89 4298

Overall

Accuracy

(%)

90.66 Macro F1

Score (%)
91.09 20013

136

It is found that features that include the DoG and, to a lesser extent, the LoG, either alone

or in combination, result in an improvement in the classifier’s overall accuracy and macro

F1 score. This mirrors the finding of section 5.8.4. The DoG appears to be the most

powerful feature, however, the strategy of including LoG and curvature with DoG does

not improve the overall performance of the classifier. The overall best classifier, albeit

marginally, is the adjusted network with DoG and LoG feature inputs with the DoG, LoG

and curvature a very close second. As before, the raw curve alone has no useful predictive

power when used with this classifier and dataset.

Figure 5-16: Summary of Macro-F1 and overall accuracy for adjusted network.

Finally, an overall comparison between the performance of the two networks is

summarized in the plot shown in Figure 5-17.

137

Figure 5-17: Comparison of the original LSTM network and the modified LSTM network.

This figure provides a visual comparison of the original and modified LSTM networks’

macro-F1 and overall accuracy scores. In both networks use of the DoG and LoG features

improve accuracy and F1 scores dramatically compared to the raw dataset alone.

Curvature as a feature is interesting. The modified LSTM network with curvature as an

input feature clearly performs significantly better than the original network did with the

same curvature input feature. The reason is not clear but could be related to the increased

complexity of the network. Overall, the best classifiers benefit from the additional

changes, but at what cost? Training took approximately 8 to 10 times longer and the

inference time of the modified network will be increased due to the result of increasing

the complexity of the architecture’s hidden layer to 500 from the original 150 units. For

an increase in performance of 1 to 1.5%, its worth will depend upon the context of the

problem space.

Considering the class F1 scores of the best performing network (the modified LSTM with

combined LoG and DoG features) individually, the n/a region classes perform best. This

can be attributed to the design of the experiment. The contours were “bookended” on

138

both sides by a fixed number of n/a labels and the result was the network was able to

easily learn this simple rule. A better approach would be to randomize the number of n/a

labels or use the untrimmed contour. This would require a significantly larger dataset

with which to train the network.

Having a fixed amount of “n/a” points also impacted on the adjacent regions. The

columella, for example had few incorrectly predicted points where it joins the n/a region.

Similarly, the lower lip benefited from this too. Nevertheless, the philtrum and upper lip

segmentation performed well with only the precision of the classifier falling below 80%

for the philtrum. What effect does this have on the segmenter’s ability to regress

landmarks? This is investigated next.

5.10 From segmentation to regression

Accurate profile estimation is an aim of this study. So far, the face profile has been

segmented, and this can be used to describe the various regions of the face and hence the

posture of the head with respect to the camera’s reference frame, or with respect to a

common axis of rotation, eg the tragus if available, or to see a change in posture between

images in a video for example. However, the precision and accuracy of the transition

between regions of interest has not been analysed yet. The question, “how well does the

model locate landmarks on the contour?” has yet to be answered and so this section

attempts this.

5.10.1 Locating region transitions

As there is an ordinal relationship between landmarks, the segmenter quickly learned to

differentiate between regions and, after manual review, the prediction errors were seen to

occur at the transition between regions.

To identify the landmarks delimiting the regions of the segmented contours predicted

during the testing of the segmenter, each contour was programmatically analysed and the

transition between regions noted. This was achieved by searching for transitions and

marking the contour position at which the transitions occurred. References to the original

file image were included to examine outliers later during analysis of the results.

139

5.10.2 Evaluation of predicted landmark accuracy

The error was evaluated by determining the difference between the predicted value and

the adjusted expert, ground truth value for all landmarks used by the segmenter. This was

repeated for all image profile contours in the dataset. Both the ME and MAE were

calculated. These errors were calculated on results generated using the segmenter trained

with the first and second derivatives as input features.

MAE was used instead of the mean squared error (MSE) since MSE exaggerates the

importance of outliers. The majority of outliers examined included badly framed profiles;

badly positioned head posture, for example looking away or toward the camera and not

at 90 degrees to it; and occlusion. These issues should have been resolved at the point of

image capture so the test dataset should ideally have such anomalies removed – in fact,

arguably, they should not be present in the first place. It should also be noted that during

the training process imperfect images as described above were purposefully left in the

dataset to aid the model’s generalisation properties. One or two images had high

reflectance which interfered with the contour capturing process. Where an outlying RGB

2D image showed no obvious problems that should have been corrected at the time of

image capture, it was not removed from the test dataset. Additionally, the precision of

the measurements was used as a second metric to describe the quality of the model. The

standard deviation of the errors in pixels was used to measure precision. Table 5-25

summarizes the accuracy and precision of the landmark position derived from the

segmenter.

Table 5-25: Summary of Errors and precision for best segmentation model (measurements in

pixels).

Landmark Label Mean Absolute Error Mean Error Precision (as described

by standard deviation)

Labiale inferius 0 0 0

Stomion 0.542 0.045 2.333

Labiale superius 5.277 0.791 6.898

Subnasale 1.548 0 3.587

Pronasale 0.011 -0.011 0.0106

140

Histograms of the measurement error for the stomion, labiale superius and subnasale are

provided below in Figure 5-18, Figure 5-19 and Figure 5-20.

Figure 5-18: Histogram showing distribution of errors in landmark prediction

against expert annotator for the stomion landmark.

Figure 5-19: Histogram showing distribution of errors in landmark prediction

against expert annotator for the labiale superius landmark.

Distribution of Segmenter Prediction Errors for Stomion

F
re

q
u
en

cy

Error values (pixels)

Error values (pixels)

Distribution of Segmenter Prediction Errors for Labiale Superius

F
re

q
u
en

cy

141

Figure 5-20: Histogram showing distribution of errors in landmark prediction

against expert annotator for the subnasale landmark.

The pronasale and labiale inferius are located with high accuracy and precision and so are

not plotted here. This is due to the fixed amount of n/a labels surrounding the contour.

Nevertheless, the stomion is located with sub-pixel resolution (bear in mind the image is

480 pixels in height and 640 pixels in width), and the subnasale has an MAE of less than

2 pixels and shows good precision.

The classifier has a lower accuracy and precision when predicting the location of the

labiale superius. This may be related to this issue described in an earlier section

discussing the automatic adjustment of the labiale superius landmark in section 5.5. The

algorithm uses the highest point of curvature at the vermillion of the upper lip, and this

varies depending upon the anatomy of the individual. This assumption will need further

investigation. Additionally, the training and testing datasets do include some individuals

wearing beards and moustaches. This could have affected the training and also the

inference accuracy of the classifier.

Distribution of Segmenter Prediction Errors for Subnasale

Error values (pixels)

F
re

q
u
en

cy

142

Based upon this discussion it appears that the subnasale and stomion are good candidate

landmarks to use in estimating head profile posture. Of these two landmarks, the

subnasale has the advantage that it moves very little during changes of expression when

compared with the stomion. However, if a neutral expression is posed then either or both

can be used.

5.11 LSTM Classification Runtime Results and Comparisons

This section investigates the inference speed of both chosen network designs using the

input features identified in the previous sections. The timing procedure described in the

methodology chapter, section 3.8 was used here. As before, all variables were cleared

before timing took place and Matlab’s parallel pool, which makes use of the GPU, was

not used.

Four tests were carried out for each feature input combination:

1. Original network with 150 hidden units and minibatch hyper-parameter set to 45.

2. Original network with 150 hidden units and minibatch hyper-parameter set to 1.

3. Adjusted network with 500 hidden units and minibatch hyper-parameter set to 45.

4. Adjusted network with 500 hidden units and minibatch hyper-parameter set to 1.

Each test used all 194 test data contour samples.

Table 5-26, overleaf, shows the results for each test. The rows represent the hyper-

parameters and the columns the number of hidden units used. Times are in milliseconds

and give the time to classify all images in the test dataset.

 A further test using just the best performing combination of input features was

undertaken. This involved classifying just one sample image’s contour. The aim here

was to assess the time required to initialize the classifier using the chosen network before

inference of the single contour.

143

Table 5-26: Inference times for the original and modified LSTM network. All times are in

milliseconds.

The results show that the timings were very similar across each feature combination used

and so independent of the number of features used as inputs to the classifiers. With regard

to batch classification, decreasing the mini-batch hyperparameter to 1 causes an

approximate 12-fold increase in the classification time since the LSTM classifier needs

to know the min-batch size used for training. Changing the number of hidden units from

150 to 500 causes an increase in inference time by a factor of approximately 1.5.

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 375.4 581.1

45 30.6 44.8

 DoG and LoG

 (4 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 376.3 596.1

45 29.3 46.2

 DoG

 (2 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 373.8 576.2

45 29.5 44.9

 Raw

 (2 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 360.9 577.4

45 30.9 44.0

 Curvature

 (1 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 378.3 595.8

45 30.31 45.3

 LoG

 (2 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 374.3 590.5

45 29.3 45.4

 Curvature and DoG

 (3 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 358.0 577.2

45 30.8 45.0

 Curvature, DoG & LoG

 (5 dimensional vector)

 Hidden units

 150 500

M
in

i

b
at

ch
es

 1 375.8 578.1

45 29.5 46.2

 Curvature and LoG

 (3 dimensional vector)

144

For the best performing modified network (the LoG and DoG combined using 500 hidden

units and with the mini-batch hyperparameter set to 1) as identified in the previous

section, the inference time for one sample contour based on the batch classification of the

whole dataset was 3ms on average, including the one-off initialization of the network.

Run-time speed vs classification accuracy is always a tradeoff as discussed in section 4.4,

but sacrificing 1-2% of accuracy in the network by selecting the original, unmodified

LSTM network with 150 hidden units and a minibatch size of 45 yields an improved

inference time of 150μs per sample.

Focusing on the modified network, the time required to classify one contour alone,

including the initialization of the classifier, increased to approximately 5.8ms and for the

original network it was still 3.7ms. This is assumed to be due to the overhead in

initializing the classifier in order to classify one sample. In a well-designed piece of

software this point will always need to be addressed in order to ensure fast inference if

images are processed online. This could be achieved by initializing the classifier just once

and reusing it whenever a new image is presented for processing.

5.12 Discussions and Conclusions

This section summarizes the findings of this chapter, compares the results and draws

conclusions from these.

The experiments undertaken here have all relied upon the same dataset, in this case the

Notre Dame J2 dataset. The Notre Dame dataset had some attributes that are

advantageous. It contains 2.5D images (RGB images with additional depth information),

and it is the nature of this additional depth data that has been useful in this study. In

particular the depth information has not been pre-processed and so any flaws due to

reflections and attenuations have been kept. This ensured that any algorithms or ML

based models would be forced to deal with flawed depth information.

Several relevant observations were gathered from this:

1. Hair can cause unwanted attenuation and reflections causing errors in depth

measurements. Lighting of some subjects caused skin reflections that also

affected depth measurements.

145

2. Consequently, there were no complete head profile depth images. Only a segment

of a profile was useable. This limited the useful depth information to the face

region, between the sellion at the top of the nose down to the gnathion at the chin.

3. The useable dataset contained flawed images, for example missing subjects,

occluded faces, badly framed subjects, etc.

4. Many images that had been labelled manually could not be used as the dataset

provided had errors in file names that linked 2D RGB images to their respective

depth information files.

5. As a consequence of points 3 and 4 above, the original portion of the dataset used

was reduced from 985, then 693 and after discovering the issue enumerated in

point 4, then down to just 648 images. Of these, the test set comprised of 194

images and the training set 454.

6. On a few images, subject head movement caused a mismatch in the captured depth

profile information and the RGB 2D image.

7. The automatic landmark adjustment process was able to solve the problem

associated with point 6.

8. The automatic adjustment process also improved (based on visual investigation)

the accuracy of the expert manual annotation process.

9. Despite the flawed nature of the depth information data, the segmentation and

regression models, together with the adjustment algorithms, showed good results.

The modified model using DoG and LoG as input features was used to regress

landmarks. It had an overall accuracy and macro-F1 score of around 91%.

Interestingly, the raw data did not make a good feature for either LSTM network. Both

networks were unable to extract useful information directly from the raw input. However,

use of the LoG and DoG operators together with curvature significantly improved the

performance of both the original LSTM network and the modified version. The modified

network worked best when the LoG and DoG operations, with their inherent smoothing,

were used as feature inputs.

Putting aside the networks that used just the raw signal feature, and reviewing the inter-

class precision and recall for both the original and modified LSTM network, it is clear

that there was a consistency in the way all network variations performed. The n/a class

was classified very well (often 100% recall and precision). This was due to the way the

146

contours were pre-processed - adding a fixed amount of n/a labelled points to both ends

of the profile contour curve. The classes adjacent to the n/a signals, the columella and the

lower lip, benefited from this approach to a certain extent, and still performed well with

F1 scores in the mid to high 90’s. The philtrum and upper lip regions were nevertheless

segmented well with F1 scores of 79% and 84% respectively.

The curvature signal alone performed better in the modified network with an increase in

performance of 12% when compared with the original network. This was due, perhaps,

to the additional complexity of this network. As was the case with the ECG signal,

networks using curvature alone as a feature were out-performed by networks using the

first and second derivative features either alone or together. This is, again, hypothesized

to be due to loss of relevant information when both first and second derivatives are

combined into a single scalar value.

Regression of landmark locations produced good results. The accuracy and precision of

these results, as measured using MAE and standard deviation, also reflected the network

segmentation results. The labiale inferius and pronasale landmarks had near perfect

accuracy and precision due to their positioning at the extremities of the contour curve.

The stomion accuracy was at a sub-pixel resolution with high precision. This was

probably due to its very recognizable curvature shape. Regression of the subnasale

performed well too, however regression of the labiale superius performed worst with a

wider standard deviation and larger MAE caused, it is hypothesized, by two competing

local minima of curvature. These minima are related to an individual’s anatomy and the

adjustment algorithm would need further modifications, perhaps, to improve this.

The inference times investigated in the previous section show that there is a trade off

between accuracy and speed, but a reduction in accuracy by 1-2% yields an order of

magnitude improvement in runtime performance. Classifier initialization is important

and should be optimized where possible.

In summary, the derivatives of the contour profile are good input features capable of

accurately segmenting these regions when used with the LSTM classifiers developed

here. They are also fast to calculate. Using both the first and second derivatives as input

features together in an LSTM RNN segmenter-classifier produces the best classification

147

accuracy. DoG, LoG and curvature based features are still worth considering depending

upon a project’s requirements.

Curvature alone was hypothesized in this study to be a good feature to use for profile

segmentation, and whilst the experimental results indicate it has capability in this regard,

it is still nevertheless outperformed by segmenters using the LoG and DoG features.

The best performing network used LoG and DoG features, had 500 hidden units and a

mini-batch size of one. Minimizing the mini-batch hyper-parameter improved network

classification performance by two percentage points but at the expense of an increased

training time.

In the next chapter we consider end-to-end ML approaches to segmenting and regressing

contours using a CNN. A 1DTCNN is developed and its performance at segmentation

and regression is investigated and its performance with respect to the recurrent LSTM

networks used previously is analyzed.

148

6 Segmenting face profile contours with 1DTCNN Networks

In this chapter the suitability of a 1DTCNN network is investigated to solve the contour

profile segmentation and regression problem studied in previous chapters. This kind of

network was selected for a number of reasons:

1. It uses convolutional dilation layers to provide feature recognition at multiple

scales.

2. It can deal with sequences of varying length.

3. It can output sequences of equal length to the input sequence and,

4. It is an example of a more complex neural network that can act as a suitable choice

to explore the power of an end-to-end learning approach and contrast it with the

LSTM network, developed in chapter 5, that was used to segment and regress the

profile contours dataset.

Here, the effectiveness of a 1DTCNN network on segmenting and regressing the head

profile dataset is explored and its accuracy and runtime efficiency is compared with the

LSTM RNNs used in previous chapters. In particular the 1DTCNN network is first

trained with the raw feature set (i.e. the contour curve co-ordinates) and subsequently

with the curvature feature and finally with the best-performing engineered feature

combination identified in the previous chapter. The segmentation and regression ability

of these networks is assessed, and the resources required to train this network and the

time to classify profiles is compared with the equivalent models developed in chapter 5.

Conclusions are drawn from these results.

6.1 1DTCNN architecture and training

The 1DTCNN architecture is based upon that described in Bai, which in turn follows the

work of Oord et al. (2016) and it is implemented using Matlab. The network is made up

of three cascaded residual blocks using the ideas outlined in section 2.8 and Appendix C.

The filter size, k=3, and the dilation factor, d at each level is increased exponentially, that

is, at level 1, d=1, at level 2, d=2 and at level 3 d=4. Scaling could also be adjusted by

altering the size of the convolution filter, k, but it is left constant here.

149

The network is trained using mini-batches of size one for 15 epochs. Training of the

network stops after 15 epochs since, for each feature or combination of features used, the

loss has leveled off. In order to make the comparisons between networks as balanced as

possible, the values chosen for these hyper-parameters also match those used by the

LSTM network investigated in chapter 5. This network randomizes the order of the

samples during the training process so 3 iterations were carried out and the median

selected. During the testing period there were no outlying results, that is, no model

generated performed exceptionally better or worse than those in its group.

For each feature or feature combination we train and test the 1DTCNN using a 70:30

train:test dataset ratio. As previously, the test set comprises of 194 images and the training

set 454 images.

All experiments were performed on machine with an Intel core i7-7700 CPU with 32GB

RAM and an Nvidia 1080Ti GPU.

6.2 Results and Comparisons of Network Accuracy

As before, this section follows the experimental methods used in section 4.3.4 but focuses

on three features, the raw curvature data co-ordinates, curvature and the best performing

feature combination of chapter 5, that is the first and second derivatives of the curve. The

network architecture parameters defined in the previous section remain fixed for both

these experiments. In these experiments, as before, a multi-class confusion matrix is

generated and from this an overall accuracy figure is calculated along with, for each class,

its precision, recall and F1 score. The support is also stated for each class’ test data.

A change to the architecture’s input layer is required for each feature investigated as the

input feature vector changes dimension for each experiment. The raw curve co-ordinates

are 2-dimensional, representing the pixel x and y co-ordinates; the first and second

derivative combination feature is a 4-dimensional vector comprising of the first

derivatives of the x and y co-ordinates with respect to the arc length, and the second

derivatives of the x and y co-ordinates, again, with respect to the arc length. Curvature is

150

simply a one-dimensional vector. The following section details the results obtained for

each of these feature sets.

6.2.1 Raw profile curvature

Table 6-1 shows results obtained when using the raw profile co-ordinates alone. The

network achieves a high overall accuracy (91.07%) and macro-F1 score (91.41%) when

classifying the regions of interest during the segmentation process and contrast starkly

with the corresponding results for the raw feature used with the LSTM network of Chapter

5. The LSTM network had an overall accuracy of 51.33% and an overall macro-F1 score

of 37.53%. This is due to the higher complexity of the 1DTCNN network giving it the

ability to learn the requisite features as discussed in section 2.8. This comes at the expense

of a lower classification speed and a longer training time.

Table 6-1: Evaluation of 1DTCNN with raw profile contour curve as input feature.

6.2.2 Combined DoG and LoG Derivative Features

Table 6-2 summarizes the results when using the first and second derivatives of the profile

contour curve. The network achieves a slightly better overall accuracy (91.58%) and

macro-F1 score(91.9%) when compared with the raw feature used with the 1DTCNN

network. As indicated already, this ability to learn the features required for good

segmentation comes at a cost. Inference is slower, as is training. This is covered in

section 6.3.

Profile Class Recall

(%)

Precision

(%)

F1 Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 97.17 95.21 96.18 6112

Philtrum 81.47 78.90 80.16 3859

LowerLip 96.70 96.83 96.76 3028

n/a 99.71 99.71 99.71 2716

UpperLip 81.92 86.94 84.36 4298

Overall

Accuracy

(%)

91.14 Macro F1

Score (%)
91.43 20013

151

Table 6-2: Evaluation of 1DTCNN with First (DoG) and Second (LoG) Derivative, and

curvature as input feature (𝜎=3).

6.2.3 Normalized curvature (σ=1)

Table 6-3 summarizes the results when using the curvature of the profile contour curve

as an input feature with σ=1. The network achieves a slightly poorer overall accuracy

(90.53%) and macro-F1 score (90.80%) when compared with the raw feature used with

the 1DTCNN. The recall figure for the Philtrum is 76.5% which is 5% lower than that

achieved with the raw dataset and 7% lower than that achieved with the combined DoG

and LoG features. The curvature feature is a one-dimensional sequence compared with

the other features. With this is in mind, it represents a surprisingly good result.

Table 6-3 Evaluation of 1DTCNN with normalized curvature as input feature (𝜎=1).

Profile

Class

Recall

(%)

Precision

(%)

F1 Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 97.57 95.78 96.66 6112

Philtrum 83.31 79.86 81.55 3859

LowerLip 96.20 98.45 97.31 3028

n/a 100 100 100 2716

UpperLip 81.92 86.17 83.99 4298

Overall

Accuracy

(%)

91.58 Macro F1

Score (%)
91.90 20013

Profile

Class

Recall

(%)

Precision

(%)

F1 Score

(%)

Support

TP/(TP+FN) TP/(TP+FP)

Columella 96.96 93.56 95.23 6112.00

Philtrum 76.50 80.79 78.58 3859.00

LowerLip 97.09 97.13 97.11 3028.00

n/a 98.12 99.07 98.59 2716.00

Upperlip 84.57 84.38 84.48 4298.00

Overall

Accuracy

(%)

90.53 Macro F1

Score (%)
90.80 20013.00

152

6.2.4 Summary of overall accuracy and F1 scores

 Table 6-4 summarizes the results of section 6.2 and Figure 6-1 provides a visualization

of the overall accuracy and macro-F1 scores for the 1DTCNN.

Table 6-4: Summary of accuracy and macro-F1 scores.

Figure 6-1: Comparison of Macro-F1 and overall accuracy for 1DTCNN.

It’s clear from this comparison that the features used as input to the 1DTCNN network

compare well with a range of about 1.5 percent. This indicates the network is good at

learning the underlying information necessary for good classification and, when

compared with the use of raw features as input, it demonstrates well the end-to-end

learning capability of the 1DTCNN network, however the DoG and LoG features do

confer an advantage. Curvature as a feature performs least well, however it is interesting

to see that this feature is a simple scalar value, and the 1DTCNN network is capable of

extracting a lot of useful information from this simple feature.

9
1
.5

8 9
1
.9

0

9
1
.1

4

9
1
.4

3

9
0
.5

3

9
0
.8

89.5

90

90.5

91

91.5

92

92.5

O ve r a l l A c c u r a c y (%) M a c r o F 1 S c o r e (%)

A
cc

u
rr

ac
y
 a

n
d
 m

ac
ro

-f
1

 s
co

re

Landmarks

Comparision of features used for

1DTCNN

DoG and LoG Raw curve Curvature

 Feature Accuracy Macro-F1

score

1 Raw profile 91.14% 91.43%

2 1st + 2nd order derivatives (DoG and LoG) 91.58% 91.90%

3 Normalized, curvature of Gaussian filtered

signal, 𝜎=1

90.53% 90.80%

153

6.3 Evaluation of runtime results and training times

Here, the run-time inference speed of the 1DTCNN is evaluated together with the training

times. The measurements are made for networks trained on the raw profile contour co-

ordinates, curvature and with the combined first and second derivative (DoG and LoG)

feature. As used with the best performing LSTM RNN, the 1DTCNN network mini-batch

hyper-parameter was set to a size of 1 and the number of epochs was set to 15.

Training of this network took significantly longer that the LSTN DNN investigated in

previous chapters. For the LSTN DNN network with a mini-batch size of 1 and trained

for 15 epochs, training times were 2.5 minutes. For the 1DTCNN network training times

took approximately 12 minutes.

The inference time for the 1DTCNN network was an order of magnitude slower that the

LSTM DNN networks used previously. For the network trained with the raw profile

curve co-ordinates, the median 1DTCNN network inference time was 4.32 seconds for

all 194 profile contours, including a one-off median classifier initialisation period of

17ms. Inference times using the curvature feature were similar with results of 4.66

seconds for all 194 contours.

Similar results were achieved when using the DoG and LoG features as inputs. Here the

median inference time of the classifier was 4.85 seconds with an initialisation time of

33ms. The timings were conducted without MATLAB’s parallel pool, GPU support.

6.4 From Segmentation to Regression

The same method as that of section 5.10 was used to regress landmark positions on the

contour curve, that is, the arc length was traversed to find a transition point between

regions and this point then represented the corresponding landmark that defines the

transition. For example, the stomion delineated the labiale inferius and labiale superius

regions. As before the accuracy and precision were measured by calculating the MAE

and the standard deviation. The ME was also included. The error is defined here as the

difference between the ground truth test value and the estimated value determined at

inference.

154

6.4.1 Evaluation of predicted landmark accuracy

Results are presented for a network trained with the raw profile curve co-ordinates, with

curvature and then the combined first and second derivative features (DoG and LoG).

6.4.1.1 Raw profile contour

 Histograms are included here to visualise the distribution error. Table 6-5 summarizes

the results and Figure 6-2 to Figure 6-4 below and overleaf, show the distributions. Note

where there is little or no variance in the measurements, then the histogram is not

included.

Table 6-5: Summary of Errors and precision for 1DTCNN, Raw contour input feature

(measurements in pixels).

Figure 6-2: Distribution of errors in 1DTCNN landmark prediction for stomion landmark.

Landmark Label Mean Absolute Error

(pixels)

Mean

Error

(pixels)

Precision (as

described by

standard deviation)

(pixels)

Labiale inferius 0 0 0

Stomion 0.52 0.37 3.61

Labiale superius 5.09 0.19 8.64

Subnasale 1.74 0.34 6.77

Pronasale 0.045 -0.02 0.58

Distribution of Segmenter Prediction Errors for Stomion

Error (in pixels)

F
re

q
u
en

cy

155

Figure 6-3: Distribution of errors in 1DTCNN landmark prediction for labiale superius

landmark.

Figure 6-4: Distribution of errors in 1DTCNN landmark prediction for subnasale landmark.

The labiale superius landmark shows a lower precision and accuracy than the other

landmarks. This was also the case when using the best performing LSTM RNN of

Chapter 5 which showed a similar performance in regressing this landmark. The

histogram shows a significant number of measurements offset from the ground truth

values. This, as before, is conjectured to be a result of the adjustment algorithm and the

nature of the anatomy variances amongst individuals, or due to the lower support of the

region classes on either side of this landmark (upper lip and philtrum). The stomion and

subnasale, on the other hand, show higher accuracy and precision.

Distribution of Segmenter Prediction Errors for Labiale Superius

Error (in pixels)
F

re
q
u
en

cy

Distribution of Segmenter Prediction Errors for Subnasale

Error (in pixels)

F
re

q
u
en

cy

156

6.4.1.2 Normalized Curvature feature (σ=1)

Histograms are included here also, and Table 6-6 summarizes these results. Figure 6-5 to

Figure 6-7 show the distributions. Note where there is little or no variance in the

measurements, then the histogram is not included. These results are similar to those of

the raw profile contour input feature results, but they do have an improved precision for

the labiale superius and subnasale.

Table 6-6: Summary of Errors and precision for 1DTCNN, curvature feature (σ=1),

(measurements in pixels).

Figure 6-5: Distribution of errors in 1DTCNN landmark prediction for stomion landmark.

Landmark Label Mean Absolute Error

(pixels)

Mean

Error

(pixels)

Precision (as

described by

standard deviation)

(pixels)

Labiale inferius 0 0 0

Stomion 0.32 0.08 1.02

Labiale superius 4.8 0.10 6.28

Subnasale 1.79 0.84 6.00

Pronasale 0.35 -0.16 0.60

Distribution of Segmenter Prediction Errors for Stomion

Error (in pixels)

F
re

q
u
en

cy

157

Figure 6-6: Distribution of errors in 1DTCNN landmark prediction for labiale superius.

Figure 6-7: Distribution of errors in 1DTCNN landmark prediction for subnasale.

6.4.1.3 Combined DoG and LoG derivative features

Histograms are included here also, and Table 6-7 summarizes the results. Figures overleaf

show the distributions. Note where there is little or no variance in the measurements,

then the histogram is not included. These results are similar to those of the raw profile

contour input feature results and further demonstrate the end-to-end learning capability

of the 1DTCNN network when using the raw curvature co-ordinates. These results show

a small increase in precision.

Distribution of Segmenter Prediction Errors for Labiale Superius

Error (in pixels)

Distribution of Segmenter Prediction Errors for Subnasale

F
re

q
u
en

cy

F
re

q
u
en

cy

Error (in pixels)

158

Table 6-7: Summary of Errors and precision for 1DTCNN (measurements in pixels).

Figure 6-8: Distribution of errors in 1DTCNN landmark prediction for stomion.

Figure 6-9: Distribution of errors in 1DTCNN landmark prediction for labiale superius.

Landmark Label Mean Absolute Error

(pixels)

Mean

Error

(pixels)

Precision (as

described by

standard deviation)

(pixels)

Labiale inferius 0 0 0

Stomion 0.33 0.08 1.52

Labiale superius 4.89 1.81 6.40

Subnasale 1.39 -0.05 3.81

Pronasale 0 0 0

Distribution of Segmenter Prediction Errors for Stomion

Error (in pixels)

F
re

q
u
en

cy

Distribution of Segmenter Prediction Errors for Labiale Superius

Error (in pixels)

F
re

q
u
en

cy

159

Figure 6-10: Distribution of errors in 1DTCNN landmark prediction for subnasale.

As in the previous sub-section, the labiale superius landmark shows an improved

precision and accuracy than the raw landmarks and, in particular, the subnasale precision

is the best result from all three features used.

6.5 Regression results and comparisons

This section discusses the accuracy and precision of regressing landmarks using the

1DTCNN network and the three features investigated in the previous section. Figure 6-11

compares the MAE of the three 1DTCNN networks, that is the raw profile curve co-

ordinates as an input feature, the combined feature consisting of the first derivatives

(DoG) and second derivatives (LoG) of the profile contour curve, and finally the curvature

feature alone. Similarly, Figure 6-12 shows comparisons for the precision. The labiale

inferius is not included here since it has zero error and perfect precision.

Distribution of Segmenter Prediction Errors for Subnasale

Error (in pixels)

F
re

q
u
en

cy

160

Figure 6-11: Comparison of MAE of 1DTCNN using raw input, curvature and combined LoG

and DoG.

Figure 6-12: Comparison of precision of 1DTCNN using raw inputs, curvature and combined

LoG and DoG.

0
.3

3

4
.8

9

1
.3

9

0

0
.5

2

5
.0

9

1
.7

4

0
.0

4
5

0
.3

1
6
4

4
.8

1

1
.7

9

0
.3

5

0

1

2

3

4

5

6

S t om i on La b i a l e s u p e r i u s S u b n a s a l e P r on a s a l e

M
A

E
 (

p
ix

el
s)

Landmarks

Mean absolute error
DoG and LoG Raw Curvature

1
.5

2

6
.4

3
.8

1

0

3
.6

1

8
.6

4

6
.7

7

0
.5

81
.0

2

6
.2

8

6

0
.6

0
4
2

0

1

2

3

4

5

6

7

8

9

10

S t o m i o n La b i a l e s u p e r i u s S u b n a s a l e P r on a s a l e

P
re

ci
si

o
n
 (

p
ix

el
s)

Landmarks

Precision

DoG and LoG Raw Curvature

161

The network trained on the raw data performs well and is comparable with the results

obtained for the curvature, and DoG and LoG feature combination. The pronasale has

zero MAE and almost perfect precision. Results are comparably low for the network

trained on the DoG and LoG combination as well as the curvature. These results are

expected given that the contour labels are bookended with a fixed amount of n/a labels.

As choices for landmarks to use in head posture measurement, these should be avoided

as the network learns the number of n/a labels at the start and end of the contour.

Nevertheless, other landmarks within the contour are localised well. As before, the

localisation of the labiale superius performs least well.

The greatest improvement is achieved when training with the DoG and LoG combination.

Here, the precision of key landmarks is significantly improved. When compared to the

raw input feature, the standard deviation that is used to quantify the precision has been

more than halved for the stomion and is over 44% less for the subnasale. The labilale

superius’ precision remains quite high but has been improved by a factor of 26% when

also compared with the raw input feature.

Interestingly, the curvature has performed very well given it is only a one-dimensional

input vector, compared with the 4 dimensions used to represent the DoG and LoG. The

curvature feature outperforms the DoG and LoG features for regressing the stomion and

labiale superius, though the key subnasale landmark is still regressed best by the network

using the DoG and LoG feature input combinations.

6.6 Comparison of LSTM Results with 1DTNN

The plots of Figure 6-13 and Figure 6-14 compare the precision and accuracy of the best

performing LSTM RNN investigated in Chapters 5 and 6 with the 1DTCNN network.

The 1DTCNN network does performs better than the best LSTM RNN when the hand-

crafted DoG and LoG features are used for both networks.

162

Figure 6-13: Comparison of the precision (in standard deviations) of the best LSTM with the

1DTCNN.

Figure 6-14: Comparison of the accuracy (measured using MAE) of the best LSTM with the

1DTCNN.

1
.5

2

6
.4

3
.8

1

0

3
.6

1

8
.6

4

6
.7

7

0
.5

81
.0

2

6
.2

8

6

0
.6

0
4
2

2
.3

3

6
.9

3
.5

9

0
.1

0

1

2

3

4

5

6

7

8

9

10

S t om i on La b i a l e s u p e r i u s S u b n a s a l e P r on a s a l e

P
re

ci
si

o
n
 (

p
ix

el
s)

Landmarks

Precision

DoG and LoG Raw Curvature Best LSTM

0
.3

3

4
.8

9

1
.3

9

0

0
.5

2

5
.0

9

1
.7

4

0
.0

4
5

0
.3

1
6
4

4
.8

1

1
.7

9

0
.3

5

0
.5

4

5
.2

8

1
.5

5

0
.0

1

0

1

2

3

4

5

6

S t o m i o n La b i a l e s u p e r i u s S u b n a s a l e P r on a s a l e

M
A

E
 (

p
ix

el
s)

Landmarks

Mean absolute error

DoG and LoG Raw Curvature Best LSTM

163

Figure 6-15 shows there is also little difference between the performance of the raw input

feature 1DTCNN network and the best performing LSTM network with regard to

classification accuracy and macro F1 scores. Both score around 91% in each category.

The LSTM network that uses the engineered features of LoG and DoG compares

favourably with the results produced using an end-to-end approach of the 1DTCNN.

Additionally, the LSTM network has the advantage of faster training and inference times

when compared with the 1DTCNN network.

Figure 6-15: Comparison of accuracy and macro-F1 scores for features used with the 1DTCNN

network and with the best performing LSTM.

Regarding the regression accuracy calculated using MAE, for the stomion and labial

superius there is a difference between the 1DTCNN network and the LSTM network,

with the 1DTCNN network improving on the LSTM’s MAE score by about 4% in both

cases. Conversely, the LSTM network improves upon the 1DTCNN network by 10%

when regressing the subnasale landmark. Regarding the pronasale landmark, both

networks have a very low, sub-pixel resolution MAE, so a percentage comparison does

not help here. The 1DTCNN network has an MAE of 0.001 pixels and the LSTM an

MAE of 0.045 pixels.

9
1
.5

8

9
1
.9

0

9
1
.1

4

9
1
.4

3

9
0
.5

3

9
0
.8

0

9
1
.2

6

9
0
.8

3

89.5
90

90.5
91

91.5
92

92.5

O v e r a l l A c c u r a c y (%) M a c r o F 1 S c o r e (%)

A
cc

u
rr

ac
y
 a

n
d
 m

ac
ro

-F
1

 s
co

re

Landmarks

Comparison of features used for

1DTCNN with the best performing

LSTM

DoG and LoG Raw curve Curvature Best LSTM

164

6.7 Discussions and conclusions

Looking at the results obtained in the experiments of this chapter a clear conclusion is

that the 1DTCNN network is capable of good end-to-end learning using just the raw

contour profile co-ordinates. However, engineering features prior to training still confers

an advantage, especially with regard to improved precision.

The downside of using this network to learn the underlying features from the raw data is

the additional time required both to train the network and to regress landmark locations.

Regressing landmarks required an order of magnitude increase in inference time when

compared to the LSTM DNN used in chapter 5. As concluded in previous investigations

in the study, there is a clear trade-off between execution speed and accuracy of

classification and regression. The choice depends upon the problem context, for example,

where landmarks need to be regressed in real-time then it would be appropriate to choose

faster feature engineering and regression whilst sacrificing some accuracy. It is better to

have results that meet some baseline accuracies in real time rather than no results at all.

Regressing the location of the first and last landmarks (the labiale inferius and the

pronasale) is trivial for these networks given the fixed number of n/a labels adjacent to

these. This can be attributed to the design of the experiments and the model, and needs to

be addressed in future work. However, as remarked upon previously, the remaining

landmarks have been successfully localised using this network and whilst the landmarks

are ordered, their precise locations are dependent upon the anatomy of each individual.

Consequently, the conclusion here, as in Chapter 5, is that the best choice of landmark

for estimating posture, should head posture estimation be the aim, is the subnasale since

it is the most stable, unchanging, landmark when head position or when face expression

changes and the 1DTCNN using the DoG and LoG input feature combination locates it

well with a MAE of 1.29 pixels and a precision of 3.81 pixels.

There is an issue here with some outlying results. Further investigation is required in

order to locate the reason for the regression errors. It may be due to mislabeling, the result

of poorly hand-labelled, ground truth images or the test set still including images that are

flawed in some other way.

165

Regarding run-time efficiency, the 1DTCNN network does not perform well when

compared with the LSTM DNN network. The 1DTCNN network takes between 4.6 and

4.9 seconds to segment all 197 contours. That corresponds to about 25ms to segment one

contour plus a one-off initialization time of 33ms recorded for the combined DoG and

LoG feature. Overall, the 1DTCNN network is approximately 10 times slower than the

best LSTM DNN network.

These results have been achieved with a reasonably small dataset of 454 image profile

contours. The more sophisticated 1DTCNN network will certainly perform better with a

larger dataset. To achieve this, the contours could be augmented by creating a contour

profile derived from a combination of two randomly selected contours and applying

established methods used in the graphics field, for example, morphing (Beier and Neely,

1992) and in particular a 2D process based upon the idea of “tweening” (Hill Jr. and

Kelley, 2006). Since there are 454 available training images then by selecting two images

with replacement, it is possible to choose over a hundred thousand combinations and so

generate an additional one hundred thousand images.

The following chapter concludes the thesis, bringing together key findings and

conclusions from both this chapter as well as chapters 5 and 6. It identifies the

contributions of this thesis to the field as well identifying some limitations of the work.

166

7 Conclusions and Recommendations

This chapter draws together conclusions and considers the contributions of this thesis and

its limitations. Contributions to knowledge are detailed in section 7.1 and thesis

conclusions are presented in Section 7.2.

7.1 Contributions

A number of novel ideas were used that contributed to the overall aim of this thesis. An

evaluation of the effectiveness of curvature and derivatives was produced that

demonstrated the utility of the proposed features in the fast segmenting of head profile

contours and the regressing of landmarks (see the published paper of Appendix A).

Additionally, a new dataset of labelled face profile contours was created for use in

evaluating the features created. In order to automatically improve the accuracy of the

annotations, a novel approach was developed in this context based upon the curvature

properties of selected anthropometric landmarks and the head profile contour curve itself.

Extending the work of chapter 4 and using the head profile contour dataset created in this

study resulted in a new procedure and model that can accurately achieve fast face

segmentation of head profile images. An evaluation of this procedure documented both

the accuracy of the approach and its run-time efficiency when used with two LSTM

RNNs. Additionally, this method was extended once more to develop a method to regress

landmarks from the segmented profile contour with good accuracy and precision. To the

best of the author’s knowledge this is the first use of RNNs to segment and regress head

profile contours extracted from real world, un-processed, RGB-D images and has not

been done elsewhere with the dataset generated as part of this thesis.

Finally, a 1DTCNN network was applied to the problem of head profile contour

segmentation and regression and demonstrated the power of end-to-end ML methods,

showing they are effective but at the cost of a significantly slower inference time. To the

best of the author’s knowledge a 1DTCNN network has not been used to segment and

regress real-world, un-processed head profile contours before and not with the dataset

generated as part of this thesis.

167

7.2 Conclusions

Chapters 4, 5 and 6 discussed results and drew conclusions within the context of the

experiments undertaken. In this section these are considered from both the context of the

aims, objectives and hypotheses of this thesis and also from a broader perspective. The

aims, objectives and hypotheses are restated here for the convenience of the reader and

the extent to which these have been achieved is then discussed.

The aim of this study was to:

Explore extensively the suitability of curvature and its properties as features for fast

regression and segmentation of parameterized plane curves, and in so doing, examine the

effectiveness of these features in training deep neural networks to estimate head profile

posture derived from 2.5D images.

From this aim the following objectives were enumerated:

1. To engineer and evaluate features derived from plane curves to train supervised

machine learning models capable of efficiently segmenting regions of interest.

2. To develop a dataset of accurately landmarked head profile contours.

3. To develop and evaluate fast ML models capable of estimating head profile by

segmenting profile contours into regions of interest and regressing key head

profile landmarks.

4. Demonstrate that engineered features, in the context of this thesis, compare well

with end-to-end ML approaches.

It was hypothesized that:

1. Curvature and the related first and second derivatives of a curve can be efficiently

calculated from a given plane curve and these features will enable the fast and

accurate segmentation of a curve when used in conjunction with suitable ML

models.

168

2. A second hypothesis is that the same ML models can also be used to efficiently

regress points on a plane curve with high accuracy and precision.

3. A final hypothesis is that, in the context of this thesis, these engineered features

can produce results superior to an end-to-end ML approach.

7.2.1 Review of Objectives

The first objective of this thesis has been achieved. Chapter 4 demonstrated that the

engineered features developed and evaluated here were capable of accurately and

efficiently segmenting a uniformly sampled time series dataset and provided justification

for further investigations with overall F1 score and accuracy both achieving levels of 87%

on the benchmark LSTM RNN. These results surpassed those achieved using short time

Fourier methods by approximately 1.5% and exhibited a run-time speed orders of

magnitude faster.

The second objective has also been achieved by annotating the Notre Dame dataset

introduced in section 5.2 with anthropometric landmarks and extracting a dataset of 648

useable head profile contours from the RGBD images. The usable regions were limited

to the face, and this was sufficient to accurately segment regions of interest and regress

key landmarks. A larger dataset can now be developed by landmarking further images

from the Notre Dame dataset or augmenting it by creating artificial contours using the

tweening concept discussed in chapter 6.

Using these features as inputs to an LSTM DNN to segment regions of interest on a head

contour and regress landmarks proved successful, too, with a further improvement of 4%

percent achieved. However, the context of the problem is important and section 4.4 shows

the effective quality of a selected feature needs to be evaluated by weighting the

importance of speed and accuracy. The weighted L2 norm distance measure described

here provided a numerical score of effectiveness and demonstrates that the best features

to use depend both upon execution speed and desired accuracy.

The network used to segment the ECG dataset in chapter 4 is, by necessity, identical to

the architecture used in (Mathworks, 2020c) in order to ensure a valid comparison

between the features used in that experiment and those engineered and used here. Whilst

169

the results demonstrated an improvement, the author notes that different classifiers and

network architectures, together with further tuning of hyper-parameters will improve

upon the accuracy of these results. For example, Moskalenko, Zolotykh and Osipov

(2019) propose a superior UNet like convolutional deep neural network that claims F1

scores of 97% and above on an ECG dataset.

Chapters 5 and 6 follow from the third objective of this thesis. They demonstrate that the

selected features evaluated in chapter 4 could accurately segment regions and regress

landmarks in a more generalised environment, that is, in any plane curve. Here, head

profile contours extracted from RGBD images were segmented and regressed and the

results obtained demonstrate that good segmentation of regions is possible (the best

performing feature combinations achieved a macro-F1 score of 91% and an overall

accuracy of 91%) without extensive parametric investigation and architectural

modification of the chosen network.

The discussions of section 6.7 point out that the inference time for one contour using an

LSTM network is 10 times faster than those of the 1DTCNN network, hence any

decisions regarding the suitability of a given network still needs to consider both the

desired accuracy as well as the classification times.

In general, all networks and feature combinations perform least well when regressing the

labiale superius. The author concludes that this is due to the phenotypic diversity of the

anatomy of the upper lip and philtrum of subjects within the dataset, together with the

assumptions made in the automatic regression algorithm. In contrast the pronasale and

labiale inferius are located with near perfect accuracy and precision. This can be

attributed to the design of the experiments. Placing a fixed number of “n/a” labels at the

start and end of the contour was an imperfect design choice since the networks easily

learned the “n/a” label positions and hence could accurately locate the first and last

landmarks. This, however, did not impact on the accuracy and precision of regressing

the remaining landmarks.

Extracting the head profile contour from a 2D image using classic computer vision

algorithms adds additional pre-processing steps to the segmentation process. Chapters 2

and 5 note that RGB images with depth information allow fast head profile contour

170

extraction and so avoids these pre-processing steps. Current technology also allows

RGBD images to be captured at 30fps.

Overall, the third objective has been achieved. Accurate segmentation is possible as is

fast classification of regions of interest. Accurate regression of key landmarks is also

possible, but the experimental results introduce additional complications indicating that

further work is required. This is discussed in the following chapter on future work.

The fourth and final objective, demonstrating the effectiveness of engineered features

when compared to the end-to-end machine learning approach, has been achieved and

some additional results have emerged from this. The end-to-end ML approach initially

used the raw contour data as an input feature to the 1DTCNN network of chapter 6 and

was left to learn the relevant feature information. Overall, it proved to learn features well

from the raw data although at some cost. The best LSTM (using LoG and DoG features)

significantly outperformed the 1DTCNN network in terms of inference time (the LSTM

was 10 times faster). Additionally, the regression precision of the 1DTCNN network

when using just the raw data as input could not match that of the LSTM network.

From the perspective of measuring accuracy and macro F1 scores alone, the 1DTCNN

network produces slightly better results overall when engineered features are used, but

the time required to train and classify is, again, significantly greater than the LSTM

network. Additionally, the use of curvature as a feature for the 1DTCNN network

produced good results and, interestingly, used only a one-dimensional data structure,

compared with a four dimensional one of the derivatives.

7.2.2 Review of Hypotheses

The hypotheses re-iterated at the start of this section are reviewed next. Whilst it was

hypothesised that curvature would be a good feature to use with ML models and methods,

it seems that, for the LSTM DNN networks used in chapter 4, the first and second

derivatives, which themselves are used to calculate curvature, consistently produced

results better than curvature alone. They are also far quicker to compute than curvature.

Hence it is concluded that the first hypothesis has been met, but DoG and LoG features

are superior to curvature alone in terms of their predictive properties and speed of

calculation when used with LSTM network. The modified LSTM network showed an

171

improvement when curvature was used alone as an input feature indicating it contained

useful information and this was further confirmed by the experiments using the 1DTCNN

network. The 1DTCNN network was able to use curvature alone to produce comparable

macro F1 scores (90.83% for the LSTM network and 90.8% for the 1DTCNN network)

and accuracy (91.26% for the LSTM network and 90.53% for the 1DTCNN network),

which is a noteworthy result since it is the only scalar (one-dimensional) input feature.

The second hypothesis focused on the regression capabilities of the deep learning models

used and their features. Analysis of the figures above show this hypothesis to be proven

for the models used, however both regressors demonstrate poorer accuracy and precision

for the labiale superius landmark. The conclusion here is that the dataset needs to be

enlarged and the automatic landmark adjustment algorithm needs further work.

Additionally, the experiments could benefit from modifying the length of the contours by

adding a random amount of “n/a” labels at the beginning and end of the contours.

With regard to the third hypothesis, it has been proven overall. The LSTM network with

engineered features produced a faster segmenter and regressor with accuracy comparable

to that of an end-to-end ML approach. Nevertheless, the results of chapter 6 demonstrated

the power and potential usefulness of the end-to-end ML approach. Equally it shows the

value of engineering good features, as a significant speed up in classification was

demonstrated in this thesis. The author notes that these results are dependent upon the

processing hardware used.

Next, the potential for future work is considered.

172

8 Future Work

This chapter presents future work that could both improve and extend this thesis or that

could become a focus for a new research project.

8.1 A real-time profile landmarking application

Primarily, the next step is to create a single application that can estimate head posture in

real-time. This will combine the methods and ideas demonstrated here into a single

application that can take real-time, 2D colour images, including depth information, to

locate key landmarks and segment profiles as demonstrated in chapter 5. The technology

to produce real-time, 2D images with depth information is cheap and already available,

for example Microsoft’s Azure Kinect device can work in real time and can produce high

resolution 2D images with depth information at 30fps. Measuring head posture angle

would be an obvious goal. This would require further work to regress the tragus of the

ear and the C7 vertebra, or an alternative reference could be used instead, perhaps using

markers if no other method was available. Such an application would have uses in several

fields as identified already in chapter 2.

8.2 Investigate alternative networks

The investigations of chapter 4 compared the engineered features developed in this thesis

with those of a previously published experiment. No attempt to investigate alternative

models was undertaken since the purpose was to compare the features engineered here

against an existing model, dataset and experiment. Future work could continue this

investigation by using alternative networks, architectures and hyperparameters.

8.3 Augment the developed dataset

The head profile contour dataset is not large but could easily be augmented using the

“tweening” concept discussed in chapter 6 and then investigating the effect of a larger

dataset on the networks developed here already. For example, a further study to evaluate

any improvement in the accuracy of the segmentation process and regression capability

of both the LSTM RNN and 1DTCNN network models would be of interest.

173

8.4 Creation of a new dataset

Whilst the Notre Dame dataset was invaluable for this thesis, the creation of a labelled,

higher resolution 2D head profile image dataset with depth information would be an

important goal as image capturing technologies have significantly evolved since the

creation of the Notre Dame dataset and the resulting, new data set would be likely to have

fewer flawed images. Extending this approach into real-time video would allow the use

of additional methods such as motion tracking, for example, including Kalman filter

(Stratonovich, 1959) and particle filter methods (Gordon, Salmond and Smith, 1993).

8.5 Extend and refine the landmarking algorithm

Whilst the method used to regress the landmark locations on the profile produces some

reasonable results, it could be improved. Currently the method searches for the first

transition and assumes the ordinal nature of the sequence has been learned by the model.

This has not been proven here. Hence a statistical approach might benefit the regression

process, for example, by looking at the landmarks around the transition zone and choosing

an average or median value.

8.6 Investigate multi-scale input features

It is observed that the 1DTCNN network makes explicit use of dilation layers to capture

scale dependent features. The LSTM RNN models used features that had a fixed scale

determined by the standard deviation, σ, used in the curvature and derivative calculations.

Using, for example, three DoG features with scales of σ=1, 2 and 3 at the same time,

would, it is hypothesised, improve the accuracies of the classes segmented.

8.7 Investigate the energy efficiency of approaches used in this research

Finally, with a wide range of hardware becoming available such as GPUs, dedicated

camera systems, multi-core microprocessors and so on, it will be worthwhile to study the

efficiency of the approaches used in this thesis from the context of power consumption.

174

This is pertinent given the increased use of mobile based hardware and, more generally,

the limited resources available to power these devices.

175

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,

Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D.,

Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,

Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016)

‘TensorFlow: A system for large-scale machine learning’, Proceedings of the 12th

USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, pp.

265–283. doi:10.5555/3026877.3026899.

Abdou, I.E. and Pratt, W.K. (1979) ‘Quantitative design and evaluation of

enhancement/thresholding edge detectors’, Proceedings of the IEEE, 67(5), pp. 753–

763. doi:10.1109/PROC.1979.11325.

Aksu, M., Kaya, D. and Kocadereli, I. (2010) ‘Reliability of reference distances used in

photogrammetry’, The Angle Orthodontist, 80(4), pp. 670–677. Available at:

http://www.angle.org/doi/abs/10.2319/070309-372.1.

Aldridge, K., Boyadjiev, S.A., Capone, G.T., DeLeon, V.B. and Richtsmeier, J.T.

(2005) ‘Precision and error of three-dimensional phenotypic measures acquired from

3dMD photogrammetric images’, American Journal of Medical Genetics Part A,

138A(3), pp. 247–253. doi:10.1002/ajmg.a.30959.

Altun, K., Barshan, B. and Tunçel, O. (2010) ‘Comparative study on classifying human

activities with miniature inertial and magnetic sensors’, Pattern Recognition, 43(10), pp.

3605–3620. doi:10.1016/j.patcog.2010.04.019.

Álvarez Casado, C. and Bordallo López, M. (2021) ‘Real-time face alignment:

evaluation methods, training strategies and implementation optimization’, Journal of

Real-Time Image Processing, 18(6), pp. 2239–2267. doi:10.1007/S11554-021-01107-

W/FIGURES/15.

176

Auger, F., Flandrin, P., Lin, Y.T. and McLaughlin, S. (2013) ‘Time-frequency

reassignment and synchrosqueezing: An overview’, IEEE Signal Processing Magazine,

30(6), pp. 32–41. doi:10.1109/MSP.2013.2265316.

Azevedo, A. and Santos, M.F. (2008) ‘KDD, SEMMA and CRISP-DM: A Parallel

Overview’, ISCAP - Sistemas de Informação - Comunicações em eventos científicos

[Preprint].

Bai, S., Kolter, J.Z. and Koltun, V. (2018) ‘An Empirical Evaluation of Generic

Convolutional and Recurrent Networks for Sequence Modeling’.

Bay, H., Tuytelaars, T. and Gool, L. Van (2006) ‘SURF: Speeded Up Robust Features’,

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 3951 LNCS, pp. 404–417.

doi:10.1007/11744023_32.

Beier, T. and Neely, S. (1992) ‘Feature-based image metamorphosis’, Computer

Graphics, 26(2), pp. 35–42. doi:10.1145/133994.134003.

Belhumeur, P., Jacobs, D., Kriegman, D. and Kumar, N. (2011) ‘Localizing parts of

faces using a consensus of exemplars’, in Proc. of Conf. on Computer Vision and

Pattern Recognition.

Belongie, S., Malik, J. and Puzicha, J. (2001) ‘Matching shapes’, Proceedings of the

IEEE International Conference on Computer Vision, 1, pp. 454–461.

doi:10.1109/ICCV.2001.937552.

Bhanu, B. and Zhou, X. (2004) ‘Face recognition from face profile using dynamic time

warping’, Proceedings - International Conference on Pattern Recognition, 4, pp. 499–

502. doi:10.1109/ICPR.2004.1333820.

Bishop, C.M. (2006) Pattern recognition and machine learning. 1st edn. Cambridge:

Springer Verlag.

Bottino, A. and Cumani, S. (2008) ‘A fast and robust method for the identification of

face landmarks in profile images’, WSEAS, Transactions on Computers, 7(8), pp. 1250–

1259.

177

Bouma, H., Vilanova, A., Bescós, J., Ter Haar Romeny, B. and Gerritsen, F. (2007)

‘Fast and accurate Gaussian derivatives based on B-splines’, in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Springer Verlag, pp. 406–417. doi:10.1007/978-3-

540-72823-8_35.

Bradbury, J., Merity, S., Xiong, C. and Socher, R. (2016) ‘Quasi-Recurrent Neural

Networks’, 5th International Conference on Learning Representations, ICLR 2017 -

Conference Track Proceedings [Preprint].

Canny, J. (1986) ‘A Computational Approach to Edge Detection’, IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI-8(6), pp. 679–698.

doi:10.1109/TPAMI.1986.4767851.

Çeliktutan, O., Ulukaya, S. and Sankur, B. (2013) ‘A comparative study of face

landmarking techniques’, EURASIP Journal on Image and Video Processing, 2013(1),

p. 13. doi:10.1186/1687-5281-2013-13.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.

and Bengio, Y. (2014) ‘Learning phrase representations using RNN encoder-decoder for

statistical machine translation’, in EMNLP 2014 - 2014 Conference on Empirical

Methods in Natural Language Processing, Proceedings of the Conference. Association

for Computational Linguistics (ACL), pp. 1724–1734. doi:10.3115/v1/d14-1179.

Chollet, F. and Others (2015) Keras. Available at: https://keras.io.

Cootes, T., Taylor, C.J., Cooper, D.H. and Grahama, J. (1995) ‘Active shape models:

their training and application’, Comput. Vis. Image Understand, 91.

doi:10.1006/cviu.1995.1004.

Cootes, T.F., Edwards, G.J. and Taylor, C.J. (1998) ‘Active appearance models’,

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1407, pp. 484–498.

doi:10.1007/BFB0054760.

178

Cootes, T.F., Edwards, G.J. and Taylor, C.J. (2001) ‘Active appearance models’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(6), p. 681.

doi:10.1109/34.927467.

Dalal, N. and Triggs, B. (2005) ‘Histograms of oriented gradients for human detection’,

in Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, CVPR 2005, pp. 886–893. doi:10.1109/CVPR.2005.177.

Deberry-Borowiecki, B., Kukwa, A. and Blanks, R.H.I. (1988) ‘Cephalometric Analysis

for Diagnosis and Treatment of Obstructive Sleep Apnea’, The Laryngoscope, 98(2),

pp. 226–234. doi:10.1288/00005537-198802000-00021.

Deng, J., Guo, J., Zhang, D., Deng, Y., Lu, X. and Shi, S. (2019) ‘Lightweight face

recognition challenge’, Proceedings - 2019 International Conference on Computer

Vision Workshop, ICCVW 2019, pp. 2638–2646. doi:10.1109/ICCVW.2019.00322.

Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I. and Zafeiriou, S. (2019) ‘RetinaFace:

Single-stage Dense Face Localisation in the Wild’, arXiv preprint arXiv 1905.00641

[Preprint].

Deng, J., Roussos, A., Chrysos, G., Ververas, E., Kotsia, I., Shen, J. and Zafeiriou, S.

(2019) ‘The Menpo Benchmark for Multi-pose 2D and 3D Facial Landmark

Localisation and Tracking’, International Journal of Computer Vision, 127(6–7), pp.

599–624. doi:10.1007/s11263-018-1134-y.

Dickers, G., Rees, J., Bashford, T. and Ademoye, O. (2021) ‘Effectiveness of Curvature

and Signal Derivatives in Fast Curve Segmentation’, in Conference Proceedings

UKSim2021, AIMS2020/21. International Journal of Simulation Systems, Science &

Technology, p. vol 22. doi:10.5013/IJSSST.a.22.01.12.

Dindaroğlu, F., Kutlu, P., Duran, G.S., Görgülü, S. and Aslan, E. (2015) ‘Accuracy and

reliability of 3D stereophotogrammetry: A comparison to direct anthropometry and 2D

photogrammetry’, The Angle Orthodontist, 86(3), pp. 487–494. doi:10.2319/041415-

244.1.

179

Ding, L. and Martinez, A.M. (2010) ‘Features versus context: an approach for precise

and detailed detection and delineation of faces and facial features’, IEEE Trans. Pattern

Anal. Mach. Intell, 32. doi:10.1109/TPAMI.2010.28.

Eastwood, P., Gilani, S.Z., McArdle, N., Hillman, D., Walsh, J., Maddison, K.,

Goonewardene, M. and Mian, A. (2020) ‘Predicting sleep apnea from 3-dimensional

face photography’, Journal of Clinical Sleep Medicine [Preprint].

doi:10.5664/jcsm.8246.

Efraty, B.A., Ismailov, E., Shah, S. and Kakadiaris, I.A. (2009) Towards 3D-aided

Profile-Based Face Recognition, IEEE 3rd International Conference on Biometrics:

Theory, Applications and Systems, BTAS 2009. doi:10.1109/BTAS.2009.5339078.

Farid, H. and Simoncelli, E.P. (2004) ‘Differentiation of Discrete Multidimensional

Signals’, IEEE Transactions on Image Processing, 13(4).

doi:10.1109/TIP.2004.823819.

Farkas, L.G. (1994) ‘Anthropometry of the head and face (ed 2)’, Journal of Oral and

Maxillofacial Surgery, 53(6), p. 733. doi:10.1016/0278-2391(95)90208-2.

Farkas, L.G., Bryson, W. and Klotz, J. (1980) ‘Is Photogrammetry of the Face

Reliable?.’, Plastic and Reconstructive surgery, 66(3), pp. 346–355.

Fawaz, H.I., Forestier, · Germain, Weber, J., Lhassane Idoumghar, · and Muller, P.-A.

(2019) ‘Deep learning for time series classification: a review’, Data Mining and

Knowledge Discovery, 33, pp. 917–963. doi:10.1007/s10618-019-00619-1.

Fawzy Mahmoud, N., Hassan, K.A., Abdelmajeed, S.F., Moustafa, I.M. and Silva, A.G.

(2019) ‘The Relationship Between Forward Head Posture and Neck Pain: a Systematic

Review and Meta-Analysis’, Current reviews in musculoskeletal medicine, 12(4), pp.

562–577. doi:10.1007/s12178-019-09594-y.

Fukushima, K. (1980) ‘Neocognitron: A Self-organizing Neural Network Model for a

Mechanism of Pattern Recognition Unaffected by Shift in Position’, Biol. Cybernetics,

36, pp. 193–202. doi:10.1016/0893-6080(88)90014-7.

180

Géron, A. (2019) Hands-on machine learning with Scikit-Learn, Keras and

TensorFlow: concepts, tools, and techniques to build intelligent systems. 2nd edn.

O’Reilly Media.

Gers, F.A. and Schmidhuber, J. (2000) ‘Recurrent nets that time and count’,

Proceedings of the International Joint Conference on Neural Networks, 3, pp. 189–194.

doi:10.1109/IJCNN.2000.861302.

Ghoddousi, H., Edler, R., Haers, P., Wertheim, D. and Greenhill, D. (2007)

‘Comparison of three methods of facial measurement’, International Journal of Oral

and Maxillofacial Surgery, 36(3), pp. 250–258. doi:10.1016/j.ijom.2006.10.001.

Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G.,

Mietus, J.E., Moody, G.B., Peng, C.K. and Stanley, H.E. (2000) ‘PhysioBank,

PhysioToolkit, and PhysioNet: components of a new research resource for complex

physiologic signals.’, Circulation, 101(23). doi:10.1161/01.cir.101.23.e215.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press.

Gordon, C.C., Blackwell, C.L., Bradtmiller, B., Parham, J.L., Barrientos, P., Paquette,

S.P., Corner, B.D., Carson, J.M., Venezia, J.C. and Rockwell, B.M. (2014) 2012

Anthropometric Survey of US Army Personnel: Methods and Summary Statistics. Army

Natick Soldier Research Development and Engineering Center MA.

Gordon, N.J., Salmond, D.J. and Smith, A.F.M. (1993) ‘Novel approach to

nonlinear/non-gaussian Bayesian state estimation’, IEE Proceedings, Part F: Radar and

Signal Processing, 140(2), pp. 107–113. doi:10.1049/IP-F-2.1993.0015.

Graves, A., Ch, A., Fernández, S., Gomez, F., Schmidhuber, J. and Ch, J. (2006)

‘Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with

Recurrent Neural Networks’, in Proceedings of the 23rd international conference on

Machine learning, pp. 369–376.

Graves, A., Mohamed, A.-R. and Hinton, G. (2013) ‘Speech Recognition with Deep

Recurrent Neural Networks’, in 2013 IEEE international conference on acoustics,

speech and signal processing, pp. 369–376.

181

Gray, A., Abbena, E. and Salamon, S. (2017) Modern Differential Geometry of Curves

and Surfaces with Mathematica®. 3rd edn. Chapman and Hall/CRC.

Gross, R., Matthews, I., Cohn, J., Kanade, T. and Baker, S. (2010) ‘Multi-PIE’, Image

Vis. Comput, 28. doi:10.1016/j.imavis.2009.08.002.

Handelman, G.S., Kok, H.K., Chandra, R. V., Razavi, A.H., Huang, S., Brooks, M.,

Lee, M.J. and Asadi, H. (2018) ‘Peering Into the Black Box of Artificial Intelligence:

Evaluation Metrics of Machine Learning Methods’,

https://doi.org/10.2214/AJR.18.20224, 212(1), pp. 38–43. doi:10.2214/AJR.18.20224.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep residual learning for image

recognition’, Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2016-Decem, pp. 770–778.

doi:10.1109/CVPR.2016.90.

Hill Jr., F.S. and Kelley, S.M. (2006) ‘Computer Graphics Using OpenGL (3rd

Edition)’.

Hochreiter, S. and Schmidhuber, J. (1997) ‘Long Short-Term Memory’, Neural

Computation, 9(8), pp. 1735–1780. doi:10.1162/neco.1997.9.8.1735.

Hopp, C.S., Chiou, K., Ragheb, D.R.T., Salman, A.M., Khan, S.M., Liu, A.J. and

Sinnis, P. (2015) ‘Longitudinal analysis of plasmodium sporozoite motility in the

dermis reveals component of blood vessel recognition’, eLife, 4(AUGUST2015).

doi:10.7554/eLife.07789.

Hough, P. (1962) ‘Method and means for recognizing complex patterns’. US Patent,

3(6).

Huang, G.B., Mattar, M., Berg, T., Learned-Miller, Eric and Learned-Miller, Erik

(2008) ‘Labeled faces in the wild: A database forstudying face recognition in

unconstrained environments’, Workshop on faces in’Real-Life’Images: detection,

alignment, and recognition. [Preprint].

182

Hubel, D.H. and Wiesel, T.N. (1959) ‘Receptive fields of single neurones in the cat’s

striate cortex’, The Journal of Physiology, 148(3), p. 574.

doi:10.1113/JPHYSIOL.1959.SP006308.

Intel (2018) Depth Camera D435 – Intel® RealSenseTM Depth and Tracking Cameras.

Available at: https://www.intelrealsense.com/depth-camera-d435/ (Accessed: 30 July

2021).

International Organization for Standardization (1994) ISO 5725-1:1994(en) Accuracy

(trueness and precision) of measurement methods and results — Part 1: General

principles and definitions.

Jayaratne, Y.S.N. and Zwahlen, R.A. (2014) ‘Application of Digital Anthropometry for

Craniofacial Assessment’, Craniomaxillofacial Trauma & Reconstruction, 7(2), pp.

101–107. doi:10.1055/s-0034-1371540.

Jesorsky, O., Kirchberg, K.J. and Frischholz, R.W. (2001) ‘Robust face detection using

the Hausdorff distance’, in International Conference on Audio- and Video-Based

Biometric Person Authentication. Springer Berlin Heidelberg, pp. 90–95.

doi:10.1007/3-540-45344-X_14.

Jin, X. and Tan, X. (2016) ‘Face Alignment In-the-Wild: A Survey’, Computer Vision

and Image Understanding, 162, pp. 1–22. doi:10.1016/j.cviu.2017.08.008.

Johnston, B. and de Chazal, P. (2018) ‘A review of image-based automatic facial

landmark identification techniques’, EURASIP Journal on Image and Video Processing,

2018, p. 86. doi:10.1186/s13640-018-0324-4.

Kakadiaris, I.A., Abdelmunim, H., Yang, W. and Theoharis, T. (2008) ‘Profile-based

face recognition’, 2008 8th IEEE International Conference on Automatic Face and

Gesture Recognition, FG 2008 [Preprint], (May 2014).

doi:10.1109/AFGR.2008.4813370.

Kamiri, J. and Mariga, G. (2021) ‘Research Methods in Machine Learning: A Content

Analysis’, International Journal of Computer and Information Technology(2279-0764),

10(2), pp. 2279–0764. doi:10.24203/IJCIT.V10I2.79.

183

Kim, S.-H., Jung, W.-Y., Seo, Y.-J., Kim, K.-A., Park, K.-H. and Park, Y.-G. (2015)

‘Accuracy and precision of integumental linear dimensions in a three-dimensional facial

imaging system’, Korean Journal of Orthodontics, 45(3), pp. 105–112.

doi:10.4041/kjod.2015.45.3.105.

Kline, M. (1972) Mathematical thought from ancient to modern times Volume 2 (vol. 2).

Oxford University Press.

Kolar, J.C. and Salter, E.M. (1997) Craniofacial Anthropometry: Practical

Measurement of the Head and Face for Clinical, Surgical, and Research Use. C.C.

Thomas, Springfield.

Köstinger, M., Wohlhart, P., Roth, P.M. and Bischof, H. (2011) ‘Annotated facial

landmarks in the wild: a large-scale, real-world database for facial landmark

localization’, in Computer Vision Workshops (ICCV Workshops), 2011 IEEE

International Conference on Benchmarking Facial Image Analysis Technologies,.

Spain: IEEE, pp. 2144–2151. doi:10.1109/ICCVW.2011.6130513.

Krizhevsky, A., Sutskever, I. and Hinton, G. (2012) ‘Imagenet classification with deep

convolutional neural networks’, Advances in neural information processing systems, 25,

p. pp 1097–1105. doi:10.1145/3065386.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-

Sanchez, A.J. and Wiskott, L. (2013) ‘Deep hierarchies in the primate visual cortex:

What can we learn for computer vision?’, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 35(8), pp. 1847–1871. doi:10.1109/TPAMI.2012.272.

Kuehnapfel, A., Ahnert, P., Loeffler, M., Broda, A. and Scholz, M. (2016) ‘Reliability

of 3D laser-based anthropometry and comparison with classical anthropometry OPEN’,

Nature Publishing Group [Preprint]. doi:10.1038/srep26672.

Kumar, N. and Sharma, D. (2017) ‘A Review on Machine Learning Algorithms, Tasks

and Applications’, International Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), 6(10), pp. 2278–1323.

184

Laguna, P., Jané, R. and Caminal, P. (1994) ‘Automatic detection of wave boundaries in

multilead ECG signals: Validation with the CSE database’, Computers and Biomedical

Research, 27(1), pp. 45–60. doi:10.1006/cbmr.1994.1006.

Lam, B., Ip, M.S.M., Tench, E. and Ryan, C.F. (2005) ‘Craniofacial profile in Asian

and white subjects with obstructive sleep apnoea’, Thorax, 60(6), p. 504.

doi:10.1136/thx.2004.031591.

Le, V., Brandt, J., Lin, Z., Bourdev, L. and Huang, T.S. (2012) ‘Interactive facial

feature localization’, in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin,

Heidelberg, pp. 679–692. doi:10.1007/978-3-642-33712-3_49.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and

Jackel, L.D. (1989) ‘Backpropagation Applied to Handwritten Zip Code Recognition’,

Neural Computation, 1(4), pp. 541–551. doi:10.1162/NECO.1989.1.4.541.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) ‘Gradient-based learning

applied to document recognition’, Proceedings of the IEEE, 86(11), pp. 2278–2323.

doi:10.1109/5.726791.

Liang, L., Xiao, R., Wen, F. and Sun, J. (2008) ‘Face alignment via component-based

discriminative search’, in European Conf. on Computer Vision. Springer, Berlin,

Heidleberg, pp. 72–85. doi:10.1007/978-3-540-88688-4_6.

Linnainmaa, S. (1976) ‘Taylor expansion of the accumulated rounding error’, BIT

Numerical Mathematics 1976 16:2, 16(2), pp. 146–160. doi:10.1007/BF01931367.

Lipira, A.B., Sachanandani, N.S., Govier, D., Payne, A., Wyas, S., Kleeschulte, W. and

Kane, A.A. (2010) ‘Craniobank: an online collection of three-dimensional normative

craniofacial images’, Plastic and reconstructive surgery, 126(2), pp. 70e-72e.

doi:10.1097/PRS.0b013e3181de23e5.

Lipoščak, Z. and Lončarić, S. (1999) A scale-space approach to face recognition from

profiles, Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). Springe, Berlin,

Heidelberg. doi:10.1007/3-540-48375-6_30.

185

Lippold, C., Liu, X., Wangdo, K., Drerup, B., Schreiber, K., Kirschneck, C.,

Moiseenko, T. and Danesh, G. (2014) ‘Facial landmark localization by curvature maps

and profile analysis’, Head and Face Medicine, 10(1), pp. 1–7. doi:10.1186/1746-160X-

10-54.

Lowe, D.G. (2004) ‘Distinctive image features from scale-invariant keypoints’, Int. J.

Comput. Vis, 60. doi:10.1023/B:VISI.0000029664.99615.94.

Marr, D. and Hildreth, E. (1980) ‘Theory of edge detection’, Proceedings of the Royal

Society of London - Biological Sciences, 207(1167), pp. 187–217.

doi:10.1098/rspb.1980.0020.

Martinez, A. and Benavente, R. (1998) The AR face database: CVC Technical Report,

24.

Masters, D. and Luschi, C. (2018) ‘Revisiting Small Batch Training for Deep Neural

Networks’, arXiv preprint arXiv:1804.07612 [Preprint].

Mathworks (2020a) Deep Learning Toolbox Documentation - MathWorks United

Kingdom. Available at: https://uk.mathworks.com/help/deeplearning/ (Accessed: 14

August 2021).

Mathworks (2020b) Measure the Performance of Your Code - MATLAB & Simulink -

MathWorks Benelux. Available at:

https://uk.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-

program.html (Accessed: 20 July 2021).

Mathworks (2020c) Waveform Segmentation Using Deep Learning - MATLAB &

Simulink - MathWorks United Kingdom. Available at:

https://uk.mathworks.com/help/signal/ug/waveform-segmentation-using-deep-

learning.html#mw_rtc_WaveformSegmentationUsingDeepLearningExample_BFEA95

F4 (Accessed: 13 May 2021).

Maxion, R. (2009) ‘Experimental Methods for Computer Science Research’, pp. 136–

136. doi:10.1109/LADC.2009.29.

186

McCarthy, J., Minsky, M.L., Rochester, N. and Shannon, C.E. (2006) ‘A Proposal for

the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955’,

AI Magazine, 27(4), pp. 12–12. doi:10.1609/AIMAG.V27I4.1904.

McCulloch, W.S. and Pitts, W. (1943) ‘A logical calculus of the ideas immanent in

nervous activity’, The bulletin of mathematical biophysics 1943 5:4, 5(4), pp. 115–133.

doi:10.1007/BF02478259.

McGlone, J. (2004) Manual of photogrammetry. 5th ed. Bethesda: American Society for

Photogrammetry and Remote Sensing.

Messer, K., Matas, J., Kittler, J., Luettin, J. and Maitre, G. (1999) ‘XM2VTSDB: the

extended M2VTS database’, Second international conference on audio and video-based

biometric person authentication, 964, pp. 965–966.

Meyer, F. and Beucher, S. (1990) ‘Morphological segmentation’, Journal of Visual

Communication and Image Representation, 1(1), pp. 21–46. doi:10.1016/1047-

3203(90)90014-M.

Microsoft (2019) Azure Kinect DK. Available at: https://azure.microsoft.com/en-

gb/services/kinect-dk/#overview (Accessed: 30 July 2021).

Milborrow, S. and Nicolls, F. (2008) ‘Locating Facial Features with an Extended Active

Shape Model’, in European conference on computer vision. Springer, Berlin,

Heidelberg, pp. 504–513. doi:10.1007/978-3-540-88693-8_37.

Minolta (2001) Non-contact 3D Digitizer Vivid 910/VI-910 Instruction Manual

(hardware).

Moore, G.A. (1968) ‘Automatic scanning and computer processes for the quantitative

analysis of micrographs and equivalent subjects’, in Pictorial pattern recognition, pp.

275–362.

Moskalenko, V., Zolotykh, N. and Osipov, G. (2019) ‘Deep Learning for ECG

Segmentation’, Studies in Computational Intelligence, 856, pp. 246–254.

doi:10.1007/978-3-030-30425-6_29.

187

Naini, F.B. (2010) ‘Leslie G. Farkas: pioneer of modern craniofacial anthropometry’,

Archives of facial plastic surgery, 12(3), pp. 141–142.

Nechala, P., Mahoney, J. and Farkas, L.G. (1999) ‘Digital two-dimensional

photogrammetry: a comparison of three techniques of obtaining digital photographs.’,

Plastic and reconstructive surgery, 103(7), pp. 1819–1825. doi:10.1097/00006534-

199906000-00002.

Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,

Kalchbrenner, N., Senior, A. and Kavukcuoglu, K. (2016) ‘WaveNet: A Generative

Model for Raw Audio’, arXiv preprint arXiv:1609.03499 [Preprint].

Otsu, N. (1979) ‘A threshold selection method from gray-level histograms.’, IEEE

Trans Syst Man Cybern, SMC-9(1), pp. 62–66. doi:10.1109/TSMC.1979.4310076.

Ozsoy, U., Demirel, B.M., Yildirim, F.B., Tosun, O. and Sarikcioglu, L. (2009)

‘Method selection in craniofacial measurements: advantages and disadvantages of 3D

digitization method.’, Journal of cranio-maxillo-facial surgery : official publication of

the European Association for Cranio-Maxillo-Facial Surgery, 37(5), pp. 285–290.

doi:10.1016/j.jcms.2008.12.005.

Pantic, M., Patras, I. and Rothkruntz, L. (2002) ‘Facial gensture recognition in face

profile image sequences’, Proceedings - 2002 IEEE International Conference on

Multimedia and Expo, ICME 2002, 1(March), pp. 37–40.

doi:10.1109/ICME.2002.1035712.

Pantic, M., Valstar, M., Rademaker, R. and Maat, L. (2005) ‘Web-based database for

facial expression analysis’, in 2005 IEEE proceedings of international conference on

Multimedia and Expo, p. 5. doi:10.1109/ICME.2005.1521424.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A. and

Cournapeau, D. (2012) ‘Scikit-learn: Machine Learning in Python’, Journal of Machine

Learning Research, 12, pp. 2825–2830.

188

Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques,

J., Min, J. and Worek, W. (2005) ‘Overview of the face recognition grand challenge’, in

2005 IEEE computer society conference on computer vision and pattern recognition

(CVPR’05). IEEE, pp. 947–954. doi:10.1109/CVPR.2005.268.

Phimoltares, S., Lursinsap, C. and Chamnongthai, K. (2007) ‘Face detection and facial

feature localization without considering the appearance of image context’, Image Vis.

Comput, 25. doi:10.1016/j.imavis.2006.05.017.

Robinette, K.M., Blackwell, S., Daanen, H., Boehmer, M. and Fleming, S. (2002)

Civilian American and European Surface Anthropometry Resource (CAESAR), Final

Report. Volume 1. Summary. SYTRONICS INC DAYTON OH.

Robinette, K.M. and Daanen, H.A.M. (2006) ‘Precision of the CAESAR scan-extracted

measurements’, Applied Ergonomics, 37(3), pp. 259–265.

doi:10.1016/j.apergo.2005.07.009.

Romeny, B.M.H. (2008) Front-End Vision and Multi-Scale Image Analysis: multi-scale

computer vision theory and applications, written in mathematica (Vol. 27). Dordrecht:

Springer Science & Business Media. doi:10.1007/978-1-4020-8840-7.

Rosenblatt, F. (1958) ‘The perceptron: A probabilistic model for information storage

and organization in the brain’, Psychological Review, 65(6), pp. 386–408.

doi:10.1037/H0042519.

Rosten, E. and Drummond, T. (2006) ‘Machine Learning for High-Speed Corner

Detection’, Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 3951 LNCS, pp. 430–443.

doi:10.1007/11744023_34.

Ruder, S. (2016) ‘An overview of gradient descent optimization algorithms’.

doi:10.48550/arxiv.1609.04747.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., Rumelhart, D.E., Hinton, G.E. and

Williams, R.J. (1986) ‘Learning representations by back-propagating errors’, Nature,

323(6088), pp. 533–536. doi:10.1038/323533A0.

189

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C. and Fei-Fei, L. (2015) ‘ImageNet

Large Scale Visual Recognition Challenge’, International Journal of Computer Vision,

115(3), pp. 211–252. doi:10.1007/s11263-015-0816-y.

Russell, S.J. and Norvig, P. (2020) Artificial Intelligence: A Modern Approach. 4th edn.

Pearson Education.

Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S. and Pantic, M. (2016) ‘300

Faces In-The-Wild Challenge: database and results’, Image and Vision Computing, 47,

pp. 3–18. doi:10.1016/j.imavis.2016.01.002.

Sagonas, C., Tzimiropoulos, G., Zafeiriou, S. and Pantic, M. (2013) ‘300 Faces in-the-

Wild Challenge: The first facial landmark localization Challenge’:, Proceedings of the

IEEE International Conference on Computer Vision Workshops, pp. 397–403.

doi:10.1109/ICCVW.2013.59.

Sakoe, H. (1978) ‘Dynamic Programming Algorithm Optimization for Spoken Word

Recognition’, IEEE transactions on acoustics, speech and signal processing, 26(1), pp.

43–49. doi:10.1109/TASSP.1978.1163055.

Salkind, N.J. (2007) Encyclopedia of Measurement and Statistics. SAGE Publications.

Schmidhuber, J. (2015) ‘Deep Learning in neural networks: An overview’, Neural

Networks, 61, pp. 85–117. doi:10.1016/j.neunet.2014.09.003.

Sejnowski, T. and Rosenberg, C.R. (1987) ‘Parallel Networks that Learn to Pronounce

English Text’, Complex Systems, 1(1), pp. 165–168.

Shearer, C. (2000) ‘The CRISP-DM Model: The New Blueprint for Data Mining’,

Journal of Data Mining, 5, pp. 13–22.

Sherstinsky, A. (2020) ‘Fundamentals of Recurrent Neural Network (RNN) and Long

Short-Term Memory (LSTM) network’, Physica D: Nonlinear Phenomena, 404.

doi:10.1016/J.PHYSD.2019.132306.

190

Shewalkar, A. (2019) ‘Performance evaluation of deep neural networks applied to

speech recognition : RNN, LSTM and GRU’, Journal of Artificial Intelligence and Soft

Computing Research, 9(Vol. 9, No. 4), pp. 235--245. doi:10.2478/JAISCR-2019-0006.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W. and Woo, W. (2015)

‘Convolutional LSTM Network: A Machine Learning Approach for Precipitation

Nowcasting’, Advances in neural information processing systems, pp. 802–810.

doi:10.5555/2969239.2969240.

Silva, A.G., Punt, T.D. and Johnson, M.I. (2010) ‘Reliability and validity of head

posture assessment by observation and a four-category scale’, Manual therapy, 15(5),

pp. 490–495. doi:10.1016/j.math.2010.05.002.

Staudemeyer, R.C. and Morris, E.R. (2019) ‘Understanding LSTM -- a tutorial into

Long Short-Term Memory Recurrent Neural Networks’, arXiv preprint

arXiv:1909.09586. [Preprint].

Stratonovich, R.L. (1959) ‘Optimum nonlinear systems which bring about a separation

of a signal with constant parameters from noise.’, Radiofizika, 2:6, pp. 892–901.

Studer, S., Bui, T.B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S. and Müller,

K.-R. (2021) ‘Towards CRISP-ML(Q): A Machine Learning Process Model with

Quality Assurance Methodology’, Machine Learning and Knowledge Extraction 2021,

Vol. 3, Pages 392-413, 3(2), pp. 392–413. doi:10.3390/MAKE3020020.

Szeliski, R. (2010) Computer Vision: Algorithms and Applications. 2nd edn. Springer

Science & Business Media.

Tresadern, P.A., Bhaskar, H., Adeshina, S.A., Taylor, C.J. and Cootes, T.F. (2009)

‘Combining local and global shape models for deformable object matching’, in

Proceedings of British Machine Vision Conference, pp. 1–12. doi:10.5244/C.23.95.

Viola, P. and Jones, M. (2001) ‘Robust real-time object detection’, International

Journal of Computer Vision, 4(34–47), p. 4. doi:10.1023/B:VISI.0000013087.49260.fb.

191

Wang, C.W., Huang, C.T., Hsieh, M.C., Li, C.H., Chang, S.W., Li, W.C., Vandaele, R.,

Marée, R., Jodogne, S., Geurts, P., Chen, C. and Zheng, G. (2015) ‘Evaluation and

Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray

Images: A Grand Challenge’, IEEE Transactions on Medical Imaging, 34(9), pp. 1890–

1900. doi:10.1109/TMI.2015.2412951.

Wang, M. and Deng, W. (2021) ‘Deep Face Recognition: A Survey’, Neurocomputing,

429, pp. 215–244. doi:DOI10.1016/j.neucom.2020.10.081.

Wang, S.L., Lau, W.H., Liew, A.W.C. and Leung, S.H. (2007) ‘Robust lip region

segmentation for lip images with complex background’, Pattern Recogn, 40.

doi:10.1016/j.patcog.2007.03.016.

Weinberg, S.M., Naidoo, S., Govier, D.P., Martin, R.A., Kane, A.A. and Marazita, M.L.

(2006) ‘Anthropometric precision and accuracy of digital three-dimensional

photogrammetry: comparing the Genex and 3dMD imaging systems with one another

and with direct anthropometry’, Journal of Craniofacial Surgery, 17(3), pp. 477–483.

doi:10.1097/00001665-200605000-00015.

Weinberg, S.M., Raffensperger, Z.D., Kesterke, M.J., Heike, C.L., Cunningham, M.L.,

Hecht, J.T., Kau, C.H., Murray, J.C., Wehby, G.L., Moreno, L.M. and Marazita, M.L.

(2016) ‘The 3D Facial Norms Database: Part 1. A Web-Based Craniofacial

Anthropometric and Image Repository for the Clinical and Research Community’, The

Cleft palate-craniofacial journal : official publication of the American Cleft Palate-

Craniofacial Association, 53(6), pp. e185–e197. doi:10.1597/15-199.

Weinberg, S.M., Scott, N.M., Neiswanger, K., Brandon, C.A. and Marazita, M.L.

(2004) ‘Digital three-dimensional photogrammetry: evaluation of anthropometric

precision and accuracy using a Genex 3D camera system’, The Cleft palate-craniofacial

journal, 41(5), pp. 507–518. doi:10.1597/03-066.1.

Williams, C.K.I. (2021) ‘The Effect of Class Imbalance on Precision-Recall Curves’,

Neural Computation, 33(4), pp. 853–857. doi:10.1162/neco_a_01362.

192

Wilson, D.R. and Martinez, T.R. (2003) ‘The general inefficiency of batch training for

gradient descent learning’, Neural Networks, 16(10), pp. 1429–1451.

doi:10.1016/S0893-6080(03)00138-2.

Wirth, R. (2000) ‘CRISP-DM: Towards a standard process model for data mining’,

Proceedings of the Fourth International Conference on the Practical Application of

Knowledge Discovery and Data Mining, pp. 29--39.

Woods, R.E. and Gonzalez, R.C. (2017) Digital Image Processing. 4th edn. Pearson.

Wu, Y. and Ji, Q. (2019) ‘Facial Landmark Detection: a Literature Survey’,

International Journal on Computer Vision, 127(2), pp. 115–142. doi:10.1007/s11263-

018-1097-z.

Yan, P. and Bowyer, K.W. (2007) ‘Biometric recognition using 3D ear shape’, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 29(8), pp. 1297–1308.

doi:10.1109/TPAMI.2007.1067.

Yi, D., Lei, Z., Liao, S. and Li, S.Z. (2014) ‘Learning Face Representation from

Scratch’, arXiv preprint arXiv:1411.7923 [Preprint].

Yochum, M., Renaud, C. and Jacquir, S. (2016) ‘Automatic detection of P, QRS and T

patterns in 12 leads ECG signal based on CWT’, Biomedical signal processing and

control, (25), pp. 6–52. doi:10.1016/j.bspc.2015.10.011ï.

Youssef, A.R. (2016) ‘Photogrammetric quantification of forward head posture is side

dependent in healthy participants and patients with mechanical neck pain’, International

Journal of Physiotherapy, 3(3), pp. 326–331. doi:10.15621/IJPHY/2016/V3I3/100838.

Zafeiriou, S., Chrysos, G.G., Roussos, A., Ververas, E., Deng, J. and Trigeorgis, G.

(2017) ‘The 3D Menpo Facial Landmark Tracking Challenge’, in Proceedings of the

IEEE International Conference on Computer Vision Workshops, pp. 2503–2511.

Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J. and Shen, J. (2017) ‘The Menpo

Facial Landmark Localisation Challenge: A step towards the solution’, Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.

170–179.

193

Zhang, X., Zhao, J. and LeCun, Y. (2015) ‘Character-level Convolutional Networks for

Text Classification’, Advances in Neural Information Processing Systems, 28.

Zhou, X. and Bhanu, B. (2005) ‘Human Recognition Based on Face Profiles in Video’,

in 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR’05) - Workshops. IEEE, pp. 15–15. doi:10.1109/CVPR.2005.471.

Zhu, X. and Ramanan, D. (2012) ‘Face detection, pose estimation, and landmark

localization in the wild’, 2012 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 2879–2886. doi:10.1109/CVPR.2012.6248014.

194

Appendix A: Publications

The following paper (Dickers et al., 2021) has been accepted for publication as a direct

result of the research discussed in this thesis:

195

196

197

198

199

200

Appendix B: Estimating derivative errors with Taylor’s theorem

Equation (B1) shows Taylor’s theorem.

𝑓(𝑥) = ∑
𝑓(𝑛)(𝑎)

 𝑛!
(𝑥 − 𝑎)𝑛

∞

𝑛=0

(B-1)

f is (n + 1) times differentiable and 𝑓(𝑛)(𝑎) is the nth derivative of f with respect to x,

evaluated at x=a.

If xi is a point on the curve then Taylor’s theorem can approximate f(xi+1), where xi+1 is

another point on the curve separated by a small distance h = xi+1 - xi . Substituting into

(B-1), letting x= xi+1, a = xi. , noting that xi+1 = xi + h and then expanding the series gives,

𝑓(𝑥𝑖 + ℎ) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)ℎ +
1

2
𝑓′′(𝑥𝑖)ℎ2 +

1

6
𝑓′′′(𝑥𝑖)ℎ3

+
1

𝑛!
𝑓(𝑛)(𝑥𝑖)ℎ𝑛 + 𝑅𝑛

(B-2)

where the truncation error, Rn =
1

𝑛+1!
𝑓(𝑛+1)(𝜉)ℎ𝑛 and 𝜉is a number on the open interval

between xi and xi+1. Truncating the Taylor series above after the 1st derivative gives

𝑓(𝑥𝑖 + ℎ) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)ℎ + 𝑅1, where 𝑅1 =
1

2
𝑓′′(𝜉)ℎ2

Rearranging and dividing throughout by h gives the exact forward difference, 𝑓′(𝑥𝑖)ℎ

 𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖)

ℎ
 −

𝑅1

ℎ

Or

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖)

ℎ
 + 𝑂(ℎ)

(B-3)

201

Where O(h) is the complexity of the 1st derivative approximation and so is proportional

to the step size, h . Here, halving the step size will halve the error associated with the

derivative.

Similarly the backward difference can be found by noting h= xi - xi-1, f(xi-1)= f(xi - h) and

using Taylor’s theorem to find f(xi - h).

𝑓(𝑥𝑖 − ℎ) = 𝑓(𝑥𝑖) − 𝑓′(𝑥𝑖)ℎ +
1

2
𝑓′′(𝑥𝑖)ℎ2 −

1

6
𝑓′′′(𝑥𝑖)ℎ3

+
1

𝑛!
𝑓(𝑛)(𝑥𝑖)ℎ𝑛 + 𝑅1

(B-4)

and,

𝑓′(𝑥𝑖) =
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖 − ℎ)

ℎ
 + 𝑂(ℎ)

(B-5)

Again, the truncation error is also of order O(h).

The central difference 1st order derivative is found by and subtracting (B-2) and (B-4)

𝑓(𝑥𝑖 + ℎ) − 𝑓(𝑥𝑖 − ℎ) = 2𝑓′(𝑥𝑖)ℎ + 𝑅2 and the local truncation error,

 R2 =
1

6
𝑓′′′(𝜉3

′)ℎ3, where 𝜉3
′ is found from the truncation errors of (B-2) and (B-4) using

the intermediate value theorem. Dividing by 2h gives,

𝑓(𝑥𝑖+ℎ)− 𝑓(𝑥𝑖 − ℎ)

2ℎ
= 𝑓′(𝑥𝑖) + 𝑅2/2ℎ

The truncation error, 𝑅2/2ℎ is of the order O(h2) so halving the step size will make the

error associated with the derivative four times smaller.

𝑓′(𝑥) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
 + 𝑂(ℎ2)

(B-6)

Therefore, the central difference approach to finding the error is more accurate for small

step sizes.

202

Appendix C: Theory underpinning Sequential DNNs

Recurrent Neural Networks

Unlike feedforward networks whose connections are constrained to link forward to

neurons deeper in the network, recurrent networks include links feeding back to earlier

parts of the network. Interpreting these feedback links as outputs from a previous time

step, and chaining these stages together, allows learning across several time steps. Hence

the network can learn patterns across time or sequences of data. Figure C-1 shows the

overall structure of a single recurrent neuron, typically referred to as a cell. Several of

these cells can be combined together to form a more complex cell.

Figure C-1: Structure of a recurrent neural network cell.

Training of a RNN can be achieved by using the idea of “unrolling through time”

(Staudemeyer and Morris, 2019; Sherstinsky, 2020) as shown in figure C-2. When seen

like this, the back propagation algorithm can be applied in the normal way to calculate

gradients through the network and is referred to as back propagation through time (BPTT)

in the literature. Hence, from the perspective of the BPTT algorithm, there are two sets

of inputs and their associated weights that correspond to both the normal input vector

weights and also the weights for the previous time step’s output state, typically referred

to as h where h refers to the word “hidden” since this state is contained within the network.

Y is the output of the cell.

203

Figure C-2: A recurrent neural network cell unrolled through time.

Typically, RNNs are used in a number of configurations: vector to sequence; sequence to

sequence; sequence to vector or as an encoder-decoder, that is sequence to vector

followed by a vector to sequence. These architectures and their uses are detailed in

several texts (Goodfellow, Ian, Bengio, Yoshua, and Courville, 2016; Géron, 2019) and

so their detailed theoretical underpinning is not repeated here, though figure C-2 is an

example of a sequence-to-sequence network with the output sequence (Y(0)-Y(2)) being

the same length as the input sequence (X(0)-X(2)).

Sequence to sequence and sequence to vector RNNs allow an output sequence to be learnt

from a labelled dataset of input sequence vectors. The output sequence can be configured

to be of a different length to the input sequence or it could be the same length, depending

on the problem scenario. Variable lengths can be accommodated by, for example,

padding, however the majority of modern neural network libraires include options for

variable length sequences (Chollet and Others, 2015; Abadi et al., 2016; Mathworks,

2020a). An aim of this thesis is the segmentation of a contour curve, hence the focus here

is on the essential concepts related to a sequence-to-sequence network where the input

and output sequences are the same length, although, depending upon the features used the

dimension of the input sequence vector may change. For example, a univariate time series

or a scalar feature such as curvature would have a dimension of 1, a profile’s x and y co-

ordinates, on the other hand, would have a dimension of 2. Additionally, the length of

each training or test sequence may also vary.

RNNs can be used for segmentation by adding additional layers to the output as is

common in other neural network architectures. Typically a fully connected layer

204

followed by a softmax layer is used to convert the real valued output state to a finite

number of classes. The purpose of the softmax layer is to calculate and associate a

probability value between zero and one for each of the multiclass outputs. A true/false

decision boundary is chosen, usually a probability of 0.5 or greater is regarded as true. It

normalises the probability distribution over the output classes, hence the total class

probabilities sum to one (Russell and Norvig, 2020).

The output sequence may consist of a sequence of labels classifying each input of the

sequence. For example, a single input from a long sequence might be a co-ordinate (x,y)

pair representing a point on a curve, whilst the corresponding output at that time would

be a region label, for example, “upper lip”.

RNNs have a limited memory, the literature often states 10 time/sequence steps and

attribute this to both vanishing gradients or exploding gradients that cause some

oscillation in the gradient magnitudes during back propagation. This led to the

development of LSTM RNNs that attempted to address these limitations. LSTMs

introduce a memory component that allows internal state to be remembered or forgotten

through the use of a gate structure and expands the internal states to include the hidden

state h() vector (also referred to as hidden units) and an additional cell state, C() vector.

The hidden state corresponds to the short-term memory and the cell state to the long term

memory. An LSTM cell is shown in figure C-3.

Figure C-3: LSTM Cell.

205

The functions i(t), f(t), o(t), g(t), c(t) and y(t) correspond to the matrix equations (C-1) to

(C-6) respectively. Note that both x(t) and y(t) are weighted and activation functions σ()

and tanh() are applied as in a normal feed forward neural network (FFNN). σ()

corresponds to the sigmoid activation function and tanh() to the hyperbolic activation

function. These have the effect of “squashing” the output ranges to ±1. The ⊗ operator

defines element-wise vector multiplication (also known as the Hadamard product).

𝒊(𝑡) = 𝜎(𝐖𝒙𝒊 ∙ 𝐱(𝑡) + 𝐖𝒉𝒊 ∙ 𝐡(𝑡 − 1) + 𝐛𝑖) (C-1)

𝒇(𝑡) = 𝜎(𝐖𝒙𝒇 ∙ 𝐱(𝑡) + 𝐖𝒉𝒇 ∙ 𝐡(𝑡 − 1) + 𝐛𝑓) (C-2)

𝒐(𝑡) = 𝜎(𝐖𝒐𝒊 ∙ 𝐱(𝑡) + 𝐖𝒐𝒊 ∙ 𝐡(𝑡 − 1) + 𝐛𝑜) (C-3)

𝒈(𝑡) = 𝑡𝑎𝑛ℎ(𝐖𝒙𝒈 ∙ 𝐱(𝑡) + 𝐖𝒉𝒈 ∙ 𝐡(𝑡 − 1) + 𝐛𝑔) (C-4)

𝒄(𝑡) = 𝒇(𝑡) ⊗ 𝐜(𝑡 − 1) + 𝒊(𝑡) ⊗ 𝒈(𝑡) (C-5)

𝒚(𝑡) = 𝒉(𝑡) = 𝒐(𝑡) ⊗ 𝑡𝑎𝑛ℎ(𝐜(𝑡)) (C-6)

As can be seen the hidden state, h() corresponds to the output of one cell. Look at equation

(C-3) and (C-6) the dimensions of these states depend upon the design choices and

represent the cell’s output at one point in time or, equivalently, just one sampled sequence

value. i(t), f(t), o(t) and g(t) are in a form where the backpropagation algorithm can now

be applied, and the weight matrices W** elements learnt in the usual manner. Typically

an LSTM can learn relationships spread across hundreds of time steps (Hochreiter and

Schmidhuber, 1997) so any design will need to take this into account.

There are several variants of LSTMs, for example the Gated Recurrent Unit (GRU) (Cho

et al., 2014), that aims to simplify the architecture of the gate. This is currently a very

popular network choice. Staudemeyer and Morris (2019) suggest GRUs outperform

LSTMs, however Shewalkar (2019), for instance, presents empirical evidence that

indicates they are comparable in speech applications, though the GRU is faster to train.

The next section reviews the use of CNNs in processing sequential and time series data,

focusing on 1DTCNNs.

206

Convolutional neural networks

A two-dimensional CNN layer, as used in image detection, typically uses many small

kernels or filters that are moved across the input image, performing convolutions at each

pixel. Each kernel’s convolutions creates a single two-dimensional feature map as it

moves across the image. Together, these feature maps form a single layer. The kernels

each encode a particular feature that is representative of part of the image to be

recognised. As each kernel has effectively scanned the image looking for its feature, the

resulting feature map encodes where that feature (or multiple versions of it) lie within the

image. Hence the use of the word “map.” Multiple scales are accommodated by adding

a pooling layer afterwards to downsize or subsample the layer above. Hence a CNN has

the ability to localise an object within an image and at multiple scales. The back

propagation algorithm is used to train the kernels. More detailed descriptions of CNNs

and their variations are provided in Goodfellow, Ian, Bengio, Yoshua, and Courville

(2016) and Géron (2019).

One dimensional neural networks work in a similar manner to the more common 2D

CNN. Convolutions are one dimensional in nature and multiple layer subsampling is

referred to as dilation, where layers have a dilation rate, for example a dilation factor of

2, samples every other input of the layer above. This is efficient since n dilations allows

features of up to length 2n to be recognised in n layers, should a constant dilation rate of

2 be used, as is common.

The wavenet architecture introduced by Oord et al. (2016) applies these ideas and

includes a temporal feature that prevents looking ahead. The authors grouped 10

convolutional layers with dilation rates of 1, 2, 4, …,256 and 512. They created three

such groups and stacked them on top of each other. They justified this by pointing out

that each group represented an efficient implementation of a convolutional layer with

kernel size of 1024. Figure C-4(a) (Bai, Kolter and Koltun, 2018) shows the architecture

of a 1DTCNN network. Figure C-4(a) shows a dilated causal convolution with dilation

factors, d = 1, 2 and 4 and kernel filter size k = 3 (blue lines). Figure C-4(b) shows a

residual block that includes two of the dilated causal convolutions of figure C-4(a). A 1x1

convolution is added to ensure the residual input and outputs have the same dimensions.

207

Figure C-4(c) shows an example residual connection where the dilation factor is one and

the kernel filter has a size of three (see blue lines). Classification is achieved with the use

of a fully connected output and softmax layer.

Figure C-4(a): Architectural elements of a 1DTCNN network (Bai, Kolter and Koltun, 2018).

Figure C-4(b): Residual block that includes

two of the dilated causal convolutions of

Figure C-4(a).

Figure C-4(c): An example residual

connection where the dilation factor is 1 and

the kernel filter has size 3 (see blue lines).

208

Appendix D: Evaluation metrics in machine learning classification

This appendix provides a review of evaluation metrics commonly used in the evaluation

of machine learning classifiers. Typically, a dataset used is split into two parts – a training

set and a smaller test set. The test set it placed to one side and will not be used during the

training process. The training set may be further split into a training set and a smaller

validation set. The training set is used to train the classifier whilst the validation set is

used to assess the classifier as training takes place. Use of the validation set can help

prevent over-training of the data using the idea of early stopping, a regularisation method

that Geoffrey Hinton referred to as a “beautiful free lunch” (Ruder, 2016). Over-training

occurs when the model has been trained for too long on the training set and has effectively

memorised it. It is then unable to generalise when new data is presented for inference

(classifying). The validation set can then detect when overtraining is likely by testing the

model on the validation set as training goes on. Note the test dataset is never used for this

purpose. Only when the model is ready to be used is the test data applied and evaluation

takes place. Without a validation set (for example, in the case where there is a small

dataset), manual inspection of the training loss as training progresses is necessary to

prevent overtraining.

Once trained the classifier needs to be evaluated. The following sections discuss the most

commonly used approaches.

The confusion matrix

A confusion matrix is used to present the results of the performance of a binary classifier

but it can also be extended to present results of a multiclass classifier. There is no set

standard for organizing the layout of the matrix so care should be taken when interpreting

a confusion matrix.

In the confusion matrix of figure D-1, the rows contain instances of the correct expected

results. The top row contains instances that should have been classified as true. The total

number of the instances in this row is denoted by P, for positive. The top left cell contains

a value representing the number of instances that were correctly predicted by the

classifier, and these are known as the true positives (TP). The top right cell contains a

209

value representing the number of actual, true instances that were misclassified as false by

the classifier. They are called false negatives (FN). Hence P =TP + FN.

Similarly, the second row also contains totals of actual observations that should have been

classified as negative. The total number of these in this row is denoted by N for negative.

The bottom left cell contains false positives (FP), these should have been classified as

negative but were wrongly classified as positive. The bottom right contains a value

representing the number of instances that were correctly classified as negative and are

referred to as true negatives (TN). Hence N= TN + FP.

Note the true positives and true negatives are always found in the leading diagonal of the

matrix.

Classifier

Predicted:
YES

Classifier
Predicted:
NO

 𝑭𝑷 𝒓𝒂𝒕𝒆

=
𝑭𝑷

𝑵

𝑻𝑷 𝒓𝒂𝒕𝒆 =
𝑻𝑷

𝑷

Actual: YES

(observation)

True

Positives
(TP)
(correct

result)

False

Negatives
(FN)
(unexpected

result)

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

=
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

Actual: NO

(observation)

False

Positives
(FP)
(unexpected

result)

True

Negatives

(TN)
(correct

result)

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=
𝑻𝑷 + 𝑻𝑵

𝑷 + 𝑵

𝑭𝟏 − 𝒔𝒄𝒐𝒓𝒆

=
𝟐

𝟏
𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏

+
𝟏

𝒓𝒆𝒄𝒂𝒍𝒍

Figure D-1: Binary classifier confusion matrix (see following sections for definitions of

equations).

The terms “positive” and “negative” refer to the classifier’s prediction. The terms “true”

and “false” refer to whether the prediction corresponds to the actual observation- what it

really is.

The total number of actual, expected results for a class is called the support. In figure D-

1 the Yes class’ (top row) support is given by P= TP+FN. The No class’s support is given

by N = TN+FP. Some useful metrics can now be calculated from the confusion matrix.

210

Accuracy

The overall accuracy of the classifier can be determined by first finding the total number

of instances correctly classified by the classifier and then dividing by the total number of

instances in the dataset, both true and false. That is,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁

(D-1)

Accuracy is often used to give an overview of a classifier’s performance but can be

misleading. For example, if a dataset was heavily skewed (misbalanced) with 95 true

instances and 5 false then a bad classifier that classifies all results as a positive class would

achieve 95% accuracy. Precision, recall (also known as the true positive rate), and the

false positive rate are metrics that aim to avoid this problem.

False positive rate

The false positive rate is defined in equation (D-2). In the previous example the classifier

will be revealed as a poor one when the false positive rate is calculated. This figure gives

an idea of often the classifier incorrectly classifies a true instance – 100% of the time in

our previous example.

 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃

(D-2)

Recall

Recall is defined by equation (D-3). It is also known as the true positive rate and is the

complement of the false positive rate. It gives a sense of how often the classifier was

right when classifying genuinely positive instances.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(D-3)

Precision

Precision is defined in equation (D-4). It aims to explain accurately how often the

classifier correctly classifies genuinely true instances, that is how many of the positive

predictions are correct.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(D-4)

211

Using any of the above metrics alone can be misleading. Often precision and recall are

used together as an increase in precision can cause a decrease in recall and vice versa. To

see this, the diagram in figure D-2 below shows the distribution of a classifier’s positive

and negative predictions together with a plane (here a vertical line) representing a decision

boundary.

The classifier’s positive predictions are represented by the red distribution and its

negative predictions by the blue distribution. Blue instances to the left of the decision

boundary are correctly classified, they are true negatives (TN), whilst the remaining blue

instances to the right of the boundary are incorrectly classified. These are false positives

(FP). Similarly, the red instances (positive predictions) to the right of the decision

boundary are correctly classified, they are true positives (TP), whilst the remaining red

instances to the left of the boundary are incorrectly classified. These are false negatives

(FN).

Moving the decision boundary to the left will increase the number of TP but decrease the

number of FN. That is, the recall will increase. However, moving the boundary like this

will also increase the number of FP and reduce the precision. It would be better to improve

the classifier, if possible, by instead reducing the overlap of distributions. With a clear

gap between distributions the classifier would have a 100% precision and recall.

Figure D-2: Distribution of positive and negative instances predicted by a binary classifier.

Distribution of positive and negative instances predicted by a classifier

Key: Blue distribution = true negatives.

 Red distribution = true positives.

Vertical line = decision boundary.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
u

m
b

er
 o

f
cl

as
si

fi
ed

 s
am

p
le

s

cl
as

si
fi

ca
ti

o
n
sl

es

212

The F1 Score

The F1 score combines the recall and precision values into one average value. The

average is the harmonic mean which is used when averaging values representing ratios

such as speed for example and, in this case precision and recall. The harmonic mean of

the two values of recall and precision is given in equation (D-5). Williams (2021) notes

that precision and recall, and hence F1 scores are dependent upon class balance and hence

where comparisons are made across different scenarios or datasets then class ratios should

be maintained.

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑟𝑒𝑐𝑎𝑙𝑙

(D-5)

Multi-class confusion matrix

The multi-class confusion matrix extends the binary confusion matrix to work with

several classes. TP, TN, FP and FN values exist for each class as before. Given a class,

for example, class A, shown in figure D-3, the metrics described above are calculated by

labelling the TP,TN,FP and FN as shown in the confusion matrix. So here, classes that

are not class A are all considered to be the complement of A, that is, not A. The support

for each class is calculated by summing the entries horizontally for each row. Williams

(2021) notes that use of the F1 score to compare different models with varying inter-

model class support can be problematic. When using F1 scores ratios of class support size

should be consistent between models (as is the case with the dataset used in this thesis).

 Predicted

Positive Class A

Predicted

Positive Class B

Predicted

Positive Class C

Actual

Positive Class A

TP

Actual

Positive Class B

Actual

Positive Class C

Figure D-3: Multiclass confusion matrix.

FP

FN

213

Macro F1 score

F1 scores for each class of a multiclass classifier can be calculated in the manner

described above, but it is also possible with multi-class models to assign an overall F1

score for the classifier by calculating the average of the F1 scores. Here all classes are

given equal weighting. This is useful if the classes are imbalanced as each is given equal

representation. A weighted average F1 score could also be calculated to provide

additional weighting to a given class based upon its size.

214

Appendix E: Application for Ethical Approval Form Summary

Ethical approval for this research has been granted by the University’s Ethics

Committee. Summary sections of the approved application are documented on the

following pages with personal information redacted.

215

	Declaration
	Abstract
	Acknowledgments
	Publications
	Table of Contents
	Table of Illustrations
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Why Measure Head Posture?
	1.2 Cameras: 2D or not 2D, that is the question
	1.3 Anthropometry
	1.4 Landmarking and posture estimation from RGB-D images
	1.5 Additional requirements
	1.6 Research Question
	1.7 Aims, Objectives and Hypotheses
	1.7.1 Aims
	1.7.2 Objectives
	1.7.3 Hypotheses

	1.8 Ethical Approval and Risks
	1.9 Contributions to the literature
	1.10 Layout of Thesis

	2 Literature Review
	2.1 Introduction
	2.2 2D Face Landmarking and Feature Detection
	2.2.1 Face Landmarking Databases
	2.2.2 Landmark Annotation Schemes
	2.2.3 Face Landmarking methods and algorithms

	2.3 Profile landmarking and curve segmentation
	2.4 Object Contours from RGB-D data
	2.5 Curvature
	2.6 Derivatives of a sampled curve
	2.6.1 Finite differences
	2.6.2 Gaussian Filters and Derivatives

	2.7 Evaluation metrics in machine learning
	2.8 Machine Learning with Neural Networks
	2.8.1 RNNs for sequential data
	2.8.2 Sequential data processing using convolutional neural networks

	2.9 Anthropometry and facial landmarking
	2.9.1 Direct and indirect anthropometry
	2.9.2 Landmarks used in craniofacial anthropometry
	2.9.3 Neck and upper body landmarks

	2.10 Summary of gaps in knowledge and contributions
	2.11 Summary

	3 Research Methodology
	3.1 What type of research?
	3.2 What Research Method?
	3.3 Experimental Research
	3.4 Experimental Methodology
	3.5 Machine Learning Process
	3.6 Apparatus
	3.7 Evaluation Metrics
	3.7.1 Classifier Evaluation
	3.7.2 Regressor Evaluation

	3.8 Run-time Efficiency Evaluation
	3.8.1 Timing procedure

	3.9 Common Experimental Methodologies
	3.9.1 Training LSTM and 1DTCNN models.
	3.9.1.1 The head profile contour dataset
	3.9.1.2 Model training

	3.9.2 Testing and Evaluation of LSTM and 1DTCNN models
	3.9.2.1 Classifier evaluation
	3.9.2.2 Regressor Evaluation

	3.10 Summary

	4 Segmenting uniformly sampled datasets with RNNs
	4.1 Comparison of Gaussian derivatives and central difference methods
	4.2 Efficient filtering and derivative calculations using Gaussian kernels
	4.2.1 Comparison of numerical and analytical curvature calculations.
	4.2.2 Effect of Gaussian derivative kernel size on long data samples

	4.3 Curve segmentation using LSTM RNNs
	4.3.1 Dataset Description
	4.3.2 Feature choices
	4.3.3 LSTM DNN architecture and training
	4.3.4 Results and Comparisons of Network Accuracy
	4.3.4.1 Raw ECG signal
	4.3.4.2 Bandpass Filtered ECG signal
	4.3.4.3 Normalized Curvature (𝜎=1) Feature
	4.3.4.4 Normalized Curvature (𝜎=2) Feature
	4.3.4.5 First Derivative of Gaussian Feature
	4.3.4.6 First Derivative Using Central Difference Method
	4.3.4.7 First Derivative of Pre-smoothed Signal Using Central Difference Method
	4.3.4.8 The Laplacian of Gaussian Second Derivative Feature
	4.3.4.9 Combined DoG and LoG Derivative Features
	4.3.4.10 Combined Curvature, DoG and LoG Derivative Features
	4.3.4.11 40 dimensional FSST Vector Feature

	4.3.5 Summary of overall accuracy and F1 scores
	4.3.6 Runtime Results and Comparisons
	4.3.6.1 Timing procedure

	4.4 Estimating the effectiveness of the feature pre-processing
	4.5 Discussion and Conclusions

	5 Segmenting face profile contours with RNNs
	5.1 Procedure and toolchain
	5.2 The Notre Dame J2 Dataset
	5.3 Labelling landmarks
	5.3.1 Chosen landmarks
	5.3.2 Landmark capturing software

	5.4 Extracting Profile Contours
	5.5 Adjusting Landmarks
	5.6 Adjustment Algorithm Results and Discussion
	5.7 Segmenting profiles
	5.8 Curve Segmentation using LSTM Neural Network
	5.8.1 Dataset Description
	5.8.2 Feature Choices
	5.8.3 LSTM DNN architecture and training
	5.8.4 Results and Comparisons of Network Accuracy
	5.8.4.1 Raw profile contour
	5.8.4.2 Normalized curvature (σ=3) feature
	5.8.4.3 Normalized Curvature (𝜎=2) Feature
	5.8.4.4 Normalized Curvature (𝜎=1) Feature
	5.8.4.5 First Derivative of Gaussian Feature
	5.8.4.6 The Laplacian of Gaussian Second Derivative Feature
	5.8.4.7 Combined DoG and LoG Derivative Features
	5.8.4.8 Combined Curvature, DoG and LoG Derivative Features
	5.8.4.9 Curvature with either first or second derivatives

	5.8.5 Summary of overall accuracy and F1 scores

	5.9 Effect of parameter adjustment on the LSTM network
	5.9.1 Changes to the LSTM RNN architecture and training
	5.9.2 Results and Comparisons of Modified Network Accuracy
	5.9.2.1 Raw profile contour
	5.9.2.2 Normalized curvature (σ=1) feature
	5.9.2.3 First Derivative of Gaussian Feature
	5.9.2.4 The Laplacian of Gaussian Second Derivative Feature
	5.9.2.5 Combined DoG and LoG Derivative Features
	5.9.2.6 Combined Curvature, DoG and LoG Derivative Features

	5.9.3 Summary of overall accuracy and F1 scores

	5.10 From segmentation to regression
	5.10.1 Locating region transitions
	5.10.2 Evaluation of predicted landmark accuracy

	5.11 LSTM Classification Runtime Results and Comparisons
	5.12 Discussions and Conclusions

	6 Segmenting face profile contours with 1DTCNN Networks
	6.1 1DTCNN architecture and training
	6.2 Results and Comparisons of Network Accuracy
	6.2.1 Raw profile curvature
	6.2.2 Combined DoG and LoG Derivative Features
	6.2.3 Normalized curvature (σ=1)
	6.2.4 Summary of overall accuracy and F1 scores

	6.3 Evaluation of runtime results and training times
	6.4 From Segmentation to Regression
	6.4.1 Evaluation of predicted landmark accuracy
	6.4.1.1 Raw profile contour
	6.4.1.2 Normalized Curvature feature (σ=1)
	6.4.1.3 Combined DoG and LoG derivative features

	6.5 Regression results and comparisons
	6.6 Comparison of LSTM Results with 1DTNN
	6.7 Discussions and conclusions

	7 Conclusions and Recommendations
	7.1 Contributions
	7.2 Conclusions
	7.2.1 Review of Objectives
	7.2.2 Review of Hypotheses

	8 Future Work
	8.1 A real-time profile landmarking application
	8.2 Investigate alternative networks
	8.3 Augment the developed dataset
	8.4 Creation of a new dataset
	8.5 Extend and refine the landmarking algorithm
	8.6 Investigate multi-scale input features
	8.7 Investigate the energy efficiency of approaches used in this research

	References
	Appendix A: Publications
	Appendix B: Estimating derivative errors with Taylor’s theorem
	Appendix C: Theory underpinning Sequential DNNs
	Appendix D: Evaluation metrics in machine learning classification
	Appendix E: Application for Ethical Approval Form Summary

