
Insight • Vol 65 • No 9 • September 2023                                                                                                                                                            1                                                                                                                                                
                                                         

COMPUTED TOMOGRAPHY

l Submitted 29.09.22 / Accepted 14.06.23

Ross Hanna is with the Wales Institute for Science and Art (WISA), 
University of Wales Trinity Saint David.

Mark Sutcliffe and David Carswell are with TWI Ltd, VAL.

Peter Charlton is with the School of Engineering, Manufacturing & 
Logistics, University of Wales Trinity St David. 

Stephen Mosey is with the School of Applied Computing, University of 
Wales Trinity St David.

DOI: 10.1784/insi.2023.65.9.XXX

Volume integral model for algebraic image 
reconstruction and computed tomography

Industrial computed tomography (CT) has seen widespread adoption as an inspection technique due to its ability to 
resolve small defects and perform high-resolution measurements on complex structures. The reconstruction of CT data 

is usually performed using filtered back-projection (FBP) methods, such as the Feldkamp-Davis-Kress (FDK) method, 
and are selected as they offer a good compromise between reconstruction time and quality. More recently, iterative 
reconstruction algorithms have seen a resurgence in research interest as computing power has increased. Iterative 

reconstruction algorithms, such as the algebraic reconstruction technique (ART), use a reconstruction approach based 
on linear algebra to determine voxel attenuation coefficients based on the measured attenuation of the sample at the 

detector and calculation of the ray paths traversing the voxel grid. This offers a more precise model for CT reconstruction 
but at the cost of computational complexity and reconstruction time. Existing ART implementations are based on the 2D 
weighting models of the binary integral method (BIM), line integral method (LIM) and area integral method (AIM). For full 
3D reconstruction, BIM and LIM only offer approximations leading to numerical inaccuracies. AIM for 2D reconstruction 

is mathematically exact but considers the divergent nature of a fan beam for 2D only. For a full 3D volumetric 
reconstruction, the X-ray cone beam is divergent in all directions and therefore AIM cannot be applied in its current form. 

A novel voxel weighting method for 3D volumetric image reconstruction using ART and providing a mathematically 
exact fractional volume weighting is introduced in this paper and referred to as the volume integral method (VIM).  
A set of algorithms is provided based on computer graphics techniques to determine ray/voxel intersections with  

volume reconstruction computed based on the divergence theorem. A set of experimental configurations is developed  
to provide a comparison against existing methods and conclusions are provided. Optimisation is achieved  

through graphic acceleration.

R Hanna, M Sutcliffe, D Carswell, P Charlton and S Mosey

1. Introduction
The use of X-ray computed tomography (CT) has led to image 
reconstruction challenges as the applications have become more 
varied and data sizes have increased. The innovation of cone-
beam CT allows data to be acquired faster but presents a challenge 
for the reconstruction process due to the divergence of the 
cone beam. Analytic reconstruction techniques such as filtered  
back-projection (FBP) and the 3D Feldkamp-Davis-Kress (FDK) 
algorithm[1] are limited by geometric transformations used to 
approximate a parallel-beam acquisition[2]. This is due to the use of 
the Fourier slice theorem to perform the reconstruction. The FDK 
algorithm is less computationally intensive than other methods and 
is well suited to scenarios with a sufficient number of equally spaced 
projections over a large rotational range.

Alternative methods of cone-beam reconstruction include 
iterative methods based on the algebraic reconstruction  
technique (ART) originally proposed by Gordon, Bender and 
Herman[3]. ART has been demonstrated for image reconstruction 
by Hounsfield[4] during the first CT scans. While iterative techniques 
offer accurate solutions to the image reconstruction problem 
without geometric transformations and approximations, they come 
at greater computational cost. Recent technological advancements 
have allowed for general-purpose computing on graphics processing 
units (GPUs)[5,6], enabling high levels of parallelisation to occur 
during code execution, utilising a brute-force approach to achieve 
computational speed.

As iterative techniques such as ART utilise a discretised method 
for calculations in the reconstruction, voxel weighting coefficients 

are implemented to increase the accuracy. The simplest of these 
is the binary integral method (BIM)[7], in which any voxel that 
is in the path of the X-ray beam contributes its full attenuation 
coefficient to the ray sum (a value of 1). A more accurate technique 
is the use of the line integral method (LIM)[8], which assigns a 
weight to a voxel attenuation coefficient based on the line length 
of the X-ray beam as it traverses a given voxel (a normalised value 
between 0 and 1). Both of these methods provide a high level of 
reconstruction but do not accurately model the system. In 2D 
reconstruction environments, the area integral method (AIM) 
has been demonstrated to further improve accuracy for fan-beam 
reconstruction. AIM considers the X-ray source as a point source 
and the detector pixel as an object with physical dimensions, 
meaning the X-ray beam is treated as a divergent entity. This allows 
a weighting model to be determined based on the X-ray beam 
area intersection through a given voxel (again normalised to lie  
between 0 and 1)[9-11]. 
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AIM is limited to 2D reconstructions and to obtain a full model 
of the system the volume intersection through a given voxel for 
the X-ray beam should be considered. However, this introduces 
computational complexity and has not been widely researched 
within the literature. This paper introduces a full volume integral 
method (VIM) based on determining X-ray beam intersections 
by exploiting 2D and 3D computer graphics techniques. The 
X-ray source is considered a point in 3D space and the detector 
pixel as an object in 3D space. Connecting X-ray source and pixel 
detector coordinates leads to a region in 3D space bounded by a 
square-based pyramid, referred to as a frustum[12]. The intersection 
of a given voxel and the frustum provides a fractional volume for 
a voxel, which is used as the weighting coefficient. Methods are 
provided within this paper for computing intersections and voxel 
volume for efficient reconstruction.

2. Algebraic reconstruction technique
ART was initially developed for electron microscopy by Gordon[3] 
and has since been used for CT reconstruction[13]. ART offers 
higher numerical accuracy with the ability to perform accurate 
reconstructions with sub-optimal acquisitions, such as limited-
angle and limited-projection datasets. The ART algorithm attempts 
to provide a solution that satisfies a sum of voxels in the path of 
an X-ray beam, such that the computed value of the sum of voxels 
equals the value at the detector pixel. This is repeated for all X-ray 
beam paths and voxel intersections. Previously computed individual 
voxel values are exploited by iteratively applying the algorithm until 
the reconstruction volume has converged. 

Implementation is a two-step process: forward projection and 
correction. The forward projection involves a ray traversing the 
grid and a summation of every voxel that is intersected by the ray 
to calculate the ray sum. The ray sum is compared to the detector 
pixel value and the difference is applied to each of the intersected 
voxels based on a weighted correction modelling a single voxel’s 
contribution to the ray sum. This is illustrated in Figure 1 for LIM.

The precise definition for ART is given in Equation (1): 

                              𝑣𝑣("#$)& = 𝑣𝑣(")& + 𝜆𝜆
𝑝𝑝' − 𝑞𝑞' 	
∑ 𝑤𝑤'()(

𝑤𝑤'&  0 ................... (1)

where v is the voxel attenuation coefficient, w is the weight 
coefficient, k is the iteration number, j is the voxel index value, i is 
the ray index value and n is the voxel index value for a specific ray. 
The weighting coefficient assigned to a particular voxel is denoted 

by wij, win denotes an individual voxel weight along a ray, λ is the 
relaxation factor (described later), pi is the value of a detector pixel 
and qi is the calculated ray sum, based on the previous iteration’s 
calculation of voxel values. This is expressed in Equation (2):
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An alternative to the ART algorithm is the simultaneous ART 
(SART) algorithm presented by Kak and Andersen[14]. In contrast 
to the update of the cell value on a beam-by-beam basis in ART, the 
SART algorithm updates the cells based on the average correction 
value for a projection. The advantage of the SART algorithm is 
a reduction in the reconstructed image noise when compared 
to the ART algorithm, at the expense of speed of convergence.  
The precise formula for SART is:
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While the presented method can be applied to both ART and 
SART, the ART algorithm was chosen for its higher convergence 
speed.

3. Volume integral method
As discussed, VIM provides a weighting coefficient technique 
based on the volume intersection between the X-ray beam and the 
voxel. In computer graphics, the frustum is a four-sided pyramid 
representing the visible region of the screen[15], with its use in 
determining what portions of the 3D world should be rendered. 
The apex of the pyramid represents the camera, the base the 
projection plane and the sides the limits of the viewing angle. 
For X-ray CT, this is analogous to the region occupied from the 
X-ray source to a pixel within the detector of the X-ray CT system. 
Representing the problem in this way allows for common computer 
graphics techniques to be exploited. This system is therefore limited 
to only two object types: axis-aligned bounding boxes (AABBs) 
representing the voxels and the frustum representing the projection 
beam. The objective is to determine the volume occupied by a beam 
intersecting a voxel. To achieve this, it is first necessary to compute 
a polyhedron representing the intersected region of the voxel.

There are three possible ways in which the voxel and beam 
may interact: any of the four frustum edges may intersect a voxel 
face (eight intersection points); any voxel edge (12 in total) may 
intersect with one of the four frustum planes; and any voxel corner 
(eight in total) may exist within the body of the frustum. From these 
three scenarios a maximum of 64 points are evaluated representing 
the geometry of the newly intersected volume. This is illustrated in 
Figure 2.

Computing the points of beam/voxel intersections allows for 
a new polyhedral shape to be constructed. The VIM weight is the 
normalised volume of this newly constructed object. Calculation 
of the volume weight is described in Section 3.4. First, methods to 
compute the intersections are given.

3.1 Ray/voxel face intersection
One of the fastest and computationally efficient methods for 
performing ray/AABB line intersection is the slab method[16]. Given 
a bounding box as illustrated in Figure 3 (in this example in 2D), a 
box is positioned in 2D space with known corner coordinates (shown 
here as b0 to b3) as well as the intersecting ray start and end positions 
(r0 and r1). The ray intersection points are not yet known (r2 and r3).  

Figure 1. ART coordinate system used in this work
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Two vector positions for t are evaluated for a change in the 
x-coordinate with respect the left and right bounding box positions. 
This is repeated for a change in y with respect to the top and bottom 
box positions. 

This provides four vector positions (t), which are evaluated as:
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Values of t that satisfy the intersection points of the box are 
evaluated from each minimum and maximum pair:
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Intersection values for the ray in Cartesian coordinates are 
calculated as:

𝑟𝑟!
(#) = 𝑟𝑟!

(%) + $𝑟𝑟!
(&) − 𝑟𝑟!

(%)&𝑡𝑡('), 𝑟𝑟(
(#) = 𝑟𝑟(

(%) + $𝑟𝑟(
(&) − 𝑟𝑟(

(%)&𝑡𝑡(')

𝑟𝑟!
()) = 𝑟𝑟!

(%) + $𝑟𝑟!
(&) − 𝑟𝑟!

(%)&𝑡𝑡(*), 𝑟𝑟(
()) = 𝑟𝑟(

(%) + $𝑟𝑟(
(&) − 𝑟𝑟(

(%)&𝑡𝑡(*)
  .... (7)

Extending this algorithm to 3D is trivial and in the case of a 
frustum instead of a single ray the voxel is represented by the 
bounding box and the frustum edge by the ray intersection. 

For each edge of the frustum the slab method is computed and 
intersection values obtained as 3D coordinates. Each intersection 
yields two sets of coordinates: the entry point and the exit point.  

In the case of a non-intersection a false or null value is returned. This 
provides a maximum of eight intersection points (two intersection 
points for each of the four frustum edges).

3.2 Voxel edge/ray plane intersection
The next way in which voxel intersection may occur is where 
one or more of the four frustum planes intersects with one or 
more edges of the voxel. There are four planes to check against 
the twelve edges of the voxel. Figure 4 illustrates a voxel/frustum 
plane intersection, where a, b and c are the points representing the 
frustum plane coordinates and d and e are start and end points for 
one edge of a voxel. To compute the intersection point p, the surface 
normal of the plane n (computed from the cross product of b-a 
and c-a) and any single point on the plane surface f are used with  
the plane intersection algorithm:

                                 𝑝𝑝 = 𝑑𝑑 − (𝑒𝑒 − 𝑑𝑑)
(𝑑𝑑 − 𝑓𝑓) ⋅ 𝑛𝑛
(𝑒𝑒 − 𝑑𝑑) ⋅ 𝑛𝑛  ....................... (8)

The output is a point along a voxel edge (represented here as 
d and e) where the intersection occurs. Intersection is guaranteed 
for anything other than edges parallel to the plane. Voxel edge/ray 
plane intersection provides a maximum of 48 intersection points 

(12 voxel edges and four frustum planes). 
Again, the algorithm yields a false or null if 
no intersection point is evaluated.

3.3 Voxel corner culling
Having computed the intersections, one 
further check is needed before a new 
polyhedron can be constructed. Frustum 
culling is required for all eight corners of 
the voxel, where any voxel vertex identified 
as being inside the body of the frustum 
is added to the list of intersection points 

while all others are discarded (culled). This can be achieved by 
examining each plane of the frustum, computing its plane normal 
and evaluating if the corner point being checked is in the direction 
of the plane normal, as shown in Figure 5. This is repeated for all 
planes of the frustum. If all planes return true and given that the 
frustum is a convex polygon, the corner point must lie within the 
body of the frustum. All other corner points are discarded. This 
provides a further eight possible points for consideration.

Figure 2. Illustration of the coordinate system used in this work 
and the types of ray/voxel interaction that may occur

Figure 3. Illustration of the slab line intersection method. Left: box and line; middle: solve 
for left and right; right: solve for top and bottom

Figure 4. Illustration of the voxel edge/frustum plane intersection
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To determine if a voxel corner is in the direction of the plane 
normal, the dot product of the normal with the vector from the 
voxel corner v to the face centre fc is computed:

                                                𝑛𝑛 ∙ 𝑓𝑓!𝑣𝑣%%%%%⃑ ≤ 0  ....................................... (9)

If this value is negative, then the angle between n and  
𝑓𝑓!𝑣𝑣#####⃑   is ≥90° so the corner is in the direction of the normal. If this 
check is true for all five frustum faces, then it is included as part of 
the polyhedron to be constructed. 

3.4 Voxel volume construction
The output of the previous steps provides a possible 64 points 
with which a new shape (a polyhedron) may be constructed. This 
new shape will consist of up to ten faces (six based on the existing 
voxel faces and four based on the plane intersections). Prior to 
shape construction it is first necessary to sort the vertices on each 
face, which is carried out in an anticlockwise order. This sorts the 
vertices in a radial order and the face may then be reconstructed 
using the triangle strip method[17]. Repeating this for each face 
allows for generation of a polyhedron representing the volume  
intersection.

Since a voxel has been intersected with a frustum, the 
volume region is a polyhedron and its volume is calculated using  
Equation (10):

                                Volume =
1
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where xF is an arbitrary point on face F and nF is the outward unit 
normal to face F, xF . nF is the dot product and A is the area of a face. 
Note that this formula is a result of applying the divergence theorem 
to a polyhedron[18].

In order to apply this equation, the area of each face, the 
outward unit normal to each face and one point on each face must 
be known. Determining one point on the face is straightforward, 
since all of the vertices are known. The normals are also trivial to 
calculate since six of the potential faces were the faces of the voxel. 
The directions of the normals to the other four potential faces can 
be calculated as the cross-product of the vectors from the source to 
the two ends of the pixel edge (note that it is necessary to take the 
cross product in the correct sense to give the outward normal not 
the inward normal). This is then scaled to make it unit length. The 
formula for the area (A) of a polygon in the x,y plane is:

                                  𝐴𝐴 =
1
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$
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where (xj,yj) are the x, y coordinates, taken in order, of the corners of 
the polygon and j are interpreted modulo n (the number of corners 

on the face). Note that there must be at least three corners to define 
a proper face. This formula can be derived by applying Green’s 
theorem[19] in the plane (ie the divergence theorem in 2D). Using 
Equation (10), the volume of the region of intersection between the 
voxel and the X-ray beam can be computed. The final stage is to 
normalise it to the maximum possible value by dividing by three 
(where voxel dimensions are 1 unit cubed in size). This gives the 
normalised volume weight (a value between 0 and 1), as shown in 
Figure 6.

3.5 GPU computation
The use of a general-purpose graphics processing unit (GPGPU) 
for use with non-destructive testing (NDT) imaging algorithms[20] 
has shown much success and parallel processing of ART has been 
demonstrated for biomedical imaging[21]. While computationally 
efficient algorithms have been provided here for VIM calculation, 
the number of instructions required to determine the weight 
coefficients for all voxels and projections is still large. To assist 
with this, GPGPU acceleration was utilised to further improve 
computational time. Due to the iterative nature of the ART 
algorithm, parallelisation is carried out for each iterative step, as 
data dependencies prohibit multiple iterations being executed in 
parallel.

The fast voxel traversal algorithm[22] was implemented alongside 
VIM to determine which voxels to use to compute VIM weight 
coefficients. These algorithms combined with the ART summation 
were carried out in parallel and executed on a GPGPU. Floating-
point memory is assigned to accommodate three sets of voxel data 
on the GPU: the current iteration answer; the previous iteration 
answer; and the weight correction coefficients. Each detector 
pixel (voxel intersection ray) is assigned its own compute unified 
device architecture (CUDA) processing thread. To minimise 
memory requirements, each ray intersection is evaluated  
dynamically. 

3.6 Computational complexity
For a reconstruction algorithm using the well-known LIM approach, 
the proposed VIM can be substituted without modification to the 
underlying algorithm. The implication of this is that the number of 
calculations of the voxel weight is equal between the two weighting 
methods. The number of calculations required for the VIM is 
higher than the lightweight VIM technique; however, with 64 
possible intersections to determine compared to two for the LIM.  
In Figure 7, the pseudocode for the implementation of the VIM 
can be seen, where each ray-face intersection would be called only 
once before finding the length of the line segment for the LIM. The 
impact on the reconstruction time is described in Section 5.

Figure 5. Diagram of frustum corner culling

Figure 6. Examples of VIM weights in 3D, where the weight 
corresponds to a normalised volume intersection measurement

4 Insight • Vol 65 • No 9 • September 2023
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4. Experimental configuration
To evaluate the VIM compared to alternative reconstruction 
approaches, a study was conducted with different reconstruction 
algorithms, angular ranges, projection numbers and weighting 
methods for the iterative techniques. The parameters and their 
values can be seen in Table 1.

Table 1. Parameters used for experimental configurations

Parameter Parameter value

Algorithm ART

Weighting LIM VIM

Angular range 360 180 135 90

Angular increment 1 2 5 10

In total, 32 experiments were conducted by combining each of 
the parameters in Table 1. The ART algorithm was used for all 32 
experiments, with a varying number of projections over the angular 
ranges specified. This was then repeated for both LIM and VIM 
weighting.

To evaluate and compare the quality of the reconstructions, 
acquisition and reconstruction were simulated for scenarios with 
full rotation and limited-angle scenarios. The simulated projections 
were modelled as noiseless and with a point X-ray source to allow 
investigation of the reconstruction algorithms in an ideal set-up. The 
object being reconstructed was the Shepp-Logan[23] phantom with 
a side length of 300 voxels. This was chosen 
due to its use as a common point of reference 
within the literature[24]. The simulated 
projections were generated by forward-
projecting through the volume using the 
Siddon forward-projection model[25] to create 
a 400 × 400 detector pixel projection at a 16-bit 
data resolution. The geometry used within 
the system consisted of a source-to-object 
distance of 573.8 mm, a source-to-detector 
distance of 1147.8 mm and a detector pixel 
pitch of 0.2 mm. This is consistent with the  
Nikon XT H 225 computed tomography cabinet 
system used for the physical acquisition.

The number of projections required for 
reconstruction using the FDK algorithm can be determined using 
the Nyquist limit, shown in Equation (12) to be approximately 480 
projections for a full rotation with an angular spacing ∆θ of 0.75°:

                                                𝑁𝑁! =	
𝜋𝜋𝑁𝑁"
2   ..................................... (12)

where Nx is the number of voxels in the x and y axes. For the volume 
of side length 300 (as used in the later experimental configurations), 

the minimum number of projections Np is 472 over a range of 0 to 
360°. The Nyquist limit was used as the baseline for the number 
of projections used for the experiments conducted. An alternative 
definition for algebraic reconstruction methods can be seen in 
Equation (13), using the same nomenclature as in Equation (12). 
While algebraic reconstruction methods are more tolerant of 
lower projection numbers, Equation (13) approximates a fully  
determined system of equations:

                                                𝑁𝑁! =	
𝜋𝜋𝑁𝑁"
4   ..................................... (13)

For a side length of 300, Equation (13) yields a requirement 
of 236 projections. In the experiments conducted this will be 
represented using half the Nyquist limit. 

To evaluate the effectiveness of the VIM technique compared 
to the LIM technique, a parametric study was conducted based on 
the parameters specified in Table 1. For the iterative techniques, 50 
iterations were used to ensure the mean difference between voxel 
values was less than 5 × 10−5 between iterations. All reconstructions 
were performed on an Intel i9-9900KF central processing  
unit (CPU) running at 3.6 GHz running Windows 10 64-bit OS as 
the host computer for the GPU. The GPU was an NVIDIA RTX 
3090 with 10496 CUDA cores and 24 GB of GDDR6X memory. 
In each scenario, the voxel volume was exported to file after each 
iteration for later analysis. The relaxation factor was set to 1 as a 
starting value and decreased by halving the current relaxation 
factor on each iteration until the value reached 0.01, where it was 
kept static for subsequent iterations. This technique was chosen 
based on the research conducted in[26]. Therefore, the eighth 
iteration and onwards were reconstructed with a relaxation factor 
of 0.01, to avoid over-convergence. Results have been provided for 
50 iterations although convergence was observed sooner, as shown 
in Figure 8.

To evaluate the performance of the new technique on a physical 
acquisition, a CT scan of a pencil sharpener was performed using 
the same acquisition parameters as the simulated experiment 
on a Nikon XT H 225 system with an accelerating potential of  
125 kV, a tube current of 120 μA and 370 projections. The object 
was reconstructed using all available projections. The convergence 
curves for the physical acquisition can be seen in Figure 8.

5. Results and discussion

5.1 Simulated acquisition
All data presented has been normalised between 0 and 1 
using min-max normalisation (Equation (14)) to allow direct 
comparison against the ground truth Shepp-Logan phantom 
shown in Figure 9. Reconstructions were completed for the entire 

Figure 7. VIM pseudocode

Figure 8. Convergence curves for simulated data (left) and physical acquisition (right)
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volume with data extracted for each central slice, as shown in  
Figure 10:
                                       𝑉𝑉norm =	

𝑣𝑣 −min
max−	min  ............................ (14)

Two metrics were chosen to evaluate the accuracy of the 
reconstructions. These metrics are the root mean square 
error (RMSE) and the contrast-to-noise ratio (CNR). The 
use of RMSE allows the error in a plane of the reconstructed 
volume to be evaluated as a single value. An RMSE of 0 is a  
perfect fit for the data compared to the ground truth and the 
larger the value, the larger the error. The equation for RMSE is 
shown below (Equation (15)), where n is the number of samples  
in the data, Yi are the reconstructed voxel values and 𝑌𝑌"!   are the  
voxel values of the ground truth:  

                                   RMSE = 	'
1
𝑛𝑛*+𝑌𝑌! − 𝑌𝑌.!/

"
#

!$%

  ...................... (15)

The CNR was chosen as a metric due to its use as a common 
image quality measure, including standards for CT such as 
ISO-15708[27]. With CNR, the higher the value, the greater 
the detectability and resolvability of a structure. The CNR 
was calculated for the reconstructions based on a 2D image 
from the central plane of the 3D volume, shown in Figure 9.  
The CNR can be found using Equation (16), where SA is the 
average of the signal region of interest (ROI), SB is the average 
of the background ROI and σB is the standard deviation of  
the background:

                                          CNR = 	
|𝑆𝑆! − 𝑆𝑆"|

𝜎𝜎"
  ............................... (16)

The reconstruction results for the 180° rotation range with 
a number of projections equal to the Nyquist limit are shown in 
Figure 10. Through visual inspection, the differences between the 
reconstruction methods are not significant. The results for the 
quantitative analysis of the reconstructed volume are shown in 
Figure 11. The X-axis labels are in the form of the angular range 
covered and the step in the number of images from the ideal 
case. Using this format, ‘135-05’ would be a scan range of 135° 
using every fifth projection from the full dataset, as defined in  
Equation (12).

Using CNR as a metric to indicate the detectability of a defect, the 
results show that for all configurations and reconstruction planes, 
the VIM weighting improves the contrast in all configurations 
for the XZ plane that is normal to the rotation axis and specific 
configurations for the YZ and XY planes. The smallest improvement 
for the XZ plane was 13.6% for the 360° rotation with every 
projection compared to LIM ART with the same configuration. 
The largest improvement was 34.2% for the 90° rotation with 

every tenth projection compared to LIM ART with the same 
configuration. For the YZ and XY planes the results do not show a 
global improvement and are comparable to the results for the LIM  
weighted techniques.

Figure 9. On-axis planes of the Shepp-Logan phantom

Figure 10. Reconstruction planes for: (a) LIM ART; and  
(b) VIM ART

Figure 11. Results for CNR (column 1) and RMSE (column 2) for 
planes: (a) YZ; (b) XZ; and (c) XY
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The RMSE metric that was used to evaluate numerical accuracy 
indicates an improvement with the VIM weighting on all midplanes 
for nine out of the 14 experimental configurations, compared with 
the LIM technique. For the remaining five configurations, the lowest 
RMSE technique was dependent on the plane orientation. From the 
results it can be observed that with several projections similar to the 
Nyquist limit, a higher numerical accuracy is observed at the cost of 
a longer computational time.

5.2 Physical acquisition
To evaluate the performance of the VIM weighting for a physical 
acquisition the analysis conducted for the simulated projections 
was repeated with the exception of the RMSE due to the lack 
of a ground truth. The LIM technique took an average of 8 s 
per iteration, while the VIM technique took 113 s on average, 
with these times being comparable to the simulated result. 
The reconstructions of the physical acquisition can be seen in  
Figure 12.

Visual inspection of the reconstruction results shows little 
difference between the two methods. Figure 12(c) shows the 
absolute difference between the two reconstructions with a 
maximum of 4% between voxels for the two weighting techniques. 
The quantitative analysis using CNR shows a higher contrast for 
the YZ reconstruction planes at 13% higher, while the XZ and XY 
planes have a lower CNR (16% and 9%, respectively). 

Table 2. CNR of physical acquisition

CNR (YZ) CNR (XZ) CNR (XY)

LIM ART 32.41 36.52 53.39

VIM ART 36.59 30.51 48.69

In this experiment, the YZ plane was parallel to the detector for the 
first projection and the XZ plane was perpendicular to the rotation. 
The orientation of the planes with respect to the acquisition system 
may have an influence on the measured CNR after reconstruction. 
The object for physical acquisition was reconstructed in a volume 
larger than required in the X and Z axes to minimise parameter 
changes compared to the simulated experiments. This configuration 
is non-optimal for iterative CT due to the increased number of voxels 
that represent the region outside the object.

The VIM reconstruction showed a slightly higher amount of 
streak artefacts in the physical acquisition that were not present 

in the simulated data. This suggests that the 
quality of the acquired projections has an 
impact on the reconstruction with VIM and 
further work will be needed to assess if this 
is the cause of the small increase in artefacts.

6. Conclusions
In this paper, the volume integral method 
has been presented for the algebraic 
reconstruction technique for full tomographic 
3D reconstruction with experimental data 
demonstrating numerical accuracy. The 
performance of the technique has been 
shown to be generally comparable with the 
line integral method, which is consistent with 
the literature (2D area integral method versus 
line integral method). In high-precision 
inspection where an increased reconstruction 
time is acceptable, the proposed method 
offers an improved numerical accuracy, 
which has applications for metrology  
purposes.

The new technique has been compared 
to traditional LIM-based techniques on 
simulated noiseless projections of the  
Shepp-Logan phantom and using 
data acquired with a physical system. 
Reconstructions were performed using 
the algebraic reconstruction technique for 
LIM and VIM over a range of scanning 
parameters to validate the technique in terms 
of numerical accuracy and contrast, using the 
root mean square error and contrast-to-noise 
ratio as metrics. The experiments performed 
show a lower construction error using the 
RMSE in the majority of the experiments and 

comparable RMSE in the remaining experiments. The CNR shows 
an improvement in the contrast ratio of the on-axis reconstruction 
plane. The datasets used for this study were simulated noiseless 
projections of a volume size 300 × 300 × 300 voxels. Further work 
will aim to investigate the effect of noise and larger dataset sizes 
and incorporate larger cone angles to evaluate the impact on the 
reconstruction quality.

Figure 12. Reconstruction planes of: (a) LIM ART; (b) VIM ART; and (c) absolute difference 
between LIM ART and VIM ART
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