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ABSTRACT/SYNPOSIS 

This project advances protein function prediction by integrating protein language 

models (PLMs) and graph convolutional networks (GCNs), addressing the 

limitations of traditional methods that rely heavily on sequence similarity. The 

proposed model leverages diverse protein features, including sequences, protein-

protein interaction (PPI) networks, and InterPro domains, to create a robust 

computational framework. 

Utilizing the Evolutionary Scale Modeling (ESM-1b) PLM, high-dimensional feature 

embeddings are generated from protein sequences. These are integrated with PPI 

network data and InterPro domains through a two-layer GCN, enabling the model 

to capture complex interdependencies. The model’s performance was evaluated 

using metrics such as Fmax and Area Under the Precision-Recall Curve (AUPR) 

across different Gene Ontology (GO) categories: Molecular Function (MFO), 

Biological Process (BPO), and Cellular Component (CCO). 

The findings demonstrate that the model outperforms the most advanced 

techniques currently in use for BPO and CCO forecasts. However, MFO predictions 

require improvement, suggesting that future efforts should concentrate on more 

accurately identifying sequence-specific motifs. 

The study problem and objectives are presented first in the report, which is 

structured to give a thorough overview. A review of the literature, the research 

technique, and a detailed analysis of the experimental data are then included. The 

study concludes with reflections, highlighting areas for future research and the 

broader implications for biomedical and biotechnological applications. 
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CHAPTER 1 INTRODUCTION 

Proteins are indispensable to cellular functions, playing critical roles in maintaining 

the acid-base balance, distributing water, transmitting genetic information, and 

transporting various vital substances within human organisms [1]. To systematically 

catalog diverse function of proteins, Gene Ontology (GO) provides structured 

vocabulary to classify protein functions into molecular function, biological process, 

and cellular component [2]. 

Protein function prediction helps in understanding life processes and disease 

mechanisms, thereby aiding in disease diagnosis and drug development. It also 

plays a key role in biotechnology applications, such as designing specific enzymes 

to enhance industrial and agricultural efficiency[3].In recent years, the quantity of 

protein sequences stored in public databases has surged, enhancing our 

comprehension of protein diversity. And deep learning has shown promise in 

unearthing intricate patterns in high-dimensional data, making it ideal for tasks such 

as protein function classification[4]. Initial deep learning approaches for this purpose 

primarily utilized protein sequence data and positional information within Protein-

Protein Interaction (PPI) networks[5]. Examples include DeepGO, which uses 

convolutional neural networks to extract sequence features, and its successor, 

DeepGOPlus [6], which enhances efficiency by combining a simplified neural 

network approach with nearest-neighbor algorithms. Another method, DeepAdd[7], 

interprets protein sequences through natural language processing techniques to 

generate feature representations. These protein function prediction methods still 

suffer from issues of insufficient accuracy and the inability to integrate all protein 

features comprehensively. 

The evolution of Graph Neural Networks (GNNs) has introduced new 

methodologies for protein function prediction by effectively representing proteins’3D 

structures and PPI networks as graph-structured data[8]. For instance, DeepFri[9] 

https://efficiency[3].In


 

 

 

         

      

      

 

       

         

        

    

      

    

   

         

       

        

 

 

  

 

     

         

      

     

      

         

     

  

 

  

employs a self-supervised language model to derive residue features, which are 

then propagated using graph convolutional networks. Similarly, DeepGraphGO 

applies semi-supervised learning to integrate PPI and InterPro features for protein 

function prediction[10]. 

Protein Language Models (PLM) are computational tools that use machine learning 

to analyze and predict protein sequences, structures, and functions based on 

patterns learned from large datasets of protein data. ESM (Evolutionary Scale 

Modeling) was developed by Facebook AI Research, it uses Transformer 

architectures to generate representations of protein sequences[11].UniRep uses a 

recurrent neural network (RNN) approach to condense protein sequences into fixed-

length vectors[12]. ProtTrans adapts Bidirectional Encoder Representations from 

Transformer (BERT) and T5 models from NLP to the protein sequencing field[13]. 

ProteinBERT applies the Masked Language Model (MLM) approach to predict 

amino acids in sequences[14]. Protein language models have demonstrated high 

accuracy in generating protein embeddings. 

1.1RESEARCH PROBLEM STATEMENT 

The traditional methods for annotating protein functions remain costly and slow[15], 

leading to a significant annotation backlog as new proteins are discovered faster 

than they can be functionally characterized[16]. Protein language models like ESM-

1b have demonstrated high accuracy in generating protein embeddings[11]. 

However, their potential has not been fully realized in combination with graph-based 

methods such as DeepGoPlus,DeepGo and DeepGraphGo [6]. Hence there is a 

critical need for reliable computational prediction models that can efficiently and 

accurately predict protein functions by integrating heterogeneous protein features. 

1.2RESEARCH AIM 



 

 

 

 

          

     

      

  

 

  

 

    

       

  

       

             

 

       

 

         

  

 

  

 

    

      

     

The primary aim of this study is to develop a novel protein function prediction model 

by integrating data from protein sequences, protein-protein interaction (PPI) 

networks, and InterPro domains using PLM and Graph Convolutional 

Network(GCN), to generate accurate predictions of protein functions. 

1.3RESEARCH OBJECTIVES 

The main aim of this study is achieved through the following objectives: 

Obj1 - To generate embeddings from protein sequences using the pre-trained 

protein language model  (ESM-1b) for Feature Extraction . 

Obj2 - To integrate the embeddings from protein sequences and InterPro domains 

with adaptive feature weights into the PPI graph, and use GCNs to generate protein 

features. 

Obj3 - To develop a classification model that combines the features weights and 

protein features vector generated by PLM,PPI and GCNs. 

Obj4 - To evaluate and compare the performance of the developed  model against 

existing state-of-the-art methods using well-known evaluation metrics. 

1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH 

This research marks a significant advancement in protein function prediction by 

pioneering the integration of protein language models (PLMs) with graph 

convolutional networks (GCNs). By harnessing a rich spectrum of protein features— 



 

 

 

     

   

    

          

       

        

    

         

  

   

 

         

         

       

 

 

      

      

      

     

  

 

     

    

        

  

 

including sequence data, protein-protein interaction (PPI) networks, and InterPro 

domain information—this study develops a comprehensive and highly robust 

computational model. This innovative approach not only improves the accuracy and 

efficiency of protein function prediction but also tackles the current challenges in 

protein annotation, particularly the growing backlog of uncharacterized proteins. As 

a result, the proposed model offers a faster and more reliable method for the 

functional characterization of newly discovered proteins, driving forward progress in 

biomedical research and biotechnology, and enabling more informed and efficient 

applications in these fields. 

1.5STRUCTURE OF THE THESIS 

Chapter one provides an introduction to the project, outlining the research problem, 

aims, objectives, and the significance of the study. It sets the foundation for 

understanding the necessity of advancing protein function prediction using 

innovative computational techniques. 

Chapter two delves into a comprehensive review of the literature, covering 

traditional protein function prediction methods, recent advances with deep learning 

models, and the application of protein language models (PLMs) and graph 

convolutional networks (GCNs). This chapter highlights the current state of research, 

identifying gaps that this study aims to address. 

Chapter three discusses the research methodology employed in this study. It 

explains the philosophical approach, research design, and the specific 

methodologies used, including the data collection methods, tools, and the detailed 

steps taken to develop and evaluate the proposed model. 



 

 

 

           

       

     

 

 

        

     

      

 

 

      

       

     

  

  

Chapter four focuses on the design and implementation of the proposed protein 

function prediction model. This chapter elaborates on how the ESM-1b model and 

GCNs were integrated, providing technical details of the model architecture, training 

process, and the computational frameworks used. 

Chapter five presents the testing and evaluation of the model. It includes a detailed 

analysis of the model's performance against existing state-of-the-art methods, using 

evaluation metrics such as Fmax and AUPR, and discusses the implications of the 

findings. 

Chapter six concludes the project with a summary of the findings, conclusions drawn 

from the research, and recommendations for future work. This chapter reflects on 

the success of the project in meeting its objectives and suggests potential areas for 

further research to enhance protein function prediction. 



 

 

 

 

  

 

           

          

     

        

         

       

         

      

 

  

 

           

       

       

       

          

         

       

     

    

   

     

   

   

CHAPTER 2 - REVIEW OF LITERATURE 

The purpose of this chapter is to provide a comprehensive analysis of the existing 

body of literature related to protein function prediction using Convolutional Neural 

Network (CNN) and Graph Neural Networks (GNNs). This chapter identifies key 

trends, arguments, and gaps within the field, focusing on both traditional methods 

and modern deep learning approaches. The scope of the literature covered includes 

various subfields such as protein language models, traditional prediction methods, 

deep learning-based models, and the application of Gene Ontology (GO). The 

timeframe spans from foundational methods to the latest advancements in the field. 

2.1PROTEIN LANGUAGE MODELS 

A protein language model is the transfer application of the language models in the 

field of biochemistry enabling tasks such as protein structure prediction, protein 

function prediction, and sequence generation[17]. It takes protein sequences as 

input and learns the underlying biochemical properties, secondary and tertiary 

structures, and functional patterns, A language model is a type of neural network 

that can predict the next character or word based on previous text, learning the 

statistical patterns of characters or words in a given language and generating new 

sequences that adhere to these patterns[18]. Language models encompass various 

architectures including recurrent, convolutional neural networks, and Transformer-

based models, widely applied in natural language processing tasks. 

One of the pioneering models in this area is Evolutionary Scale Modeling (ESM), 

developed by Facebook AI Research[11]. Evolutionary Scale Modeling (ESM) 

employs Transformer architectures to generate representations of protein 



 

 

 

     

     

       

 

       

     

      

    

 

           

        

      

     

    

         

      

     

        

 

     

      

    

  

  

   

         

     

   

sequences that capture their evolutionary and functional nuances. These models 

have shown great promise in tasks such as predicting protein structure and function 

directly from sequence data, providing a deep understanding of protein dynamics 

without the need for traditional experimental methods. 

Similarly, UniRep [12], developed by researchers at Harvard, utilizes a recurrent 

neural network (RNN) approach to condense protein sequences into fixed-length 

vectors. This model has been effectively used in predicting protein stability and 

fluorescence, showcasing its utility in both basic biological research and practical 

applications such as biotechnology. 

On the other hand, ProtTrans extends the BERT and T5 models from Natural 

Language Processing (NLP) to the protein sequencing field, adapting these 

powerful Transformer-based models to tackle protein-related tasks such as 

structure prediction and function classification[13]. This adaptation underscores the 

versatility of NLP techniques in extracting meaningful patterns from biological data. 

ProteinBERT takes a direct cue from its NLP counterpart, applying the Masked 

Language Model (MLM) approach to predict amino acids in sequences[14]. This 

methodology helps in understanding protein functions and interactions, thereby 

aiding in the annotation of unknown proteins and the exploration of genetic 

variations. 

Moreover, DeepSequence utilizes variational autoencoders to study the effects of 

genetic mutations on protein functionality [19]. This model provides insights into how 

alterations in protein sequences can impact their biological function, which is crucial 

for understanding genetic disorders and guiding the engineering of novel proteins. 

While not a traditional language model, AlphaFold by DeepMind has revolutionized 

structural biology by predicting protein structures with unprecedented accuracy[20]. 

AlphaFold's approach, which can be seen as an extension of language modeling 

principles to structural prediction, has been transformative, offering detailed protein 

structure predictions that can accelerate drug discovery and biological research. 



 

 

 

         

        

     

   

      

      

    

             

        

 

  

 

     

     

       

        

 

        

     

    

    

        

      

         

       

  

  

       

The protein language model ESM which is used in this study is an open-source 

project introduced by Facebook Research [11]. It takes protein sequences as input 

and is trained as a high-capacity Transformer with hyperparameter optimization. 

After training, the model produces feature representations that contain implicit 

information about the protein's secondary and tertiary structures, functions, 

homology, and more. Moreover, these representations can be visualized through 

linear projection. Literature shows the evidence of several methods models of 

protein function prediction such as traditional models [21], [22], [23] ,CNN [6], [7], 

[9], [24], GNN [25], [26], [27] and GCN [28], [29], [30] models.  

2.2TRADITIONAL PROTEIN FUNCTION PREDICTION MODELS 

Traditional models in protein function prediction rely heavily on sequence similarity 

and structural homology to infer function, leveraging well-established databases 

and algorithms to compare unknown proteins with characterized ones[31]. These 

models often use techniques such as sequence alignment and motif detection to 

identify functional similarities. 

The Naive method is one of the benchmark methods used for comparing protein 

function predictions in CAFA [32]. Its principle relies on the hierarchical structure of 

Gene Ontology (GO), where lower-level GO terms propagate upwards, resulting in 

the aggregation of numerous functional annotations at higher-level GO terms. 

Under the assumption of annotating the same set of GO terms for all proteins, 

comparable prediction results can be obtained based on annotation frequencies. 

The BLAST-KNN method is a K-Nearest Neighbors approach based on protein 

sequence similarity scores, leveraging the classical sequence alignment tool 

BLAST [21]. 

Within the domain of machine learning, logistic regression stands out as one of the 

extensively employed algorithms. In a study by You et al.[22], text data sourced 



 

 

 

        

      

    

    

     

       

        

          

     

      

         

      

    

   

 

  

          

         

 

 

          

      

       

     

      

       

 

from the MEDLINE biomedical literature database underwent transformation into 

text features. Logistic regression was subsequently utilized for training, aiming to 

forecast the correlation between protein molecular function, biological process, and 

cellular component. DeepText2GO, significantly outperformed both text-based and 

sequence-based methods. Specifically, DeepText2GO achieved higher F-max 

scores (0.627 for MFO, 0.442 for BPO, and 0.694 for CCO), lower S-min scores 

(5.240 for MFO, 17.713 for BPO, and 4.531 for CCO), and higher AUPR scores 

(0.605 for MFO, 0.336 for BPO, and 0.729 for CCO) compared to other models. 

This demonstrates the model's superiority in leveraging deep semantic 

representations and integrating various data sources to enhance protein function 

prediction accuracy. Another innovation by Lee et al.[23] introduced a protein 

interaction network kernel logistic regression model. Leveraging the diffusion kernel, 

this model demonstrated superior prediction accuracy compared to a model based 

on Markov random field for protein function prediction. 

2.3DEEP LEARNING BASED PROTEIN FUNCTION PREDICTION MODELS 

Deep learning has become an effective method for predicting the function of 

proteins by using its capacity to automatically identify and understand intricate 

patterns in vast amounts of biological data. Convolutional layers allow convolutional 

neural networks (CNNs) to automatically and adaptively learn spatial hierarchies of 

features. CNNs are a class of deep learning models that are mostly employed for 

processing grid-like data[33], such as photographs. This idea is extended to graph-

structured data by Graph Neural Networks (GNNs), which capture dependencies 

between nodes in a graph[34]. Another variant of GNNs that generalize the 

convolution operation to graph data is Graph Convolutional Networks (GCNs), 

which allow for efficient learning of node representations by aggregating data from 

neighbors. 



 

 

 

    

     

      

      

      

    

         

      

        

            

      

       

         

 

    

        

       

     

   

  

     

          

       

      

     

    

    

      

      

  

2.3.1 CNN based models in protein function prediction 

Using protein sequences and known interactions, Kulmanov et al.[24] presented a 

new method for protein function prediction called DeepGO. This model combines 

two multilayer neural network-based representation learning algorithms to extract 

features useful for predicting protein functions. One method focuses on learning 

features from protein sequences, while the other learns protein representations 

based on their positions within the protein interaction network. The sequence 

features undergo processing through a one-dimensional convolutional layer and a 

subsequent max pooling operation. After that, characteristics from the protein 

interaction network are fused with the output of max pooling to create a fully 

connected layer that houses 1024 neurons. The ultimate classification is executed 

through a hierarchical neural network employing an S-shaped activation function. 

DeepGO's performance was evaluated using the standards set by the CAFA 

challenge, demonstrating significant improvements over baseline methods such as 

BLAST, particularly in predicting cellular locations. The model achieved higher F-

max scores across the GO sub-ontologies: 0.395 for Biological Process (BP), 0.470 

for Molecular Function (MF), and 0.633 for Cellular Component (CC). These results 

underscore DeepGO's ability to capture both explicit and implicit dependencies 

between GO terms, leading to more accurate protein function predictions. 

Two years later, Kulmanov et al.[6] introduced the DeepGOplus model. This model 

employs a parameterless one-hot encoding, replacing the embedding layer, 

resulting in a substantial reduction in the number of parameters. The embedding 

layer, susceptible to memorizing training data, can potentially lead to overfitting. In 

contrast to DeepGO, where each convolutional layer shares the same filter, 

DeepGOplus configures different filters for periodic convolutional layers. 

Additionally, DeepGOplus utilizes a flat classification layer instead of a hierarchical 

classifier. This adaptation is necessary because DeepGOplus constructs a unified 

model encompassing over 5,000 classes for all three GO ontology terms. The 

constraints of memory and time complexity preclude the establishment of a 

hierarchical classifier for such a large number of classes. 



 

 

 

          

          

       

       

   

         

         

       

          

      

        

        

         

     

       

        

          

       

        

    

   

         

      

        

     

       

        

      

   

      

           

Du et al.[7] enhanced the DeepGO model, introducing the DeepAdd model. In this 

iteration, protein sequences are treated akin to natural language, and the word2vec 

method is employed to define a feature set representing proteins. DeepAdd 

integrates a sequence similarity graph to learn features that leverage functional 

relationships across various similarity levels. In instances where the protein 

interaction network features for a target protein are absent, the sequence similarity 

features of the protein are deduced as supplementary features. These sequence 

similarity features comprise a compilation of scores indicating the sequence 

similarities calculated with respect to all sequences in the training set. The 

performance of DeepAdd was evaluated against various baseline models, including 

DeepGO, on datasets such as CAFA3 and SwissProt. The evaluation metrics 

included Fmax, AUC (Area Under the ROC Curve), and MCC (Mathews Correlation 

Coefficient). On the CAFA3 dataset, DeepAdd achieved Fmax scores of 0.345 for 

Biological Process (BP), 0.516 for Molecular Function (MF), and 0.547 for Cellular 

Component (CC); AUC scores of 0.896 for BP, 0.912 for MF, and 0.958 for CC; and 

MCC scores of 0.335 for BP, 0.585 for MF, and 0.511 for CC. On the SwissProt 

dataset, DeepAdd achieved Fmax scores of 0.393 for BP, 0.580 for MF, and 0.619 

for CC; AUC scores of 0.907 for BP, 0.947 for MF, and 0.968 for CC; and MCC 

scores of 0.395 for BP, 0.606 for MF, and 0.592 for CC. These results demonstrate 

that DeepAdd consistently outperforms the baseline models across different GO 

sub-ontologies, particularly in scenarios where PPI data is missing or incomplete. 

Renfrew et al.[9] introduced DeepFri, a model employing long short- term memory 

networks and graph convolutional networks for protein function prediction. The 

model takes both sequence and sequence- based features (structure predicted from 

the sequence) as input. The initial segment of the model constitutes a self-

supervised language model structured with a recursive neural network incorporating 

long short-term memory. Pre-training is performed on the protein family database, 

utilizing it to extract residue features from sequences within the PDB database. The 

subsequent part of the model is a graph convolutional neural network that employs 

graph convolution to transmit residue-level features among neighboring residues, 

constructing a feature representation for the protein. In the final step, all the features 



 

 

 

          

       

        

   

       

       

           

        

 

   

   

      

     

    

  

      

      

   

         

         

       

        

       

       

        

         

   

      

       

        

output from the graph convolutional layers are concatenated and fed into a fully 

connected layer for protein function. The outcomes of DeepFRI are noteworthy. 

When evaluated on experimentally annotated protein structures from the PDB, 

DeepFRI achieved an Fmax score of 0.657 for native structures, outperforming the 

sequence-only CNN-based method DeepGO, which had an Fmax score of 0.525. 

Furthermore, DeepFRI showed robustness in predicting functions of proteins with 

low sequence identity to the training set, achieving a median Fmax of 0.545 for 

proteins with ≤30% sequence identity, compared to 0.514 for FunFams and 0.491 

for DeepGO . 

2.3.2 GNN based models 

Termed Graph Residual Neural Network (GRNN)[25], employs multi-relational 

graphs and utilizes learnable parameters to weigh the influence of different relations. 

This architecture combines local information from input data through parameterized 

linear transformations and non-linear functions, progressively extracting useful 

information. GRNN's residual layers allow for increased flexibility by capturing 

multiple types of diffusion, thus enhancing the learning capacity of the network. 

Through numerical tests on protein networks, the study proved the efficacy of GRNN, 

demonstrating notable performance advantages over state-of-the-art alternatives. 

The outcomes of the GRNN framework are noteworthy. When evaluated on protein-

to-protein interaction datasets, GRNN achieved a macro F1 score of 0.86 for the 

brain cells dataset with 440 labeled nodes, significantly outperforming the single-

relational Graph Convolutional Network (GCN) which had a macro F1 score of 0.49. 

Similarly, for the circulation cells dataset, GRNN attained a macro F1 score of 0.77, 

while GCN scored 0.48. In the generic cells dataset, GRNN scored 0.70 compared 

to 0.49 for GCN. These results highlight GRNN's robustness and superior 

performance in predicting protein functions across multiple cell types, validating its 

potential as a powerful tool in bioinformatics. 

By adding characteristics from the Evolutionary Scale Modeling (ESM) of 

proteins[26], which creates sequence embeddings using transformers trained on 

250 million protein sequences, PANDA2 expands upon these developments. This 



 

 

 

       

          

      

    

        

        

        

  

         

     

    

        

         

      

     

        

  

     

             

      

      

             

              

   

       

     

         

   

       

          

integration boosts PANDA2's prediction capability by enabling it to extract structural 

and sequence information from proteins. PANDA2 tied for first place in Biological 

Process Ontology (BPO) with a Fmax score of 0.3964 but a higher coverage rate, 

placed first in Cellular Component Ontology (CCO) with a Fmax score of 0.6374, 

and second in Molecular Function Ontology (MFO) with a Fmax score of 0.5849 

when compared to top-performing methods in the CAFA3 challenge[32].These 

findings demonstrate the reliability and efficiency of PANDA2 in protein function 

prediction, which makes it an invaluable resource for bioinformatics research. 

By applying a graph neural network (GNN) framework to anticipate the impact of 

mutations on protein stability, ProS-GNN (Protein Stability Graph Neural Network) 

displays notable gains. ProS-GNN uses GNNs to describe the complex interactions 

between atoms in protein structures. It does this by using message passing to 

capture the links between molecular structure and property and by integrating raw 

atom coordinates to provide spatial insights. This method builds upon previous work 

that used convolutional neural networks (CNNs) and other deep learning 

approaches for predicting protein stability changes, but it uniquely focuses on the 

structural data of proteins, improving the accuracy and efficiency of its predictions. 

The ProS-GNN results are remarkable. ProS-GNN demonstrated excellent results 

in terms of bias reduction and data generalization when it was trained and evaluated 

on many datasets [27]. In particular, ProS-GNN obtained a Pearson correlation 

coefficient (r) of 0.62 and a root mean square error (RMSE) (σ) of 1.11 for direct 

mutations and r = 0.60 and σ = 1.12 for reverse mutations when tested on the S2648 

dataset. ProS-GNN obtained r = 0.61, σ = 1.23 for direct mutations and r = 0.56, σ 

= 1.30 for reverse mutations on the Ssym dataset. 

The outcomes of ProS-GNN are noteworthy. When trained and tested on various 

datasets[27], ProS-GNN achieved high performance in terms of data generalization 

and bias suppression. Specifically, when evaluated on the S2648 dataset, ProS-

GNN achieved a Pearson correlation coefficient (r) of 0.62 and a root mean square 

error (RMSE) (σ) of 1.11 for direct mutations, and r = 0.60, σ = 1.12 for reverse 

mutations. On the Ssym dataset, ProS-GNN achieved r = 0.61, σ = 1.23 for direct 



 

 

 

        

    

         

          

   

      

         

   

   

     

    

       

     

    

     

      

         

      

       

       

      

          

           

      

      

       

     

       

 

mutations, and r = 0.56, σ = 1.30 for reverse mutations. ProS-GNN further shown 

its robustness and efficiency by outperforming fifteen other algorithms in terms of 

prediction accuracy on the Ssym dataset. Furthermore, ProS-GNN obtained r = 0.48, 

σ = 1.27 for direct mutations and r = 0.43, σ = 1.19 for reverse mutations on the 

Myoglobin dataset. These findings show that ProS-GNN is a useful tool for 

bioinformatics research and may have therapeutic implications due to its capacity 

to learn feature representations efficiently and provide precise predictions of 

changes in protein stability following mutation. 

2.3.3 GCN based model 

The Graph Convolutional Network (GCN)-based hierarchical multi-label 

classification framework has demonstrated significant advancements[28]. This 

system uses sequence data and the hierarchical structure of Gene Ontology (GO) 

words to predict protein functions by combining GCNs with pre-trained language 

models. This technique improves on earlier research for sequence-based protein 

function prediction using convolutional neural networks (CNNs) and other deep 

learning techniques; however, it combines the hierarchical information of GO 

keywords in a novel way to increase prediction accuracy.Notable are the results of 

the hierarchical multi-label categorization framework based on GCN. When 

evaluated on the CAFA3 dataset, which includes molecular function ontology (MFO), 

biological process ontology (BPO), and cellular component ontology (CCO), the 

proposed method outperformed state-of-the-art approaches. Specifically, it 

achieved an Fmax score of 0.518 for MFO, 0.470 for BPO, and 0.637 for CCO, and 

an AUPR score of 0.476 for MFO, 0.368 for BPO, and 0.626 for CCO. These results 

highlight the method's robustness in handling large-scale hierarchical graphs, 

particularly in the BPO domain, where it significantly improved performance from an 

Fmax of 0.398 to 0.470 compared to the previous best model, TALE. This 

demonstrates the model's effectiveness in capturing the complex relationships 

within the hierarchical structure of GO terms, leading to more accurate protein 

function predictions 



 

 

 

      

 

      

       

       

      

       

         

    

    

     

    

   

          

         

  

       

        

     

      

      

      

     

       

     

         

          

      

     

     

      

DeepGraphGO, introduced by Ronghui You et al.[29], is a sophisticated model that 

employs graph neural networks (GNNs) to predict protein functions across multiple 

species, utilizing both protein sequence and protein network information. The model 

integrates advanced graph-based methods with sequence analysis, improving upon 

traditional methods which often consider only one type of data. By leveraging 

multispecies data, DeepGraphGO enhances the training process and achieves 

better generalization on protein function prediction tasks. Extensive tests conducted 

on large-scale datasets using the CAFA (Critical Assessment of protein Function 

Annotation) settings proved DeepGraphGO's performance. State-of-the-art 

techniques including DeepGOPlus, GeneMANIA, deepNF, and clusDCA were 

surpassed by DeepGraphGO. The highest Fmax scores were obtained by 

DeepGraphGO for Molecular Function Ontology (MFO), Biological Process 

Ontology (BPO), and Cellular Component Ontology (CCO), with values of 0.623, 

0.327, and 0.692, respectively. It also obtained AUPR ratings of 0.543 for MFO, 

0.194 for BPO, and 0.695 for CCO, indicating its greater performance and resilience 

in predicting protein function across several GO domains. 

The unsupervised protein embeddings approach leverages pre-trained deep 

sequence models in an unsupervised setting to extract complex feature 

representations that are subsequently applied to the supervised task of protein 

molecular function prediction[30]. This method expands on earlier work with 

convolutional neural networks (CNNs) and other deep learning architectures, which 

frequently use direct sequence input or hand-crafted features. By utilizing 

unsupervised learning, the method captures more intricate relationships within 

protein sequences, leading to improved predictive performance. The outcomes of 

this approach are noteworthy. Evaluations on the CAFA3 benchmark demonstrated 

that the unsupervised protein embeddings method achieved a competitive Fmax 

score of 0.55, placing it among the top-performing models. Further testing on the 

PDB dataset yielded an Fmax score of 0.52, an Smin score of 0.48, and a ROCAUC 

of 0.84. These results indicate the model's robustness and effectiveness in 

capturing functional information from protein sequences, significantly outperforming 

traditional methods that rely solely on supervised learning and hand-crafted features. 



 

 

 

   

    

  

This success underscores the potential of unsupervised pre-training on large-scale 

protein sequence data as a powerful tool in protein function prediction. 



 

 

 

  

    

     

      

      

         

        

      

            

           

           

     

    

    

     

 

  

 

  

        

    

         

         

2.4GENE ONTOLOGY(GO) 

Protein functions are accurately described hierarchically by the Gene Ontology 

(GO). In the cells of organisms, proteins are involved in membrane transport, signal 

transduction, recognition, regulation, and catalysis of processes. These protein 

functions are directly related to their three-dimensional structures and indirectly 

depend on their DNA sequences[35]. The GO knowledge base mainly consists of 

two components: GO terms, which provide the logical structure and relationships of 

biological processes. The relationships between different GO terms mainly include 

is_a and part_of [36], which can be represented by a directed acyclic graph as 

shown in Figure 1; and GO annotations, which provide annotations for the GO terms, 

describing their functions. In GO annotations, GO can be divided into three main 

categories based on different levels of interdependence among protein functions: 

Molecular functions refer to activities at the molecular level, such as catalysis. These 

are usually predicted computationally to determine homologs; Biological processes 

describe broader functions that are assembled from molecular functions, such as 

specific metabolic pathways; Cellular components describe the locations within the 

cell where proteins perform their functions, such as the nucleus or cytoplasm[35]. 

Figure 1:Example of a hierarchical structure for GO 

Proteome function prediction is a difficult multi-classification problem since proteins 

might have many activities in the domains of biological processes, cellular 

components, and molecular functions[37]. Because deep learning is so good at 

extracting meaning from high-dimensional data, it may be applied to a wide range 



 

 

 

      

     

  

  

         

   

   

    

      

        

        

   

          

       

    

 

   

of classification issues, including the prediction of protein function. Additionally, 

deep learning requires minimal manual processes, thus it can easily utilize the 

increasing availability of computational resources and data. 

2.5GCN ARCHITECTURE 

A potent paradigm for learning from graph-structured data—which is common in 

fields including social networks, biological networks, and recommendation 

systems—has emerged: graph neural networks, or GNNs[38]. A typical GNN 

operates by representing data as nodes and edges, where nodes signify entities 

(e.g., proteins, users) and edges represent their relationships (e.g., interactions, 

friendships). Each node is characterized by its features, and during the learning 

process, nodes aggregate information from their neighbors to update their own 

representations. This process, known as message passing, involves iterating 

through the graph to refine node states until a meaningful embedding is obtained 

for each node. Then, different tasks like node classification, connection prediction, 

or graph classification can be performed using these embeddings. 

Figure 2:Multi-layer Graph Convolutional Network (GCN)[39] 



 

 

 

     

         

     

         

        

       

      

        

    

      

      

     

       

      

     

         

      

     

         

         

      

 

  

    

      

       

      

    

       

    

Graph Convolutional Networks (GCNs) represent a significant evolution in the field 

of GNNs[39], introducing a specific type of convolutional operation adapted for 

graphs. Unlike traditional GNNs that utilize generic message passing, GCNs apply 

convolutional operations to graph data, which allows them to efficiently aggregate 

and transform node features from their local neighborhoods. The pioneering work 

by Kipf and Welling (2017)[40] simplified spectral convolutions to make GCNs more 

computationally efficient, thus enabling the application of deep learning techniques 

to larger graph datasets. By normalizing the adjacency matrix and employing layer-

wise propagation rules, GCNs effectively capture the local structure of graphs, 

leading to improved performance in tasks like semi-supervised node classification. 

The development of advanced GCN architectures, such as Graph Attention 

Networks (GAT) and Graph Isomorphism Networks (GIN)[41], [42], further 

enhanced the expressiveness and applicability of GNNs. GATs introduced attention 

mechanisms to dynamically weigh the importance of neighboring nodes during 

feature aggregation, thereby allowing the model to focus on more relevant 

connections. GINs, on the other hand, improved the discriminative power of GNNs 

by closely mimicking the Weisfeiler-Lehman graph isomorphism test[43], ensuring 

better differentiation between non-isomorphic graphs. These advancements have 

broadened the scope of GNN applications, making them indispensable in fields like 

bioinformatics, where they are used for protein function prediction and other 

complex biological tasks, demonstrating their ability to learn from both sequence 

and structural information effectively. 

2.6LITERATURE SUMMARY 

The literature review highlights significant advancements in protein function 

prediction, transitioning from traditional sequence and homology-based methods to 

modern deep learning models that incorporate a variety of data sources and 

advanced computational techniques. Traditional methods, while effective in specific 

contexts, often struggle with proteins that lack homologous sequences or well-

characterized motifs. Large-scale biological data may now be automatically mined 

for complex patterns through the use of Convolutional Neural Networks (CNNs) and 



 

 

 

      

    

       

    

     

     

       

        

  

   

        

       

      

        

     

        

      

      

    

        

 

 

Graph Neural Networks (GNNs), which are the key components of deep learning. 

Important discoveries highlight how well different data types—like sequence, 

structural, and interaction data—integrate and how deep learning models perform 

better at capturing the complex interactions seen in biological systems. However, 

gaps remain in efficiently handling large-scale data, integrating multi-source 

heterogeneous data, and improving model interpretability and robustness. This 

study's proposed method aims to address these gaps by leveraging advanced GNN 

architectures and pre-trained protein language models, promising to set new 

standards in protein function prediction. 

2.7CHAPTER SUMMARY 

This chapter has provided a detailed review of the literature on protein function 

prediction, emphasizing the evolution of methods from traditional sequence and 

homology-based approaches to state-of-the-art deep learning-based models. It has 

identified key contributions and existing gaps within the field, highlighting the 

challenges and opportunities in integrating multi-source data and improving 

prediction accuracy. This comprehensive analysis sets the stage for the proposed 

study, which seeks to enhance protein function prediction by employing advanced 

machine learning techniques, including GNNs and pre-trained protein language 

models. The following chapter presents the methodology, experimental design, 

performance evaluation metrics and outlining the steps taken to achieve the aim of 

the study. 



 

 

 

  

    

    

      

          

 

   

     

     

        

         

      

      

  

         

        

       

     

        

         

         

  

      

         

    

      

        

  

CHAPTER 3 - RESEARCH METHODOLOGY 

This chapter outlines the research methodology employed in this study, detailing 

the research methods, research model, data analysis, evaluation metrics, and 

research materials. The methodology is designed to provide a systematic approach 

to achieve the research objectives and ensure the reliability and validity of the 

results. 

3.1RESEARCH METHOD 

The research philosophy adopted for this study is positivism. Positivism involves the 

use of rigorous and systematic approaches to investigate phenomena[44], relying 

on observable and measurable facts. This approach is consistent with the goal of 

the study, which is to create a unique protein function prediction model using 

quantifiable information from InterPro domains, protein-protein interaction networks, 

and protein sequences. Adopting a positivist approach ensures objectivity and 

reliability by focusing on measurable phenomena[24], [29]. 

The research approach utilized is deductive. Deductive research begins with a 

theoretical framework, followed by the collection and analysis of data to test 

hypotheses derived from that theory[45]. In this study, existing theories and models 

related to protein function prediction, such as those using protein language models 

and graph convolutional networks, are used as the foundation. The hypotheses are 

then tested through the development and evaluation of the proposed model. This 

approach facilitates the testing of existing theories and models in the context of 

protein function prediction. 

Quantitative methodology was selected for this study. Numerical data is gathered 

and analyzed using quantitative methods in order to identify trends, evaluate 

theories, and forecast outcomes [45], [46]. This method works well for assessing 

the protein function prediction model's performance using statistical measures 

including Fmax, accuracy, precision, and recall [47], [48], [49]. Quantitative methods 

provide robust statistical analysis to evaluate model performance[46], [50]. 



 

 

 

      

       

         

   

     

 

      

       

         

       

  

        

     

     

          

          

     

        

     

 

     

      

       

  

An experimental research strategy is being used. In experimental research, 

variables are changed to see how they affect other variables. [51]. In this article, 

experiments are carried out using machine learning techniques and data integration 

from various sources to evaluate the performance of the protein function prediction 

model. An experimental strategy allows for controlled testing of model variables and 

their effects. 

This research has a cross-sectional time horizon. Studies that examine cross-

sectional data do so at a particular point in time[52]. This method works well for 

assessing how well the protein function prediction model is performing right now 

with the datasets that are accessible. A cross-sectional time horizon enables a 

snapshot evaluation of the model's current performance. 

The research employed many approaches and procedures, such as data collecting, 

model creation, and performance evaluation. Data is collected from UniProt[53], 

STRING[54], and SwissProt databases[55]. The PyTorch and DGL frameworks are 

utilized in the development of the model, and a Linux server with 32GB of RAM and 

an NVIDIA 1080TI GPU with 12GB of VRAM is used for the tests. Metrics for 

performance evaluation, including Fmax, recall, accuracy, and precision, are utilized 

to evaluate the model [48]. These techniques and procedures ensure 

comprehensive data collection, model development, and rigorous performance 

evaluation. 

This structured approach, guided by the research onion framework, ensures a 

thorough and methodical investigation into protein function prediction, leveraging 

advanced computational techniques and high-quality datasets to achieve reliable 

and accurate results. 



 

 

 

 

  

   

  

      

      

  

Figure 3:Research DESIGN 

3.2PROPOSED RESEARCH MODEL 

This research methodology first employs the ESM-1b (Evolutionary Scale Modeling-

1b) protein language model to extract protein features. Subsequently, it tunes the 

parameters of the DeepGraphGO graph neural network to integrate multi-source 

protein feature information and predict the GO scores of proteins. 



 

 

 

 

  

  

     

      

     

          

        

 

    

     

      

        

       

       

       

  

         

     

Figure 4:Proposed Model 

3.2.1 ESM-1b 

The ESM-1b (Evolutionary Scale Modeling-1b) is a deep Transformer-based 

language model designed to process protein sequences[11]. Its architecture 

leverages the Transformer model, which has shown exceptional performance in 

natural language processing tasks[14], [56]. The ESM-1b model is trained on an 

extensive dataset of 250 million protein sequences, totaling 86 billion amino acids, 

to capture the evolutionary diversity of proteins. 

Multiple layers of feed-forward neural networks and self-attention processes make 

up the Transformer architecture employed in ESM-1b[11]. The Transformer's layers 

analyze input sequences through self-attention, enabling the model to assess the 

relative significance of various amino acids in a sequence. Modeling long-range 

dependencies and interactions within protein sequences requires the use of this 

mechanism[57]. These weighted inputs are then subjected to non-linear 

transformations by the feed-forward networks, which help the model extract intricate 

patterns and characteristics from the data. 

During training, the ESM-1b model uses a masked language modeling objective. In 

this configuration, the model is trained to anticipate the masked positions based on 



 

 

 

             

      

   

   

      

      

     

      

    

         

     

      

       

     

    

   

      

       

    

        

     

     

    

       

      

      

     

    

  

        

        

the surrounding context, with a portion of the amino acids in each input sequence 

being randomly masked. By using this method, the model is compelled to acquire 

meaningful representations of protein sequences that capture the secondary 

structures, biological characteristics, and evolutionary links included in the data. 

The ESM-1b model encodes biochemical properties of amino acids into its 

representations. These properties include hydrophobicity, polarity, and molecular 

weight. Visualization techniques such as t-SNE (t-distributed stochastic neighbor 

embedding) reveal distinct clustering of amino acids based on these biochemical 

properties[58], indicating that the model effectively captures and utilizes this 

information. The representations learned by ESM-1b contain rich information about 

the secondary and tertiary structures of proteins. Linear projections from the model’s 

hidden layers can predict secondary structure elements such as alpha-helices and 

beta-sheets with high accuracy. Additionally, the model excels in predicting long-

range residue-residue contacts, which are essential for determining the three-

dimensional conformation of proteins. ESM-1b’s ability to detect remote 

homologs—proteins with similar structures but low sequence identity—surpasses 

traditional methods. By evaluating the similarity of vector representations in the 

model’s learned space, ESM-1b can identify structurally related proteins even when 

sequence similarity is minimal. This capability is particularly useful for annotating 

proteins of unknown function and understanding evolutionary relationships. ESM-

1b consistently outperforms baseline models such as LSTMs (Long Short-Term 

Memory networks) and n-gram models. For instance, in tasks like secondary 

structure prediction and contact prediction, ESM-1b achieves higher accuracy and 

precision. The model’s performance improves further when trained on diverse and 

high-capacity datasets, underscoring the importance of data diversity and model 

scale. The features learned by ESM-1b generalize well across various downstream 

tasks, including mutational effect prediction and protein engineering[9], [34]. Fine-

tuning the model on specific datasets for these tasks yields state-of-the-art results, 

demonstrating the versatility and robustness of the learned representations. 

In summary, the ESM-1b model, with its deep Transformer architecture and 

extensive training on diverse protein sequences, provides powerful and accurate 



 

 

 

  

      

   

       

  

  

     

          

       

       

        

        

 

 

    

        

        

    

        

representations of protein sequences. These representations capture a wide range 

of biological information, enabling superior performance in structural prediction, 

homology detection, and other critical bioinformatics tasks. The success of ESM-1b 

highlights the potential of large-scale unsupervised learning in advancing our 

understanding of protein biology. 

3.2.2 DeepGraphGO 

The research medel employs a model closely aligned with DeepGraphGO, as 

illustrated in Figure 3.2. The input node features consist of 1280-dimensional protein 

features trained using the ESM-1b protein language model. The input adjacency 

matrix represents the top 100 interaction strengths for each node within the protein-

protein interaction network. The model processes these inputs through a fully 

connected layer, followed by two GCN layers and an output layer to generate the 

predicted GO scores. 

Figure 5:DeepGraphGO (Source : You et al.,[29]) 

Graph convolutional networks have been proven capable of extracting features from 

the natural representation of data for one or multiple graphs. The concept of the 

graph convolutional layers in DeepGraphGO and proposed model is that graph 

convolutional networks are an appropriate method for extracting features from 



 

 

 

      

          

    

      

 

    

       

        

 

   

     

        

       

         

        

           

        

     

      

       

     

          

 

       

     

       

      

          

       

protein interaction networks, considering the graph-based structure represented by 

the protein interaction network. Based on the work of Kipf and Welling [34], the 

model proposed in this paper updates the representation vectors H(l)in ℝN×d of the 

graph convolutional network layer at the l-th level and the residual connections as 

follows: 

̃−
1 

̃−
1 

𝐇(𝑙) = 𝑓 (𝐷 2�̃�𝐷 2𝐇(𝑙−1)𝐖(𝑙) + 𝐛(𝑙)) + 𝐇(𝑙−1) (3.1) 

Where A represents the adjacency matrix, and I represents the identity matrix of 

dimension N, and �̃� = 𝐴 + 𝐼.�̃�is the degree matrix of �̃�.𝐖(𝑙) in ℝd×d and 𝐛(𝑙) in ℝd 

are the weights and biases, respectively. M consecutive graph convolutional layers 

can capture high-order node information of order M. 

The output layer primarily transforms the matrix obtained from information 

propagation and mathematical calculations of the previous model to change its 

dimensionality to match the number of GO categories[29], [58]. The resulting vector 

for each item represents the predicted score for each GO category. The anticipated 

score for every GO category is shown in the resulting vector for every item. An 

activation function and a fully linked layer are used to implement the output layer. 

The fully connected layer gets its name because it uses all local features to function 

as a classifier throughout the entire model. By connecting every node in this layer 

to every other layer's node, the previously extracted features are integrated. The 

feature matrix and the weights of the fully connected layer must match because the 

dimensionality of the weight matrix in the fully connected layer stays constant, 

requiring the input dimensions of the feature matrix from the preceding layer to be 

the same. 

Activation functions are a key part of neural network design. Their role is to make 

the model more flexible. Each deep learning neural network model must choose 

activation functions based on particular conditions because different hidden layer 

activation functions will produce different learning outcomes for the network model 

on the training dataset; the output layer activation functions will determine the kinds 

of predictions the model can make. The sigmoid activation function, sometimes 



 

 

 

          

       

            

        

           

   

   

       

   

   

  

     

  

    

    

   

    

   

   

   

         

 

   

   

      

referred to as the logistic function, is the activation function that is employed in this 

article. Algorithms for logistic regression classification employ the same function. 

Any real value between 0 and 1 can be used as the input and output of this function. 

The output value approaches 1 in proportion to the input value, and it approaches 

0 in proportion to the input value. For the ith protein and the jth GO category, the 

predicted score �̂�𝑖𝑗 is obtained through the following output layer: 

(𝑜) (𝑜)
�̂�𝑖𝑗 = 𝜎(𝐰𝑗 ℎ𝑖 + 𝐛𝑗 ) (3.2) 

(𝑜) (𝑜)
Where 𝐰𝑗 ∈ ℝd and 𝐛𝑗 ∈ ℝ , are the weights and deviations of the functions 

predicting the j-th GO class, respectively, and σ is the activation function[29]. 

The difference between the computation algorithm's intended output and current 

output determines the value of the loss function. One way to evaluate the impact 

of a data modeling algorithm is to use the loss function. It can be separated into 

two categories: regression (continuous values) and classification (discrete values). 

This article uses a binary cross-entropy function as its loss function. The likelihood 

of each prediction is compared to the actual class output—which can be either 0 

or 1—using binary cross-entropy. The difference between the predicted value and 

the expected value will then be used to compute the probability score, which 

indicates how near or how far the actual value is from the predicted value. The 

negative average of the logarithm of the corrected predicted probabilities is, in 

essence, the binary cross-entropy. Its expression is as follows: 

1 𝑁 𝐾 𝐽 = −
𝑁𝐾

∑𝑖=1 ∑𝑗=1 𝑦𝑖𝑗 log(�̂�𝑖𝑗) + (1 − 𝑦𝑖𝑗)log(1 − �̂�𝑖𝑗) (3.3) 

Where, K, means the number of GO classes, 𝑦𝑖𝑗 is the true value and �̂�𝑖𝑗 is the 

predicted value. 

3.3 DATA ANALYSIS AND EVALUATION METRICS 

This study's data analysis uses a rigorous methodology that incorporates 

quantitative techniques to assess the prediction model's performance in detail. [59]. 



 

 

 

         

        

 

     

     

     

      

      

 

  

         

     

  

  

         

       

  

      

    

     

      

         

       

  

     

   

     

          

        

      

Through the use of quantitative analysis, the research is able to obtain a more 

nuanced knowledge of the behavior of the model and identify possible areas for 

improvement by delving deeper into the underlying patterns and correlations within 

the data. Furthermore, quantitative analysis provides a strong statistical 

assessment that makes it possible to precisely analyze the model's accuracy, recall, 

precision, and other important metrics.[47], [60]. By combining the advantages of 

qualitative insights with the thoroughness of quantitative evaluation, this dual 

approach guarantees a comprehensive review that fully validates the prediction 

model's efficacy and reliability. 

3.3.1 Fmax 

In the field of bioinformatics, Fmax is a crucial evaluation metric that is especially 

useful for jobs involving multi-label classification issues, such as protein function 

prediction. It stands for the highest F-measure, which is determined across several 

thresholds[47], [61]. It is a harmonic mean of precision and recall. Because it takes 

into account both precision (the accuracy of positive predictions) and recall (the 

capacity to locate all pertinent instances), the Fmax metric offers a fair assessment 

of a model's performance. 

A protein may fall into more than one functional category in multi-label classification 

tasks like protein function prediction, which increases the complexity of evaluating 

prediction models. The model's performance may not be fully captured by 

conventional metrics like accuracy, particularly when dealing with imbalanced 

datasets. To tackle this, Fmax offers a solitary metric that strikes a compromise 

between recall and precision, guaranteeing that false positives and false negatives 

are considered equally [62], [63]. 

By integrating accuracy and recall, Fmax provides a fair assessment of prediction 

models. This is important in situations where both false positives and false negatives 

might have serious consequences, like in biological research. Fmax, which is 

calculated across a range of thresholds, gives researchers the option to choose the 

best threshold for their particular application. This is especially helpful when working 

with datasets that exhibit variable levels of class imbalance. Fmax, which combines 



 

 

 

    

      

   

        

   

 
 

  

 
  

  

       

   

        

       

         

 

   

        

         

         

         

   

           

    

precision and recall, offers a more thorough assessment of a model's performance 

than accuracy alone. This makes it crucial in multi-label classification, as the 

existence of several classes can impede the evaluation process. 

The calculation of Fmax involves several steps. Firstly, precision and recall are 

computed at various thresholds. Precision (P) and recall (R) are defined as: 

𝑇𝑃 𝑇𝑃 
Precision= = (3.4) 

𝑇𝑃+𝐹𝑃 all detections 

𝑇𝑃 𝑇𝑃 
Recall= = (3.5) 

𝑇𝑃+𝐹𝑃 all ground truth 

whereas genuine positives that were not projected as such are called false 

negatives (FN), false positives (FP) are called erroneously predicted positive 

samples, and true positives (TP) are called properly predicted positive samples [47]. 

Fmax refers to the F-measure value of the protein center calculated at all predicted 

thresholds. First, the mean precision and recall were calculated using the following 

formula: 

∑𝑓 𝐼(𝑓∈𝑃𝑖(𝑡)∧𝑓∈𝑇𝑖)
𝑝𝑟𝑖(𝑡) = 

∑𝑓 𝐼(𝑓∈𝑃𝑖(𝑡)) 

∑𝑓 𝐼(𝑓∈𝑃𝑖(𝑡)∧𝑓∈𝑇𝑖)
𝑟𝑐𝑖(𝑡) = 

∑𝑓 𝐼(𝑓∈𝑇𝑖) (3.6) 
1 𝑚(𝑡)

𝐴𝑣𝑔𝑃𝑟(𝑡) = ⋅ ∑𝑖=1 𝑝 𝑟𝑖(𝑡)
𝑚(𝑡) 

1 𝑛 𝐴𝑣𝑔𝑅𝑐(𝑡) = ⋅ ∑𝑖=1 𝑟𝑖 (𝑡)
𝑛 

And 𝑓 represents a GO class; represents the correctly annotated set; 

represents the annotated set of predicted proteins i at the threshold t; 

represents the number of predicted proteins with more than one function; And 𝑛 

represents the number of all proteins; 𝐼 represents a recognition function. The 

prediction correctly returns 1, otherwise it returns 0. Then, Fmax was calculated at 

a threshold t ∈[0,1] with an update pace of 0.01. If the predicted score of a GO class 

is greater than t, the protein is considered predicted to have this function: 



 

 

 

   

      

      

     

        

         

 

     

     

       

       

 

  

        

       

        

     

       

     

 

          

       

       

     

           

        

    

        

2⋅𝐴𝑣𝑔𝑃𝑟(𝑡)⋅𝐴𝑣𝑔𝑅𝑐(𝑡)
𝐹 = max { } (3.7) max 

𝑡 𝐴𝑣𝑔𝑃𝑟(𝑡)+𝐴𝑣𝑔𝑅𝑐(𝑡) 

In practice, Fmax is particularly useful in evaluating models for protein function 

prediction. Given the complexity and multi-label nature of protein functions, Fmax 

helps in assessing how well the model can predict multiple functions simultaneously. 

By using this metric, researchers can fine-tune their models to achieve a better 

balance between precision and recall, ultimately leading to more accurate and 

reliable predictions[64]. 

In summary, Fmax is an essential metric for evaluating multi-label classification 

models, providing a balanced and comprehensive measure of performance. Its 

calculation through the optimization of the F1 score across various thresholds 

ensures that both precision and recall are adequately considered, making it a 

preferred choice for complex prediction tasks in bioinformatics. 

3.3.2 Area Under the Precision-Recall Curve 

A crucial assessment statistic in machine learning is Area Under the Precision-

Recall Curve (AUPR), especially when dealing with classification issues with 

unbalanced data [48]. The Precision-Recall (PR) curve, which plots recall—the 

percentage of genuine positive outcomes among all actual positive instances— 

against precision—the percentage of true positive results among all positive results 

predicted by the model—is the source of AUPR. This curve is obtained at different 

threshold settings. 

When there is an imbalance in the dataset—that is, when there are much fewer 

positive cases than negative cases—AUPR becomes especially useful. In these 

situations, conventional criteria such as accuracy may be deceptive due to their 

potential dominance by the majority class [47]. AUPR provides a more informative 

picture by focusing on the performance of the model with respect to the minority 

class. AUPR is highly sensitive to the imbalance between classes, making it an ideal 

metric for applications where the positive class is rare. This sensitivity helps in 

evaluating the model's ability to correctly identify the minority class without being 



 

 

 

        

        

      

        

      

      

   

 

       

     

  

   

    

  

            

         

      

  

     

       

 

     

             

 

  

    

    

overwhelmed by the majority class. By considering both precision and recall, AUPR 

gives a comprehensive measure of a model’s ability to retrieve all relevant instances 

(recall) while minimizing false positives (precision). This is crucial in applications like 

medical diagnosis, fraud detection, and information retrieval, where both precision 

and recall are important[48]. AUPR integrates performance across all possible 

thresholds, providing a single scalar value that summarizes the model's 

performance. This makes it easier to compare different models or to assess the 

performance of a single model without worrying about the choice of threshold. 

The Precision-Recall curve is integrated to determine the AUPR. Plotting precision 

and recall values at different threshold levels results in this curve. The definitions of 

precision (P) and recall (R) are given in equation 3.1, where true positives (TP) are 

positive samples that were successfully predicted, false positives (FP) are positive 

samples that were mistakenly forecasted, and false negatives (FN) are positive 

samples that were not predicted in the first place. 

To create the PR curve, these precision and recall values are calculated at multiple 

threshold levels. The AUPR is then the area under this curve, which can be 

computed using numerical integration methods such as the trapezoidal rule. The 

mathematical expression for AUPR can be represented as: 

AUPR = ∫
1 

𝑃(𝑅)𝑑𝑅 (3.8) 
0 

This integral can be approximated by summing the areas of the trapezoids formed 

between successive points on the PR curve: 

𝑃𝑖+𝑃𝑖+1AUPR = ∑𝑛
𝑖=

−
1
1 (𝑅𝑖+1 − 𝑅𝑖) × (3.9)

2 

where 𝑃𝑖 and 𝑅𝑖 are the precision and recall at the 𝑖 -th threshold, and 𝑛 is the 

number of thresholds[64]. 

AUPR is particularly useful in fields such as bioinformatics, medical diagnosis, and 

information retrieval, where identifying the positive class accurately is more critical 

than predicting the majority class correctly. For instance, in protein function 



 

 

 

  

   

      

 

         

      

         

        

        

     

 

 

  

 

      

       

          

 

 

  

 

       

      

    

    

      

       

prediction, accurately identifying the correct function (positive class) among a large 

number of non-functions (negative class) is crucial. AUPR provides a meaningful 

evaluation metric that reflects the model’s capability to perform well under these 

conditions. 

In summary, AUPR is an essential metric for evaluating classification models, 

especially in imbalanced datasets. It provides a balanced measure of a model’s 

precision and recall across all thresholds, making it a preferred choice for assessing 

performance in scenarios where accurately predicting the minority class is critical. 

Its calculation through the integration of the Precision-Recall curve ensures a 

comprehensive evaluation of the model's ability to distinguish between positive and 

negative classes. 

3.4RESEARCH MATERIALS 

This section provides an overview of the materials used in this research, including 

the datasets, software, and hardware. The materials are selected to ensure the 

robustness, reliability, and efficiency of the research process, aligning with the 

research objectives. 

3.4.1 Research Data 

The bioinformatics community has initiated competitions such as the Critical 

Assessment of Functional Annotation (CAFA) challenge to address performance 

evaluation issues in automatic protein function prediction[32]. CAFA provides 

guidelines for constructing datasets for protein function prediction problems and 

criteria for evaluating prediction results. This article's protein data uses the same 

dataset as DeepGraphGO[29], following CAFA's principles and using the same 17 



 

 

 

       

        

        

           

    

         

           

    

         

    

 

 

    

    

    

    

    

 

   

     

      

        

 

reference species as CAFA4. The protein sequence data is sourced from UniProt 

[53], totaling about 18,000 entries. The protein interaction network data comes from 

the eleventh edition of the STRING database [54], covering approximately 24 million 

proteins. The GO terms data is sourced from SwissProt [55], extracting all 

experimental annotation data, categories including: 'IDA', 'IPI', 'EXP', 'IGI', 'IMP', 

'IEP', 'IC', or 'TA', all of which are combined to form an annotation dataset. Ultimately, 

a fasta file containing about 18,000 protein sequence data entries, a filtered protein 

interaction network matrix (where positions in the matrix are non-zero if there is an 

interaction between two proteins), and a text file containing the GO terms associated 

with the respective proteins will be obtained.For future dataset statistics, see Table 

1. 

Table 4. 1:Datasets from Deepgraphgo[29] 

Datasets MFO BPO CCO 

Train 35092 54276 48093 

Valid 490 1579 923 

Test 426 925 1224 

Total 36008 56780 50240 

UniProt: The Universal Protein Resource UniProt 

(https://www.uniprot.org/help/downloads) is a comprehensive repository of protein 

sequence and functional information, offering extensive coverage of protein 

diversity. It provides detailed annotations for proteins, including information on their 

functions, structures, and roles in biological processes. 

https://www.uniprot.org/help/downloads


 

 

 

        

     

     

       

 

        

    

   

 

   

       

    

   

     

        

 

     

    

         

    

          

         

      

   

     

          

         

     

     

      

STRING Database: Protein-protein interactions that are known or expected can be 

found in the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 

database (https://string-db.org). The vast and trustworthy dataset is ensured by the 

fact that these interactions are derived from multiple sources, such as public text 

collections, computer prediction techniques, and experimental data. 

SwissProt: A curated protein sequence database that provides a high level of 

annotation, including information on protein function, domain structure, and post-

translational modifications. SwissProt (https://www.ebi.ac.uk/GOA) focuses on 

experimentally validated data, making it a gold standard for functional annotation. 

3.4.2 Data Collection Methods and Tools: 

The chosen datasets are highly suitable for this research due to their 

comprehensive coverage[36], [53], [54], [55], high-quality interaction data, and 

reliable functional annotations. UniProt provides an extensive array of protein 

sequences, ensuring broad representation across various species and functions. 

This diversity is crucial for capturing the wide range of biological activities that 

proteins can perform. The STRING database is renowned for its detailed and high-

confidence interaction data, which is essential for constructing accurate protein-

protein interaction networks. These networks are a fundamental component of the 

research, as they help to elucidate the complex interactions that dictate protein 

function. Additionally, SwissProt offers meticulously curated and experimentally 

validated annotations, providing a solid and reliable foundation for training and 

evaluating the prediction model. The combination of these datasets ensures that 

the research is grounded in high-quality, diverse, and trustworthy data, which is vital 

for developing a robust and accurate protein function prediction model. 

The research adheres to ethical standards by utilizing publicly available datasets, 

ensuring compliance with data usage policies and avoiding issues related to data 

privacy and consent[53], [54], [55]. Proper attribution is given to all data sources, 

acknowledging the original contributors and maintaining academic integrity. 

Furthermore, the datasets used do not contain any personal or sensitive information, 

thereby minimizing ethical concerns related to data handling. This ethical approach 

https://www.ebi.ac.uk/GOA
https://string-db.org


 

 

 

     

     

       

    

 

   

           

          

     

    

       

    

      

 

     

   

      

       

     

      

      

          

  

          

         

 

  

 

not only ensures the integrity of the research process but also aligns with best 

practices for using publicly accessible data in scientific research. By addressing 

these ethical considerations, the research maintains transparency and respect for 

the data providers and the broader scientific community. 

3.4.3 Software and hardware 

The code for this study was written using the PyTorch and DGL (Deep Graph Library) 

frameworks due to their robust capabilities and flexibility. PyTorch is renowned for 

its dynamic computation graph, which simplifies debugging and allows for easy 

modifications during model development. This is particularly beneficial in research 

settings where models often need to be iteratively refined. Additionally, PyTorch's 

extensive support for neural network components, including pre-built modules, loss 

functions, and optimizers, streamlines the creation of complex models such as those 

used in protein function prediction. 

DGL complements PyTorch by providing specialized tools for handling graph-based 

data, essential for implementing Graph Neural Networks (GNNs). Protein-protein 

interaction networks can be naturally represented as graphs, and DGL's optimized 

graph operations ensure efficient processing of these structures. Together, PyTorch 

and DGL offer a high-performance, scalable solution that leverages GPU 

acceleration for handling large datasets, a critical requirement for this study. 

Moreover, the strong community support and rich ecosystems of both frameworks 

facilitate collaboration and the integration of existing research, enhancing the overall 

productivity and impact of the study. 

The training and experiments for the models in this study were conducted on a Linux 

server equipped with 32GB of RAM and an NVIDIA 1080TI GPU with 12GB of 

VRAM. 

3.5CHAPTER SUMMARY 



 

 

 

       

       

        

      

     

 

         

      

         

        

        

     

         

 

        

        

        

         

       

             

  

  

In this chapter, the research methodology for developing a novel protein function 

prediction model was thoroughly outlined. The chapter began by detailing the 

research philosophy of positivism and the deductive approach employed. This 

structured methodology ensures objectivity and reliability, focusing on quantifiable 

data from protein sequences, protein-protein interaction networks, and InterPro 

domains. 

The chapter proceeded to describe the selection and justification of research 

materials, including high-quality datasets from UniProt, STRING, and SwissProt. 

These datasets provide comprehensive coverage and reliable annotations crucial 

for accurate model training and evaluation. The choice of PyTorch and DGL 

frameworks was justified by their robust capabilities in handling neural networks and 

graph-based data, respectively. The computational experiments were conducted on 

a powerful Linux server equipped with 32GB of RAM and an NVIDIA 1080TI GPU, 

ensuring efficient processing. 

This chapter lays the groundwork for the upcoming design and implementation of 

the prediction model in Chapter 4, providing a strong foundation of meticulous 

approach and superior materials. By combining graph convolutional networks with 

protein language models, the area of protein function prediction should become 

more accurate and efficient, filling in some of its current shortcomings. This process 

will be expanded upon in the next chapter, which will include specifics on the 

creation, application, examination, and assessment of the suggested model. 



 

 

 

  

        

       

      

    

 

  

          

    

   

   

 

      

 

        

          

  

       

        

        

 

     

        

    

  

      

   

CHAPTER 4 – EXPERIMENT AND RESULT ANALYSIS 

This chapter explores the experimental design, the outcomes of using the 

suggested model, and a thorough examination of these outcomes. The 

experimental setup, results and analysis, discussion, and summary make up the 

chapter's four sections. This framework guarantees a thorough comprehension of 

the study's performance, methods, and consequences. 

4.1EXPERIMENTAL SETUP 

In this chapter the details of the experiments conducted to obtain the study results 

are provided. The experimental setup integrates multiple high-quality datasets and 

leverages advanced computational frameworks to predict protein functions using a 

novel model that combines protein language models (PLMs) and Graph 

Convolutional Networks (GCNs). 

And the datasets used in this experiment underwent the following preprocessing 

steps. 

⚫ Protein Sequences: Data is extracted from UniProt in FASTA format[53]. 

Automated scripts are used to download sequences, ensuring that the dataset 

is comprehensive and up-to-date. 

⚫ PPI Network Data: Interactions from the STRING database are filtered to retain 

only the top 100 interactions for each protein based on interaction strength. This 

filtering ensures that the data includes the most biologically relevant 

interactions[54]. 

⚫ GO Terms: Gene Ontology annotations are sourced from SwissProt[55], 

focusing on experimental evidence codes such as 'IDA' (Inferred from Direct 

Assay), 'IMP' (Inferred from Mutant Phenotype), and others. This ensures that 

the functional annotations used are reliable and validated. 

The model was trained using a two-layer Graph Convolutional Network 

(GCN).Table 2 shows the parameters setting for the model training. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

        

 

           

    

      

      

 

  

         

         

       

       

       

        

   

Table 4. 2:Parameters setting 

Input 

size 

Hidden 

size 

Drop 

out 

rate 

Epochs Batch 

size 

Optimizer Learning 

rate 

Activation 

Function 

1280 512 0.5 20 8 Adam 1e-3 Sigmoid 

The choice of the Adam optimizer was due to its adaptive learning rate 

capabilities[65], which efficiently handle sparse gradients and noisy problems. The 

Sigmoid function was selected to suit the multi-binary classification requirement[66], 

ensuring that the model could effectively distinguish between the presence and 

absence of multiple features. 

4.2RESULTS AND ANALYSIS 

The evaluation of the model's performance was based on Fmax and AUPR[47], [48], 

[49], the most common metrics in the protein function prediction area[29]. The 

scores for these metrics, corresponding to the predictions made by the model in this 

study for the Molecular Function Ontology (MFO), Biological Process Ontology 

(BPO), and Cellular Component Ontology (CCO), are presented in a tabular format. 

A comparison was conducted with BLAST-KNN ,LR-InterPro and Net-KNN 

proposed by R. You et al.[67], DeepGO[24], DeepGOPlus[6], and 



 

 

 

      

 

 

 
       

        

        

        

        

        

        

        

        

 

 

 

          

  

      

        

         

       

  

      

       

     

     

      

   

DeepGraphGO[29]. The data ranked first in individual performance is highlighted in 

bold. 

Table 4. 3:Performance comparison of Proposed Model 

Fmax AUPR 
Method 

MFO BPO CCO MFO BPO CCO 

BLAST-KNN[67] 0.590 0.274 0.650 0.455 0.113 0.570 

LR-InterPro[67] 0.617 0.278 0.661 0.530 0.133 0.672 

Net-KNN[67] 0.426 0.305 0.667 0.276 0.157 0.641 

DeepGO[24] 0.434 0.248 0.632 0.306 0.101 0.573 

DeepGOPlus[6] 0.593 0.290 0.672 0.398 0.108 0.595 

DeepGraphGO[29] 0.623 0.290 0.672 0.543 0.194 0.695 

ProposedModel 0.531 0.336 0.686 0.456 0.212 0.705 

Based on the performance metrics provided in Table 4.2 and Figure 4.1, 

DeepGraphGO outperforms other models in Molecular Function Ontology (MFO) 

prediction, achieving the highest Fmax (0.623) and AUPR (0.543) scores. This 

superior performance can be attributed to its ability to effectively leverage graph 

convolutional networks (GCNs) to integrate both sequence information and protein 

interaction data. The multiple layers of GCNs in DeepGraphGO allow for capturing 

complex, high-order relationships within protein networks, which are particularly 

critical for accurately predicting molecular functions[29]. Additionally, the inclusion 

of InterProScan features that identify specific protein domains and motifs enhances 

the model's ability to capture the fine-grained biochemical properties necessary for 

MFO predictions. These capabilities make DeepGraphGO particularly adept at 

handling the intricate dependencies and specificities involved in molecular function 

prediction, leading to its strong performance in this area. 



 

 

 

   

      

      

       

        

       

       

     

   

 

 

Chart 1:Performance 
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In the BPO category, the proposed model achieves the highest Fmax score (0.686) 

and AUPR score (0.705), outperforming all other models. This strong performance 

can be attributed to the model's ability to effectively integrate diverse features from 

protein sequences, PPI networks[54], and InterPro domains. The combination of 

these features allows the model to capture the complex interactions and pathways 

that are essential for predicting biological processes. The use of ESM-1b for 

extracting high-dimensional sequence features, coupled with the graph 

convolutional network (GCN) layers, enables the model to learn and generalize the 



 

 

 

    

    

          

 

     

     

       

    

       

         

    

   

   

      

 

  

           

    

      

      

 

  

       

    

     

          

    

     

intricate dependencies between proteins within a biological process. This multi-

source integration is crucial for BPO predictions[15], where understanding the 

functional interactions between proteins is key to accurately identifying the 

underlying biological processes. 

In the CCO category, the proposed model again demonstrates superior 

performance with the highest Fmax score (0.705) and AUPR score (0.705). The 

model's success in CCO predictions can be attributed to its effective utilization of 

PPI network data, which is critical for understanding the spatial distribution and 

localization of proteins within the cell. By leveraging the GCN layers, the model is 

able to capture the complex network context that influences cellular localization. The 

integration of protein sequence features with network-based information allows the 

model to accurately predict the cellular components where proteins are likely to 

function[68]. This approach is particularly effective for CCO predictions, as it 

combines structural information with network interactions, providing a 

comprehensive understanding of protein localization within cellular structures. 

4.3DISCUSSION 

The results of this study, as shown in Tables 4.1 and 4.2, reveal that the proposed 

model's performance varied significantly across different ontologies. This section 

explores potential reasons behind these performance differences, supported by 

relevant literature, and provides a detailed analysis of the model's strengths and 

weaknesses. 

⚫ Model Adaptability 

Traditional models like BLAST-KNN and LR-InterPro have long relied on 

sequence homology for predicting protein functions. These models utilize 

sequence alignment and similarity scoring techniques, which are particularly 

effective for tasks where sequence information alone is a strong predictor of 

function, such as in Molecular Function Ontology (MFO) predictions. For 

example, studies by Pearson et al.[68] and Altschul et al. [69]emphasize that 



 

 

 

      

 

       

      

     

     

    

      

        

       

 

  

        

  

      

      

       

     

   

      

 

      

       

     

      

       

       

 

  

sequence-based approaches often excel in identifying proteins with similar 

functions when the sequences are sufficiently homologous . 

In contrast, the proposed model integrates diverse features from multiple 

sources, including protein sequences, PPI networks, and InterPro domains. 

While this comprehensive integration offers a richer context for function 

prediction, it may also introduce complexity and noise, potentially making it less 

effective for MFO predictions, where simple sequence similarity might suffice. 

The added complexity could obscure specific sequence-based signals that are 

critical for accurate MFO predictions, as suggested by Leung et al.[70], who 

highlighted that over-complicating models with multi-source data can 

sometimes dilute the effectiveness of straightforward predictions . 

⚫ Data Utilization 

The proposed model leverages ESM-1b, a pre-trained protein language model, 

for feature extraction, capturing intricate details of protein sequences. ESM-1b 

has been shown to provide a powerful representation of protein sequences, 

capturing not just the sequence information but also structural and functional 

properties that are important for understanding protein behavior (Rives et 

al.[11]) . This comprehensive feature representation likely contributes to the 

model's strong performance in Biological Process Ontology (BPO) and Cellular 

Component Ontology (CCO) predictions, where understanding complex 

interactions and structural contexts is crucial. 

For BPO predictions, the integration of PPI network data enhances the model's 

ability to capture interactions and pathways involving multiple proteins, which 

are key to understanding biological processes. Similarly, for CCO, the model's 

effectiveness in capturing cellular localization likely benefits from the detailed 

network context provided by the PPI data. This aligns with the findings of 

Barabási and Oltvai[71], who noted that biological networks are integral to 

understanding cellular functions and localizations . 

⚫ Integration of Multi-Source Features 



 

 

 

      

       

       

         

   

         

    

    

   

    

          

           

   

      

       

        

  

    

      

     

      

    

      

        

     

 

    

       

        

        

The integration of multi-source protein features, including sequence data, 

interaction networks, and domain information, likely played a significant role in 

the proposed model's superior performance in BPO and CCO. By combining 

these diverse data types, the model can develop a holistic view of protein 

function, which is particularly beneficial for complex tasks involving multiple 

interacting components. This approach is supported by previous research, such 

as that by Zhang et al. [39], which demonstrated that multi-source integration 

can significantly improve the accuracy of complex biological predictions by 

providing a more comprehensive context . 

However, this approach may not be as effective for MFO predictions, which 

often depend more directly on specific sequence motifs or active sites. The 

added complexity from integrating multiple data sources might dilute the impact 

of these critical sequence-specific features, potentially leading to less accurate 

predictions. This potential downside is echoed in the work of Almagro 

Armenteros et al.[72], who suggested that while multi-source integration can 

enhance performance, it must be carefully managed to avoid introducing noise . 

⚫ Graph Convolutional Networks 

Graph Convolutional Networks (GCNs) are particularly effective at capturing 

relationships in graph-structured data, such as PPI networks. In the proposed 

model, GCN layers effectively aggregate information from neighboring nodes in 

the PPI network, allowing the model to learn about the broader network context 

of each protein. This capability is especially useful for BPO and CCO predictions, 

where the network context can provide critical insights into biological processes 

and cellular localization. Kipf and Welling [34] demonstrated that GCNs are 

highly effective for tasks involving network data, supporting the findings of this 

study . 

However, the effectiveness of GCNs might be less pronounced in MFO, where 

functional relationships may not be as graph-dependent and might rely more on 

localized sequence features. This limitation is consistent with the observations 

of Shervashidze et al.[43], who noted that while GCNs are powerful for graph-



 

 

 

   

  

  

      

   

    

     

         

    

   

 

      

    

        

        

      

 

  

      

       

      

           

   

        

       

     

        

       

 

structured data, they may not always capture more localized, sequence-based 

information as effectively as other models . 

⚫ Challenges in MFO Prediction 

Molecular Function Ontology (MFO) predictions often involve predicting specific 

biochemical activities of proteins, such as enzymatic functions, binding affinities, 

or catalytic roles. These functions are typically determined by specific amino 

acid residues and motifs within the protein sequence. The proposed model's 

reliance on broader network and domain features might not capture these 

specific sequence motifs as effectively as models focused solely on sequence 

alignment and homology. As discussed by Jones et al.[73], sequence-specific 

models are particularly well-suited for identifying these types of functions . 

Additionally, the complexity of integrating diverse features could introduce noise 

that impacts the model's ability to make accurate MFO predictions. This 

challenge is highlighted in the work of Zhou et al. [32], who pointed out that 

while multi-source integration can provide a more complete picture, it also risks 

introducing irrelevant information that can degrade performance for tasks 

requiring highly specific feature recognition . 

⚫ Potential Improvements 

To enhance the proposed model's performance in MFO predictions, future work 

could focus on refining the feature integration process to minimize noise and 

improve the model's ability to capture specific sequence motifs. Techniques 

such as feature selection and weighting could be optimized to prioritize the most 

relevant features for MFO tasks. Additionally, incorporating more sophisticated 

techniques for feature extraction and selection, such as attention mechanisms 

or hierarchical models, could help improve the model's adaptability to different 

ontologies. Vaswani et al.[57] demonstrated that attention mechanisms can 

significantly enhance model performance by allowing the model to focus on the 

most important parts of the input data, suggesting a promising direction for 

future work . 



 

 

 

      

    

      

       

   

  

     

     

          

     

    

     

       

       

      

   

Overall, while the proposed model shows strong performance in BPO and CCO 

predictions, there are clear areas for improvement, particularly in MFO predictions. 

By addressing these challenges and incorporating advanced techniques, the 

model's effectiveness and applicability could be further enhanced, contributing to 

more accurate and comprehensive protein function predictions in future research. 

4.4SUMMARY 

This chapter has outlined the experimental setup, results, and analysis of the 

proposed model for protein function prediction. The proposed model demonstrated 

superior performance in BPO and CCO, achieving the highest Fmax and AUPR 

scores, but underperformed in MFO predictions compared to other models. The 

analysis highlights the strengths of integrating multi-source features and the 

adaptability of GCNs for specific ontologies while pointing out areas needing 

improvement for better MFO predictions. This detailed discussion underscores the 

importance of continued research into optimizing computational prediction models 

and suggests specific areas for enhancement in future work , such as refining 

feature integration and improving the capture of specific sequence motifs. 



 

 

 

   

  

          

     

         

         

  

         

       

      

   

   

  

         

          

        

        

   

     

 

       

     

         

   

    

 

          

     

      

CHAPTER 5 – SUMMARY CONCLUSION AND RECOMMENDATIONS 

5.1 SUMMARY 

The primary aim of this study was to develop a novel protein function prediction 

model by integrating data from protein sequences, protein-protein interaction (PPI) 

networks, and InterPro domains using a Protein Language Model (PLM) and Graph 

Convolutional Network (GCN) to generate accurate predictions of protein functions. 

The main objectives of this study were achieved through the following steps: 

The first objective was to generate embeddings from protein sequences using the 

pre-trained protein language model (ESM-1b) for feature extraction. The approach 

involved utilizing ESM-1b to process and extract high-dimensional feature 

representations from protein sequences. This method successfully generated 

detailed embeddings that capture the complex biochemical properties of proteins, 

forming the foundational features necessary for accurate function prediction. 

The second objective focused on integrating the embeddings from protein 

sequences and InterPro domains with adaptive feature weights into the PPI graph 

and using GCNs to generate protein features. By combining the extracted 

embeddings with PPI network data and InterPro domain features, and applying 

GCNs for feature integration, a comprehensive feature set was created. This 

integration significantly enhanced prediction accuracy by leveraging multiple 

sources of protein information. 

The third objective was to develop a classification model that combines the feature 

weights and protein feature vectors generated by PLM, PPI, and GCNs. A GCN-

based model was designed and implemented to process the integrated feature 

vectors and predict protein functions. This robust model demonstrated its capability 

to predict protein functions across different Gene Ontology (GO) categories 

effectively. 

The fourth objective involved evaluating and comparing the performance of the 

developed model against existing state-of-the-art methods using well-known 

evaluation metrics. Extensive testing and evaluation were conducted using metrics 



 

 

 

       

 

        

 

  

        

     

         

     

    

        

      

     

        

           

      

    

   

          

         

     

    

     

  

    

     

  

  

such as Fmax and AUPR. The proposed model demonstrated superior performance 

in Biological Process Ontology (BPO) and Cellular Component Ontology (CCO) 

predictions, validating the effectiveness of the proposed integration and 

methodology. 

5.2 CONCLUSION 

The proposed model utilized an integrated approach combining ESM-1b 

embeddings, PPI networks, and GCNs to predict protein functions. The 

methodology involved extracting detailed protein features using ESM-1b, which 

captures high-dimensional representations of protein sequences, followed by 

integrating these features through Graph Convolutional Networks (GCNs). This 

integration process enabled the model to leverage multiple sources of information, 

such as sequence data, protein-protein interactions, and domain-specific features, 

to enhance the overall prediction accuracy. 

The outcomes of this integrated approach were promising, with the proposed model 

achieving an Fmax of 0.531 for MFO, 0.336 for BPO, and 0.686 for CCO, along with 

AUPR scores of 0.456 for MFO, 0.212 for BPO, and 0.705 for CCO. The proposed 

model excelled in predicting Biological Process Ontology (BPO) and Cellular 

Component Ontology (CCO), achieving the highest Fmax scores of 0.686 for CCO 

and 0.336 for BPO, and the highest AUPR scores of 0.705 for CCO and 0.212 for 

BPO, among the compared models. This indicates that the model's ability to 

incorporate diverse protein features and contextual information from PPI networks 

effectively captures the complex relationships and dependencies inherent in 

biological processes and cellular components. However, the model underperformed 

in Molecular Function Ontology (MFO) predictions. This underperformance 

highlights areas for potential improvement, suggesting that the model may need 

further refinement to better capture specific sequence motifs and biochemical 

properties relevant to molecular functions. 

5.3 LIMITATION AND RECOMMENDATION 



 

 

 

      

    

        

   

    

        

          

     

 

          

       

      

        

     

     

       

      

   

       

  

       

      

      

      

   

    

       

 

         

     

The proposed model exhibited variability in performance across different GO 

categories, notably underperforming in MFO predictions. Integrating multi-source 

features introduced complexity and potential noise, which may have affected the 

model's accuracy for specific tasks. Additionally, the model required significant 

computational resources for training and evaluation, which could limit its scalability 

and accessibility. Moreover, the model was implemented using an older version of 

the DGL framework (0.4.3post2), and the training was performed on an Nvidia 

1080TI GPU, which is not the latest hardware. This resulted in slower training 

speeds and necessitated a smaller batch size. 

Future research should focus on refining the feature integration process to reduce 

noise and enhance the model's ability to capture specific sequence motifs, 

particularly for MFO predictions. This could involve optimizing the feature selection 

and weighting mechanisms to ensure that the most relevant features are prioritized. 

Incorporating sophisticated techniques such as attention mechanisms or 

hierarchical models could improve the model's adaptability and performance across 

all GO categories. Attention mechanisms, for example, could help the model focus 

on the most critical parts of the input data, while hierarchical models could better 

capture the multi-level relationships between different protein features. 

Developing more efficient training algorithms and exploring distributed computing 

approaches can help scale the model for larger datasets and broader applications. 

Implementing parallel processing and leveraging cloud-based platforms could 

enhance the model's scalability and make it more accessible for researchers with 

limited computational resources. Utilizing more diverse and extensive datasets 

could further improve the model's generalizability and robustness, providing a more 

comprehensive tool for protein function prediction. This includes incorporating 

additional sources of protein interaction data, exploring different types of protein 

annotations, and expanding the model's training on a wider variety of protein 

families and species. 

Additionally, updating the implementation to use the latest version of the DGL 

framework and employing more advanced GPU hardware could significantly 



 

 

 

     

       

 

        

      

  

  

improve training efficiency and model performance. This would allow for larger batch 

sizes and faster training times, potentially leading to better optimization and more 

accurate predictions. 

By addressing these limitations and pursuing the proposed future work, the model's 

performance and applicability can be significantly enhanced, contributing to 

advancements in bioinformatics and protein function prediction. 



 

 

 

  

        

      

        

  

       

      

      

         

        

         

       

     

       

   

        

  

      

     

       

          

      

       

       

     

   

  

CHAPTER6 – REFLECTION 

In managing the work, I adopted a methodical approach by breaking down the 

project into smaller tasks with specific deadlines given by the supervisor. This 

allowed me to monitor progress effectively and ensure that each stage of the project 

was completed on time. Regular reviews and adjustments to the schedule ensured 

that I met all deadlines without compromising the quality of the work. The use of 

project management tools alongside AI assistance was key to maintaining this 

balance. I extensively used AI tools, particularly ChatGPT, which played a crucial 

role in enhancing the quality of my writing and refining complex ideas. ChatGPT 

assisted in organizing thoughts, structuring content, and improving the clarity and 

coherence of the research paper. This tool was invaluable in providing quick insights, 

generating suggestions for improvement, and ensuring that the writing was both 

technically accurate and accessible. Through this process, I not only improved my 

technical writing skills but also learned how to leverage AI tools to enhance 

productivity. This experience has taught me valuable lessons in time management, 

the importance of iterative refinement, and how to efficiently integrate AI tools into 

complex tasks to achieve the best outcomes. 

Additionally, this project provided a significant opportunity to develop and enhance 

my technical skills, particularly in machine learning and bioinformatics. Learning to 

implement and fine-tune complex models like Graph Convolutional Networks 

(GCNs) and integrating them with pre-trained models such as ESM-1b was both 

challenging and rewarding. Conducting experiments on a Linux server equipped 

with an NVIDIA 1080TI GPU presented challenges in processing speed and 

memory limitations, necessitating smaller batch sizes and more efficient data 

processing techniques, which deepened my understanding of hardware-software 

interactions in high-performance computing environments. 
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PROJECT MANAGEMENT 

Effective project management was critical to the successful completion of this 

research project. To ensure that the project stayed on track, I employed a detailed 

plan that was reflected in two Gantt charts: the Original Gantt Chart and the Actual 

Gantt Chart showed in Figure 6 and Figure 7. 

Figure 6:Original Gantt Chart 



 

 

 

 

   

          

         

      

      

         

         

       

     

        

 

         

         

        

  

Figure 7：Actual Gantt Chart 

The Original Gantt Chart laid out the initial timeline for the project, starting with the 

early stages of research, data collection, and literature review. It provided a 

structured framework for the project, with specific milestones set for each phase, 

including the development of the model, experimentation, analysis, and the writing 

of the thesis. As the project progressed, some adjustments were made, which are 

reflected in the Actual Gantt Chart. While the project generally followed the planned 

timeline, a few phases required more time than initially anticipated, particularly in 

the areas of model development and data analysis. These adjustments were 

necessary to address unexpected challenges, such as fine-tuning the model and 

interpreting complex data sets. 

Overall, the project management strategy, as depicted in the Gantt charts, played a 

crucial role in organizing the workflow, meeting deadlines, and accommodating 

unforeseen challenges. The flexibility to adjust the schedule as needed ensured that 

the project objectives were met without compromising the quality of the research. 
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LOGBOOK 

Date Daily Activities Thought Trails Things to Do 

2024- ⚫ Started 

02-01 
background 
reading on 
protein function 
prediction using 
Graph Neural 
Networks 
(GNNs). 

⚫ Understanding the 

complexity of protein 

interactions and the 

⚫ Identify key 

literature 

sources 

role of GNNs in 

capturing these 

relationships. 

focusing on 

GNN 

applications in 

bioinformatics. 

2024- ⚫ Continued ⚫ Noted the importance ⚫ Search for 

02-03 
exploring studies 
on integrating 

of high-quality PPI data datasets 

protein-protein and its influence on providing 
interaction (PPI) 
networks with 

GNN performance in reliable PPI 

GNN models. function prediction. information. 

2024- ⚫ Began Proposal 

02-05 
Development. 
Initial 
discussions 
about the 
feasibility of 
using GNNs for 
protein function 
prediction. 

⚫ Considering the 

research aim, 

⚫ Draft the 

research 

objectives, and 

feasibility of integrating 

multiple data types into 

a GNN framework. 

proposal 

outline. 

Develop a 

preliminary 

timeline for the 

project phases. 

2024- ⚫ Further refined ⚫ Exploring different ⚫ Expand the 

02-07 
the proposal, 
focusing on 

GNN architectures, 
proposal to 
include a 

objectives and particularly those detailed 
expected literature review 
outcomes 



 

 

 

 
 

 

 

 

  

 
 

 
 

   

 

 

 

 

 

  
 

 

  
 

 

  

 
 

 
 

 

 

  

 

 

 

  

 
 

 

 

  
 

 

 
 

   

  

 

  

 

  

 

 

 

 

  
 

 
  

  

 

 

 

  
 

 
 

 

related to GNN- suitable for biological section. 
based models. 

data integration. 

2024- ⚫ Continued ⚫ Identified gaps in 

02-10 
literature review 
focusing on 

current GNN 

GNN-based applications, such as 
models in 
protein function 

the need for models 

prediction. that better handle 

heterogeneous data. 

⚫ Collect more 
papers on deep 
learning 
applications in 
bioinformatics, 
specifically 
related to 
GNNs. 

2024- ⚫ Started outlining ⚫ The integration of PPI 

02-12 
potential 
modifications to 

networks and 

existing GNN sequence data might 
models to better 
suit protein 

require custom GNN 

function layers or modified 
prediction tasks. 

architectures. 

⚫ Draft a section 
of the proposal 
on the 
proposed GNN 
modifications. 

2024- ⚫ Detailed ⚫ Exploring the feasibility 

02-15 
proposal drafted, 
focusing on 

of a GNN model that 

using GNNs for can process and 
protein function 
prediction. 

integrate multiple 

biological data types 

effectively. 

⚫ Prepare a 
presentation for 
the proposal 
presentation. 
Plan for further 
deep dives into 
GNN model 
studies. 
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GLOSSARY 

GCN (Graph Convolutional Network): A particular kind of neural network 
intended for direct manipulation of graph-structured data. Protein-protein 
interaction networks and other diverse biological data sources are included in the 
protein function prediction process through the usage of GCNs. 

GNN (Graph Neural Network): A type of neural network that processes data 
structured as graphs. GNNs are used to model the relationships between entities, 
such as proteins within a protein-protein interaction network. 

GO (Gene Ontology): A bioinformatics project that attempts to harmonize the way 
different species represent the characteristics of genes and proteins. Three 
primary ontologies are used to classify GO terms: Molecular Function, Biological 
Process, and Cellular Component. 

BPO (Biological Process Ontology): A category within the Gene Ontology 
framework that describes the biological processes, or sets of molecular events, in 
which proteins are involved. 

MFO (Molecular Function Ontology): A Gene Ontology category that describes 
the molecular activities, such as catalytic or binding actions, performed by 
individual proteins. 

CCO (Cellular Component Ontology): A Gene Ontology category that refers to 
the locations within the cell where proteins carry out their functions, such as the 
nucleus or cytoplasm. 

ESM-1b (Evolutionary Scale Modeling-1b): A protein language model based on 
deep learning was created to parse protein sequences and extract functional and 
evolutionary characteristics that are essential for predicting the function of the 
protein. 

DeepGraphGO: A model that combines information from interaction networks and 
protein sequences to predict the activities of proteins using graph neural networks. 

PPI (Protein-Protein Interaction): The actual physical bonds formed by 
biochemical processes and/or electrostatic forces between two or more protein 
molecules. PPI networks are crucial for comprehending the intricate relationships 
that control biological processes. 

InterPro: A database that combines various protein signature datasets to offer 
functional analysis of proteins through family classification and domain and 
significant site prediction. 



 

 

 

  
  

 

  
  

    
 

 
    

   

   
  

 

 

Fmax: A bioinformatics metric that assesses the maximal F-measure over several 
thresholds, balancing recall and precision. In multi-label classification tasks such 
as protein function prediction, it is very helpful. 

AUPR (Area Under the Precision-Recall Curve): A performance metric that is 
especially useful in situations where the datasets are unbalanced for assessing 
the quality of forecasts. It sheds light on how recall and precision are traded off at 
various threshold values. 

Sigmoid Function: An activation function used in neural networks that outputs 
values between 0 and 1, often used in binary classification tasks. 

UniProt: The Universal Protein Resource, a comprehensive database that 
provides a curated protein sequence and functional information. 

STRING Database: A database including information on known and anticipated 
interactions between proteins, obtained from a variety of sources such as 
computational forecasts and experimental evidence. 
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	CHAPTER 1 INTRODUCTION 
	Proteins are indispensable to cellular functions, playing critical roles in maintaining the acid-base balance, distributing water, transmitting genetic information, and transporting various vital substances within human organisms [1]. To systematically catalog diverse function of proteins, Gene Ontology (GO) provides structured vocabulary to classify protein functions into molecular function, biological process, and cellular component [2]. 
	Protein function prediction helps in understanding life processes and disease mechanisms, thereby aiding in disease diagnosis and drug development. It also plays a key role in biotechnology applications, such as designing specific enzymes to enhance industrial and agricultural recent years, the quantity of 
	efficiency[3].In 

	protein sequences stored in public databases has surged, enhancing our comprehension of protein diversity. And deep learning has shown promise in unearthing intricate patterns in high-dimensional data, making it ideal for tasks such as protein function classification[4]. Initial deep learning approaches for this purpose primarily utilized protein sequence data and positional information within Protein-Protein Interaction (PPI) networks[5]. Examples include DeepGO, which uses convolutional neural networks to
	The evolution of Graph Neural Networks (GNNs) has introduced new methodologies for protein function prediction by effectively representing proteins’3D structures and PPI networks as graph-structured data[8]. For instance, DeepFri[9] 
	The evolution of Graph Neural Networks (GNNs) has introduced new methodologies for protein function prediction by effectively representing proteins’3D structures and PPI networks as graph-structured data[8]. For instance, DeepFri[9] 
	employs a self-supervised language model to derive residue features, which are then propagated using graph convolutional networks. Similarly, DeepGraphGO applies semi-supervised learning to integrate PPI and InterPro features for protein function prediction[10]. 

	Protein Language Models (PLM) are computational tools that use machine learning to analyze and predict protein sequences, structures, and functions based on patterns learned from large datasets of protein data. ESM (Evolutionary Scale Modeling) was developed by Facebook AI Research, it uses Transformer architectures to generate representations of protein sequences[11].UniRep uses a recurrent neural network (RNN) approach to condense protein sequences into fixedlength vectors[12]. ProtTrans adapts Bidirectio
	-

	1.1RESEARCH PROBLEM STATEMENT 
	The traditional methods for annotating protein functions remain costly and slow[15], leading to a significant annotation backlog as new proteins are discovered faster than they can be functionally characterized[16]. Protein language models like ESM1b have demonstrated high accuracy in generating protein embeddings[11]. However, their potential has not been fully realized in combination with graph-based methods such as DeepGoPlus,DeepGo and DeepGraphGo [6]. Hence there is a critical need for reliable computa
	-

	1.2RESEARCH AIM 
	The primary aim of this study is to develop a novel protein function prediction model by integrating data from protein sequences, protein-protein interaction (PPI) networks, and InterPro domains using PLM and Graph Convolutional Network(GCN), to generate accurate predictions of protein functions. 
	1.3RESEARCH OBJECTIVES 
	The main aim of this study is achieved through the following objectives: 
	Obj1 -To generate embeddings from protein sequences using the pre-trained protein language model  (ESM-1b) for Feature Extraction . 
	Obj2 -To integrate the embeddings from protein sequences and InterPro domains with adaptive feature weights into the PPI graph, and use GCNs to generate protein features. 
	Obj3 -To develop a classification model that combines the features weights and protein features vector generated by PLM,PPI and GCNs. 
	Obj4 -To evaluate and compare the performance of the developed model against existing state-of-the-art methods using well-known evaluation metrics. 
	1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH 
	This research marks a significant advancement in protein function prediction by pioneering the integration of protein language models (PLMs) with graph convolutional networks (GCNs). By harnessing a rich spectrum of protein features— 
	This research marks a significant advancement in protein function prediction by pioneering the integration of protein language models (PLMs) with graph convolutional networks (GCNs). By harnessing a rich spectrum of protein features— 
	including sequence data, protein-protein interaction (PPI) networks, and InterPro domain information—this study develops a comprehensive and highly robust computational model. This innovative approach not only improves the accuracy and efficiency of protein function prediction but also tackles the current challenges in protein annotation, particularly the growing backlog of uncharacterized proteins. As a result, the proposed model offers a faster and more reliable method for the functional characterization 

	1.5STRUCTURE OF THE THESIS 
	Chapter one provides an introduction to the project, outlining the research problem, aims, objectives, and the significance of the study. It sets the foundation for understanding the necessity of advancing protein function prediction using innovative computational techniques. 
	Chapter two delves into a comprehensive review of the literature, covering traditional protein function prediction methods, recent advances with deep learning models, and the application of protein language models (PLMs) and graph convolutional networks (GCNs). This chapter highlights the current state of research, identifying gaps that this study aims to address. 
	Chapter three discusses the research methodology employed in this study. It explains the philosophical approach, research design, and the specific methodologies used, including the data collection methods, tools, and the detailed steps taken to develop and evaluate the proposed model. 
	Chapter four focuses on the design and implementation of the proposed protein function prediction model. This chapter elaborates on how the ESM-1b model and GCNs were integrated, providing technical details of the model architecture, training process, and the computational frameworks used. 
	Chapter five presents the testing and evaluation of the model. It includes a detailed analysis of the model's performance against existing state-of-the-art methods, using evaluation metrics such as Fmax and AUPR, and discusses the implications of the findings. 
	Chapter six concludes the project with a summary of the findings, conclusions drawn from the research, and recommendations for future work. This chapter reflects on the success of the project in meeting its objectives and suggests potential areas for further research to enhance protein function prediction. 
	CHAPTER 2 -REVIEW OF LITERATURE 
	The purpose of this chapter is to provide a comprehensive analysis of the existing body of literature related to protein function prediction using Convolutional Neural Network (CNN) and Graph Neural Networks (GNNs). This chapter identifies key trends, arguments, and gaps within the field, focusing on both traditional methods and modern deep learning approaches. The scope of the literature covered includes various subfields such as protein language models, traditional prediction methods, deep learning-based 
	2.1PROTEIN LANGUAGE MODELS 
	A protein language model is the transfer application of the language models in the field of biochemistry enabling tasks such as protein structure prediction, protein function prediction, and sequence generation[17]. It takes protein sequences as input and learns the underlying biochemical properties, secondary and tertiary structures, and functional patterns, A language model is a type of neural network that can predict the next character or word based on previous text, learning the statistical patterns of 
	-

	One of the pioneering models in this area is Evolutionary Scale Modeling (ESM), developed by Facebook AI Research[11]. Evolutionary Scale Modeling (ESM) employs Transformer architectures to generate representations of protein 
	One of the pioneering models in this area is Evolutionary Scale Modeling (ESM), developed by Facebook AI Research[11]. Evolutionary Scale Modeling (ESM) employs Transformer architectures to generate representations of protein 
	sequences that capture their evolutionary and functional nuances. These models have shown great promise in tasks such as predicting protein structure and function directly from sequence data, providing a deep understanding of protein dynamics without the need for traditional experimental methods. 

	Similarly, UniRep [12], developed by researchers at Harvard, utilizes a recurrent neural network (RNN) approach to condense protein sequences into fixed-length vectors. This model has been effectively used in predicting protein stability and fluorescence, showcasing its utility in both basic biological research and practical applications such as biotechnology. 
	On the other hand, ProtTrans extends the BERT and T5 models from Natural Language Processing (NLP) to the protein sequencing field, adapting these powerful Transformer-based models to tackle protein-related tasks such as structure prediction and function classification[13]. This adaptation underscores the versatility of NLP techniques in extracting meaningful patterns from biological data. 
	ProteinBERT takes a direct cue from its NLP counterpart, applying the Masked Language Model (MLM) approach to predict amino acids in sequences[14]. This methodology helps in understanding protein functions and interactions, thereby aiding in the annotation of unknown proteins and the exploration of genetic variations. 
	Moreover, DeepSequence utilizes variational autoencoders to study the effects of genetic mutations on protein functionality [19]. This model provides insights into how alterations in protein sequences can impact their biological function, which is crucial for understanding genetic disorders and guiding the engineering of novel proteins. 
	While not a traditional language model, AlphaFold by DeepMind has revolutionized structural biology by predicting protein structures with unprecedented accuracy[20]. AlphaFold's approach, which can be seen as an extension of language modeling principles to structural prediction, has been transformative, offering detailed protein structure predictions that can accelerate drug discovery and biological research. 
	The protein language model ESM which is used in this study is an open-source project introduced by Facebook Research [11]. It takes protein sequences as input and is trained as a high-capacity Transformer with hyperparameter optimization. After training, the model produces feature representations that contain implicit information about the protein's secondary and tertiary structures, functions, homology, and more. Moreover, these representations can be visualized through linear projection. Literature shows 
	2.2TRADITIONAL PROTEIN FUNCTION PREDICTION MODELS 
	Traditional models in protein function prediction rely heavily on sequence similarity and structural homology to infer function, leveraging well-established databases and algorithms to compare unknown proteins with characterized ones[31]. These models often use techniques such as sequence alignment and motif detection to identify functional similarities. 
	The Naive method is one of the benchmark methods used for comparing protein function predictions in CAFA [32]. Its principle relies on the hierarchical structure of Gene Ontology (GO), where lower-level GO terms propagate upwards, resulting in the aggregation of numerous functional annotations at higher-level GO terms. Under the assumption of annotating the same set of GO terms for all proteins, comparable prediction results can be obtained based on annotation frequencies. 
	The BLAST-KNN method is a K-Nearest Neighbors approach based on protein sequence similarity scores, leveraging the classical sequence alignment tool BLAST [21]. 
	Within the domain of machine learning, logistic regression stands out as one of the extensively employed algorithms. In a study by You et al.[22], text data sourced 
	from the MEDLINE biomedical literature database underwent transformation into text features. Logistic regression was subsequently utilized for training, aiming to forecast the correlation between protein molecular function, biological process, and cellular component. DeepText2GO, significantly outperformed both text-based and sequence-based methods. Specifically, DeepText2GO achieved higher F-max scores (0.627 for MFO, 0.442 for BPO, and 0.694 for CCO), lower S-min scores 
	(5.240 for MFO, 17.713 for BPO, and 4.531 for CCO), and higher AUPR scores 
	(0.605 for MFO, 0.336 for BPO, and 0.729 for CCO) compared to other models. This demonstrates the model's superiority in leveraging deep semantic representations and integrating various data sources to enhance protein function prediction accuracy. Another innovation by Lee et al.[23] introduced a protein interaction network kernel logistic regression model. Leveraging the diffusion kernel, this model demonstrated superior prediction accuracy compared to a model based on Markov random field for protein funct
	2.3DEEP LEARNING BASED PROTEIN FUNCTION PREDICTION MODELS 
	Deep learning has become an effective method for predicting the function of proteins by using its capacity to automatically identify and understand intricate patterns in vast amounts of biological data. Convolutional layers allow convolutional neural networks (CNNs) to automatically and adaptively learn spatial hierarchies of features. CNNs are a class of deep learning models that are mostly employed for processing grid-like data[33], such as photographs. This idea is extended to graphstructured data by Gra
	-

	2.3.1 
	2.3.1 
	CNN based models in protein function prediction 

	Using protein sequences and known interactions, Kulmanov et al.[24] presented a new method for protein function prediction called DeepGO. This model combines two multilayer neural network-based representation learning algorithms to extract features useful for predicting protein functions. One method focuses on learning features from protein sequences, while the other learns protein representations based on their positions within the protein interaction network. The sequence features undergo processing throu
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	Two years later, Kulmanov et al.[6] introduced the DeepGOplus model. This model employs a parameterless one-hot encoding, replacing the embedding layer, resulting in a substantial reduction in the number of parameters. The embedding layer, susceptible to memorizing training data, can potentially lead to overfitting. In contrast to DeepGO, where each convolutional layer shares the same filter, DeepGOplus configures different filters for periodic convolutional layers. Additionally, DeepGOplus utilizes a flat 
	Du et al.[7] enhanced the DeepGO model, introducing the DeepAdd model. In this iteration, protein sequences are treated akin to natural language, and the word2vec method is employed to define a feature set representing proteins. DeepAdd integrates a sequence similarity graph to learn features that leverage functional relationships across various similarity levels. In instances where the protein interaction network features for a target protein are absent, the sequence similarity features of the protein are 
	Renfrew et al.[9] introduced DeepFri, a model employing long short-term memory networks and graph convolutional networks for protein function prediction. The model takes both sequence and sequence-based features (structure predicted from the sequence) as input. The initial segment of the model constitutes a selfsupervised language model structured with a recursive neural network incorporating long short-term memory. Pre-training is performed on the protein family database, utilizing it to extract residue fe
	Renfrew et al.[9] introduced DeepFri, a model employing long short-term memory networks and graph convolutional networks for protein function prediction. The model takes both sequence and sequence-based features (structure predicted from the sequence) as input. The initial segment of the model constitutes a selfsupervised language model structured with a recursive neural network incorporating long short-term memory. Pre-training is performed on the protein family database, utilizing it to extract residue fe
	-

	output from the graph convolutional layers are concatenated and fed into a fully connected layer for protein function. The outcomes of DeepFRI are noteworthy. When evaluated on experimentally annotated protein structures from the PDB, DeepFRI achieved an Fmax score of 0.657 for native structures, outperforming the sequence-only CNN-based method DeepGO, which had an Fmax score of 0.525. Furthermore, DeepFRI showed robustness in predicting functions of proteins with low sequence identity to the training set, 

	proteins with ≤30% sequence identity, compared to 0.514 for FunFams and 0.491 
	for DeepGO . 
	2.3.2 GNN based models 
	Termed Graph Residual Neural Network (GRNN)[25], employs multi-relational graphs and utilizes learnable parameters to weigh the influence of different relations. This architecture combines local information from input data through parameterized linear transformations and non-linear functions, progressively extracting useful information. GRNN's residual layers allow for increased flexibility by capturing multiple types of diffusion, thus enhancing the learning capacity of the network. Through numerical tests
	The outcomes of the GRNN framework are noteworthy. When evaluated on proteinto-protein interaction datasets, GRNN achieved a macro F1 score of 0.86 for the brain cells dataset with 440 labeled nodes, significantly outperforming the singlerelational Graph Convolutional Network (GCN) which had a macro F1 score of 0.49. Similarly, for the circulation cells dataset, GRNN attained a macro F1 score of 0.77, while GCN scored 0.48. In the generic cells dataset, GRNN scored 0.70 compared to 0.49 for GCN. These resul
	-
	-

	By adding characteristics from the Evolutionary Scale Modeling (ESM) of proteins[26], which creates sequence embeddings using transformers trained on 250 million protein sequences, PANDA2 expands upon these developments. This 
	By adding characteristics from the Evolutionary Scale Modeling (ESM) of proteins[26], which creates sequence embeddings using transformers trained on 250 million protein sequences, PANDA2 expands upon these developments. This 
	integration boosts PANDA2's prediction capability by enabling it to extract structural and sequence information from proteins. PANDA2 tied for first place in Biological Process Ontology (BPO) with a Fmax score of 0.3964 but a higher coverage rate, placed first in Cellular Component Ontology (CCO) with a Fmax score of 0.6374, and second in Molecular Function Ontology (MFO) with a Fmax score of 0.5849 when compared to top-performing methods in the CAFA3 challenge[32].These findings demonstrate the reliability

	By applying a graph neural network (GNN) framework to anticipate the impact of mutations on protein stability, ProS-GNN (Protein Stability Graph Neural Network) displays notable gains. ProS-GNN uses GNNs to describe the complex interactions between atoms in protein structures. It does this by using message passing to capture the links between molecular structure and property and by integrating raw atom coordinates to provide spatial insights. This method builds upon previous work that used convolutional neu
	The ProS-GNN results are remarkable. ProS-GNN demonstrated excellent results in terms of bias reduction and data generalization when it was trained and evaluated on many datasets [27]. In particular, ProS-GNN obtained a Pearson correlation coefficient (r) of 0.62 and a root mean square error (RMSE) (σ) of 1.11 for direct mutations and r = 0.60 and σ = 1.12 for reverse mutations when tested on the S2648 dataset. ProS-GNN obtained r = 0.61, σ = 1.23 for direct mutations and r = 0.56, σ = 1.30 for reverse muta
	The outcomes of ProS-GNN are noteworthy. When trained and tested on various datasets[27], ProS-GNN achieved high performance in terms of data generalization and bias suppression. Specifically, when evaluated on the S2648 dataset, ProS-GNN achieved a Pearson correlation coefficient (r) of 0.62 and a root mean square 
	error (RMSE) (σ) of 1.11 for direct mutations, and r = 0.60, σ = 1.12 for reverse mutations. On the Ssym dataset, ProS-GNN achieved r = 0.61, σ = 1.23 for direct 
	mutations, and r = 0.56, σ = 1.30 for reverse mutations. ProS-GNN further shown its robustness and efficiency by outperforming fifteen other algorithms in terms of prediction accuracy on the Ssym dataset. Furthermore, ProS-GNN obtained r = 0.48, 
	σ = 1.27 for direct mutations and r = 0.43, σ = 1.19 for reverse mutations on the 
	Myoglobin dataset. These findings show that ProS-GNN is a useful tool for bioinformatics research and may have therapeutic implications due to its capacity to learn feature representations efficiently and provide precise predictions of changes in protein stability following mutation. 
	2.3.3 GCN based model 
	The Graph Convolutional Network (GCN)-based hierarchical multi-label classification framework has demonstrated significant advancements[28]. This system uses sequence data and the hierarchical structure of Gene Ontology (GO) words to predict protein functions by combining GCNs with pre-trained language models. This technique improves on earlier research for sequence-based protein function prediction using convolutional neural networks (CNNs) and other deep learning techniques; however, it combines the hiera
	The Graph Convolutional Network (GCN)-based hierarchical multi-label classification framework has demonstrated significant advancements[28]. This system uses sequence data and the hierarchical structure of Gene Ontology (GO) words to predict protein functions by combining GCNs with pre-trained language models. This technique improves on earlier research for sequence-based protein function prediction using convolutional neural networks (CNNs) and other deep learning techniques; however, it combines the hiera
	DeepGraphGO, introduced by Ronghui You et al.[29], is a sophisticated model that employs graph neural networks (GNNs) to predict protein functions across multiple species, utilizing both protein sequence and protein network information. The model integrates advanced graph-based methods with sequence analysis, improving upon traditional methods which often consider only one type of data. By leveraging multispecies data, DeepGraphGO enhances the training process and achieves better generalization on protein f

	0.194 for BPO, and 0.695 for CCO, indicating its greater performance and resilience in predicting protein function across several GO domains. 
	The unsupervised protein embeddings approach leverages pre-trained deep sequence models in an unsupervised setting to extract complex feature representations that are subsequently applied to the supervised task of protein molecular function prediction[30]. This method expands on earlier work with convolutional neural networks (CNNs) and other deep learning architectures, which frequently use direct sequence input or hand-crafted features. By utilizing unsupervised learning, the method captures more intricat
	This success underscores the potential of unsupervised pre-training on large-scale protein sequence data as a powerful tool in protein function prediction. 
	2.4GENE ONTOLOGY(GO) 
	Protein functions are accurately described hierarchically by the Gene Ontology (GO). In the cells of organisms, proteins are involved in membrane transport, signal transduction, recognition, regulation, and catalysis of processes. These protein functions are directly related to their three-dimensional structures and indirectly depend on their DNA sequences[35]. The GO knowledge base mainly consists of two components: GO terms, which provide the logical structure and relationships of biological processes. Th
	Figure

	Figure 1:Example of a hierarchical structure for GO 
	Figure 1:Example of a hierarchical structure for GO 
	Proteome function prediction is a difficult multi-classification problem since proteins might have many activities in the domains of biological processes, cellular components, and molecular functions[37]. Because deep learning is so good at extracting meaning from high-dimensional data, it may be applied to a wide range 
	Proteome function prediction is a difficult multi-classification problem since proteins might have many activities in the domains of biological processes, cellular components, and molecular functions[37]. Because deep learning is so good at extracting meaning from high-dimensional data, it may be applied to a wide range 
	of classification issues, including the prediction of protein function. Additionally, deep learning requires minimal manual processes, thus it can easily utilize the increasing availability of computational resources and data. 

	2.5GCN ARCHITECTURE 
	A potent paradigm for learning from graph-structured data—which is common in fields including social networks, biological networks, and recommendation systems—has emerged: graph neural networks, or GNNs[38]. A typical GNN operates by representing data as nodes and edges, where nodes signify entities (e.g., proteins, users) and edges represent their relationships (e.g., interactions, friendships). Each node is characterized by its features, and during the learning process, nodes aggregate information from th
	Figure
	Figure 2:Multi-layer Graph Convolutional Network (GCN)[39] 
	Graph Convolutional Networks (GCNs) represent a significant evolution in the field of GNNs[39], introducing a specific type of convolutional operation adapted for graphs. Unlike traditional GNNs that utilize generic message passing, GCNs apply convolutional operations to graph data, which allows them to efficiently aggregate and transform node features from their local neighborhoods. The pioneering work by Kipf and Welling (2017)[40] simplified spectral convolutions to make GCNs more computationally efficie
	-

	The development of advanced GCN architectures, such as Graph Attention Networks (GAT) and Graph Isomorphism Networks (GIN)[41], [42], further enhanced the expressiveness and applicability of GNNs. GATs introduced attention mechanisms to dynamically weigh the importance of neighboring nodes during feature aggregation, thereby allowing the model to focus on more relevant connections. GINs, on the other hand, improved the discriminative power of GNNs by closely mimicking the Weisfeiler-Lehman graph isomorphism
	2.6LITERATURE SUMMARY 
	The literature review highlights significant advancements in protein function prediction, transitioning from traditional sequence and homology-based methods to modern deep learning models that incorporate a variety of data sources and advanced computational techniques. Traditional methods, while effective in specific contexts, often struggle with proteins that lack homologous sequences or wellcharacterized motifs. Large-scale biological data may now be automatically mined for complex patterns through the us
	The literature review highlights significant advancements in protein function prediction, transitioning from traditional sequence and homology-based methods to modern deep learning models that incorporate a variety of data sources and advanced computational techniques. Traditional methods, while effective in specific contexts, often struggle with proteins that lack homologous sequences or wellcharacterized motifs. Large-scale biological data may now be automatically mined for complex patterns through the us
	-

	Graph Neural Networks (GNNs), which are the key components of deep learning. Important discoveries highlight how well different data types—like sequence, structural, and interaction data—integrate and how deep learning models perform better at capturing the complex interactions seen in biological systems. However, gaps remain in efficiently handling large-scale data, integrating multi-source heterogeneous data, and improving model interpretability and robustness. This study's proposed method aims to address

	2.7CHAPTER SUMMARY 
	This chapter has provided a detailed review of the literature on protein function prediction, emphasizing the evolution of methods from traditional sequence and homology-based approaches to state-of-the-art deep learning-based models. It has identified key contributions and existing gaps within the field, highlighting the challenges and opportunities in integrating multi-source data and improving prediction accuracy. This comprehensive analysis sets the stage for the proposed study, which seeks to enhance p
	CHAPTER 3 -RESEARCH METHODOLOGY 
	This chapter outlines the research methodology employed in this study, detailing the research methods, research model, data analysis, evaluation metrics, and research materials. The methodology is designed to provide a systematic approach to achieve the research objectives and ensure the reliability and validity of the results. 
	3.1RESEARCH METHOD 
	The research philosophy adopted for this study is positivism. Positivism involves the use of rigorous and systematic approaches to investigate phenomena[44], relying on observable and measurable facts. This approach is consistent with the goal of the study, which is to create a unique protein function prediction model using quantifiable information from InterPro domains, protein-protein interaction networks, and protein sequences. Adopting a positivist approach ensures objectivity and reliability by focusin
	The research approach utilized is deductive. Deductive research begins with a theoretical framework, followed by the collection and analysis of data to test hypotheses derived from that theory[45]. In this study, existing theories and models related to protein function prediction, such as those using protein language models and graph convolutional networks, are used as the foundation. The hypotheses are then tested through the development and evaluation of the proposed model. This approach facilitates the t
	Quantitative methodology was selected for this study. Numerical data is gathered and analyzed using quantitative methods in order to identify trends, evaluate theories, and forecast outcomes [45], [46]. This method works well for assessing the protein function prediction model's performance using statistical measures including Fmax, accuracy, precision, and recall [47], [48], [49]. Quantitative methods provide robust statistical analysis to evaluate model performance[46], [50]. 
	An experimental research strategy is being used. In experimental research, variables are changed to see how they affect other variables. [51]. In this article, experiments are carried out using machine learning techniques and data integration from various sources to evaluate the performance of the protein function prediction model. An experimental strategy allows for controlled testing of model variables and their effects. 
	This research has a cross-sectional time horizon. Studies that examine crosssectional data do so at a particular point in time[52]. This method works well for assessing how well the protein function prediction model is performing right now with the datasets that are accessible. A cross-sectional time horizon enables a snapshot evaluation of the model's current performance. 
	-

	The research employed many approaches and procedures, such as data collecting, model creation, and performance evaluation. Data is collected from UniProt[53], STRING[54], and SwissProt databases[55]. The PyTorch and DGL frameworks are utilized in the development of the model, and a Linux server with 32GB of RAM and an NVIDIA 1080TI GPU with 12GB of VRAM is used for the tests. Metrics for performance evaluation, including Fmax, recall, accuracy, and precision, are utilized to evaluate the model [48]. These t
	This structured approach, guided by the research onion framework, ensures a thorough and methodical investigation into protein function prediction, leveraging advanced computational techniques and high-quality datasets to achieve reliable and accurate results. 
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	Figure 3:Research DESIGN 
	Figure 3:Research DESIGN 
	3.2PROPOSED RESEARCH MODEL 
	This research methodology first employs the ESM-1b (Evolutionary Scale Modeling1b) protein language model to extract protein features. Subsequently, it tunes the parameters of the DeepGraphGO graph neural network to integrate multi-source protein feature information and predict the GO scores of proteins. 
	-
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	Figure 4:Proposed Model 
	Figure 4:Proposed Model 
	3.2.1 ESM-1b 
	The ESM-1b (Evolutionary Scale Modeling-1b) is a deep Transformer-based language model designed to process protein sequences[11]. Its architecture leverages the Transformer model, which has shown exceptional performance in natural language processing tasks[14], [56]. The ESM-1b model is trained on an extensive dataset of 250 million protein sequences, totaling 86 billion amino acids, to capture the evolutionary diversity of proteins. 
	Multiple layers of feed-forward neural networks and self-attention processes make up the Transformer architecture employed in ESM-1b[11]. The Transformer's layers analyze input sequences through self-attention, enabling the model to assess the relative significance of various amino acids in a sequence. Modeling long-range dependencies and interactions within protein sequences requires the use of this mechanism[57]. These weighted inputs are then subjected to non-linear transformations by the feed-forward ne
	During training, the ESM-1b model uses a masked language modeling objective. In this configuration, the model is trained to anticipate the masked positions based on 
	the surrounding context, with a portion of the amino acids in each input sequence being randomly masked. By using this method, the model is compelled to acquire meaningful representations of protein sequences that capture the secondary structures, biological characteristics, and evolutionary links included in the data. 
	The ESM-1b model encodes biochemical properties of amino acids into its representations. These properties include hydrophobicity, polarity, and molecular weight. Visualization techniques such as t-SNE (t-distributed stochastic neighbor embedding) reveal distinct clustering of amino acids based on these biochemical properties[58], indicating that the model effectively captures and utilizes this information. The representations learned by ESM-1b contain rich information about the secondary and tertiary struct
	-
	-
	-
	-

	In summary, the ESM-1b model, with its deep Transformer architecture and extensive training on diverse protein sequences, provides powerful and accurate 
	representations of protein sequences. These representations capture a wide range of biological information, enabling superior performance in structural prediction, homology detection, and other critical bioinformatics tasks. The success of ESM-1b highlights the potential of large-scale unsupervised learning in advancing our understanding of protein biology. 
	3.2.2 
	3.2.2 
	DeepGraphGO 

	The research medel employs a model closely aligned with DeepGraphGO, as illustrated in Figure 3.2. The input node features consist of 1280-dimensional protein features trained using the ESM-1b protein language model. The input adjacency matrix represents the top 100 interaction strengths for each node within the proteinprotein interaction network. The model processes these inputs through a fully connected layer, followed by two GCN layers and an output layer to generate the predicted GO scores. 
	-
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	Figure 5:DeepGraphGO (Source : You et al.,[29]) 
	Figure 5:DeepGraphGO (Source : You et al.,[29]) 
	Graph convolutional networks have been proven capable of extracting features from the natural representation of data for one or multiple graphs. The concept of the graph convolutional layers in DeepGraphGO and proposed model is that graph convolutional networks are an appropriate method for extracting features from 
	Graph convolutional networks have been proven capable of extracting features from the natural representation of data for one or multiple graphs. The concept of the graph convolutional layers in DeepGraphGO and proposed model is that graph convolutional networks are an appropriate method for extracting features from 
	protein interaction networks, considering the graph-based structure represented by the protein interaction network. Based on the work of Kipf and Welling [34], the 

	model proposed in this paper updates the representation vectors Hin ℝof the graph convolutional network layer at the l-th level and the residual connections as follows: 
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	Where A represents the adjacency matrix, and I represents the identity matrix of 
	dimension N, and 𝐴= 𝐴+𝐼.𝐷is the degree matrix of 𝐴.𝐖in ℝand 𝐛in ℝare the weights and biases, respectively. M consecutive graph convolutional layers can capture high-order node information of order M. 
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	The output layer primarily transforms the matrix obtained from information propagation and mathematical calculations of the previous model to change its dimensionality to match the number of GO categories[29], [58]. The resulting vector for each item represents the predicted score for each GO category. The anticipated score for every GO category is shown in the resulting vector for every item. An activation function and a fully linked layer are used to implement the output layer. The fully connected layer g
	Activation functions are a key part of neural network design. Their role is to make the model more flexible. Each deep learning neural network model must choose activation functions based on particular conditions because different hidden layer activation functions will produce different learning outcomes for the network model on the training dataset; the output layer activation functions will determine the kinds of predictions the model can make. The sigmoid activation function, sometimes 
	Activation functions are a key part of neural network design. Their role is to make the model more flexible. Each deep learning neural network model must choose activation functions based on particular conditions because different hidden layer activation functions will produce different learning outcomes for the network model on the training dataset; the output layer activation functions will determine the kinds of predictions the model can make. The sigmoid activation function, sometimes 
	referred to as the logistic function, is the activation function that is employed in this article. Algorithms for logistic regression classification employ the same function. Any real value between 0 and 1 can be used as the input and output of this function. The output value approaches 1 in proportion to the input value, and it approaches 0 in proportion to the input value. For the ith protein and the jth GO category, the predicted score 𝑦̂is obtained through the following output layer: 
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	Where 𝐰∈ ℝand 𝐛∈ℝ , are the weights and deviations of the functions predicting the j-th GO class, respectively, and σ is the activation function[29]. 
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	The difference between the computation algorithm's intended output and current output determines the value of the loss function. One way to evaluate the impact of a data modeling algorithm is to use the loss function. It can be separated into two categories: regression (continuous values) and classification (discrete values). This article uses a binary cross-entropy function as its loss function. The likelihood of each prediction is compared to the actual class output—which can be either 0 or 1—using binary
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	Where, K, means the number of GO classes, 𝑦is the true value and 𝑦̂is the predicted value. 
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	3.3 DATA ANALYSIS AND EVALUATION METRICS 
	This study's data analysis uses a rigorous methodology that incorporates quantitative techniques to assess the prediction model's performance in detail. [59]. 
	Through the use of quantitative analysis, the research is able to obtain a more nuanced knowledge of the behavior of the model and identify possible areas for improvement by delving deeper into the underlying patterns and correlations within the data. Furthermore, quantitative analysis provides a strong statistical assessment that makes it possible to precisely analyze the model's accuracy, recall, precision, and other important metrics.[47], [60]. By combining the advantages of qualitative insights with th
	3.3.1 Fmax 
	In the field of bioinformatics, Fmax is a crucial evaluation metric that is especially useful for jobs involving multi-label classification issues, such as protein function prediction. It stands for the highest F-measure, which is determined across several thresholds[47], [61]. It is a harmonic mean of precision and recall. Because it takes into account both precision (the accuracy of positive predictions) and recall (the capacity to locate all pertinent instances), the Fmax metric offers a fair assessment 
	A protein may fall into more than one functional category in multi-label classification tasks like protein function prediction, which increases the complexity of evaluating prediction models. The model's performance may not be fully captured by conventional metrics like accuracy, particularly when dealing with imbalanced datasets. To tackle this, Fmax offers a solitary metric that strikes a compromise between recall and precision, guaranteeing that false positives and false negatives are considered equally 
	By integrating accuracy and recall, Fmax provides a fair assessment of prediction models. This is important in situations where both false positives and false negatives might have serious consequences, like in biological research. Fmax, which is calculated across a range of thresholds, gives researchers the option to choose the best threshold for their particular application. This is especially helpful when working with datasets that exhibit variable levels of class imbalance. Fmax, which combines 
	By integrating accuracy and recall, Fmax provides a fair assessment of prediction models. This is important in situations where both false positives and false negatives might have serious consequences, like in biological research. Fmax, which is calculated across a range of thresholds, gives researchers the option to choose the best threshold for their particular application. This is especially helpful when working with datasets that exhibit variable levels of class imbalance. Fmax, which combines 
	precision and recall, offers a more thorough assessment of a model's performance than accuracy alone. This makes it crucial in multi-label classification, as the existence of several classes can impede the evaluation process. 

	The calculation of Fmax involves several steps. Firstly, precision and recall are computed at various thresholds. Precision (P) and recall (R) are defined as: 
	𝑇𝑃 𝑇𝑃 
	Precision= = (3.4) 
	𝑇𝑃+𝐹𝑃 all detections 
	𝑇𝑃 𝑇𝑃 
	Recall= = (3.5) 
	𝑇𝑃+𝐹𝑃 all ground truth 
	whereas genuine positives that were not projected as such are called false negatives (FN), false positives (FP) are called erroneously predicted positive samples, and true positives (TP) are called properly predicted positive samples [47]. 
	Fmax refers to the F-measure value of the protein center calculated at all predicted thresholds. First, the mean precision and recall were calculated using the following formula: 
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	𝐴𝑣𝑔𝑅𝑐(𝑡) = ⋅ ∑𝑟(𝑡)
	𝑖=1 
	𝑖 

	𝑛 
	And 𝑓 represents a GO class; represents the correctly annotated set; 
	Figure

	represents the annotated set of predicted proteins i at the threshold t; represents the number of predicted proteins with more than one function; And 𝑛 represents the number of all proteins; 𝐼 represents a recognition function. The prediction correctly returns 1, otherwise it returns 0. Then, Fmax was calculated at a threshold t ∈[0,1] with an update pace of 0.01. If the predicted score of a GO class is greater than t, the protein is considered predicted to have this function: 
	Figure
	2⋅𝐴𝑣𝑔𝑃𝑟(𝑡)⋅𝐴𝑣𝑔𝑅𝑐(𝑡)
	𝐹 =max{ } (3.7) 
	max 
	𝑡 𝐴𝑣𝑔𝑃𝑟(𝑡)+𝐴𝑣𝑔𝑅𝑐(𝑡) 
	In practice, Fmax is particularly useful in evaluating models for protein function prediction. Given the complexity and multi-label nature of protein functions, Fmax helps in assessing how well the model can predict multiple functions simultaneously. By using this metric, researchers can fine-tune their models to achieve a better balance between precision and recall, ultimately leading to more accurate and reliable predictions[64]. 
	In summary, Fmax is an essential metric for evaluating multi-label classification models, providing a balanced and comprehensive measure of performance. Its calculation through the optimization of the F1 score across various thresholds ensures that both precision and recall are adequately considered, making it a preferred choice for complex prediction tasks in bioinformatics. 
	3.3.2 Area Under the Precision-Recall Curve 
	A crucial assessment statistic in machine learning is Area Under the Precision-Recall Curve (AUPR), especially when dealing with classification issues with unbalanced data [48]. The Precision-Recall (PR) curve, which plots recall—the percentage of genuine positive outcomes among all actual positive instances— against precision—the percentage of true positive results among all positive results predicted by the model—is the source of AUPR. This curve is obtained at different threshold settings. 
	When there is an imbalance in the dataset—that is, when there are much fewer positive cases than negative cases—AUPR becomes especially useful. In these situations, conventional criteria such as accuracy may be deceptive due to their potential dominance by the majority class [47]. AUPR provides a more informative picture by focusing on the performance of the model with respect to the minority class. AUPR is highly sensitive to the imbalance between classes, making it an ideal metric for applications where t
	When there is an imbalance in the dataset—that is, when there are much fewer positive cases than negative cases—AUPR becomes especially useful. In these situations, conventional criteria such as accuracy may be deceptive due to their potential dominance by the majority class [47]. AUPR provides a more informative picture by focusing on the performance of the model with respect to the minority class. AUPR is highly sensitive to the imbalance between classes, making it an ideal metric for applications where t
	overwhelmed by the majority class. By considering both precision and recall, AUPR gives a comprehensive measure of a model’s ability to retrieve all relevant instances (recall) while minimizing false positives (precision). This is crucial in applications like medical diagnosis, fraud detection, and information retrieval, where both precision and recall are important[48]. AUPR integrates performance across all possible thresholds, providing a single scalar value that summarizes the model's performance. This 

	The Precision-Recall curve is integrated to determine the AUPR. Plotting precision and recall values at different threshold levels results in this curve. The definitions of precision (P) and recall (R) are given in equation 3.1, where true positives (TP) are positive samples that were successfully predicted, false positives (FP) are positive samples that were mistakenly forecasted, and false negatives (FN) are positive samples that were not predicted in the first place. 
	To create the PR curve, these precision and recall values are calculated at multiple threshold levels. The AUPR is then the area under this curve, which can be computed using numerical integration methods such as the trapezoidal rule. The mathematical expression for AUPR can be represented as: 
	AUPR = ∫𝑃(𝑅)𝑑𝑅 (3.8) 
	1 

	0 
	This integral can be approximated by summing the areas of the trapezoids formed between successive points on the PR curve: 
	𝑃𝑖+𝑃𝑖+1
	𝑃𝑖+𝑃𝑖+1

	AUPR = ∑(𝑅− 𝑅) × (3.9)
	𝑛
	𝑖=
	−
	1
	1 
	𝑖+1 
	𝑖

	2 
	where 𝑃and 𝑅are the precision and recall at the 𝑖 -th threshold, and 𝑛 is the number of thresholds[64]. 
	𝑖 
	𝑖 

	AUPR is particularly useful in fields such as bioinformatics, medical diagnosis, and information retrieval, where identifying the positive class accurately is more critical than predicting the majority class correctly. For instance, in protein function 
	AUPR is particularly useful in fields such as bioinformatics, medical diagnosis, and information retrieval, where identifying the positive class accurately is more critical than predicting the majority class correctly. For instance, in protein function 
	prediction, accurately identifying the correct function (positive class) among a large number of non-functions (negative class) is crucial. AUPR provides a meaningful evaluation metric that reflects the model’s capability to perform well under these conditions. 

	In summary, AUPR is an essential metric for evaluating classification models, 
	especially in imbalanced datasets. It provides a balanced measure of a model’s 
	precision and recall across all thresholds, making it a preferred choice for assessing performance in scenarios where accurately predicting the minority class is critical. Its calculation through the integration of the Precision-Recall curve ensures a comprehensive evaluation of the model's ability to distinguish between positive and negative classes. 
	3.4RESEARCH MATERIALS 
	This section provides an overview of the materials used in this research, including the datasets, software, and hardware. The materials are selected to ensure the robustness, reliability, and efficiency of the research process, aligning with the research objectives. 
	3.4.1 Research Data 
	The bioinformatics community has initiated competitions such as the Critical Assessment of Functional Annotation (CAFA) challenge to address performance evaluation issues in automatic protein function prediction[32]. CAFA provides guidelines for constructing datasets for protein function prediction problems and criteria for evaluating prediction results. This article's protein data uses the same dataset as DeepGraphGO[29], following CAFA's principles and using the same 17 
	The bioinformatics community has initiated competitions such as the Critical Assessment of Functional Annotation (CAFA) challenge to address performance evaluation issues in automatic protein function prediction[32]. CAFA provides guidelines for constructing datasets for protein function prediction problems and criteria for evaluating prediction results. This article's protein data uses the same dataset as DeepGraphGO[29], following CAFA's principles and using the same 17 
	reference species as CAFA4. The protein sequence data is sourced from UniProt [53], totaling about 18,000 entries. The protein interaction network data comes from the eleventh edition of the STRING database [54], covering approximately 24 million proteins. The GO terms data is sourced from SwissProt [55], extracting all experimental annotation data, categories including: 'IDA', 'IPI', 'EXP', 'IGI', 'IMP', 'IEP', 'IC', or 'TA', all of which are combined to form an annotation dataset. Ultimately, a fasta file

	Table 4. 1:Datasets from Deepgraphgo[29] 
	Datasets 
	Datasets 
	Datasets 
	MFO 
	BPO 
	CCO 

	Train 
	Train 
	35092 
	54276 
	48093 

	Valid 
	Valid 
	490 
	1579 
	923 

	Test 
	Test 
	426 
	925 
	1224 

	Total 
	Total 
	36008 
	56780 
	50240 


	UniProt: The Universal Protein Resource UniProt () is a comprehensive repository of protein sequence and functional information, offering extensive coverage of protein diversity. It provides detailed annotations for proteins, including information on their functions, structures, and roles in biological processes. 
	https://www.uniprot.org/help/downloads
	https://www.uniprot.org/help/downloads


	STRING Database: Protein-protein interactions that are known or expected can be found in the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (). The vast and trustworthy dataset is ensured by the fact that these interactions are derived from multiple sources, such as public text collections, computer prediction techniques, and experimental data. 
	https://string-db.org

	SwissProt: A curated protein sequence database that provides a high level of annotation, including information on protein function, domain structure, and posttranslational modifications. SwissProt () focuses on experimentally validated data, making it a gold standard for functional annotation. 
	-
	https://www.ebi.ac.uk/GOA

	3.4.2 Data Collection Methods and Tools
	: 

	The chosen datasets are highly suitable for this research due to their comprehensive coverage[36], [53], [54], [55], high-quality interaction data, and reliable functional annotations. UniProt provides an extensive array of protein sequences, ensuring broad representation across various species and functions. This diversity is crucial for capturing the wide range of biological activities that proteins can perform. The STRING database is renowned for its detailed and highconfidence interaction data, which is
	-
	-

	The research adheres to ethical standards by utilizing publicly available datasets, ensuring compliance with data usage policies and avoiding issues related to data privacy and consent[53], [54], [55]. Proper attribution is given to all data sources, acknowledging the original contributors and maintaining academic integrity. Furthermore, the datasets used do not contain any personal or sensitive information, thereby minimizing ethical concerns related to data handling. This ethical approach 
	The research adheres to ethical standards by utilizing publicly available datasets, ensuring compliance with data usage policies and avoiding issues related to data privacy and consent[53], [54], [55]. Proper attribution is given to all data sources, acknowledging the original contributors and maintaining academic integrity. Furthermore, the datasets used do not contain any personal or sensitive information, thereby minimizing ethical concerns related to data handling. This ethical approach 
	not only ensures the integrity of the research process but also aligns with best practices for using publicly accessible data in scientific research. By addressing these ethical considerations, the research maintains transparency and respect for the data providers and the broader scientific community. 

	3.4.3 Software and hardware 
	The code for this study was written using the PyTorch and DGL (Deep Graph Library) frameworks due to their robust capabilities and flexibility. PyTorch is renowned for its dynamic computation graph, which simplifies debugging and allows for easy modifications during model development. This is particularly beneficial in research settings where models often need to be iteratively refined. Additionally, PyTorch's extensive support for neural network components, including pre-built modules, loss functions, and 
	DGL complements PyTorch by providing specialized tools for handling graph-based data, essential for implementing Graph Neural Networks (GNNs). Protein-protein interaction networks can be naturally represented as graphs, and DGL's optimized graph operations ensure efficient processing of these structures. Together, PyTorch and DGL offer a high-performance, scalable solution that leverages GPU acceleration for handling large datasets, a critical requirement for this study. Moreover, the strong community suppo
	The training and experiments for the models in this study were conducted on a Linux server equipped with 32GB of RAM and an NVIDIA 1080TI GPU with 12GB of VRAM. 
	3.5CHAPTER SUMMARY 
	In this chapter, the research methodology for developing a novel protein function prediction model was thoroughly outlined. The chapter began by detailing the research philosophy of positivism and the deductive approach employed. This structured methodology ensures objectivity and reliability, focusing on quantifiable data from protein sequences, protein-protein interaction networks, and InterPro domains. 
	The chapter proceeded to describe the selection and justification of research materials, including high-quality datasets from UniProt, STRING, and SwissProt. These datasets provide comprehensive coverage and reliable annotations crucial for accurate model training and evaluation. The choice of PyTorch and DGL frameworks was justified by their robust capabilities in handling neural networks and graph-based data, respectively. The computational experiments were conducted on a powerful Linux server equipped wi
	This chapter lays the groundwork for the upcoming design and implementation of the prediction model in Chapter 4, providing a strong foundation of meticulous approach and superior materials. By combining graph convolutional networks with protein language models, the area of protein function prediction should become more accurate and efficient, filling in some of its current shortcomings. This process will be expanded upon in the next chapter, which will include specifics on the creation, application, examin
	CHAPTER 4 – EXPERIMENT AND RESULT ANALYSIS 
	This chapter explores the experimental design, the outcomes of using the suggested model, and a thorough examination of these outcomes. The experimental setup, results and analysis, discussion, and summary make up the chapter's four sections. This framework guarantees a thorough comprehension of the study's performance, methods, and consequences. 
	4.1EXPERIMENTAL SETUP 
	In this chapter the details of the experiments conducted to obtain the study results are provided. The experimental setup integrates multiple high-quality datasets and leverages advanced computational frameworks to predict protein functions using a novel model that combines protein language models (PLMs) and Graph Convolutional Networks (GCNs). 
	And the datasets used in this experiment underwent the following preprocessing steps. 
	⚫
	⚫
	⚫
	⚫

	Protein Sequences: Data is extracted from UniProt in FASTA format[53]. Automated scripts are used to download sequences, ensuring that the dataset is comprehensive and up-to-date. 

	⚫
	⚫
	⚫

	PPI Network Data: Interactions from the STRING database are filtered to retain only the top 100 interactions for each protein based on interaction strength. This filtering ensures that the data includes the most biologically relevant interactions[54]. 

	⚫
	⚫
	⚫

	GO Terms: Gene Ontology annotations are sourced from SwissProt[55], focusing on experimental evidence codes such as 'IDA' (Inferred from Direct Assay), 'IMP' (Inferred from Mutant Phenotype), and others. This ensures that the functional annotations used are reliable and validated. 


	The model was trained using a two-layer Graph Convolutional Network (GCN).Table 2 shows the parameters setting for the model training. 
	Table 4. 2:Parameters setting 
	Input size 
	Input size 
	Input size 
	Hidden size 
	Drop out rate 
	Epochs 
	Batch size 
	Optimizer 
	Learning rate 
	Activation Function 

	1280 
	1280 
	512 
	0.5 
	20 
	8 
	Adam 
	1e-3 
	Sigmoid 


	The choice of the Adam optimizer was due to its adaptive learning rate capabilities[65], which efficiently handle sparse gradients and noisy problems. The Sigmoid function was selected to suit the multi-binary classification requirement[66], ensuring that the model could effectively distinguish between the presence and absence of multiple features. 
	4.2RESULTS AND ANALYSIS 
	The evaluation of the model's performance was based on Fmax and AUPR[47], [48], [49], the most common metrics in the protein function prediction area[29]. The scores for these metrics, corresponding to the predictions made by the model in this study for the Molecular Function Ontology (MFO), Biological Process Ontology (BPO), and Cellular Component Ontology (CCO), are presented in a tabular format. A comparison was conducted with BLAST-KNN ,LR-InterPro and Net-KNN proposed by R. You et al.[67], DeepGO[24], 
	The evaluation of the model's performance was based on Fmax and AUPR[47], [48], [49], the most common metrics in the protein function prediction area[29]. The scores for these metrics, corresponding to the predictions made by the model in this study for the Molecular Function Ontology (MFO), Biological Process Ontology (BPO), and Cellular Component Ontology (CCO), are presented in a tabular format. A comparison was conducted with BLAST-KNN ,LR-InterPro and Net-KNN proposed by R. You et al.[67], DeepGO[24], 
	DeepGraphGO[29]. The data ranked first in individual performance is highlighted in bold. 

	Table 4. 3:Performance comparison of Proposed Model 
	Fmax 
	Fmax 
	Fmax 
	AUPR 

	Method 
	Method 

	MFO 
	MFO 
	BPO 
	CCO 
	MFO 
	BPO 
	CCO 

	BLAST-KNN[67] 
	BLAST-KNN[67] 
	0.590 
	0.274 
	0.650 
	0.455 
	0.113 
	0.570 

	LR-InterPro[67] 
	LR-InterPro[67] 
	0.617 
	0.278 
	0.661 
	0.530 
	0.133 
	0.672 

	Net-KNN[67] 
	Net-KNN[67] 
	0.426 
	0.305 
	0.667 
	0.276 
	0.157 
	0.641 

	DeepGO[24] 
	DeepGO[24] 
	0.434 
	0.248 
	0.632 
	0.306 
	0.101 
	0.573 

	DeepGOPlus[6] 
	DeepGOPlus[6] 
	0.593 
	0.290 
	0.672 
	0.398 
	0.108 
	0.595 

	DeepGraphGO[29] 
	DeepGraphGO[29] 
	0.623 
	0.290 
	0.672 
	0.543 
	0.194 
	0.695 

	ProposedModel 
	ProposedModel 
	0.531 
	0.336 
	0.686 
	0.456 
	0.212 
	0.705 


	Based on the performance metrics provided in Table 4.2 and Figure 4.1, DeepGraphGO outperforms other models in Molecular Function Ontology (MFO) prediction, achieving the highest Fmax (0.623) and AUPR (0.543) scores. This superior performance can be attributed to its ability to effectively leverage graph convolutional networks (GCNs) to integrate both sequence information and protein interaction data. The multiple layers of GCNs in DeepGraphGO allow for capturing complex, high-order relationships within pro
	Chart 1:Performance 
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	In the BPO category, the proposed model achieves the highest Fmax score (0.686) and AUPR score (0.705), outperforming all other models. This strong performance can be attributed to the model's ability to effectively integrate diverse features from protein sequences, PPI networks[54], and InterPro domains. The combination of these features allows the model to capture the complex interactions and pathways that are essential for predicting biological processes. The use of ESM-1b for extracting high-dimensional
	In the BPO category, the proposed model achieves the highest Fmax score (0.686) and AUPR score (0.705), outperforming all other models. This strong performance can be attributed to the model's ability to effectively integrate diverse features from protein sequences, PPI networks[54], and InterPro domains. The combination of these features allows the model to capture the complex interactions and pathways that are essential for predicting biological processes. The use of ESM-1b for extracting high-dimensional
	intricate dependencies between proteins within a biological process. This multisource integration is crucial for BPO predictions[15], where understanding the functional interactions between proteins is key to accurately identifying the underlying biological processes. 
	-


	In the CCO category, the proposed model again demonstrates superior performance with the highest Fmax score (0.705) and AUPR score (0.705). The model's success in CCO predictions can be attributed to its effective utilization of PPI network data, which is critical for understanding the spatial distribution and localization of proteins within the cell. By leveraging the GCN layers, the model is able to capture the complex network context that influences cellular localization. The integration of protein seque
	4.3DISCUSSION 
	The results of this study, as shown in Tables 4.1 and 4.2, reveal that the proposed model's performance varied significantly across different ontologies. This section explores potential reasons behind these performance differences, supported by relevant literature, and provides a detailed analysis of the model's strengths and weaknesses. 
	Model Adaptability 
	⚫

	Traditional models like BLAST-KNN and LR-InterPro have long relied on sequence homology for predicting protein functions. These models utilize sequence alignment and similarity scoring techniques, which are particularly effective for tasks where sequence information alone is a strong predictor of function, such as in Molecular Function Ontology (MFO) predictions. For example, studies by Pearson et al.[68] and Altschul et al. [69]emphasize that 
	Traditional models like BLAST-KNN and LR-InterPro have long relied on sequence homology for predicting protein functions. These models utilize sequence alignment and similarity scoring techniques, which are particularly effective for tasks where sequence information alone is a strong predictor of function, such as in Molecular Function Ontology (MFO) predictions. For example, studies by Pearson et al.[68] and Altschul et al. [69]emphasize that 
	sequence-based approaches often excel in identifying proteins with similar functions when the sequences are sufficiently homologous . 

	In contrast, the proposed model integrates diverse features from multiple sources, including protein sequences, PPI networks, and InterPro domains. While this comprehensive integration offers a richer context for function prediction, it may also introduce complexity and noise, potentially making it less effective for MFO predictions, where simple sequence similarity might suffice. The added complexity could obscure specific sequence-based signals that are critical for accurate MFO predictions, as suggested 
	Data Utilization 
	⚫

	The proposed model leverages ESM-1b, a pre-trained protein language model, for feature extraction, capturing intricate details of protein sequences. ESM-1b has been shown to provide a powerful representation of protein sequences, capturing not just the sequence information but also structural and functional properties that are important for understanding protein behavior (Rives et al.[11]) . This comprehensive feature representation likely contributes to the model's strong performance in Biological Process 
	For BPO predictions, the integration of PPI network data enhances the model's ability to capture interactions and pathways involving multiple proteins, which are key to understanding biological processes. Similarly, for CCO, the model's effectiveness in capturing cellular localization likely benefits from the detailed network context provided by the PPI data. This aligns with the findings of Barabási and Oltvai[71], who noted that biological networks are integral to understanding cellular functions and loca
	Integration of Multi-Source Features 
	Integration of Multi-Source Features 
	⚫

	The integration of multi-source protein features, including sequence data, interaction networks, and domain information, likely played a significant role in the proposed model's superior performance in BPO and CCO. By combining these diverse data types, the model can develop a holistic view of protein function, which is particularly beneficial for complex tasks involving multiple interacting components. This approach is supported by previous research, such as that by Zhang et al. [39], which demonstrated th

	However, this approach may not be as effective for MFO predictions, which often depend more directly on specific sequence motifs or active sites. The added complexity from integrating multiple data sources might dilute the impact of these critical sequence-specific features, potentially leading to less accurate predictions. This potential downside is echoed in the work of Almagro Armenteros et al.[72], who suggested that while multi-source integration can enhance performance, it must be carefully managed to
	Graph Convolutional Networks 
	⚫

	Graph Convolutional Networks (GCNs) are particularly effective at capturing relationships in graph-structured data, such as PPI networks. In the proposed model, GCN layers effectively aggregate information from neighboring nodes in the PPI network, allowing the model to learn about the broader network context of each protein. This capability is especially useful for BPO and CCO predictions, where the network context can provide critical insights into biological processes and cellular localization. Kipf and 
	However, the effectiveness of GCNs might be less pronounced in MFO, where functional relationships may not be as graph-dependent and might rely more on localized sequence features. This limitation is consistent with the observations of Shervashidze et al.[43], who noted that while GCNs are powerful for graph
	However, the effectiveness of GCNs might be less pronounced in MFO, where functional relationships may not be as graph-dependent and might rely more on localized sequence features. This limitation is consistent with the observations of Shervashidze et al.[43], who noted that while GCNs are powerful for graph
	-

	structured data, they may not always capture more localized, sequence-based information as effectively as other models . 

	Challenges in MFO Prediction 
	⚫

	Molecular Function Ontology (MFO) predictions often involve predicting specific biochemical activities of proteins, such as enzymatic functions, binding affinities, or catalytic roles. These functions are typically determined by specific amino acid residues and motifs within the protein sequence. The proposed model's reliance on broader network and domain features might not capture these specific sequence motifs as effectively as models focused solely on sequence alignment and homology. As discussed by Jone
	Additionally, the complexity of integrating diverse features could introduce noise that impacts the model's ability to make accurate MFO predictions. This challenge is highlighted in the work of Zhou et al. [32], who pointed out that while multi-source integration can provide a more complete picture, it also risks introducing irrelevant information that can degrade performance for tasks requiring highly specific feature recognition . 
	Potential Improvements 
	⚫

	To enhance the proposed model's performance in MFO predictions, future work could focus on refining the feature integration process to minimize noise and improve the model's ability to capture specific sequence motifs. Techniques such as feature selection and weighting could be optimized to prioritize the most relevant features for MFO tasks. Additionally, incorporating more sophisticated techniques for feature extraction and selection, such as attention mechanisms or hierarchical models, could help improve
	Overall, while the proposed model shows strong performance in BPO and CCO predictions, there are clear areas for improvement, particularly in MFO predictions. By addressing these challenges and incorporating advanced techniques, the model's effectiveness and applicability could be further enhanced, contributing to more accurate and comprehensive protein function predictions in future research. 
	4.4SUMMARY 
	This chapter has outlined the experimental setup, results, and analysis of the proposed model for protein function prediction. The proposed model demonstrated superior performance in BPO and CCO, achieving the highest Fmax and AUPR scores, but underperformed in MFO predictions compared to other models. The analysis highlights the strengths of integrating multi-source features and the adaptability of GCNs for specific ontologies while pointing out areas needing improvement for better MFO predictions. This de
	CHAPTER 5 – SUMMARY CONCLUSION AND RECOMMENDATIONS 
	5.1 SUMMARY 
	The primary aim of this study was to develop a novel protein function prediction model by integrating data from protein sequences, protein-protein interaction (PPI) networks, and InterPro domains using a Protein Language Model (PLM) and Graph Convolutional Network (GCN) to generate accurate predictions of protein functions. The main objectives of this study were achieved through the following steps: 
	The first objective was to generate embeddings from protein sequences using the pre-trained protein language model (ESM-1b) for feature extraction. The approach involved utilizing ESM-1b to process and extract high-dimensional feature representations from protein sequences. This method successfully generated detailed embeddings that capture the complex biochemical properties of proteins, forming the foundational features necessary for accurate function prediction. 
	The second objective focused on integrating the embeddings from protein sequences and InterPro domains with adaptive feature weights into the PPI graph and using GCNs to generate protein features. By combining the extracted embeddings with PPI network data and InterPro domain features, and applying GCNs for feature integration, a comprehensive feature set was created. This integration significantly enhanced prediction accuracy by leveraging multiple sources of protein information. 
	The third objective was to develop a classification model that combines the feature weights and protein feature vectors generated by PLM, PPI, and GCNs. A GCNbased model was designed and implemented to process the integrated feature vectors and predict protein functions. This robust model demonstrated its capability to predict protein functions across different Gene Ontology (GO) categories effectively. 
	-

	The fourth objective involved evaluating and comparing the performance of the developed model against existing state-of-the-art methods using well-known evaluation metrics. Extensive testing and evaluation were conducted using metrics 
	The fourth objective involved evaluating and comparing the performance of the developed model against existing state-of-the-art methods using well-known evaluation metrics. Extensive testing and evaluation were conducted using metrics 
	such as Fmax and AUPR. The proposed model demonstrated superior performance in Biological Process Ontology (BPO) and Cellular Component Ontology (CCO) predictions, validating the effectiveness of the proposed integration and methodology. 

	5.2 CONCLUSION 
	The proposed model utilized an integrated approach combining ESM-1b embeddings, PPI networks, and GCNs to predict protein functions. The methodology involved extracting detailed protein features using ESM-1b, which captures high-dimensional representations of protein sequences, followed by integrating these features through Graph Convolutional Networks (GCNs). This integration process enabled the model to leverage multiple sources of information, such as sequence data, protein-protein interactions, and doma
	The outcomes of this integrated approach were promising, with the proposed model achieving an Fmax of 0.531 for MFO, 0.336 for BPO, and 0.686 for CCO, along with AUPR scores of 0.456 for MFO, 0.212 for BPO, and 0.705 for CCO. The proposed model excelled in predicting Biological Process Ontology (BPO) and Cellular Component Ontology (CCO), achieving the highest Fmax scores of 0.686 for CCO and 0.336 for BPO, and the highest AUPR scores of 0.705 for CCO and 0.212 for BPO, among the compared models. This indic
	5.3 LIMITATION AND RECOMMENDATION 
	5.3 LIMITATION AND RECOMMENDATION 
	The proposed model exhibited variability in performance across different GO categories, notably underperforming in MFO predictions. Integrating multi-source features introduced complexity and potential noise, which may have affected the model's accuracy for specific tasks. Additionally, the model required significant computational resources for training and evaluation, which could limit its scalability and accessibility. Moreover, the model was implemented using an older version of the DGL framework (0.4.3p

	Future research should focus on refining the feature integration process to reduce noise and enhance the model's ability to capture specific sequence motifs, particularly for MFO predictions. This could involve optimizing the feature selection and weighting mechanisms to ensure that the most relevant features are prioritized. Incorporating sophisticated techniques such as attention mechanisms or hierarchical models could improve the model's adaptability and performance across all GO categories. Attention me
	Developing more efficient training algorithms and exploring distributed computing approaches can help scale the model for larger datasets and broader applications. Implementing parallel processing and leveraging cloud-based platforms could enhance the model's scalability and make it more accessible for researchers with limited computational resources. Utilizing more diverse and extensive datasets could further improve the model's generalizability and robustness, providing a more comprehensive tool for prote
	Additionally, updating the implementation to use the latest version of the DGL framework and employing more advanced GPU hardware could significantly 
	improve training efficiency and model performance. This would allow for larger batch sizes and faster training times, potentially leading to better optimization and more accurate predictions. 
	By addressing these limitations and pursuing the proposed future work, the model's performance and applicability can be significantly enhanced, contributing to advancements in bioinformatics and protein function prediction. 

	CHAPTER6 – REFLECTION 
	CHAPTER6 – REFLECTION 
	In managing the work, I adopted a methodical approach by breaking down the project into smaller tasks with specific deadlines given by the supervisor. This allowed me to monitor progress effectively and ensure that each stage of the project was completed on time. Regular reviews and adjustments to the schedule ensured that I met all deadlines without compromising the quality of the work. The use of project management tools alongside AI assistance was key to maintaining this balance. I extensively used AI to
	Additionally, this project provided a significant opportunity to develop and enhance my technical skills, particularly in machine learning and bioinformatics. Learning to implement and fine-tune complex models like Graph Convolutional Networks (GCNs) and integrating them with pre-trained models such as ESM-1b was both challenging and rewarding. Conducting experiments on a Linux server equipped with an NVIDIA 1080TI GPU presented challenges in processing speed and memory limitations, necessitating smaller ba
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	PROJECT MANAGEMENT 
	PROJECT MANAGEMENT 
	Effective project management was critical to the successful completion of this research project. To ensure that the project stayed on track, I employed a detailed plan that was reflected in two Gantt charts: the Original Gantt Chart and the Actual Gantt Chart showed in Figure 6 and Figure 7. 
	Figure

	Figure 6:Original Gantt Chart 
	Figure 6:Original Gantt Chart 
	Figure

	Figure 7：Actual Gantt Chart 
	Figure 7：Actual Gantt Chart 
	The Original Gantt Chart laid out the initial timeline for the project, starting with the early stages of research, data collection, and literature review. It provided a structured framework for the project, with specific milestones set for each phase, including the development of the model, experimentation, analysis, and the writing of the thesis. As the project progressed, some adjustments were made, which are reflected in the Actual Gantt Chart. While the project generally followed the planned timeline, 
	Overall, the project management strategy, as depicted in the Gantt charts, played a crucial role in organizing the workflow, meeting deadlines, and accommodating unforeseen challenges. The flexibility to adjust the schedule as needed ensured that the project objectives were met without compromising the quality of the research. 
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	The integration of PPI networks and sequence data might require custom GNN layers or modified architectures. 


	⚫
	⚫
	⚫
	⚫

	Draft a section of the proposal on the proposed GNN modifications. 

	⚫
	⚫
	⚫

	Prepare a presentation for the proposal presentation. Plan for further deep dives into GNN model studies. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Detailed 
	⚫
	⚫

	Exploring the feasibility 

	02-15 
	02-15 
	proposal drafted, focusing on 
	of a GNN model that 

	TR
	using GNNs for 
	can process and 

	TR
	protein function prediction. 
	integrate multiple 

	TR
	biological data types 

	TR
	effectively. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Completed 
	⚫
	⚫

	Finalizing the scope 
	⚫
	⚫

	Submit the 

	03-01 
	03-01 
	background reading and final 
	and methodology, 
	proposal and start preparing 

	TR
	adjustments to 
	ensuring the proposal 
	for literature 

	TR
	the proposal. 
	review 

	TR
	consolidation. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Deepened 

	03-10 
	03-10 
	literature review with a focus on 

	TR
	multi-source 

	TR
	data integration 

	TR
	techniques 

	TR
	within GNN 

	TR
	models. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Started research 

	05-11 
	05-11 
	design and methodology, 

	TR
	focusing on data 

	TR
	collection and 

	TR
	preprocessing 

	TR
	for GNN training. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Completed data 

	06-01 
	06-01 
	preparation and began initial 

	TR
	GNN model 

	TR
	training. 


	aligns with the project's goals and resources. 
	⚫
	⚫
	⚫
	⚫

	Emphasized the importance of 
	⚫
	⚫

	Finalize literature review 

	TR
	effectively combining sequence data with 
	draft and plan for the 

	TR
	PPI networks in function prediction. 
	experimental setup. 


	⚫
	⚫
	⚫

	Designed initial experiments and selected datasets for model training. Deciding on best data sources for PPI and sequences. 

	Set up the experiment environment and organize data collection. Begin writing the research methodology chapter. 
	⚫

	⚫
	⚫
	⚫
	⚫

	Observed that the 
	⚫
	⚫

	Run initial 

	TR
	quality of preprocessed 
	training cycles 

	TR
	data will significantly 
	to test GNN 

	TR
	impact the GNN's 
	performance. 

	TR
	performance. 
	Monitor and log 

	TR
	training 

	TR
	progress 

	TR
	carefully. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Analyzed early 

	06-15 
	06-15 
	experimental results and 

	TR
	discussed model 

	TR
	adjustments. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Completed 

	07-01 
	07-01 
	additional experiments and 

	TR
	started 

	TR
	integrating 

	TR
	findings into the 

	TR
	report. 


	Early results show 
	⚫

	⚫
	⚫
	⚫

	Results are now more consistent, and the model's accuracy is improving. Next focus on optimizing GNN performance. 

	promising accuracy but highlight the need for more robust handling of heterogeneous data. 
	⚫
	⚫
	⚫
	⚫

	Continue 

	⚫
	⚫
	⚫

	Begin drafting the experimentation section in the report. Prepare for the next phase of writing. 


	experiments and explore regularization techniques to reduce overfitting. 
	202407-09 
	202407-09 
	202407-09 
	-

	⚫
	⚫

	Completed Chapter 1 revisions and 
	⚫
	⚫

	Strengthening the connection between 
	⚫
	⚫

	Draft Chapter 2, ensuring it ties 

	TR
	started outlining Chapter 2, focusing on the literature review. 
	reviewed studies and experimental findings is crucial for 
	literature review closely to the proposed GNN 

	TR
	coherence. 
	model. 


	2024
	2024
	2024
	-

	⚫
	⚫

	Drafted 

	08-01 
	08-01 
	Chapters 4 and 5, incorporating 

	TR
	experiment 

	TR
	results and 

	TR
	discussions 

	TR
	related to GNN 

	TR
	performance. 


	⚫
	⚫
	⚫
	⚫

	Early results indicate 
	⚫
	⚫

	Prepare visuals 

	TR
	that the proposed GNN model outperforms 
	and tables for the report to 

	TR
	existing techniques in accuracy, especially in 
	clearly illustrate the results. 


	integrating heterogeneous data. 
	202408-28 
	202408-28 
	202408-28 
	-

	⚫
	⚫

	Final report submission. 
	⚫
	⚫

	Reflecting on the entire project process and 
	⚫
	⚫

	Finalize any loose ends and 

	TR
	outcomes. Preparing 
	prepare for the 

	TR
	for future research 
	viva. Start 

	TR
	directions based on 
	planning for 

	TR
	this work. 
	future research 

	TR
	directions. 



	GLOSSARY 
	GLOSSARY 
	GCN (Graph Convolutional Network): A particular kind of neural network intended for direct manipulation of graph-structured data. Protein-protein interaction networks and other diverse biological data sources are included in the protein function prediction process through the usage of GCNs. 
	GNN (Graph Neural Network): A type of neural network that processes data structured as graphs. GNNs are used to model the relationships between entities, such as proteins within a protein-protein interaction network. 
	GO (Gene Ontology): A bioinformatics project that attempts to harmonize the way different species represent the characteristics of genes and proteins. Three primary ontologies are used to classify GO terms: Molecular Function, Biological Process, and Cellular Component. 
	BPO (Biological Process Ontology): A category within the Gene Ontology framework that describes the biological processes, or sets of molecular events, in which proteins are involved. 
	MFO (Molecular Function Ontology): A Gene Ontology category that describes the molecular activities, such as catalytic or binding actions, performed by individual proteins. 
	CCO (Cellular Component Ontology): A Gene Ontology category that refers to the locations within the cell where proteins carry out their functions, such as the nucleus or cytoplasm. 
	ESM-1b (Evolutionary Scale Modeling-1b): A protein language model based on deep learning was created to parse protein sequences and extract functional and evolutionary characteristics that are essential for predicting the function of the protein. 
	DeepGraphGO: A model that combines information from interaction networks and protein sequences to predict the activities of proteins using graph neural networks. 
	PPI (Protein-Protein Interaction): The actual physical bonds formed by biochemical processes and/or electrostatic forces between two or more protein molecules. PPI networks are crucial for comprehending the intricate relationships that control biological processes. 
	InterPro: A database that combines various protein signature datasets to offer functional analysis of proteins through family classification and domain and significant site prediction. 
	Fmax: A bioinformatics metric that assesses the maximal F-measure over several thresholds, balancing recall and precision. In multi-label classification tasks such as protein function prediction, it is very helpful. 
	AUPR (Area Under the Precision-Recall Curve): A performance metric that is especially useful in situations where the datasets are unbalanced for assessing the quality of forecasts. It sheds light on how recall and precision are traded off at various threshold values. 
	Sigmoid Function: An activation function used in neural networks that outputs values between 0 and 1, often used in binary classification tasks. 
	UniProt: The Universal Protein Resource, a comprehensive database that provides a curated protein sequence and functional information. 
	STRING Database: A database including information on known and anticipated interactions between proteins, obtained from a variety of sources such as computational forecasts and experimental evidence. 






