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Abstract

The importance of computational methods, particularly the application of machine learning
models in cardiovascular disease classification and recognition, is rapidly growing. CNN, LSTM,
and Transformer models have demonstrated in various studies that, when implemented with
robust architectures and supported by ample datasets, they can achieve highly accurate
results. This study explores the application of bagging techniques to three base models: CNN,
LSTM, and Transformer, for both binary classification on the PTB dataset and multiclass
classification on the MITBIH dataset. The findings indicate that the CNN model outperforms the
other two models under the selected parameters and across ten epochs achieving 0.95 for
binary classification and 0.96 for multiclass classification. Additionally, the use of bagging
techniques results in a slight deterioration, likely due to the weaker performance of the
Transformer and LSTM models.



Keywords:

Cardiovascular Disease (CDV)

Deep Learning (DL)
Electrocardiogram (ECG)

Normal Sinus Rhythm (NSR)
Supraventricular Ectopic Beats (SEB)
Ventricular Ectopic Beats (VEB)
Fusion Beat (FB)

Convolutional Neural Network (CNN)

Long Short-Term Memory (LSTM)



1. Introduction

According to World Health Organisation (WHO) reports [1], Cardiovascular Diseases (CVDs) are
still among the leading causes of death globally. In 2019, an estimated 17.9 million people died
from CVD, representing 32% of all deaths worldwide. CVDs encompass a range of conditions,
including coronary artery disease [2], hypertension [3] and heart failure [4], all of which can
have devastating impacts on individuals and communities. Among these conditions,
arrhythmias [5], which are irregular heartbeats, are particularly concerning. Arrhythmias can
lead to serious complications such as stroke, heart failure, or sudden cardiac arrest if not
properly managed. This emphasizes the need for comprehensive strategies to prevent and
manage CVDs, including the detection and treatment of arrhythmias. Advancements in medical
technology and treatment options, such as implantable devices like pacemakers [6] and
defibrillators , play a significant role in managing arrhythmias effectively . By focusing on the
prevention and early detection of arrhythmias, alongside other cardiovascular conditions, it is
possible to reduce the burden of CVDs and improve overall public health outcomes.

The electrocardiograph, first invented by Willem Einthoven in 1902 [7], emerged as a powerful
tool for the diagnosis of different CVDs. An electrocardiogram (ECG) is a test that records the
heart's electrical activity by placing electrodes on the skin to detect the impulses generated
during the heart's contraction and relaxation phases [8], [9]. These impulses are graphically
displayed as waves, each representing a different phase of the cardiac cycle. Clinicians utilize
ECGs to diagnose various heart conditions, including arrhythmias, myocardial infarctions (heart
attacks), and structural or functional abnormalities of the heart. Interpreting an ECG requires
specialized training due to the nuanced patterns and subtle waveform changes that can
indicate underlying cardiac issues, making it an essential tool in cardiology for diagnosing and
monitoring heart health.

Typically, a standard 12-lead ECG [10], [11] is employed as a diagnostic tool to evaluate the
heart's electrical activity from multiple perspectives. It features 12 distinct views, or "leads,"
that offer unique angles of the heart's electrical signals. These leads are obtained by placing
electrodes on specific body locations, enabling a thorough assessment of heart function. The
12 leads include six limb leads (1, Il, lll, aVR, aVL, aVF) and six precordial leads (V1-V6), each
providing information about different regions of the heart's electrical activity. By analysing the
patterns and variations in the electrical signals across these leads, healthcare professionals
can detect abnormalities such as ischemia, infarction, arrhythmias, and conduction disorders
with enhanced accuracy and specificity, facilitating the diagnosis and management of cardiac
conditions.

The main purpose of ECG classification is to diagnose diseases by analysing ECG waves,
especially the P wave, QRS complex and T wave [12]. These waves provide valuable information
about the presence and type of diseases by different diagnostic methods (Fig 1).
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Figure 1. P, QRS and T waves by Barhatte et al. [12]

Over the past few decades, the computerized identification of ECGs has emerged as a widely
adopted practice, aiding cardiologists in categorizing extended ECG recordings.

Deep learning, leveraging its robust feature extraction capabilities, has achieved remarkable
accuracy in the classification of ECG signals, serving as a potent computer-aided method in this
domain [9], [13], [14].

One of the primary challenges in developing and implementing machine learning models for
ECG classification is the limited availability of dataset sources, primarily due to the sensitive
nature of the data. However, there are some publicly available datasets that are widely used in
research of this type. One of the most widely used and recognized datasets in the research is
the MIT-BIH dataset [15]. This dataset consists of 23 randomly chosen recordings and 25
recordings selected for less common but significant arrhythmias, collected between 1975 and
1979. The recordings, digitized at 360 samples per second with 11-bit resolution, were
annotated by multiple cardiologists. The database, containing approximately 110,000
annotations, has been freely available on PhysioNet since September 1999, with additional files
posted in February 2005.

Another widely used dataset in the field of ECG research is the PTB-XL dataset [16]. It was
gathered over nearly seven years using devices from Schiller (1989 - 1996). The ECG samples
were initially recorded as part of an extensive project of the Physikalisch-Technische
Bundesanstalt (PTB). The data remained restricted to the public until late 2019. When it was
decided to release the records to the public, some adjustments were made to facilitate usability
and accessibility to a wider public and to enrich research in the field.

Although there are some other publicly available datasets such as INCART 12- lead Arrhythmia
Database [17], or the Fantasia Database [18], a study by Xio et al. in 2023 [19] that compares
the use of different datasets for ECG classification (Fig 2) finds that the use of these two
databases is the most widespread, mainly due to their extensive and exhaustive documentation
and the large number and variety of samples of which they are composed, allowing the
classification of a wide range of conditions, which makes them very valuable for ECG research.

Figure 2. Trend of different ECG Datasets used in the recent years for Deep Learning ECG classification research by
Xiao etal. [19].

In this study, the two most relevant datasets are utilized to assess a bagging-based ensemble
model. The PTB dataset was used to evaluate binary classification performance, while the
multiclass MITDB dataset was employed to assess multiclass classification performance. The
TPB dataset provides to classes: Normal and Abnormal ECGs. The MITBIH dataset provides five
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classes: Normal Sinus Rhythm (NSR), Supraventricular Ectopic Beat (SEB), Ventricular Ectopic
Beat (VEB), Fusion Beat (FB), and a class for the unknown beats (Q).

A normal sinus rhythm (NSR) is the heart's regular rhythm, initiated by the sinoatrial (SA) node,
with a heart rate between 60 and 100 beats per minute [20]. It features consistent time intervals
between beats, with each heartbeat preceded by a normal P wave, a PR interval of 0.12 to 0.20
seconds, and a narrow QRS complex lasting less than 0.12 seconds. The T waves are
appropriately upright in specific leads, the ST segment is flat and aligns with the baseline, and
the QT interval is appropriately adjusted for the heart rate. This rhythm indicates healthy, regular
electrical activity within the heart.

Supraventricular ectopic beats are premature heartbeats originating above the ventricles,
typically in the atria or the atrioventricular node. These beats are often benign and can occur in
healthy individuals, but they can also be a sign of underlying cardiac conditions. They may
cause the heart to beat irregularly or prematurely [21]. On an ECG, these beats are identified by
examining the timing and morphology of the P-wave and the RR intervals. SVBs often have a
shorter RR interval and an abnormal P-wave but a normal QRS complex.

Ventricular ectopic beats are premature heartbeats that originate from the ventricles, the lower
chambers of the heart. These beats are more concerning than supraventricular ectopic beats
because they can be associated with more serious cardiac conditions, including ventricular
tachycardia or ventricular fibrillation, which can be life-threatening if not treated. [22]. VEBs
typically have a wide and bizarre-looking QRS complex without a preceding P-wave. They often
occur earlier than expected and are followed by a compensatory pause.

A fusion beat occurs when a normal heartbeat and an ectopic beat (either supraventricular or
ventricular) coincide. The resultant ECG waveform is a combination of the two signals. Fusion
beats are important to identify because they can indicate the presence of competing
pacemaker activity in the heart [23]. A fusion beat is identified by detecting a QRS complex that
has a combination of features from both normal and ectopic beats, indicating simultaneous
activation of the ventricles by both normal and ectopic pacemakers. The 'Q' class in the MITBIH
dataset is used for heartbeats that do not fit into the other categories and are not well-defined
or are of unknown origin. This class might include noisy signals, artifact-induced patterns, or
unclassifiable beats that the algorithm or annotator could not definitively categorize.

The design of deep learning (DL) models plays a critical role in the field of computing-based
ECG classification. These models typically feature multi-level or multi-layer architectures, with
each level or layer acting as a feature extractor that progressively refines the representation of
signal characteristics. Depending on the key feature extractors within the neural networks, the
DL classification models examined in the selected studies can be primarily categorized into
several types: convolutional neural networks (CNNs) [24], [25], [26], [27], [28], long short-term
memory (LSTM) [29], [30], [31] and transformers [32], [33], [34], in addition to some studies
some that have investigated the potential of combining the outputs of different models through
ensemble learning techniques [35], [36], [37].
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1.1 Aims and Objectives

The aim of this research is to develop a highly accurate deep learning model based on bagging
techniques for 12-lead ECG classification, specifically targeting four types of rhythms, to
improve diagnostic efficiency and accessibility in cardiac health monitoring. The underlying
hypothesis is that ECG classification can be enhanced by implementing a bagging-based
ensemble approach applied to various deep learning models.

To achieve this goal, the following objectives have been outlined:

o Explore current ECG classification methods: Conduct a comprehensive literature
review to understand recent advancements in ECG classification, particularly those
using ensemble techniques in deep learning.

¢ Develop abagging-based deep learning model: Create a model that combines
different deep learning approaches to achieve accurate ECG classification.

¢ Evaluate model performance across diverse rhythms: Test the model's performance
on different heart rhythms to ensure its robustness and generalization capability. This
will involve evaluating the model's performance on the PTB dataset for binary ECG
classification and on the MITBIH for multiclass ECG classification.

2. Related Work

This section examines the latest advancements in the development of Deep Learning models
for ECG classification. The goal is to identify the most effective the most efficient Deep Learning
models to be used in designing a bagging-based ensemble model.

In recent years, many studies have explored several approaches for designing and developing
deep learning models for ECG classification.

A commonly explored approach for ECG classification tasks is the implementation of CNN
models.

A study by Mi et al. [24], focuses on preprocessing techniques for ECG data, particularly
highlighting the use of the MIT-BIH Arrhythmia Database. It details the implementation of
wavelet transform methods to enhance ECG signal accuracy, which is crucial for effective
classification. The improved signal maps derived from this process are used to train a Back
Propagation (BP) neural network, which is adept at recognizing and classifying various types of
arrhythmias. These preprocessing steps are vital in ensuring that the data fed into machine
4
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learning models is of high quality, thereby improving the models' performance in detecting and
classifying heart conditions accurately.

A study by Ekincl et al. [25], explores the impact of various preprocessing techniques on the
performance of deep learning models for ECG classification. It emphasizes filtering out
Baseline Wander (BW) and Powerline Interference (PLI) noise. The study compares Short-time
Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) for feature extraction,
finding that BW noise significantly affects classification accuracy. Using a low-complexity CNN
with less than 90k parameters, the optimal preprocessing achieved an average F1-Score of
90.11%.

A research by Smigiel et al. [26], explores preprocessing techniques like filtering out baseline
wander and powerline interference, and feature extraction using wavelet transform and entropy-
based features. Three deep learning models were used: a convolutional network, SincNet, and a
convolutional network with entropy-based features. The convolutional network with entropy
features achieved the highest classification performance with an F1-Score of 90.11%, while the
standard convolutional network offered the best computational efficiency.

In another 2024 publication by Z. Chen et al. [27], introduces a novel hybrid method to address
imbalanced datasets by employing amplitude adjustment and weighted loss functions during
model training. The study also enhances depth wise and pointwise convolutions into one-
dimensional operations specifically tailored for ECG heartbeat signals, which reduces model
complexity while maintaining accuracy, making it suitable for resource-constrained wearable
devices. By combining imbalanced dataset mitigation techniques with hardware-efficient deep
learning networks for arrhythmia classification, this approach improves dataset balancing and
data compression. Compared to existing methods, it enhances performance while significantly
reducing trainable parameters and computations in traditional CNN models.

Another research by S. Oh and M. Lee [28] proposes a shallow domain knowledge injection
(SDK-Injection) method to improve CNN-based ECG pattern classification. Pre-processing
techniques involve the application of a Savitzky-Golay filter for noise reduction through curve
fitting-based smoothing. The pre-processed data is then subjected to SDK-injecting attention to
embed shallow domain knowledge, focusing on important sub-patterns like the T wave, which
are crucial for diagnosing conditions such as ischemia. The final step involves expanding the
univariate ECG data into a multivariate format by adding variants, including the smoothed data,
attention output, and smoothed attention output. This enriched input is fed into a CNN,
enhancing its performance. The model was trained and tested on multiple ECG datasets,
demonstrating significant improvements in accuracy, precision, sensitivity, specificity, and F1-
score, especially in balanced datasets. The proposed method effectively leverages shallow
domain knowledge to boost the classification accuracy of existing parameter-optimized CNN
models for ECG analysis.

Another important avenue of research in recent years is the application of LSTM models.

A study by L. D. Sharma et al (2023) [29], presents a method for classifying cardiac arrhythmias
using ECG signals. The data processing techniques involve the use of Stationary Wavelet
Transform (SWT) to preprocess the raw ECG signals, effectively decomposing them into various

5
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frequency sub-bands to remove noise and enhance the signal. The SWT is particularly
beneficial because it preserves the length of the signal throughout the decomposition process,
which is crucial for accurate reconstruction and analysis. Then, a Bi-directional Long Short-
Term Memory (Bi-LSTM) network, which is compared against Recurrent Neural Networks (RNN)
and Gated Recurrent Units (GRU). The Bi-LSTM model showed superior performance, achieving
an overall accuracy of 99.72%, with high precision, sensitivity, and specificity across all classes
of arrhythmias considered in the study. This performance significantly outperforms the RNN
and GRU models, making the Bi-LSTM approach highly effective for the task of ECG-based
arrhythmia classification.

Another research by M. Karri and C. S. R. Annavarapu (2023) [30], describes a real-time
embedded system designed for QRS-complex detection and arrhythmia classification using
Long Short-Term Memory (LSTM) networks, leveraging hybridized features. The data processing
techniques include the use of Discrete Wavelet Transform (DWT) and Delta Sigma Modulation
(DSM) for feature extraction, focusing on QRS detection and wavelet-based noise reduction. The
ECG signals are preprocessed to remove noise, and critical features such as R peak, onset, and
offset of P and T waves are extracted. These hybrid features are then fed into an LSTM model for
arrhythmia classification. The system was tested using the MIT-BIH arrhythmia database,
achieving impressive results with an accuracy of 99.64%, sensitivity of 99.87%, positive
predictivity of 99.15%, and an F1 score of 98.18%. These metrics demonstrate the high
effectiveness of the proposed system in accurately classifying arrhythmias in real-time on a
low-power embedded device.

A study by S. Boda et al. (2023) [31] introduces an automated patient-specific ECG beat
classification system using Long Short-Term Memory (LSTM)-based recurrent neural networks
(RNNs). The data processing techniques include pre-processing the ECG signals to remove
noise, followed by QRS complex detection using the Pan-Tompkins algorithm. The ECG signals
are then segmented into individual beats, and temporal and morphological features are
extracted. These features are combined with the LSTM network to capture the temporal
dependencies in the ECG waveform for arrhythmia classification. The system was evaluated
using the MIT-BIH arrhythmia database, achieving superior performance with an accuracy of
99.64%, sensitivity of 99.87%, specificity of 99.72%, and an F1 score of 98.36%. These metrics
demonstrate the effectiveness of the LSTM-based approach in accurately classifying various
types of arrhythmias, making it suitable for real-time, patient-specific ECG analysis in clinical
settings.

In addition to the above, several recent studies have focused on the implementation of
transformer-based models.

A study by H. El-Ghaish and E. Eldele (2024) [32], introduces "ECGTransForm," a deep learning
framework designed for ECG arrhythmia classification, incorporating advanced data processing
techniques and a novel machine learning model. The data processing involves segmenting ECG
signals into discrete windows, normalizing the amplitude, detecting R-peak candidates, and
segmenting signals into fixed lengths using zero-padding. The proposed model, ECGTransForm,
leverages Multi-scale Convolutions to capture spatial features at various scales, a Channel
Recalibration Module to refine feature representation by considering interdependencies across

6
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channels, and a Bidirectional Transformer (BiTrans) to capture temporal dependencies from
both past and future contexts. Additionally, the model uses a Context-Aware Loss function to
address class imbalance by dynamically adjusting class weights. The model was evaluated on
the MIT-BIH and PTB Diagnostic ECG databases, achieving impressive results, including an
accuracy of 99.35% and a macro-average F1-score of 94.26% on the MIT-BIH dataset,
outperforming several state-of-the-art methods.

In 2023, Y. Dong et al. [33] presented an arrhythmia classification model based on a Vision
Transformer (ViT) with deformable attention, termed CNN-DVIT. The data processing includes
the use of spatial pyramid pooling to handle varied-length ECG signals, allowing the model to
process inputs of different sizes effectively. The machine learning model combines
convolutional neural networks (CNNs) for feature extraction and a Vision Transformer with
deformable attention for robust classification. The model achieved an F1 score of 82.9% on the
CPSC-2018 dataset, outperforming other transformer-based models in ECG arrhythmia
classification.

Another study by A. Varghese et al. (2023) [34], presents a method for classifying ECG
arrhythmias using a transformer-based model, specifically DistilBERT. The data processing
includes denoising ECG signals with Butterworth filters and segmenting them around the R
peak. The Synthetic Minority Oversampling Technique (SMOTE) is used to balance the dataset.
The model, which omits the input embedding step, achieved remarkable results on the MIT-BIH
dataset with an accuracy of 99.92%, and precision, recall, and F1-score all at 0.99, along with a
ROC-AUC score of 0.999. These metrics demonstrate the model's high performance in
classifying various arrhythmias.

As far as ensemble models are concerned, recent studies have put forward different
approaches.

In a 2024 paper by Morteza Maleki [35], a model utilizing Wavelet transformation is presented
for feature extraction from ECG signals. This approach enhances the classification accuracy of
various cardiovascular diseases using machine learning techniques by capturing both time and
frequency information, which aligns well with the complex nature of ECG signals. The study
underscores the effectiveness of wavelet-based feature extraction, emphasizing the
importance of selecting appropriate wavelets and optimizing feature extraction depth for better
classifier accuracy. Notably, Random Forest and Gradient Boost classifiers showed superior
performance, demonstrating their ability to handle complex patterns and large feature sets
derived from wavelet transformations. This advancement promises to enhance the reliability of
automatic ECG analysis systems in clinical settings.

Arecent study by W. Ji and D. Zhu [36] presents a new method by integrating Convolutional
Neural Network (CNN) and Gated Recurrent Unit (GRU) at the initial signal processing stage for
analysing simulated signals. Initially, the signal undergoes processing with a Butterworth high-
pass filter to minimise power line noise interference, followed by wavelet transform to reduce
electromyographic interference. One-dimensional CNN is employed for automatic feature
extraction, while the fusion of GRU with CNN addresses the limited time dependency inherent
in CNN networks for ECG signals. Acknowledging potential long-term dependencies in ECG

7
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signals, recurrent neural networks such as GRU can capture these, enhancing classification
accuracy and bolstering the network's resistance to noise. Consequently, the model gains
improved insight into and captures temporal relationships within different segments of the ECG
signal, thereby augmenting classification accuracy.

The study by Plawiak and Acharya (2020) [37] introduces an ECG classification system
employing various preprocessing methods and genetic algorithms for optimization.
Preprocessing involves gain reduction, constant component reduction, and three normalization
techniques: standardization, rescaling, and no normalization. Evaluation metrics include
accuracy, specificity, sensitivity, false positive rate, positive predictive value, Fleiss' Kappa,
optimization time, training time, classification time, and the acceptance feature coefficient. The
results demonstrate that normalization and preprocessing significantly impact classifier
performance, with Random Forest and Gradient Boost classifiers showing superior
performance in handling complex patterns and large feature sets derived from these
preprocessing methods, promising advancements in automatic ECG analysis systems'
reliability in clinical settings.

The analysis of various studies reveals that commonly used models like CNN, LSTM, and
Transformer consistently achieve high accuracy and efficiency in ECG classification. Some
studies have also explored ensemble learning by combining multiple models, resulting in
enhanced performance. This study, therefore, proposes a model that applies bagging
techniques to these three prevalent models in ECG classification to assess whether their
combined application can lead to improved outcomes.

3. Methodology

As highlighted in the literature review, the most effective ECG classification results are achieved
using three types of deep learning models: CNN models, LSTM models, and transformer-based
models. However, the results obtained leave room for improvement. Therefore, this study

8
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focuses on the development of a model that applies bagging techniques combining predictions
from the three types of models.

To evaluate the model's efficiency in different environments, the experiment first conducts
binary classification on the PTBDB dataset, followed by multiclass classification on the MITBIH
dataset.

3.1 Dataset processing

The experiment is conducted on two distinct datasets to evaluate the efficiency of binary and
multiclass classification.

3.1.1 PTBDB dataset for binary classification

The PTB Diagnostic ECG Database, hosted on PhysioNet and curated by the Physikalisch-
Technische Bundesanstalt, includes 549 high-resolution 15-lead ECG recordings from 290
subjects, ranging in age from 17 to 87. These subjects include both healthy individuals and
patients with various heart conditions, such as myocardial infarction, cardiomyopathy, and
arrhythmias. The ECGs are digitized at 1000 samples per second with detailed clinical
summaries available for most records. This dataset is primarily used for research, algorithmic
benchmarking, and teaching in the field of cardiology. It is available on Kaggle [38] as two
separate CSV files: one with normal ECG samples and the other with abnormal ECG samples.

The first step is to merge both csv files in one single data frame using:
full_ptb=pd.concat([ptb_normal,ptb_abnormal],axis=0)
The resulted dataset consistin __rows and 188 columns.

The resulting data frame must then be randomly shuffled and further divided into training
and test data sets:

full_ptb_shuffled = full_ptb.sample(frac=1).reset_index(drop=True)
The last row (index 187) holds the classes 0 for normal ECG and 1 for abnormal ECG.

The initial number of classes is imbalanced, containing 10506 abnormal samples and 4046
normal samples:
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Figure 3. Initial balance of the PTBDB dataset

Therefore, the number of abnormal samples must be reduced to fit the number of normal
samples:

df_1=(full_ptb_shuffled[full_ptb_shuffled[187]==0]).sample(n=4046,random_state=42)
df_2=(full_ptb_shuffled[full_ptb_shuffled[187]==1]).sample(n=4046,random_state=42)

full_ptb_shuffled_balanced=pd.concat([df_1,df_2])
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Figure 4. Balanced dataset.
We then plot an ECG sample of each category using the plot library tools:
row =4
# Extract the signal from the chosen row
ECG_signal = full_ptb_shuffled_balanced.iloc[row, : -1]
# Plot the signal
plt.figure(figsize=(15, 5))
plt.plot(ECG_signal)
plt.title(f"Signal from row {row}")

plt.show()
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Figure 6. Abnormal ECG signal from PTBDB

The dataset is then divided in training, test and validation datasets.
#Split dataset in train, test and validation dataset
# Step 1: Split the DataFrame into training+validation and testing datasets

train_val_df, test_df = train_test_split(full_ptb_shuffled_balanced, test_size=0.2,
random_state=42)

# Step 2: Split the training+validation dataset into training and validation datasets

train_df, val_df = train_test_split(train_val_df, test_size=0.25, random_state=42) # 0.25* 0.8
= 0.2 of the original data

# Display the shapes of the resulting DataFrames

print("Training DataFrame shape:", train_df.shape)

University of Wales Trinity Saint David MSc Software Engineering and Artificial Intelligence


https://test_size=0.25

print("Validation DataFrame shape:", val_df.shape)

print("Testing DataFrame shape:", test_df.shape)

3.1.2 MITBIH dataset for multiclass classification

The MIT-BIH Arrhythmia Database [39], available on PhysioNet [15], is a comprehensive
collection of 48 half-hour ECG recordings from 47 subjects. It includes both normal and
abnormal heart rhythms, making it a vital resource for the development and evaluation of
arrhythmia detection algorithms. Each recording is sampled at 360 Hz, with annotations
provided for each beat and rhythm. The dataset is widely used in biomedical research for
training and testing machine learning models aimed at detecting cardiac arrhythmias The
dataset categorizes ECGs into five classes: Normal Sinus Rhythm, Supraventricular Ectopic
Beat, Ventricular Ectopic Beat, Fusion Beat, and a category for unknown beats. These are
labelled as follows: 'N' for Normal, 'S' for SEB, 'V' for VEB, 'F' for FB, and 'Q' for unknown beats,
with corresponding numerical labels [0, 1, 2, 3, 4]. It is available on Kaggle [38] as two separate
CSV files: one for the training dataset and another for the test dataset.

The first step is to import both csv files into panda data frames:

mitbih_train = pd.read_csv("/content/drive/MyDrive/UWTSD_MSc_SE_and_Al/Dissertation/ECG
Datasets/mitbih_train.csv")

mitbih_test = pd.read_csv("/content/drive/MyDrive/UWTSD_MSc_SE_and_Al/Dissertation/ECG
Datasets/mitbih_test.csv")

The last row (index 187) holds the classes 0, 1, 2, 3 and 4 for different ECG signals.

The initial number of classes is imbalanced in the training dataset, containing a large number of
normal ECG samples than the other classes:

mitbih_train[187]=mitbih_train[mitbih_train.columns[187]].astype(int) # Use the correct column
index from the DataFrame

balance=mitbih_train[mitbih_train.columns[187]].value_counts()

print(balance)

0.0 72470
4.0 6431

2.0 5788
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1.0 2223

3.0 641

Name: count, dtype: int64

The class distribution is visualized using a bar chart:
# Sample data

#0 - “N”for normal heartbeats.

#1 - “S” for supra-ventricular premature.

# 2 - “V” for ventricular escape.

# 3 - “F” for fusion of ventricular and normal.
#4 - “Q” for unclassified heartbeats

labels =['n), 'q’, 'V} 's!, 'f']

colors =['red!, 'green’, 'blue’, 'skyblue’, 'orange']
# Create a figure with a specific size
plt.figure(figsize=(20, 10))

# Create a bar chart

plt.bar(labels, balance, color=colors)

# Add titles and labels

plt.title('Bar Chart of Categories', fontsize=20)
plt.xlabel('Categories', fontsize=15)
plt.ylabel('Values', fontsize=15)

# Display the chart

plt.show()
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Figure 7. Initial balance of the MITBIH training dataset

Therefore, the data must be reorganized to balance the number of samples of each class:
from sklearn.utils import resample

df_1=mitbih_train[mitbih_train[187]==1]

df_2=mitbih_train[mitbih_train[187]==2]

df_3=mitbih_train[mitbih_train[187]==3]

df_4=mitbih_train[mitbih_train[187]==4]
df_0=(mitbih_train[mitbih_train[187]==0]).sample(n=20000,random_state=42)
df_1_upsample=resample(df_1,replace=True,n_samples=20000,random_state=123)
df_2_upsample=resample(df_2,replace=True,n_samples=20000,random_state=124)
df_3_upsample=resample(df_3,replace=True,n_samples=20000,random_state=125)

df_4_upsample=resample(df_4,replace=True,n_samples=20000,random_state=126)mitbih_
train_df=pd.concat([df_0,df_1_upsample,df_2_upsample,df_3_upsample,df_4_upsample])

University of Wales Trinity Saint David MSc Software Engineering and Artificial Intelligence



Bar Chart of Categories

20000

17500

15000

12500

Values

10000

7500

5000

2500

v
Categories

Figure 8. Balanced MITBIH training dataset bar chart.

Then, an ECG sample of each category is plotted using the matplotlib:
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#Display table with some examples

examples=mitbih_train_df.groupby(187,group_keys=False).apply(lambda mitbih_train_df :
mitbih_train_df.sample(1))

plt.plot(examples.iloc[0,:186])
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WKJ

0.2 1

0.0 1

Figure 9. Normal ECG signal from MITBIH training dataset

17
University of Wales Trinity Saint David MSc Software Engineering and Artificial Intelligence



18

1.0 4

0.8 1

0.6 1

0.4

0.2

0.0 4

Figure 10. SEB ECG signal from MITBIH training dataset.
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Figure 11. VEB ECG signal from MITBIH ECG dataset.
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Figure 12. FB ECG signal from MITBIH training dataset.
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Figure 13. Unknown ECG signal from MITBIH training dataset.
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Then, the values of X_train, X_test, y_train and y_test must be defined and reformatted to fit the
NNs.

target_train = mitbih_train_df.iloc[:, 187] # Select column at index 187 mitbih_test_df =
mitbih_test target_test = mitbih_test_df.iloc[:, 187] # Select column at index 187 y_train =
to_categorical(target_train) y_test = to_categorical(target_test)

X_train=mitbih_train_df.iloc[:,:186].values X_test=mitbih_test_df.iloc[:,:186].values X_train =
X_train.reshape(len(X_train), X_train.shape[1],1) X_test = X_test.reshape(len(X_test),
X_test.shape[1],1)

The target labels (heart beat classes) are selected from the 187th column of both the training
(mitbih_train_df) and test (mitbih_test_df) datasets. These labels are then converted to one-hot
encoded format using to_categorical. The features (X_train and X_test) are extracted from all
columns except the last (up to column 186) and reshaped to include a single channel to fit
models’ requirements.

4.2 Base Deep Learning models

Three base models have been developed, inspired by the most effective approaches identified
in the literature review.

4.2.1 CNN model

The CNN_model defines a CNN model that creates and trains a Convolutional Neural Network
(CNN) for a classification problem.

The model architecture is defined as follows:

o Theinput shape is determined by X_train.shape[1], representing the number of
features per sample.

o The model has two 1D convolutional layers (Convolution1D) with ReLU
activation, each followed by batch normalization (BatchNormalization) and max-
pooling layers (MaxPool1D).

o The output of the final convolutional layer is flattened (Flatten), then passed
through two fully connected (dense) layers with 64 and 32 units, respectively.

o The final layer (Dense) contains either 2 units with a softmax activation function
for binary classification or 5 units with a softmax activation function for multi-
class classification, depending on the specific task.

o The modelis compiled with the Adam optimizer, categorical cross-entropy loss,
and accuracy as the evaluation metric.
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Early stopping (EarlyStopping) is used to stop training if the validation loss does
not improve for 3 consecutive epochs.

ModelCheckpoint saves the best model based on the validation loss.

The model is trained for 5 epochs with a batch size of 32, using the training data
(X_train, y_train) and validating on test data (X_test, y_test).

The final trained model is saved to a file, and the training history, which includes metrics like
loss and accuracy over epochs, is stored as a JSON file. The function returns both the trained
model and the training history, allowing for further analysis and use in subsequent tasks.

4.2.2 LSTM model

The LSTM_model function defines a model that creates and trains a Long Short-Term Memory
(LSTM) neural network for ECG classification. The model architecture is defined as follows:

o

The input shape is determined by the number of time steps (timesteps) and the
number of features (input_dim) per sample.

The model consists of two LSTM layers. The first LSTM layer has 64 units and
returns sequences (meaning it passes the entire sequence to the next LSTM
layer). The second LSTM layer also has 64 units and does not return sequences.

Each LSTM layer is followed by batch normalization to stabilize and accelerate
the training process.

After the LSTM layers, there are two dense (fully connected) layers with 64 and
32 units, respectively, using ReLU activation.

The final layer (Dense) contains either 2 units with a softmax activation function
for binary classification or 5 units with a softmax activation function for multi-
class classification, depending on the specific task.

The model is compiled using the Adam optimizer, categorical cross-entropy loss
(appropriate for multi-class classification), and accuracy as the evaluation
metric.

The callbacks define the Early Stopping stops training if the validation loss
doesn't improve for 8 consecutive epochs, and the Model Checkpoint saves the
best model during training based on the validation loss.

The model is trained for 5 epochs with a batch size of 32, using the provided
training and validation data.

The final trained model, including its architecture, weights, and optimizer state, is saved to a
file, while the training history, capturing metrics like loss and accuracy over the epochs, is
stored as a JSON file. The function then returns both the trained model and the training history,
allowing for further analysis or use in subsequent tasks.
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4.2.3 Transformer-based model

The transformer_encoder function defines a model that creates and trains a transformed-
based neural network for ECG classification. The model is defined in three steps:

It implements Layer Normalization and Multi-Head Attention layers are applied to the inputs,
followed by a residual connection and feed-forward layers using Conv1D. This is repeated for a
specified number of transformer blocks.

The Model Architecture is defined as follows:

o The model begins with an input layer, passes through several transformer
encoder blocks, and is followed by a global average pooling layer.

o Fully connected (Dense) layers with dropout are added before the final softmax
layer for classification.

o The model is compiled with the Adam optimizer and categorical cross-entropy
loss.

o Early stopping and model checkpoint callbacks are used during training to
prevent overfitting and save the best model.

After training, the entire model and its training history are saved to files for future use. The
train_and_save_transformer_model function is responsible for compiling, training, and saving
the model along with its training history. This setup is designed to efficiently handle time-series
data, leveraging the power of transformers for capturing complex patterns and dependencies.

3.2 Bagging technique implementation

To apply bagging technique, a bagging ensemble model is created by averaging the predictions
from three different models: CNN, LSTM, and Transformer. It evaluates the performance of a
bagging ensemble model by first converting the predicted probabilities
(ensemble_multi_predictions) and the true labels (y_test) into class labels using np.argmax. It
then calculates four key metrics: accuracy, precision, recall, and F1 score, using the
accuracy_score, precision_score, recall_score, and f1_score functions from
sklearn.metrics, with a weighted average for multi-class data. Finally, the metrics are printed
out, providing a comprehensive assessment of the model's performance.

ensemble_binary_predictions = np.mean([chn_pred, lstm_pred, transformer_pred], axis=0)
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4. Design and Implementation

For this experiment, a variety of essential libraries have been used for data manipulation,
visualization, machine learning, and deep learning.

¢ NumPy and Pandas: Handle data arrays and dataframes.
¢ Matplotlib and Seaborn: Create plots and visualizations.

e Scikit-learn: Provides tools for model selection, evaluation, and machine learning
algorithms like RandomForestClassifier.

o TensorFlow and Keras: Frameworks for building and training deep learning models, with
utilities for defining neural network layers, handling callbacks, and saving/loading
models.

e Warnings: Suppress warnings for a cleaner output.

This code was executed in Google Colab using a T4 GPU runtime, which accelerates the training
of deep learning models.
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5. Results and Discussion

The results obtained were based on a limited number of epochs for each model due to the
technical constraints of Google Colab. While Colab offers substantial computational resources,
training complex models like those required for the MITBIH dataset can be time-consuming due
to the complexity and size of the data, leading to extended training times.

5.1 Results of binary classification on PTB dataset

The binary classification experiment conducted using the PTB dataset yielded the following
results across ten epochs for each model:

The CNN model performed exceptionally well in the binary classification task, achieving an
accuracy of 95.18%. The precision and recall are closely aligned, indicating that the model has
a balanced performance in terms of predicting both classes accurately. The F1 score 0of 0.9518
confirms this balance, showing that the model handles false positives and false negatives
effectively. The model shows significant improvement after the third epoch, where accuracy
jumps from around 68.99% to 93.47%, with corresponding improvements in loss. This suggests
that the model required a few epochs to start converging effectively. The validation accuracy
stabilizes around 95% by the 10th epoch, indicating that the model generalizes well to unseen
data.

Table 1. CNN for binary classification over 10 epochs.

Epoch accuracy loss val_accuracy val_loss
1 0.624 0.649 0.4935 0.7074
2 0.6852 0.5983 0.512 0.7175
3 0.6899 0.593 0.6745 0.6509
4 0.9347 0.1759 0.9179 0.2199
5 0.9381 0.1602 0.9444 0.1878
6 0.9506 0.1363 0.9463 0.1679
7 0.9486 0.1339 0.9395 0.1738
8 0.9558 0.1168 0.9296 0.2054
9 0.9589 0.1142 0.9629 0.133
10 0.9608 0.1044 0.9518 0.1515
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The LSTM model did not perform as well as the CNN model in binary classification. With an
accuracy of 67.08%, the model's performance is modest. The higher precision (74.20%)
compared to recall (67.08%) suggests that while the model is good at identifying true positives,
it misses a significant number of actual positives, leading to a lower recall. The F1 score reflects
this imbalance. The model shows steady but slow improvement over the epochs. However, it
struggles to reach higher accuracy, plateauing around 70%. This indicates that the LSTM might
be less effective at capturing the temporal dependencies in this binary classification task
compared to CNN.

Table 2. LSTM for binary classification over 10 epochs.

Epoch accuracy loss val_accuracy val_loss
1 0.624 0.649 0.4935 0.7074
2 0.6852 0.5983 0.512 0.7175
3 0.6899 0.593 0.6745 0.6509
4 0.6991 0.5831 0.5726 0.6537
5 0.7003 0.5704 0.6708 0.5922
6 0.6991 0.5831 0.5726 0.6537
7 0.7003 0.5704 0.6708 0.5922
8 0.6998 0.5666 0.622 0.6278
9 0.7052 0.5698 0.6566 0.6029
10 0.7054 0.5604 0.4978 0.8174

The Transformer model performed the worst among the three models in binary classification,
with an accuracy of 57.01%. The precision and recall values are both low, indicating that the
model struggles with both classes, leading to a poor F1 score of 0.5497. This suggests that the
Transformer model might not be well-suited for this particular task or might require further
tuning or more data to perform effectively. The model shows minimal improvement over
epochs, with accuracy lingering around 50-60%. The validation accuracy remains low, indicating
poor generalization.
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Table 3. Transformer-based model for binary classification over 10 epochs.

Epoch loss accuracy val_loss val_accuracy
1 0.6922 0.5163 0.6898 0.512
2 0.6862 0.5548 0.6874 0.5318
3 0.6813 0.5591 0.6844 0.5479
4 0.6793 0.5664 0.6814 0.5707
5 0.6817 0.5592 0.6866 0.5269
6 0.678 0.5694 0.6811 0.5522
7 0.6758 0.5775 0.6794 0.5868
8 0.6759 0.5781 0.6784 0.6022
9 0.679 0.5738 0.6787 0.6109
10 0.6748 0.5833 0.6794 0.5701

The Bagging ensemble model, which combines the predictions of the three models, performed
very well with an accuracy of 92.90%. The ensemble approach seems to mitigate the
weaknesses of the individual models, leading to a balanced and high performance across all
metrics. The slight drop in performance compared to the CNN could be due to the weaker
performance of the LSTM and Transformer models diluting the ensemble's overall effectiveness.
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Table 4. Metrics for binary ECG classification on PTB dataset

Model Accuracy Precision Recall F1 Score
CNN 0.9518 0.9533 0.9518 0.9518
LSTM 0.6708 0.7420 0.6708 0.6466
Transformer 0.5701 0.5897 0.5701 0.5497
Bagging Ensemble 0.9290 0.9356 0.9290 0.9288

5.2 Results of multiclass classification on MITBIH dataset

The multiclass classification experiment conducted with the MITBIH dataset produced the
following results over ten epochs for each model:

For multiclass classification, the CNN model continues to perform exceptionally well, with an
accuracy of 96.74%. The high precision, recall, and F1 scores indicate that the model effectively
discriminates between multiple classes, handling the complexity of the task with ease. The
model shows strong performance from the first epoch, with accuracy improving steadily and
validation accuracy remaining high, confirming good generalization. The final validation
accuracy of 96.74% is consistent with the test accuracy, showing that the model is robust and
well-trained.

Table 5. CNN for multiclass classification over 10 epochs.

Epoch accuracy loss val_accuracy val_loss
1 0.8624 0.3825 0.8638 0.3923
2 0.9349 0.1878 0.9297 0.2122
3 0.956 0.1308 0.9225 0.2383
4 0.9879 0.0372 0.9573 0.1511
5 0.9906 0.03 0.9695 0.1346
6 0.9918 0.0256 0.9662 0.1439
7 0.9929 0.0227 0.9709 0.1347
8 0.9944 0.0185 0.9635 0.1554
9 0.9942 0.0187 0.9741 0.1327
10 0.9955 0.0156 0.9674 0.1848
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In the multiclass setting, the LSTM model performs better than in binary classification but still
lags behind the CNN. An accuracy of 79.20% is respectable, and the high precision suggests
that when the model makes a positive prediction, it is often correct. However, the recallis lower,
which means it fails to identify a significant number of true instances across multiple classes.
The F1 score of 0.8472 shows a decent but not outstanding balance. The model's performance
improves over the epochs, but it seems to plateau earlier than the CNN. This suggests that
while LSTM can capture some of the temporal dependencies in multiclass tasks, it might not be
as effective as CNN in handling the spatial features inherent in ECG data.

Table 6. LSTM for multiclass classification over 10 epochs.

Epoch accuracy loss val_accuracy val_loss
1 0.6471 0.9097 0.7684 0.6556
2 0.8467 0.4334 0.7968 0.5676
3 0.8766 0.3498 0.792 0.5604
4 0.9918 0.0256 0.9662 0.1439
5 0.9929 0.0227 0.9709 0.1347
6 0.9944 0.0185 0.9635 0.1554
7 0.9942 0.0187 0.9741 0.1327
8 0.9955 0.0156 0.9674 0.1848
9 0.9918 0.0256 0.9662 0.1439
10 0.9929 0.0227 0.9709 0.1347

The Transformer model performs poorly in the multiclass classification task, with an accuracy
of only 16.87%. The precision is relatively high at 77.69%, but the recall is very low, indicating
that the model is failing to identify true instances across most classes. The low F1 score reflects
the poor overall performance. This result suggests that the Transformer model is not effective in
handling this type of ECG data for multiclass classification. The model's performance shows
minimal improvement over epochs, with validation accuracy remaining low. The loss values
suggest that the model is not learning effectively from the data, possibly due to inadequate
feature extraction or model complexity issues.
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Table 7. Transformer-based model for multiclass classification over 10 epochs.

Epoch loss accuracy val_loss val_accuracy
1 1.4313 0.3676 1.4641 0.1641
2 1.3773 0.3918 1.4508 0.2077
3 1.3604 0.3998 1.4745 0.1562
4 1.3458 0.4075 1.497 0.1321
5 1.3369 0.4142 1.5023 0.1298
6 1.3313 0.4175 1.4503 0.1142
7 1.3282 0.4217 1.4487 0.1456
8 1.3264 0.4226 1.4693 0.1615
9 1.3246 0.4254 1.4532 0.1648
10 1.3237 0.4245 1.4337 0.1687

The Bagging ensemble model also performs very well in the multiclass classification task, with
an accuracy of 95.78%. This model balances the strengths of the individual models, resulting in
high precision, recall, and F1 scores. While it slightly underperforms compared to the CNN, it
still provides robust results, likely benefiting from the diversity of the models in the ensemble.

Table 8. Metrics for multiclass ECG classification on MITBIH dataset

Model Accuracy Precision Recall F1 Score

CNN 0.9674 0.9717 0.9674 0.9689

LSTM 0.7920 0.9321 0.7920 0.8472

Transformer 0.1687 0.7769 0.1687 0.2184

Bagging Ensemble 0.9578 0.9683 0.9578 0.9616
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6. Conclusions and Recommendations

Overall, the CNN model consistently outperformed the LSTM and Transformer models in both
binary and multiclass ECG classification tasks, demonstrating a strong capability in handling
the complexities of ECG data. For binary classification, the CNN achieved an impressive
accuracy of 95.18%, with a precision of 95.33%, recall of 95.18%, and an F1 score of 95.18%.
These metrics indicate that the CNN model effectively balances precision and recall, making it
highly reliable for binary ECG classification.

In contrast, the LSTM model, while showing reasonable performance, struggled with recall,
particularly in the multiclass classification task. Specifically, in binary classification, the LSTM
had an accuracy of 67.08%, precision of 74.20%, recall of 67.08%, and an F1 score of 64.66%.
This discrepancy between precision and recall suggests that the LSTM model may have
difficulties capturing the full range of features necessary for accurate classification, leading to a
higher number of false negatives.

The Transformer model performed poorly across both tasks, with an accuracy of 57.01% in
binary classification and a notably low 16.87% in multiclass classification. Its low F1 scores of
54.97% for binary and 21.84% for multiclass tasks indicate significant challenges in both
precision and recall. These results suggest that the Transformer model, in its current
configuration, is not well-suited for this type of ECG data and may require substantial tuning or
redesign to improve its performance.

The Bagging ensemble model, which combines the predictions of the CNN, LSTM, and
Transformer models, demonstrated strong performance, particularly in the multiclass
classification task. For binary classification, the Bagging model achieved an accuracy of
92.90%, with precision and recall both at 93.56% and 92.90%, respectively. In multiclass
classification, it recorded an accuracy of 95.78%, precision of 96.83%, recall of 95.78%, and an
F1 score of 96.16%. These metrics highlight the ensemble model's ability to mitigate the
weaknesses of individual models, leading to more robust and reliable performance.

In conclusion, the CNN model stands out as the most effective model for ECG classification
tasks, particularly when dealing with complex and high-dimensional data. The Bagging
ensemble approach further enhances performance by leveraging the strengths of multiple
models, making it a viable strategy for improving classification accuracy and robustness.
However, the LSTM and Transformer models may require further tuning or alternative
configurations to achieve better results, particularly in capturing the intricate features of ECG
data.

To enhance the performance and applicability of the ECG classification models, further work
should focus on optimizing and fine-tuning the LSTM and Transformer models, exploring
advanced CNN architectures, and applying sophisticated data augmentation and
preprocessing techniques. Additionally, experimenting with diverse ensemble strategies, such
as Boosting or Stacking, and incorporating other models like SVMs or Random Forests could
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improve overall accuracy. Leveraging transfer learning, enhancing model interpretability through
Explainable Al techniques, and conducting a detailed error analysis are also critical steps.
Moreover, validating models across different datasets, optimizing for real-time deployment, and
integrating clinical metadata will ensure robustness and practical utility in clinical settings.
Lastly, incorporating longitudinal analysis for temporal consistency could further improve
predictive capabilities.

7. Reflection

As an engineer working in a defibrillator company, | am particularly interested in the application
of computational methods to the classification and recognition of electrocardiograms. When it
came time to choose a topic for this dissertation, | saw this as a highly productive research area
with direct and practical applications.

Once the research topic was finalized, the subsequent steps in the process gradually took
shape. Each day brought new learning opportunities, whether it involved discovering relevant
data in the field or experimenting with code in Colab or Jupyter to test new implementations.
This iterative process not only deepened my understanding of deep learning models but also
highlighted the complexities involved in adapting these models to medical data.

Despite the abundance of articles on DL model research for ECG classification tasks, one of the
biggest challenges remains the limited availability of datasets, primarily due to the sensitive
nature of ECG data. Accessing comprehensive and diverse datasets is crucial for training robust
models, yet the ethical and privacy concerns surrounding medical data often limit what is
available. This constraint pushed me to be more resourceful, focusing on maximizing the
potential of the datasets | had access to and ensuring that the models were trained and
validated as effectively as possible.

However, it has been rewarding to explore various DL models, observe how different designs
respond to experiments, and witness the improvement in results as more data was gathered
and the models were refined. The process of iterating on these models, tweaking parameters,
and integrating feedback from each experiment has been both challenging and fulfilling. Each
small breakthrough, whether it was a slight increase in accuracy or a more efficient model
architecture, reinforced my belief in the potential of machine learning to significantly impact
ECG classification.

This dissertation has not only enhanced my technical skills but also broadened my perspective
on the intersection of engineering and healthcare. The experience has solidified my passion for
this field and my commitment to leveraging computational techniques to advance cardiac
health monitoring and diagnostics. Looking back, | am proud of the progress made and excited
about the possibilities for future research and applications in this vital area.
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APPENDIX | Code: Deep Learning models
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	1. Introduction 
	1. Introduction 
	AccordingtoWorldHealthOrganisation(WHO)reports[1], CardiovascularDiseases(CVDs) arestill amongtheleadingcausesofdeathglobally.In2019,anestimated17.9 millionpeoplediedfromCVD,representing32% ofalldeathsworldwide.CVDs encompassa rangeofconditions,includingcoronaryarterydisease[2],hypertension[3]andheartfailure[4],all ofwhichcanhavedevastatingimpactsonindividualsandcommunities.Amongtheseconditions,arrhythmias[5],whichareirregularheartbeats,areparticularlyconcerning.Arrhythmiascanleadtoseriouscomplicationssucha
	The electrocardiograph,firstinventedbyWillemEinthovenin1902 [7], emergedasapowerful tool forthediagnosisofdifferentCVDs.Anelectrocardiogram(ECG)isa testthatrecordstheheart'selectricalactivitybyplacingelectrodesontheskinto detecttheimpulsesgeneratedduringtheheart'scontractionandrelaxationphases[8],[9].Theseimpulsesaregraphicallydisplayedaswaves,eachrepresentinga differentphaseofthecardiac cycle.CliniciansutilizeECGs to diagnosevariousheartconditions,includingarrhythmias,myocardial infarctions(heartattacks), 
	Typically,a standard12-leadECG[10],[11]isemployedasa diagnostictoolto evaluatetheheart'selectricalactivityfrom multipleperspectives.Itfeatures12 distinctviews,or"leads," thatoffer uniqueanglesoftheheart'selectrical signals.Theseleadsareobtainedbyplacingelectrodesonspecificbodylocations,enablinga thoroughassessmentofheartfunction.The 12 leadsincludesixlimbleads(I, II,III, aVR,aVL,aVF) andsixprecordial leads(V1-V6), eachprovidinginformationaboutdifferentregionsoftheheart'selectricalactivity.Byanalysingthepatt
	The mainpurposeofECG classificationistodiagnosediseasesbyanalysingECG waves,especiallytheP wave,QRS complexandT wave[12].Thesewavesprovidevaluableinformationaboutthepresenceandtypeofdiseasesbydifferentdiagnosticmethods(Fig1).
	UniversityofWalesTrinitySaintDavidMScSoftwareEngineeringandArtificial Intelligence
	Figure1. P, QRS and T wavesby Barhatte et al.[12]
	Over thepastfewdecades,thecomputerizedidentificationofECGshasemergedasawidelyadoptedpractice,aidingcardiologistsincategorizingextendedECG recordings.
	Deeplearning,leveragingitsrobustfeatureextractioncapabilities,hasachievedremarkableaccuracyintheclassificationofECG signals,servingasapotentcomputer-aidedmethodinthisdomain[9],[13],[14].
	Oneoftheprimarychallengesindevelopingandimplementingmachinelearningmodelsfor ECG classificationisthelimitedavailabilityofdatasetsources,primarilydueto thesensitivenatureofthedata.However,therearesomepubliclyavailabledatasetsthatarewidelyusedinresearchofthistype.OneofthemostwidelyusedandrecognizeddatasetsintheresearchistheMIT-BIH dataset[15].Thisdatasetconsistsof23 randomlychosenrecordingsand25 recordingsselectedfor lesscommonbutsignificantarrhythmias,collectedbetween1975 and1979.The recordings,digitizedat36
	AnotherwidelyuseddatasetinthefieldofECG researchisthePTB-XLdataset[16]. Itwasgatheredover nearlysevenyearsusingdevicesfromSchiller (1989-1996).TheECG sampleswereinitiallyrecordedaspartofanextensiveprojectofthePhysikalisch-TechnischeBundesanstalt(PTB). Thedata remainedrestrictedto thepublicuntil late2019.When itwasdecidedto releasetherecordsto thepublic,someadjustmentsweremadeto facilitateusabilityandaccessibilitytoa wider public andtoenrichresearchinthefield.
	AlthoughtherearesomeotherpubliclyavailabledatasetssuchasINCART 12-leadArrhythmia Database[17],or theFantasia Database[18],astudybyXioetal.in2023 [19]thatcomparestheuseofdifferentdatasetsfor ECG classification(Fig2)findsthattheuseofthesetwodatabasesisthemostwidespread,mainlydueto theirextensiveandexhaustivedocumentationandthelargenumber andvarietyofsamplesofwhichtheyarecomposed,allowingtheclassificationofawiderangeofconditions,whichmakesthemveryvaluablefor ECG research.
	Figure2. Trend of different ECG Datasetsused in the recent years for Deep LearningECG classification research byXiao et al.[19]. 
	Inthisstudy,thetwomostrelevantdatasetsareutilizedtoassessa bagging-basedensemblemodel. ThePTBdatasetwasusedto evaluatebinaryclassificationperformance,whilethemulticlassMITDBdatasetwasemployedto assessmulticlassclassificationperformance.TheTPBdatasetprovidestoclasses:NormalandAbnormal ECGs.The MITBIH datasetprovidesfive
	Inthisstudy,thetwomostrelevantdatasetsareutilizedtoassessa bagging-basedensemblemodel. ThePTBdatasetwasusedto evaluatebinaryclassificationperformance,whilethemulticlassMITDBdatasetwasemployedto assessmulticlassclassificationperformance.TheTPBdatasetprovidestoclasses:NormalandAbnormal ECGs.The MITBIH datasetprovidesfive
	classes:NormalSinusRhythm(NSR), SupraventricularEctopicBeat(SEB), Ventricular EctopicBeat(VEB), FusionBeat(FB), anda classfortheunknownbeats(Q). 

	A normal sinusrhythm(NSR) istheheart'sregularrhythm,initiatedbythesinoatrial (SA) node,witha heartratebetween60 and100beatsperminute[20].Itfeaturesconsistenttimeintervalsbetweenbeats,witheachheartbeatprecededbya normalP wave,aPRinterval of0.12 to0.20 seconds,anda narrowQRS complexlastinglessthan0.12 seconds.TheT wavesareappropriatelyuprightinspecificleads,theST segmentisflatandalignswiththebaseline,andtheQTintervalisappropriatelyadjustedfortheheartrate.Thisrhythmindicateshealthy,regularelectrical activitywi
	Supraventricular ectopicbeatsareprematureheartbeatsoriginatingabovetheventricles,typicallyintheatria ortheatrioventricular node.Thesebeatsareoftenbenignandcanoccur inhealthyindividuals,buttheycanalsobeasignofunderlyingcardiac conditions.Theymaycausethehearttobeatirregularlyor prematurely[21].OnanECG,thesebeatsareidentifiedbyexaminingthetimingandmorphologyoftheP-waveandtheRR intervals.SVBsoftenhaveashorter RR interval andanabnormal P-wavebuta normal QRS complex. 
	Ventricularectopicbeatsareprematureheartbeatsthatoriginatefromtheventricles,thelowerchambersoftheheart.Thesebeatsaremoreconcerningthansupraventricularectopicbeatsbecausetheycanbeassociatedwithmoreseriouscardiac conditions,includingventricular tachycardia orventricularfibrillation,whichcanbelife-threateningifnottreated.[22]. VEBstypicallyhavea wideandbizarre-lookingQRS complexwithouta precedingP-wave.Theyoftenoccur earlier thanexpectedandarefollowedbya compensatorypause.
	A fusionbeatoccurswhenanormal heartbeatandanectopicbeat(either supraventricularorventricular)coincide.The resultantECGwaveform isacombinationofthetwo signals.Fusionbeatsareimportantto identifybecausetheycanindicatethepresenceofcompetingpacemaker activityintheheart[23]. A fusionbeatisidentifiedbydetectingaQRS complexthathasa combinationoffeaturesfrom bothnormal andectopicbeats,indicatingsimultaneousactivationoftheventriclesbybothnormal andectopicpacemakers. The'Q'classintheMITBIH datasetisusedforheartbeatsth
	The designofdeeplearning(DL) modelsplaysa criticalroleinthefieldofcomputing-basedECG classification.Thesemodelstypicallyfeaturemulti-level ormulti-layerarchitectures,witheach level orlayeractingasafeatureextractorthatprogressivelyrefinestherepresentationofsignal characteristics.Dependingonthekeyfeatureextractorswithintheneural networks,theDL classificationmodelsexaminedintheselectedstudiescanbeprimarilycategorizedinto several types:convolutional neural networks(CNNs)[24],[25],[26],[27],[28],longshort-term m
	UniversityofWalesTrinitySaintDavidMScSoftwareEngineeringandArtificial Intelligence
	1.1 Aims and Objectives 
	1.1 Aims and Objectives 
	The aim ofthisresearchisto developahighlyaccuratedeeplearningmodelbasedonbaggingtechniquesfor12-leadECG classification,specificallytargetingfour typesofrhythms,to improvediagnosticefficiencyandaccessibilityincardiachealthmonitoring.The underlyinghypothesisisthatECGclassificationcanbeenhancedbyimplementingabagging-basedensembleapproach appliedto variousdeeplearningmodels.
	To achievethisgoal, thefollowingobjectiveshavebeenoutlined:
	• 
	• 
	• 
	Explore currentECGclassification methods:Conducta comprehensiveliteraturereviewtounderstandrecentadvancementsinECG classification,particularlythoseusingensembletechniquesindeeplearning.

	• 
	• 
	Develop a bagging-based deeplearningmodel:Createa modelthatcombinesdifferentdeeplearningapproachesto achieveaccurateECGclassification.

	• 
	• 
	Evaluate modelperformance acrossdiverserhythms:Testthemodel'sperformanceondifferentheartrhythmsto ensureitsrobustnessandgeneralizationcapability.Thiswill involveevaluatingthemodel'sperformanceonthePTBdatasetfor binaryECG classificationandontheMITBIH formulticlassECG classification.




	2. Related Work 
	2. Related Work 
	ThissectionexaminesthelatestadvancementsinthedevelopmentofDeepLearningmodelsforECG classification.Thegoal istoidentifythemosteffectivethemostefficientDeepLearningmodelsto beusedindesigninga bagging-basedensemblemodel.
	Inrecentyears,manystudieshaveexploredseveral approachesfordesigninganddevelopingdeeplearningmodelsforECG classification.
	A commonlyexploredapproachforECG classificationtasksistheimplementationofCNNmodels.
	A studybyMietal.[24], focusesonpreprocessingtechniquesforECG data, particularlyhighlightingtheuseoftheMIT-BIH Arrhythmia Database.Itdetailstheimplementationofwavelettransformmethodsto enhanceECGsignalaccuracy,whichiscrucial for effectiveclassification.The improvedsignal mapsderivedfrom thisprocessareusedto traina BackPropagation(BP)neuralnetwork, whichisadeptatrecognizingandclassifyingvarioustypesofarrhythmias.Thesepreprocessingstepsarevital inensuringthatthedata fedinto machine
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	learningmodelsisofhighquality,therebyimprovingthemodels'performanceindetectingandclassifyingheartconditionsaccurately.

	A studybyEkİncİetal. [25], explorestheimpact ofvariouspreprocessingtechniquesontheperformanceofdeeplearningmodelsfor ECGclassification.ItemphasizesfilteringoutBaselineWander (BW)andPowerlineInterference(PLI) noise.The studycomparesShort-timeFourier Transform (STFT) andContinuousWaveletTransform (CWT) forfeatureextraction,findingthatBWnoisesignificantlyaffectsclassificationaccuracy.Usinga low-complexityCNN withlessthan90k parameters,theoptimal preprocessingachievedanaverageF1-Scoreof90.11%.
	A researchbyŚmigieletal.  [26], explorespreprocessingtechniqueslikefilteringoutbaselinewander andpowerlineinterference,andfeatureextractionusingwavelettransform andentropybasedfeatures.Threedeeplearningmodelswereused:a convolutionalnetwork, SincNet,andaconvolutional networkwithentropy-basedfeatures.The convolutional networkwithentropyfeaturesachievedthehighestclassificationperformancewithanF1-Scoreof90.11%,whilethestandardconvolutional network offeredthebestcomputational efficiency.
	-

	Inanother 2024 publicationbyZ.Chenetal. [27], introducesanovel hybridmethodto addressimbalanceddatasetsbyemployingamplitudeadjustmentandweightedlossfunctionsduringmodel training.Thestudyalso enhancesdepthwiseandpointwiseconvolutionsinto onedimensional operationsspecificallytailoredfor ECG heartbeatsignals,whichreducesmodel complexitywhilemaintainingaccuracy,makingitsuitableforresource-constrainedwearabledevices.Bycombiningimbalanceddatasetmitigationtechniqueswithhardware-efficientdeeplearningnetworksforarrh
	-

	AnotherresearchbyS.OhandM.Lee[28]proposesa shallowdomainknowledgeinjection(SDK-Injection)methodtoimproveCNN-basedECGpatternclassification.Pre-processingtechniquesinvolvetheapplicationofa Savitzky-Golayfilter fornoisereductionthroughcurvefitting-basedsmoothing.The pre-processeddataisthensubjectedto SDK-injectingattentionto embedshallowdomainknowledge,focusingonimportantsub-patternsliketheT wave,whicharecrucial for diagnosingconditionssuchasischemia. Thefinal stepinvolvesexpandingtheunivariateECG datainto amu
	-

	AnotherimportantavenueofresearchinrecentyearsistheapplicationofLSTM models.
	A studybyL.D.Sharmaetal (2023) [29], presentsamethodforclassifyingcardiac arrhythmiasusingECG signals.Thedata processingtechniquesinvolvetheuseofStationaryWaveletTransform(SWT) topreprocesstheraw ECG signals,effectivelydecomposingthemintovarious
	UniversityofWalesTrinitySaintDavidMScSoftwareEngineeringandArtificial Intelligence
	frequencysub-bandsto removenoiseandenhancethesignal. TheSWTisparticularlybeneficial becauseitpreservesthelengthofthesignal throughoutthedecompositionprocess,whichiscrucialforaccuratereconstructionandanalysis.Then,aBi-directional LongShort-Term Memory(Bi-LSTM) network, whichiscomparedagainstRecurrentNeural Networks(RNN)andGatedRecurrentUnits(GRU). The Bi-LSTMmodel showedsuperiorperformance,achievinganoverall accuracyof99.72%,withhighprecision,sensitivity,andspecificityacrossallclassesofarrhythmiasconsideredi
	AnotherresearchbyM.KarriandC.S.R. Annavarapu(2023)[30], describesa real-timeembeddedsystemdesignedforQRS-complexdetectionandarrhythmia classificationusingLongShort-Term Memory(LSTM)networks,leveraginghybridizedfeatures.Thedata processingtechniquesincludetheuseofDiscreteWaveletTransform(DWT) andDelta Sigma Modulation(DSM) for featureextraction,focusingonQRS detectionandwavelet-basednoisereduction.TheECG signalsarepreprocessedto removenoise,andcritical featuressuchasR peak,onset,andoffsetofP andTwavesareextra
	A studybyS.Boda etal. (2023)[31]introducesanautomatedpatient-specificECG beatclassificationsystemusingLongShort-Term Memory(LSTM)-basedrecurrentneural networks(RNNs). Thedataprocessingtechniquesincludepre-processingtheECGsignalsto removenoise,followedbyQRScomplexdetectionusingthePan-Tompkinsalgorithm.The ECG signalsarethensegmentedintoindividualbeats,andtemporal andmorphologicalfeaturesareextracted.ThesefeaturesarecombinedwiththeLSTM network tocapturethetemporal dependenciesintheECG waveformfor arrhythmiacl
	Inadditionto theabove,several recentstudieshavefocusedontheimplementationoftransformer-basedmodels.
	A studybyH.El-GhaishandE.Eldele(2024)[32], introduces"ECGTransForm," a deeplearningframeworkdesignedforECG arrhythmia classification,incorporatingadvanceddataprocessingtechniquesanda novelmachinelearningmodel. Thedata processinginvolvessegmentingECGsignalsinto discretewindows,normalizingtheamplitude,detectingR-peak candidates,andsegmentingsignalsintofixedlengthsusingzero-padding.The proposedmodel, ECGTransForm,leveragesMulti-scale Convolutionstocapturespatial featuresatvariousscales,a Channel RecalibrationM
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	channels,andaBidirectionalTransformer (BiTrans) to capturetemporal dependenciesfrom bothpastandfuturecontexts.Additionally,themodel usesa Context-AwareLossfunctionto addressclassimbalancebydynamicallyadjustingclassweights.The modelwasevaluatedontheMIT-BIH andPTBDiagnosticECG databases,achievingimpressiveresults,includinganaccuracyof99.35% andamacro-averageF1-scoreof94.26%ontheMIT-BIH dataset,outperformingseveral state-of-the-artmethods.
	In2023,Y.Dongetal.[33]presentedanarrhythmia classificationmodel basedona VisionTransformer (ViT)withdeformableattention,termedCNN-DVIT.The data processingincludestheuseofspatial pyramidpoolingto handlevaried-lengthECGsignals,allowingthemodel to processinputsofdifferentsizeseffectively.The machinelearningmodelcombinesconvolutional neural networks(CNNs) for featureextractionandaVisionTransformer withdeformableattentionforrobustclassification.The model achievedanF1scoreof82.9% ontheCPSC-2018 dataset,outperform
	AnotherstudybyA.Vargheseetal. (2023) [34],presentsa methodforclassifyingECG arrhythmiasusingatransformer-basedmodel, specificallyDistilBERT.Thedata processingincludesdenoisingECG signalswithButterworthfiltersandsegmentingthemaroundtheRpeak.TheSyntheticMinorityOversamplingTechnique(SMOTE)isusedtobalancethedataset.The model, whichomitstheinputembeddingstep,achievedremarkableresultsontheMIT-BIH datasetwithanaccuracyof99.92%,andprecision,recall, andF1-scoreall at0.99,alongwithaROC-AUCscoreof0.999.Thesemetricsde
	Asfarasensemblemodelsareconcerned,recentstudieshaveputforwarddifferentapproaches.
	Ina2024 paper byMorteza Maleki [35], a model utilizingWavelettransformationispresentedforfeatureextractionfromECG signals.Thisapproach enhancestheclassificationaccuracyofvariouscardiovasculardiseasesusingmachinelearningtechniquesbycapturingbothtimeandfrequencyinformation,whichalignswell withthecomplexnatureofECGsignals.The studyunderscorestheeffectivenessofwavelet-basedfeatureextraction,emphasizingtheimportanceofselectingappropriatewaveletsandoptimizingfeatureextractiondepthforbetter classifier accuracy.Not
	A recentstudybyW.JiandD.Zhu[36]presentsa newmethodbyintegratingConvolutional Neural Network(CNN) andGatedRecurrentUnit(GRU)attheinitial signal processingstageforanalysingsimulatedsignals.Initially,thesignal undergoes processingwitha Butterworthhighpassfilter to minimisepower linenoiseinterference,followedbywavelettransformto reduceelectromyographicinterference.One-dimensional CNN isemployedforautomaticfeatureextraction,whilethefusionofGRUwithCNN addressesthelimitedtimedependencyinherentinCNN networksforECG 
	-
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	signals,recurrentneural networkssuchasGRUcancapturethese,enhancingclassificationaccuracyandbolsteringthenetwork'sresistanceto noise.Consequently,themodel gainsimprovedinsightintoandcapturestemporal relationshipswithindifferentsegmentsoftheECGsignal, therebyaugmentingclassificationaccuracy.
	The studybyPlawiakandAcharya (2020) [37]introducesanECGclassificationsystememployingvariouspreprocessingmethodsandgeneticalgorithmsforoptimization.Preprocessinginvolvesgainreduction,constantcomponentreduction,andthreenormalizationtechniques:standardization,rescaling,andno normalization.Evaluationmetricsincludeaccuracy,specificity,sensitivity,falsepositiverate,positivepredictivevalue,Fleiss'Kappa, optimizationtime,trainingtime,classificationtime,andtheacceptancefeaturecoefficient.Theresultsdemonstratethatnor
	The analysisofvariousstudiesrevealsthatcommonlyusedmodelslikeCNN,LSTM, andTransformer consistentlyachievehighaccuracyandefficiencyinECG classification.Somestudieshavealso exploredensemblelearningbycombiningmultiplemodels,resultinginenhancedperformance.Thisstudy,therefore,proposesamodelthatappliesbaggingtechniquesto thesethreeprevalentmodelsinECG classificationtoassesswhether theircombinedapplicationcanleadtoimprovedoutcomes.

	3. Methodology 
	3. Methodology 
	Ashighlightedintheliteraturereview,themosteffectiveECG classificationresultsareachievedusingthreetypesofdeeplearningmodels:CNN models,LSTMmodels,andtransformer-basedmodels.However,theresultsobtainedleaveroomforimprovement.Therefore,thisstudy
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	focusesonthedevelopmentofamodel thatappliesbaggingtechniquescombiningpredictionsfromthethreetypesofmodels.

	To evaluatethemodel'sefficiencyindifferentenvironments,theexperimentfirstconductsbinaryclassificationonthePTBDBdataset,followedbymulticlassclassificationontheMITBIHdataset.
	3.1 Dataset processing 
	3.1 Dataset processing 
	The experimentisconductedontwodistinctdatasetsto evaluatetheefficiencyofbinaryandmulticlassclassification.
	3.1.1PTBDB dataset for binary classification
	3.1.1PTBDB dataset for binary classification
	The PTBDiagnosticECG Database,hostedonPhysioNetandcuratedbythePhysikalisch-TechnischeBundesanstalt,includes549high-resolution15-leadECG recordingsfrom 290subjects,ranginginagefrom 17 to87.Thesesubjectsincludebothhealthyindividualsandpatientswithvariousheartconditions,suchasmyocardial infarction,cardiomyopathy,andarrhythmias.The ECGsaredigitizedat1000 samplespersecondwithdetailedclinicalsummariesavailableformostrecords.Thisdatasetisprimarilyusedfor research,algorithmicbenchmarking,andteachinginthefieldofcard
	The firststepisto mergebothcsvfilesinonesingledata frameusing:
	full_ptb=pd.concat([ptb_normal,ptb_abnormal],axis=0)
	The resulteddatasetconsistin__rowsand188columns.
	The resultingdataframemustthenberandomlyshuffledandfurtherdividedinto training
	andtestdatasets:
	full_ptb_shuffled=full_ptb.sample(frac=1).reset_index(drop=True)
	The lastrow(index187)holdstheclasses0 fornormal ECG and1 forabnormal ECG.
	The initial number ofclassesisimbalanced,containing10506abnormal samplesand4046normalsamples:
	Figure
	Figure3. Initial balance of the PTBDB dataset
	Therefore,thenumberofabnormalsamplesmustbereducedtofitthenumber ofnormal samples:df_1=(full_ptb_shuffled[full_ptb_shuffled[187]==0]).sample(n=4046,random_state=42)df_2=(full_ptb_shuffled[full_ptb_shuffled[187]==1]).sample(n=4046,random_state=42)full_ptb_shuffled_balanced=pd.concat([df_1,df_2])
	Figure
	Figure4. Balanced dataset.
	WethenplotanECG sampleofeachcategoryusingtheplotlibrarytools:row=4#Extractthesignal fromthechosenrowECG_signal =full_ptb_shuffled_balanced.iloc[row,:-1]#Plotthesignalplt.figure(figsize=(15,5))plt.plot(ECG_signal)plt.title(f"Signal fromrow{row}")plt.show()
	Figure
	Figure5. Normal ECG signal from PTBDB
	Figure6. Abnormal ECG signal from PTBDB
	The datasetisthendividedintraining,testandvalidationdatasets.#Splitdatasetintrain,testandvalidationdataset#Step1:SplittheDataFrameinto training+validationandtestingdatasetstrain_val_df,test_df= train_test_split(full_ptb_shuffled_balanced,test_size=0.2,
	random_state=42)#Step2:Splitthetraining+validationdatasetinto trainingandvalidationdatasets#0.25 *0.8 
	train_df,val_df= train_test_split(train_val_df,test_size=0.25,random_state=42) 

	= 0.2oftheoriginaldata#DisplaytheshapesoftheresultingDataFramesprint("TrainingDataFrameshape:",train_df.shape)
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	print("ValidationDataFrameshape:",val_df.shape)
	print("TestingDataFrameshape:",test_df.shape)

	3.1.2MITBIH dataset for multiclass classification
	3.1.2MITBIH dataset for multiclass classification
	The MIT-BIHArrhythmiaDatabase[39],availableonPhysioNet[15],isa comprehensivecollectionof48 half-hour ECG recordingsfrom 47subjects.Itincludesbothnormal andabnormalheartrhythms,makingitavital resourceforthedevelopmentandevaluationofarrhythmiadetectionalgorithms.Eachrecordingissampledat360Hz,withannotationsprovidedfor eachbeatandrhythm.Thedatasetiswidelyusedinbiomedicalresearchfor trainingandtestingmachinelearningmodelsaimedatdetectingcardiac arrhythmiasThedatasetcategorizesECGsintofiveclasses:NormalSinus Rhy
	The firststepisto importbothcsvfilesinto panda data frames: 
	mitbih_train=pd.read_csv("/content/drive/MyDrive/UWTSD_MSc_SE_and_AI/Dissertation/ECG Datasets/mitbih_train.csv")
	mitbih_test=pd.read_csv("/content/drive/MyDrive/UWTSD_MSc_SE_and_AI/Dissertation/ECGDatasets/mitbih_test.csv")
	The lastrow(index187)holdstheclasses0,1,2,3and4 fordifferentECGsignals. 
	The initial number ofclassesisimbalancedinthetrainingdataset,containingalargenumber ofnormalECG samplesthantheother classes:
	mitbih_train[187]=mitbih_train[mitbih_train.columns[187]].astype(int) #UsethecorrectcolumnindexfromtheDataFrame
	balance=mitbih_train[mitbih_train.columns[187]].value_counts()
	print(balance)
	0.0  72470
	4.0  6431
	2.0  578813
	UniversityofWalesTrinitySaintDavidMScSoftwareEngineeringandArtificial Intelligence
	1.0  22233.0  641Name:count,dtype:int64The classdistributionisvisualizedusinga barchart:#Sampledata#0 -“N”fornormal heartbeats.#1 -“S”forsupra-ventricularpremature.#2 -“V”forventricular escape.#3 -“F”for fusionofventricularandnormal.#4 -“Q”for unclassifiedheartbeatslabels=['n','q','v','s','f']colors= ['red','green','blue','skyblue','orange']#Createafigurewitha specificsizeplt.figure(figsize=(20,10))#Createabarchartplt.bar(labels,balance,color=colors)#Addtitlesandlabelsplt.title('BarChartofCategories',fontsi
	Figure7. Initial balance of theMITBIH trainingdataset
	Therefore,thedatamustbereorganizedto balancethenumber ofsamplesofeach class:fromsklearn.utilsimportresampledf_1=mitbih_train[mitbih_train[187]==1]df_2=mitbih_train[mitbih_train[187]==2]df_3=mitbih_train[mitbih_train[187]==3]df_4=mitbih_train[mitbih_train[187]==4]df_0=(mitbih_train[mitbih_train[187]==0]).sample(n=20000,random_state=42)df_1_upsample=resample(df_1,replace=True,n_samples=20000,random_state=123)df_2_upsample=resample(df_2,replace=True,n_samples=20000,random_state=124)df_3_upsample=resample(df_3,
	train_df=pd.concat([df_0,df_1_upsample,df_2_upsample,df_3_upsample,df_4_upsample])
	Figure
	Figure8. Balanced MITBIH trainingdatasetbar chart.
	Then, anECG sampleofeach categoryisplottedusingthematplotlib: 
	#Displaytablewithsomeexamples
	examples=mitbih_train_df.groupby(187,group_keys=False).apply(lambda mitbih_train_df:mitbih_train_df.sample(1))plt.plot(examples.iloc[0,:186])
	Figure
	Figure9. Normal ECG signal from MITBIH training dataset
	Figure
	Figure10. SEBECG signal from MITBIH training dataset.
	Figure10. SEBECG signal from MITBIH training dataset.


	Figure
	Figure11. VEB ECG signal from MITBIH ECG dataset.
	Figure11. VEB ECG signal from MITBIH ECG dataset.


	Figure
	Figure12. FBECG signal from MITBIH training dataset.
	Figure12. FBECG signal from MITBIH training dataset.


	Figure
	Figure13. Unknown ECG signalfrom MITBIH training dataset.
	Figure13. Unknown ECG signalfrom MITBIH training dataset.


	Then,thevaluesofX_train,X_test,y_trainandy_testmustbedefinedandreformattedtofittheNNs.
	target_train= mitbih_train_df.iloc[:,187] #Selectcolumnatindex187mitbih_test_df= mitbih_testtarget_test= mitbih_test_df.iloc[:,187]#Selectcolumnatindex187y_train= to_categorical(target_train) y_test= to_categorical(target_test) 
	X_train=mitbih_train_df.iloc[:,:186].valuesX_test=mitbih_test_df.iloc[:,:186].valuesX_train=X_train.reshape(len(X_train), X_train.shape[1],1) X_test= X_test.reshape(len(X_test), X_test.shape[1],1)
	Thetargetlabels(heartbeatclasses)areselectedfrom the187thcolumnofboththetraining(mitbih_train_df) andtest(mitbih_test_df) datasets.Theselabelsarethenconvertedtoone-hotencodedformatusingto_categorical.The features(X_trainandX_test)areextractedfrom all columnsexceptthelast(upto column186)andreshapedto includeasinglechannelto fitmodels’requirements.


	4.2 Base Deep Learning models 
	4.2 Base Deep Learning models 
	Threebasemodelshavebeendeveloped,inspiredbythemosteffectiveapproachesidentifiedintheliteraturereview.
	4.2.1CNNmodel
	4.2.1CNNmodel
	The CNN_modeldefinesa CNNmodel thatcreatesandtrainsa Convolutional Neural Network (CNN)foraclassificationproblem.
	The model architectureisdefinedasfollows:
	o 
	o 
	o 
	The inputshapeisdeterminedbyX_train.shape[1],representingthenumber offeaturesper sample.

	o 
	o 
	The model hastwo1Dconvolutional layers(Convolution1D) withReLUactivation,eachfollowedbybatchnormalization(BatchNormalization) andmaxpoolinglayers(MaxPool1D).
	-


	o 
	o 
	The outputofthefinalconvolutional layer isflattened(Flatten), thenpassedthroughtwofullyconnected(dense) layerswith64 and32 units,respectively.

	o 
	o 
	The final layer(Dense) containseither 2unitswitha softmaxactivationfunctionforbinaryclassificationor5 unitswitha softmaxactivationfunctionfor multiclassclassification,dependingonthespecifictask.
	-


	o 
	o 
	The model iscompiledwiththeAdamoptimizer,categorical cross-entropyloss,andaccuracyastheevaluationmetric.

	o 
	o 
	Earlystopping(EarlyStopping) isusedto stoptrainingifthevalidationlossdoesnotimprovefor 3consecutiveepochs.

	o 
	o 
	ModelCheckpointsavesthebestmodel basedonthevalidationloss.

	o 
	o 
	The model istrainedfor5epochswitha batchsizeof32,usingthetrainingdata (X_train,y_train)andvalidatingontestdata (X_test,y_test).


	The final trainedmodelissavedto a file,andthetraininghistory,whichincludesmetricslikelossandaccuracyoverepochs,isstoredasa JSON file.Thefunctionreturnsboththetrainedmodel andthetraininghistory,allowingforfurtheranalysisanduseinsubsequenttasks.

	4.2.2LSTM model
	4.2.2LSTM model
	The LSTM_modelfunctiondefinesamodel thatcreatesandtrainsa LongShort-Term Memory(LSTM)neural network forECG classification.Themodel architectureisdefinedasfollows:
	o 
	o 
	o 
	The inputshapeisdeterminedbythenumberoftimesteps(timesteps)andthenumber offeatures(input_dim) persample.

	o 
	o 
	The model consistsoftwo LSTMlayers.The firstLSTM layer has64 unitsandreturnssequences(meaningitpassestheentiresequenceto thenextLSTMlayer).ThesecondLSTMlayer also has64unitsanddoesnotreturnsequences.

	o 
	o 
	EachLSTMlayer isfollowedbybatchnormalizationto stabilizeandacceleratethetrainingprocess.

	o 
	o 
	After theLSTMlayers,therearetwodense(fullyconnected) layerswith64and32 units,respectively,usingReLUactivation.

	o 
	o 
	The final layer(Dense) containseither 2unitswitha softmaxactivationfunctionforbinaryclassificationor5 unitswitha softmaxactivationfunctionfor multiclassclassification,dependingonthespecifictask.
	-


	o 
	o 
	The model iscompiledusingtheAdamoptimizer,categorical cross-entropyloss(appropriatefor multi-classclassification),andaccuracy astheevaluationmetric.

	o 
	o 
	The callbacksdefinetheEarlyStoppingstopstrainingifthevalidationlossdoesn'timprovefor8 consecutiveepochs,andtheModel Checkpointsavesthebestmodelduringtrainingbasedonthevalidationloss.

	o 
	o 
	The model istrainedfor5epochswitha batchsizeof32,usingtheprovidedtrainingandvalidationdata.


	The final trainedmodel, includingitsarchitecture,weights,andoptimizer state,issavedto afile,whilethetraininghistory,capturingmetricslikelossandaccuracyover theepochs,isstoredasa JSONfile.Thefunctionthenreturnsboththetrainedmodel andthetraininghistory,allowingforfurther analysisor useinsubsequenttasks.
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	4.2.3Transformer-basedmodel
	4.2.3Transformer-basedmodel
	The transformer_encoderfunctiondefinesa model thatcreatesandtrainsatransformedbasedneuralnetworkforECG classification.Themodel isdefinedinthreesteps:
	-

	ItimplementsLayer NormalizationandMulti-HeadAttentionlayersareappliedto theinputs,followedbya residual connectionandfeed-forwardlayersusingConv1D.Thisisrepeatedfor aspecifiednumber oftransformerblocks.
	TheModelArchitectureisdefinedasfollows:
	o 
	o 
	o 
	The model beginswithaninputlayer,passesthroughseveraltransformer encoder blocks,andisfollowedbya globalaveragepoolinglayer.

	o 
	o 
	Fullyconnected(Dense) layerswithdropoutareaddedbeforethefinal softmaxlayer forclassification.

	o 
	o 
	The model iscompiledwiththeAdamoptimizer andcategoricalcross-entropyloss.

	o 
	o 
	Earlystoppingandmodel checkpointcallbacksareusedduringtrainingto preventoverfittingandsavethebestmodel.


	After training,theentiremodel anditstraininghistoryaresavedto filesforfutureuse.Thetrain_and_save_transformer_modelfunctionisresponsiblefor compiling,training,andsavingthemodel alongwithitstraininghistory.Thissetupisdesignedtoefficientlyhandletime-seriesdata, leveragingthepower oftransformersfor capturingcomplexpatternsanddependencies.


	3.2 Bagging technique implementation 
	3.2 Bagging technique implementation 
	To applybaggingtechnique,a baggingensemblemodel iscreatedbyaveragingthepredictionsfromthreedifferentmodels:CNN, LSTM,andTransformer.Itevaluatestheperformanceofa baggingensemblemodel byfirstconvertingthepredictedprobabilities(ensemble_multi_predictions)andthetruelabels(y_test) intoclasslabelsusingnp.argmax.Itthencalculatesfour keymetrics:accuracy,precision,recall, andF1score,usingtheaccuracy_score,precision_score,recall_score,andf1_scorefunctionsfromsklearn.metrics,withaweightedaverageformulti-classdata. Fin
	ensemble_binary_predictions= np.mean([cnn_pred,lstm_pred,transformer_pred],axis=0)


	4. Design and Implementation 
	4. Design and Implementation 
	Forthisexperiment,a varietyofessential librarieshavebeenusedfor data manipulation,visualization,machinelearning,anddeeplearning.
	• 
	• 
	• 
	NumPyand Pandas:Handledata arraysanddataframes.

	• 
	• 
	Matplotlib and Seaborn:Createplotsandvisualizations.

	• 
	• 
	Scikit-learn:Providestoolsformodelselection,evaluation,andmachinelearningalgorithmslikeRandomForestClassifier.

	• 
	• 
	TensorFlow and Keras:Frameworksforbuildingandtrainingdeeplearningmodels,withutilitiesfor definingneuralnetwork layers,handlingcallbacks,andsaving/loadingmodels.

	• 
	• 
	Warnings:Suppresswarningsfor acleaner output.


	ThiscodewasexecutedinGoogleColabusingaT4GPUruntime,whichacceleratesthetrainingofdeeplearningmodels.

	5. Results and Discussion 
	5. Results and Discussion 
	The resultsobtainedwerebasedona limitednumber ofepochsfor eachmodel dueto thetechnicalconstraintsofGoogleColab.WhileColabofferssubstantial computational resources,trainingcomplexmodelslikethoserequiredfortheMITBIH datasetcanbetime-consumingdueto thecomplexityandsizeofthedata, leadingto extendedtrainingtimes.
	5.1 Results of binary classification on PTB dataset 
	5.1 Results of binary classification on PTB dataset 
	The binaryclassificationexperimentconductedusingthePTBdatasetyieldedthefollowingresultsacrosstenepochsfor eachmodel:
	The CNN model performedexceptionallywell inthebinaryclassificationtask,achievinganaccuracyof95.18%.Theprecisionandrecall arecloselyaligned,indicatingthatthemodel hasa balancedperformanceinterms ofpredictingbothclassesaccurately.The F1 scoreof0.9518 confirms thisbalance,showingthatthemodel handlesfalsepositivesandfalsenegativeseffectively.The model showssignificantimprovementafter thethirdepoch, whereaccuracyjumpsfrom around68.99% to 93.47%,withcorrespondingimprovementsinloss.Thissuggeststhatthemodelrequired
	Table1.CNN for binary classification over 10 epochs.
	Epoch accuracylossval_accuracyval_loss
	1 
	1 
	1 
	0.624
	0.649
	0.4935
	0.7074

	2 
	2 
	0.6852
	0.5983
	0.512
	0.7175

	3 
	3 
	0.6899
	0.593
	0.6745
	0.6509

	4 
	4 
	0.9347
	0.1759
	0.9179
	0.2199

	5 
	5 
	0.9381
	0.1602
	0.9444
	0.1878

	6 
	6 
	0.9506
	0.1363
	0.9463
	0.1679

	7 
	7 
	0.9486
	0.1339
	0.9395
	0.1738

	8 
	8 
	0.9558
	0.1168
	0.9296
	0.2054

	9 
	9 
	0.9589
	0.1142
	0.9629
	0.133

	10 
	10 
	0.9608
	0.1044
	0.9518
	0.1515


	The LSTMmodel didnotperformaswell astheCNN modelinbinaryclassification.Withanaccuracyof67.08%,themodel'sperformanceismodest.The higher precision(74.20%) comparedto recall(67.08%) suggeststhatwhilethemodel isgoodatidentifyingtruepositives,itmissesasignificantnumber ofactualpositives,leadingtoa lower recall. TheF1scorereflectsthisimbalance.Themodel showssteadybutslowimprovementover theepochs.However,itstrugglestoreachhigher accuracy,plateauingaround70%.ThisindicatesthattheLSTMmightbelesseffectiveatcapturingth
	Table2. LSTM for binary classification over 10 epochs.
	Epoch accuracylossval_accuracyval_loss
	1 
	1 
	1 
	0.624
	0.649
	0.4935
	0.7074

	2 
	2 
	0.6852
	0.5983
	0.512
	0.7175

	3 
	3 
	0.6899
	0.593
	0.6745
	0.6509

	4 
	4 
	0.6991
	0.5831
	0.5726
	0.6537

	5 
	5 
	0.7003
	0.5704
	0.6708
	0.5922

	6 
	6 
	0.6991
	0.5831
	0.5726
	0.6537

	7 
	7 
	0.7003
	0.5704
	0.6708
	0.5922

	8 
	8 
	0.6998
	0.5666
	0.622
	0.6278

	9 
	9 
	0.7052
	0.5698
	0.6566
	0.6029

	10 
	10 
	0.7054
	0.5604
	0.4978
	0.8174


	The Transformer model performedtheworstamongthethreemodelsinbinaryclassification,withanaccuracyof57.01%.The precisionandrecall valuesarebothlow,indicatingthatthemodel struggleswithbothclasses,leadingto apoorF1scoreof0.5497.ThissuggeststhattheTransformer model mightnotbewell-suitedforthisparticular task ormightrequirefurther tuningormoredata to performeffectively.The model showsminimalimprovementoverepochs,withaccuracylingeringaround50-60%.Thevalidationaccuracyremainslow,indicatingpoor generalization.
	UniversityofWalesTrinitySaintDavidMScSoftwareEngineeringandArtificial Intelligence
	Table3. Transformer-based modelfor binary classification over 10 epochs.
	Epoch lossaccuracyval_lossval_accuracy
	1 
	1 
	1 
	0.6922
	0.5163
	0.6898
	0.512

	2 
	2 
	0.6862
	0.5548
	0.6874
	0.5318

	3 
	3 
	0.6813
	0.5591
	0.6844
	0.5479

	4 
	4 
	0.6793
	0.5664
	0.6814
	0.5707

	5 
	5 
	0.6817
	0.5592
	0.6866
	0.5269

	6 
	6 
	0.678
	0.5694
	0.6811
	0.5522

	7 
	7 
	0.6758
	0.5775
	0.6794
	0.5868

	8 
	8 
	0.6759
	0.5781
	0.6784
	0.6022

	9 
	9 
	0.679
	0.5738
	0.6787
	0.6109

	10 
	10 
	0.6748
	0.5833
	0.6794
	0.5701


	The Baggingensemblemodel, whichcombinesthepredictionsofthethreemodels,performedverywell withanaccuracyof92.90%.The ensembleapproachseemstomitigatetheweaknessesoftheindividual models,leadingtoa balancedandhighperformanceacrossall metrics.The slightdropinperformancecomparedto theCNN couldbedueto theweakerperformanceoftheLSTMandTransformer modelsdilutingtheensemble'soverall effectiveness.
	Table4. Metrics for binary ECG classification on PTB dataset
	Model Accuracy Precision Recall F1 Score 
	CNN 
	CNN 
	CNN 
	0.9518
	0.9533
	0.9518
	0.9518

	LSTM 
	LSTM 
	0.6708
	0.7420
	0.6708
	0.6466

	Transformer 
	Transformer 
	0.5701
	0.5897
	0.5701
	0.5497

	Bagging Ensemble 
	Bagging Ensemble 
	0.9290
	0.9356
	0.9290
	0.9288



	5.2 Results of multiclass classification on MITBIH dataset 
	5.2 Results of multiclass classification on MITBIH dataset 
	The multiclassclassificationexperimentconductedwiththeMITBIH datasetproducedthefollowingresultsovertenepochsforeach model:
	Formulticlassclassification,theCNN model continuestoperform exceptionallywell, withanaccuracyof96.74%.Thehighprecision,recall, andF1scoresindicatethatthemodel effectivelydiscriminatesbetweenmultipleclasses,handlingthecomplexityofthetaskwithease.Themodel showsstrongperformancefrom thefirstepoch,withaccuracyimprovingsteadilyandvalidationaccuracyremaininghigh,confirminggoodgeneralization.The final validationaccuracyof96.74% isconsistentwiththetestaccuracy,showingthatthemodel isrobustandwell-trained.
	Table5. CNN for multiclassclassification over 10 epochs.
	Epoch accuracylossval_accuracyval_loss
	1 
	1 
	1 
	0.8624
	0.3825
	0.8638
	0.3923

	2 
	2 
	0.9349
	0.1878
	0.9297
	0.2122

	3 
	3 
	0.956
	0.1308
	0.9225
	0.2383

	4 
	4 
	0.9879
	0.0372
	0.9573
	0.1511

	5 
	5 
	0.9906
	0.03
	0.9695
	0.1346

	6 
	6 
	0.9918
	0.0256
	0.9662
	0.1439

	7 
	7 
	0.9929
	0.0227
	0.9709
	0.1347

	8 
	8 
	0.9944
	0.0185
	0.9635
	0.1554

	9 
	9 
	0.9942
	0.0187
	0.9741
	0.1327

	10 
	10 
	0.9955
	0.0156
	0.9674
	0.1848


	Inthemulticlasssetting,theLSTMmodel performs better thaninbinaryclassificationbutstilllagsbehindtheCNN.Anaccuracyof79.20% isrespectable,andthehighprecisionsuggeststhatwhenthemodelmakesapositiveprediction,itisoftencorrect.However,therecallislower,whichmeansitfailstoidentifyasignificantnumberoftrueinstancesacrossmultipleclasses.The F1 scoreof0.8472 showsa decentbutnotoutstandingbalance.Themodel'sperformanceimprovesover theepochs,butitseemstoplateauearlier thantheCNN. ThissuggeststhatwhileLSTMcancapturesomeoft
	Table6. LSTMfor multiclassclassification over 10 epochs.
	Epoch accuracylossval_accuracyval_loss
	1 
	1 
	1 
	0.6471
	0.9097
	0.7684
	0.6556

	2 
	2 
	0.8467
	0.4334
	0.7968
	0.5676

	3 
	3 
	0.8766
	0.3498
	0.792
	0.5604

	4 
	4 
	0.9918
	0.0256
	0.9662
	0.1439

	5 
	5 
	0.9929
	0.0227
	0.9709
	0.1347

	6 
	6 
	0.9944
	0.0185
	0.9635
	0.1554

	7 
	7 
	0.9942
	0.0187
	0.9741
	0.1327

	8 
	8 
	0.9955
	0.0156
	0.9674
	0.1848

	9 
	9 
	0.9918
	0.0256
	0.9662
	0.1439

	10 
	10 
	0.9929
	0.0227
	0.9709
	0.1347


	The Transformer model performspoorlyinthemulticlassclassificationtask,withanaccuracyofonly16.87%.The precisionisrelativelyhighat77.69%,buttherecallisverylow,indicatingthatthemodelisfailingtoidentifytrueinstancesacrossmostclasses.The lowF1scorereflectsthepoor overall performance.ThisresultsuggeststhattheTransformer model isnoteffectiveinhandlingthistypeofECG data formulticlassclassification.The model'sperformanceshowsminimal improvementover epochs,withvalidationaccuracyremaininglow.The lossvaluessuggestthatt
	Table7. Transformer-based modelfor multiclassclassificationover 10 epochs.
	Epoch lossaccuracyval_lossval_accuracy
	1 
	1 
	1 
	1.4313
	0.3676
	1.4641
	0.1641

	2 
	2 
	1.3773
	0.3918
	1.4508
	0.2077

	3 
	3 
	1.3604
	0.3998
	1.4745
	0.1562

	4 
	4 
	1.3458
	0.4075
	1.497
	0.1321

	5 
	5 
	1.3369
	0.4142
	1.5023
	0.1298

	6 
	6 
	1.3313
	0.4175
	1.4503
	0.1142

	7 
	7 
	1.3282
	0.4217
	1.4487
	0.1456

	8 
	8 
	1.3264
	0.4226
	1.4693
	0.1615

	9 
	9 
	1.3246
	0.4254
	1.4532
	0.1648

	10 
	10 
	1.3237
	0.4245
	1.4337
	0.1687


	The Baggingensemblemodel also performsverywell inthemulticlassclassificationtask, withanaccuracyof95.78%.Thismodel balancesthestrengthsoftheindividual models,resultinginhighprecision,recall, andF1scores.Whileitslightlyunderperforms comparedto theCNN, itstill providesrobustresults,likelybenefitingfrom thediversityofthemodelsintheensemble.
	Table8. Metrics formulticlassECG classificationon MITBIH dataset
	Model Accuracy Precision Recall F1 Score 
	Model Accuracy Precision Recall F1 Score 
	CNN 
	CNN 
	CNN 
	0.9674
	0.9717
	0.9674
	0.9689

	LSTM 
	LSTM 
	0.7920
	0.9321
	0.7920
	0.8472

	Transformer 
	Transformer 
	0.1687
	0.7769
	0.1687
	0.2184

	Bagging Ensemble 
	Bagging Ensemble 
	0.9578
	0.9683
	0.9578
	0.9616





	6. Conclusions and Recommendations 
	6. Conclusions and Recommendations 
	Overall, theCNN model consistentlyoutperformedtheLSTMandTransformermodelsinbothbinaryandmulticlassECG classificationtasks,demonstratingastrongcapabilityinhandlingthecomplexitiesofECGdata. Forbinaryclassification,theCNN achievedanimpressiveaccuracyof95.18%,witha precisionof95.33%,recall of95.18%,andanF1scoreof95.18%.ThesemetricsindicatethattheCNN model effectivelybalancesprecisionandrecall, makingithighlyreliableforbinaryECG classification.
	Incontrast,theLSTMmodel, whileshowingreasonableperformance,struggledwithrecall, particularlyinthemulticlassclassificationtask. Specifically,inbinaryclassification,theLSTMhadanaccuracyof67.08%,precisionof74.20%,recall of67.08%,andanF1scoreof64.66%.Thisdiscrepancybetweenprecisionandrecall suggeststhattheLSTM modelmayhavedifficultiescapturingthefull rangeoffeaturesnecessaryfor accurateclassification,leadingto ahigher number offalsenegatives.
	The Transformer model performedpoorlyacrossbothtasks,withanaccuracyof57.01%inbinaryclassificationanda notablylow16.87%inmulticlassclassification.ItslowF1scoresof54.97% forbinaryand21.84% formulticlasstasksindicatesignificantchallengesinbothprecisionandrecall. TheseresultssuggestthattheTransformer model, initscurrentconfiguration,isnotwell-suitedforthistypeofECGdata andmayrequiresubstantial tuningorredesigntoimproveitsperformance.
	The Baggingensemblemodel, whichcombinesthepredictionsoftheCNN, LSTM, andTransformer models,demonstratedstrongperformance,particularlyinthemulticlassclassificationtask. For binaryclassification,theBaggingmodel achievedanaccuracyof92.90%,withprecisionandrecall bothat93.56% and92.90%,respectively.Inmulticlassclassification,itrecordedanaccuracyof95.78%,precisionof96.83%,recallof95.78%,andanF1scoreof96.16%.Thesemetricshighlighttheensemblemodel'sabilityto mitigatetheweaknessesofindividualmodels,leadingto morerobu
	Inconclusion,theCNN model standsoutasthemosteffectivemodel forECG classificationtasks,particularlywhendealingwithcomplexandhigh-dimensional data. TheBaggingensembleapproach further enhancesperformancebyleveragingthestrengthsofmultiplemodels,makingita viablestrategyfor improvingclassificationaccuracyandrobustness.However,theLSTMandTransformer modelsmayrequirefurther tuningoralternativeconfigurationstoachievebetter results,particularlyincapturingtheintricatefeaturesofECGdata.
	To enhancetheperformanceandapplicabilityoftheECG classificationmodels,further work shouldfocusonoptimizingandfine-tuningtheLSTMandTransformer models,exploringadvancedCNNarchitectures,andapplyingsophisticateddata augmentationandpreprocessingtechniques.Additionally,experimentingwithdiverseensemblestrategies,suchasBoostingorStacking,andincorporatingother modelslikeSVMsorRandomForestscould
	To enhancetheperformanceandapplicabilityoftheECG classificationmodels,further work shouldfocusonoptimizingandfine-tuningtheLSTMandTransformer models,exploringadvancedCNNarchitectures,andapplyingsophisticateddata augmentationandpreprocessingtechniques.Additionally,experimentingwithdiverseensemblestrategies,suchasBoostingorStacking,andincorporatingother modelslikeSVMsorRandomForestscould
	improveoverall accuracy.Leveragingtransfer learning,enhancingmodel interpretabilitythroughExplainableAI techniques,andconductingadetailederroranalysisarealsocritical steps.Moreover,validatingmodelsacrossdifferentdatasets,optimizingforreal-timedeployment,andintegratingclinicalmetadata will ensurerobustnessandpractical utilityinclinicalsettings.Lastly,incorporatinglongitudinal analysisfortemporal consistencycouldfurther improvepredictivecapabilities.


	7. Reflection 
	7. Reflection 
	Asanengineer workingina defibrillatorcompany,Iamparticularlyinterestedintheapplicationofcomputational methodsto theclassificationandrecognitionofelectrocardiograms.Whenitcametimetochoosea topicforthisdissertation,I saw thisasahighlyproductiveresearcharea withdirectandpractical applications.
	Oncetheresearchtopicwasfinalized,thesubsequentstepsintheprocessgraduallytookshape.Each daybroughtnewlearningopportunities,whether itinvolveddiscoveringrelevantdata inthefieldorexperimentingwithcodeinColaborJupyterto testnewimplementations.Thisiterativeprocessnotonlydeepenedmyunderstandingofdeeplearningmodelsbutalsohighlightedthecomplexitiesinvolvedinadaptingthesemodelsto medicaldata.
	DespitetheabundanceofarticlesonDL model researchforECGclassificationtasks,oneofthebiggestchallengesremainsthelimitedavailabilityofdatasets,primarilydueto thesensitivenatureofECG data. Accessingcomprehensiveanddiversedatasetsiscrucialfor trainingrobustmodels,yettheethical andprivacyconcernssurroundingmedical data oftenlimitwhatisavailable.Thisconstraintpushedmeto bemoreresourceful, focusingonmaximizingthepotentialofthedatasetsI hadaccessto andensuringthatthemodelsweretrainedandvalidatedaseffectivelyaspossibl
	However,ithasbeenrewardingtoexplorevariousDL models,observehowdifferentdesignsrespondto experiments,andwitnesstheimprovementinresultsasmoredata wasgatheredandthemodelswererefined.The processofiteratingonthesemodels,tweakingparameters,andintegratingfeedback from eachexperimenthasbeenbothchallengingandfulfilling.Eachsmall breakthrough,whether itwasa slightincreaseinaccuracyoramoreefficientmodel architecture,reinforcedmybeliefinthepotentialofmachinelearningto significantlyimpactECG classification.
	Thisdissertationhasnotonlyenhancedmytechnical skillsbutalso broadenedmyperspectiveontheintersectionofengineeringandhealthcare.Theexperiencehassolidifiedmypassionforthisfieldandmycommitmentto leveragingcomputational techniquesto advancecardiachealthmonitoringanddiagnostics.Lookingback, Iamproudoftheprogressmadeandexcitedaboutthepossibilitiesforfutureresearchandapplicationsinthisvital area.
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