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Abstract— The accurate simulation of anatomical joint models 
is becoming increasingly important for both realistic animation 
and  diagnostic  medical  applications.  Recent  models  have 
exploited  unit  quaternions  to  eliminate  singularities  when 
modelling orientations between limbs at a joint. This has led to 
the  development  of  quaternion  based  joint  constraint 
validation  and  correction  methods.   In  this  paper  a  novel 
method  for  implicitly  modelling  unit  quaternion  joint 
constraints  using Self  Organizing Maps (SOMs) is  proposed 
which attempts to address the limitations of current constraint 
validation and correction approaches.  Initial results show that 
the resulting SOMs are capable of modelling regular spherical 
constraints on the orientation of the limb. 
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I.  INTRODUCTION 

Joint  systems are  important  constituents  of  anatomical 
models, they are used in simulation to retain anatomically 
correct  movement  and  ensure  limbs  do  not  separate  or 
intersect. Current techniques are limited by their underlying 
representation  or  their  abstraction  of  the  joint  function. 
Demand  is  increasing  for  anatomically  correct  joints  for 
applications in animation and medicine [1, 2].  However in 
current  applications  increasing  accuracy  incurs  additional 
complexity and therefore computational cost [3-5]. 

Dynamics  solutions  can  be  used  to  produce  realistic 
behavior based on input, contact and constraint forces  [6]. 
Depending on the complexity of the simulation, the outcome 
of  dynamics-based  behavior  can  be  difficult  to  predict. 
Inverse-Kinematics  (IK)  based  approaches  however  allow 
the precise placement of end effectors as constraints [3].  IK 
solvers  attempt  to  resolve  constraints  within  a  constraint 
system, a problem compounded by the existence of zero or 
more solutions [3].

Kinematics based solvers can be classified as analytical, 
often  resorting  to  reduced  coordinate  formalisms,  or 
numerical, using iterative approaches to solve a system of 
constraints.   An  important  aspect  of  this  is  how  the 
constraint  of  joints  is  represented.   This  work  builds  on 
previous  work  in  joint  constraint  modeling;  specifically 
extending  quaternion  based  phenomenological  [7] joints 
(whose behavior  can be modeled without reference to the 
underlying joint anatomy).  

SOMs  are  used  to  implicitly  model  the  boundary 
between valid and invalid orientations by modeling a group 
of valid rotations (expressed as unit quaternions).  The SOM 
creates a set of prototype vectors representing the data set 
and  undertakes  a  topology  preserving  projection  of  the 
prototypes from the n-dimensional input space onto a two 
dimensional  grid  [8].   When  presented  with  an  input 
orientation the network responds with the nearest prototype 
which  can  be  used  to  ascertain  the  inputs  validity  and 
possibly provide a target for correction.  
In  this  paper  constraints  on  the  rotation  of  the  limb  (or 
swing  [9])  with  regular  (circular)  bounded  constrained 
regions  are  considered,  while  irregular  boundaries  and 
rotation  around  the  limb (or  twist  [9])  are  the subject  of 
future work.  

II. RELATED WORK

Primitive  joint  constraints  have  been  parameterized 
using  Euler  angles  [10-12].  However  inter-dimensional 
dependencies  are not represented  [13] and singularities  or 
“Gimbal  Lock”  are  encountered  [14].  Inter-dimensional 
dependencies  between  Euler  angle  components  can  be 
expressed  using  equations [15],  that  can  provide 
mathematical  descriptions  of  rotational  constraint 
boundaries.  Here geometric functions are fitted to a given 
dataset,  examples  include  spherical  [16] and  conical 
polygons [1, 17].

Approaches  such  as  special  orthogonal  matrices  have 
been used to overcome the problem of singularities [2, 18]. 
More  recent  research  has  focused  on  the  use  of  unit 
quaternions to model orientations and joint constraints. Unit 
quaternion  algebra  allows  rotational  models  to  be 
represented without the presence of Gimbal Lock [14].  

Quaternions  are  an  extension  of  complex  numbers, 
composed  of  one  real  and  three  imaginary  components 
where q = <s, i, j, k>.  Multiplying complex numbers results 
in rotation in the complex plane, giving rise to the complex 
identity i2 = -1.  This is extended in a subset of quaternion 
space, where all quaternions are of unit length, to i2 = j2 = k2 

= -1. Unit quaternions occupy a three dimensional surface (a 
hyper-sphere) in four dimensional space and can be used to 
represent rotations. This representation is redundant as the 
unit quaternions represent 4π rotations, hence quaternions at 
polar opposites (q and –q) represent the same rotation [19] 
i.e. they are antipodal. 



Lee [20]  decomposes a single unit quaternion into two 
unit quaternions each representing rotation in a single plane 
(effectively swing and twist for conic and axial constraints). 
Lee  defines  conic,  axial  and  revolute  constraints,  more 
complex constraints can be modeled with a union of these 
basic types.  Interrogation of these constraints (to ascertain 
the validity of a joint  configuration,)  is  presented,  but no 
method  of  calculating  a  correction  to  the  nearest  valid 
orientation is defined.  Liu and Prakash [21] build on Lee’s 
work.  Using a sampled boundary they created a function to 
constrain the decomposed quaternion that  can be used for 
both constraint validation and clamping to the boundary.

In  the  quaternion  iso-surface  approach  of  Herda, 
Urtasun, Fua and Hanson [22] limb rotations were recorded 
and  represented  in  quaternion  space.   A  set  of  four-
dimensional  unit  quaternions  describing  the  valid  joint 
orientations  are  projected  to  a  cloud  of  points  in  three-
dimensions. This reduction in dimensionality overcomes the 
problem  of  ambiguity  in  quaternion  space  (q and  –q 
representing  the  same  orientation).   The  initial  approach 
[22] made use of spherical primitives to create an implicit 
surfaces but was limited by sparse data in difficult to sample 
(uncomfortable) areas.  In the later approach [23] the point 
cloud is voxelized and the density of each voxel calculated, 
the  voxels  are  subdivided  until  their  density  falls  below 
some threshold. Each voxel is  populated with a primitive 
and an iso-surface is then fitted to the primitives defining a 
boundary  between  valid  and  invalid  orientations.  An 
iterative approach can then be employed to resolve invalid 
joint configurations. 

Johnson  [24] also  reduced  the  dimensionality  of  the 
quaternion  by  projecting  one  half  of  the  unit  quaternion 
hyper-sphere onto a three-dimensional tangent space.  A set 
of  quaternions expressing valid joint  and pose constraints 
are  generated  and  constraints  implemented  based  on  a 
maximum  deviation  from  their  mean.  Corrections  are 
implemented by recursively moving an invalid point closer 
to the mean and the corrected point is  then mapped back 
into unit quaternion space. 

Generalised  Multi-layer  Perceptron  Neural  Networks 
have  been  evolved  and  trained  to  provide  a  suitable 
quaternion based correction for a given orientation with zero 
correction for valid points [25, 26].  Unlike the approaches 
of  the  other  authors  [20-23,  27] this  approach  does  not 
require pre-processing of the subject quaternion.   Due to 
inaccuracy in the neural  network some correction of valid 
orientations takes place. It has also been demonstrated that 
an SVM classifier can be used to separate valid orientations 
from  those  requiring  correction  [28].   Both  of  these 
approaches are difficult to apply to recorded actor or patient 
specific data (such as that gathered by Herda, Urtasun and 
Fua [23]) as they rely on supervised learning.  

Artificial neural networks are inspired by the structure of 
the human brain.  Like biological neural networks they are 
composed  of  neurons  which  are  linked  together  to  form 
complex  networks.   However,  they  are  significantly 
different in terms of complexity and the way nodes in the 
network communicate.   There are many types of network 
architecture,  from  auto-associative  memories  such  as  the 
Hopfield  network  to  unsupervised  networks  such  as 
Kohonen’s SOM [29].   

The  SOM  is  a  popular  neural  network  trained  using 
unsupervised techniques [30].  The network is composed of 
two layers,  an  input  and  an  output  layer  each  containing 
nodes.  Nodes in the output layer  nodes are arranged in a 
topology  (for  example  a  grid),  and  each  input  node 
connected  to  every  output  node  by  a  weight.   Before 
training the weights  are randomly assigned,  then for each 
time step  patterns  (as  vectors)  are  presented  at  the  input 
nodes.  The output nodes compete and the winning output 
node is that with the shortest Euclidean distance between its 
weight vector and the input vector [30].  The winning node 
and its topological neighbors are updated moving the weight 
vectors of the winning node and its neighbors towards the 
input,  according to a  learning rate  which decreases  along 
with the size of the neighborhood as training continues [30]. 
This reduces the size and effect of the training at each time 
step, with the network becoming less volatile [30]. Training 
ends when the network converges i.e. becomes stable  [30]
(there is no change in the winner for any pattern,) or some 
other stopping condition is reached [31-33].  

In terms of modeling a virtual limb current approaches 
are  capable  of  modeling  regular  boundaries  [20,  27] and 
irregular boundaries [21-23] between valid and invalid limb 
orientations  (relative  to  an  attachment  point).   It  is 
postulated that the SOM is capable of modeling both regular 
and irregular boundaries by identifying the prototype vector 
which is closest to the given orientation. 

Current approaches model both the rotation of the limb 
and  rotation  around  the  limb  with  irregular  rotation 
boundaries  [20-23,  27].  This  exploratory  paper  aims  to 
study the capabilities of SOMs in modeling the rotation of 
the  limb  with  a  regular  rotational  boundary  and  no 
constraint on the rotation around the limb. This will provide 
a more practical alternative to the techniques developed in 
our  earlier  work  [26,  34] which used  supervised  learning 
techniques  and  could  not  be  trained  from  patient/actor 
recorded  data  alone.   Future  work  will  explore  more 
complex  constraints  including  irregular  boundaries  and 
rotation around the limb.   

The  remainder  of  this  paper  is  structured  as  follows. 
Section 3 provides a description of our methodology with 
reference to the techniques employed.  Section 4 reports the 
results of the experiments undertaken these are discussed in 
Section 5.  Finally Section 6 draws conclusions from this 
work and highlights areas for future investigation.

III. METHODOLOGY

This  paper  describes  the  application  of  SOMs  to  the 
correction of unit quaternions describing the orientation of 
an anatomical limb. In doing so the SOM models a set of 
valid orientations. SOMs were trained to identify the closest 
valid  orientation  for  both  valid  and  invalid  input. 
Constraints of various sizes were investigated to ascertain 
their performance in the context of anatomical models.  The 
input layer represents the current limb orientation, while the 
weights  of  the  winning output  node represent  the  nearest 
valid orientation. The number of output nodes and number 
of patterns where fixed were as indicated in Table 1.



  The SOM training process (outlined by Mehrotra, 
Mohan and Ranka  [30]) begins with the weights of the 
interconnections  between input  and output  nodes being 
set  to  small  random  numbers.   The  output  nodes  are 
placed into a topology each having a position (in this case 
in  a  grid).  Then  for  each  time  step  the  input  set 
(comprising  a  number  of  patterns)  is  presented  to  the 
network.  For each pattern the squared Euclidean distance 
(D) between the input pattern and the weight vector (the 
connections between the inputs and the output node) of 
each output node is calculated.  The output node with the 
smallest  value  of  D is  the  winner  and  is  updated.   Its 
weights are adjusted some portion of the distance towards 
the input vector according to the learning rate.   Output 
nodes  that  are  within  the  neighborhood  (topological 
regions according to position), of the winning node also 
have their weights updated.

After a given time period (number of time steps) the 
learning rate and neighborhood were reduced according to a 
scaling  factor,  this  process  continued  over  successive 
periods until minimum values were reached for each.  The 
initial values, minimum values and updating factors for each 

are provided in Table 1. along with the relevant time 
periods. These were identified by experimentation.

Each network was trained until it converged (entered a 
stable state in which the winning node for each pattern does 
not change) or a maximum number of training epochs (time 
steps) was reached. Each experiment was repeated ten times 

to ensure the consistency of the results. The SOM used in 
this work was based on that presented by Mehrotra, Mohan 
and Ranka [30] adapted to use a time step based termination 
criteria [31, 32].  

Each  SOM was  trained  using  a  dataset  based  on  the 
simple model shown in Fig. 1. Each training set was created 
by  the  random  generation  of  unit  length  vectors  (virtual 
limbs), whose orientation relative to the x-axis was within a 
prescribed  limit  (in  degrees).   The  orientation  of  such 
vectors (converted to a unit quaternion) provided the input 
set,  representing  a  sample  of  the  valid  region  in  unit 
quaternion space.   This essentially gives  a cloud of valid 
orientations  which  the  network  attempts  to  generalize. 
When provided with a test orientation (valid or invalid) the 
network responds with the nearest valid orientation.    This 
is  similar  to  the  approaches  of  Herda,  Urtasun,  Fua  and 
Hanson [22] and Johnson [27].  

The set of unit quaternion occupy the three dimensional 
surface  of  a  hyper-sphere  (S3)  in  four  dimensional  space 
(ℜ4),  this  represents  a  double  covering  of  the  group  of 
rotations (SO(3)) [35] (hence movement between two poles 
represents  a  360°  rotation).   In  the  training  set  all  valid 
patterns were placed one hemisphere of the unit quaternion 
hyper-sphere and all other patterns are considered invalid. 
This fits the context of anatomical constraints as a rotation 
though 360° should not be valid.  It  also has performance 
implications,  as  demonstrated  in  the  authors  earlier  work 
[34], in that valid regions on both sides of the hyper-sphere 
(both q and its antipode –q being valid) disrupted learning. 

Experiments  were  undertaken  with  output  layers 
containing  between  100  and  900  nodes,  on  datasets  of 
between 500 and 5000 patterns. In experiments where the 
range was not varied a constant  range of 90 degrees  was 
used, defaults for the other parameters are given in Table 1. 
The training dataset contained only valid patterns, similar to 
those recorded from the movement of a human arm. A set of 
‘ideal’ corrections (no correction  for valid orientations and 
the nearest valid orientation for invalid ones,) was generated 
using the approach of Lee [20] and provided a measurement 
of the SOMs capabilities.  

Figure 1. Model used for dataset generation. Valid region inside boundary invalid region outside.

TABLE I. TRAINING CONFIGURATION

Parameter Description Setting

Input nodes Number of input nodes 4 

Output Nodes
Number of output nodes where 
constant. 

100

Training 
Patterns

Number  of  training  patterns 
where constant. 

500

Learning Rate Rate  at  which  weights  are 
updated.   Updated  for  each 
period  until  the  minimum  is 
reached.

Initial: 1.0
Min.:0.02

Update: 0.5

Learning  Rate 
Period

Periods  over  which  the 
learning rate remains constant. 
Where t is the time step. 

0 ≥ t < 10
10 ≥ t < 20
20 ≥ t < 30
30 ≥ t < 40

40 ≥ t 

Neigborhood Size  of  neighborhood  updated 
at  each  period.   Updated  for 
each  period  until  only  the 
winning node updates.

Initial: 4.0
Min.:0.0

Update: 0.5

Neigborhood 
Period

Period over which the learning 
rate remains constant.  Where t  
is the time step.

0 ≥ t < 10
10 ≥ t < 20
20 ≥ t < 30
30 ≥ t < 40

40 ≥ t 

Maximum 
training time

Maximum  number  of  time 
steps. 

10,000



IV. RESULTS

The results show the effect of correcting the orientation to 
that suggested by the SOM (the quaternion represented by 
the  weights  of  the  winning  node).   The  results  indicate 
successful training of the neural network.  An increase in the 
range (maximum angle between the limb and the x-axis,) of 
the constrained region results a decrease in performance as 
shown in Fig 2 (a).  This increase appears independent of the 
number of output nodes, though increasing the output nodes 
does result in a reduction in error.  This is confirmed in Fig 2 
(b) which shows a decrease in error as the output layer size 
increases.

Experiments  were  also  undertaken  to  investigate  the 
effects  of  increasing  the  number  of  training  patterns,  this 
produced  an  increases  in  performance  (as  shown  in  Fig. 
2(c)), which attenuates as the number of patterns increases. 
Some  initial  experiments  have  been  undertaken  into  the 
distribution of training patterns.  In the first the region was 
divided in two with a central  and a boundary region. The 

results show that an increase in the density of patterns in the 
boundary  region  (shown  as  a  pattern  ratio  in  Fig.  2(d)), 
results  in  an  increase  in  performance.  This  appears  to 
attenuate as shown in Fig. 2 (d). 

V. DISCUSSION

The results show that SOMs are capable of identifying 
the  nearest  quaternion  representing  the  orientation  of  a 
virtual  anatomical  limb.  They  implicitly  model  a  region 

occupied  by  valid  orientations  in  unit  quaternions  space. 
The Mean Squared Error (MSE) compared to the test set (in 
which  invalid  orientations  are  corrected  to  the  boundary) 
appears  relatively low though higher  than those for  other 
neural network based approaches with comparable numbers 
of nodes  [25, 34]. This is confirmed by applying a sample 
SOM constraint (using a 900 output node SOM, trained with 
5000 patterns on a 90 degree constraint,)  to a unit  length 
virtual limb this results in a 3D error of 5.63 x 10-2.  

A key reason for this is the method in which the error is 
calculated, with the limb being corrected to the orientation 
provided by the weights of the winning node. This results in 
correction errors i.e. the correction of valid points and over 
correction of invalid points (to within the valid region rather 
than to the boundary). 

However despite this the results provide an insight into 
the effects  of problem, network and training attributes on 
performance.    It  is  clear  that  the  network  is  capable  of 

learning constraints of varying sizes though larger 
constraints appear to demonstrate a higher error. This may 
be  related  to  an  increased  correction  of  valid  points  as 
output nodes are more dispersed over the valid region and 
increased overcorrection of invalid points as fewer output 
nodes occupy spaces near the boundary.  

Improvements  resulting  from  the  increase  in  output 
nodes can be ascribed to an increase in the density of output 
nodes over the valid region, reducing correction errors.  The 

Figure 2. Performance of the SOM: (a) with range of constraint varied (number of  output nodes as indicated by key), (b) with number of training patterns  
varied (number of ouput nodes as indicated by key), (c) with number of output nodes varied (d) with the changes in the distribution of patterns within the valid  
region.



reduction  in  error  which  accompanies  an  increase  in  the 
number of training patterns suggests that this improves the 
positioning of the output nodes over the valid region.  This 
may simply improve their placement in dense regions but 
more importantly populate sparse regions. 

Considering  the  change  of  pattern  ratio  between  the 
central and boundary regions it is clear than increasing the 
density of the region at the boundary increases performance 
as  shown in  Fig  2.  (d).  This  suggests  that  high  error  is 
directly related to sparse regions near the boundary and that 
a significant part of the correction error noted is caused by 
overcorrection of invalid patterns.    This has implications 
for both small datasets and large constraints due to the low 
density of the valid region.  It has been reported that poorly 
sampled  regions  are  often  those  which  are  difficult  or 
painful for an individual to reach or maintain [22, 23].  This 
may  have  implications  for  the  future  application  of  this 
technique.   

The correction of valid patterns and the over correction 
of invalid patterns is a limitation of the current application 
of  our  approach  (rather  than  the  approach  itself).   As  in 
other techniques  [22], a threshold (based on the maximum 
Euclidean  distance  between  the  training  patterns  and  the 
output of the trained network) could be employed to reduce 
the  correction  of  valid  patterns.  Both  Johnson  [27] and 
Herda, Urtasun, Fua and Hanson [22] make use of iterative 
approaches to correct invalid patterns, moving them towards 
the valid region until they are valid.  

Forcing  valid  orientations  to  one  side  of  the  unit 
quaternion  hyper-sphere  reduces  the  complexity  of  the 
modeled region and introduces a limitation.  A valid rotation 
on the opposite side of the hyper-sphere would be reported 
as  invalid.  This  is  not  a  limitation  in  the  context  of 
anatomical  constraints  provided  that  the  initial  joint 
configuration is on the appropriate side of the hyper-sphere. 
The  constraint  correction  (or  clamping)  system  should 
ensure that the orientation remains within the boundary and 
thus  prevent  the  limb  from  performing  an  anatomically 
impossible full rotation to the other valid configuration.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion SOMs are capable of implicitly modeling 
the  boundary  between  valid  and  invalid  orientations  in 
quaternion  space  to  a  reasonable  degree  of  accuracy, 
provided that the dataset is appropriately distributed in unit 
quaternion  space.   More  importantly they can  provide  an 
indication of validity and focus for correction.  In this they 
are similar  to the approaches of  Herda,  Urtasun,  Fua and 
Hanson  [22],  Herda,  Urtasun,  Fua  and  Hanson  [23] and 
Johnson [27]. Unlike these approaches no decomposition or 
reformatting of the unit quaternion orientation is required.  

More research is required into the effects of training data 
distribution especially data with sparse regions (such as that 
gained from motion capture [22, 23]) and the comparison of 
these results with other approaches [22, 23, 27].  Research is 
also required into the application of techniques to mitigate 
correction errors as used in other approaches  [22, 23, 27]. 
The benefit of the SOMs topology preserving capabilities in 
modeling  constraints  in  unit  quaternion  space  over 
alternative techniques may also warrant investigation.

The results are encouraging and suggest that SOMs are 
able to implicitly model constraints on the rotation of the 
limb with regular boundaries in unit quaternion space.  They 
may prove as capable in modeling similar constraints with 
irregular  boundaries  and  rotation  around  the  limb  while 
providing advantages over current approaches.
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