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ABSTRACT/SYNPOSIS 

This research introduces an innovative surface defect detection methodology specifically 

designed for bridge piers, which integrates state-of-the-art image enhancement algorithms 

with sophisticated target detection frameworks. This hybrid approach effectively addresses 

some of the inherent limitations observed in existing deep learning-based defect detection 

methodologies, particularly under conditions of suboptimal image quality and challenges 

related to the detection of minute targets. Comparative results demonstrate that this novel 

technique achieves a 3.9% increase in the mean Average Precision (mAP50) over the 

baseline model. Furthermore, this is accomplished with a reduction in model complexity, 

as evidenced by a 9.8% decrease in the number of parameters and a substantial reduction 

in computational demand, quantified as a 7.5 GFLOPS decrease. This study not only 

advances the field of structural health monitoring but also enhances the operational 

efficiency of automated defect detection systems. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

The safety and structural integrity of bridge piers are paramount for ensuring the overall 

performance and safety of bridges [1]. High-quality piers are designed to support 

substantial structural loads and provide enhanced resistance to natural disasters. This robust 

construction ensures the safety of people and vehicles that traverse the bridge and 

contributes to lower maintenance costs over time. Furthermore, building bridge abutments 

to high standards not only ensures compliance with stringent regulatory requirements but 

also mitigates potential legal liabilities associated with construction and safety failures. 

Therefore, prioritizing the safety and quality of bridge piers is fundamental to the design 

and ongoing maintenance of bridges, underscoring their essential role in infrastructure 

integrity [2]. 

Surface defect inspection of piers is vital for effective bridge maintenance and safety 

management [3, 4]. This process facilitates the early detection of critical issues such as 

cracks and erosion, which pose significant threats to the structural integrity of the bridge. 

Surface defects are often symptomatic of deeper, more severe internal issues within the 

bridge's structure. By actively monitoring these defects, the safety of both vehicles and 

pedestrians using the bridge is significantly enhanced. The timely detection and subsequent 

repair of these surface defects are critical in preventing serious structural damage. This 

proactive approach not only extends the bridge’s service life but also minimizes the need 

for extensive and expensive future repairs [5]. Detecting surface defects on bridge 

abutments is a fundamental aspect of maintenance, essential for ensuring the long-term 

stability and safety of bridges [6]. This practice is critical in maintaining the structural 

health of bridges and preventing potential failures. 

Czimmermann, et al. [7] extensively discussed a range of vision-based methodologies for 

detecting and classifying structural defects, delving into advanced artificial vision 

processing techniques. They highlighted the inherent challenges and limitations associated 

with traditional visual inspections, which are often subjective and prone to inconsistency. 

The study presents various deep learning inspection techniques designed to overcome these 

issues by employing logical and mathematical approaches to image analysis. These 

methods enhance both the accuracy and reliability of defect detection, showcasing 

significant advancements in automated inspection technologies. 
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Tulbure, et al. [8] provided a comprehensive review of recent advancements in defect 

detection models that utilize Deep Convolutional Neural Networks (DCNN). They detailed 

the application of these models in object recognition and highlighted their significant 

advantages over traditional computer vision techniques, specifically in terms of enhanced 

accuracy and processing speed. The paper extensively discusses several popular object 

detection frameworks, including region-based Convolutional Neural Networks (CNNs), 

You Only Look Once (YOLO), and Single Shot MultiBox Detector (SSD). It further 

explores how these advanced models can be effectively adapted for specialized defect 

detection tasks, underscoring their versatility and potential in industrial applications. 

Hussain [9] provided a detailed overview of the evolution of the YOLO (You Only Look 

Once) algorithms, emphasizing their transformative role in industrial applications. Since its 

inception in 2015, continuous enhancements to the architecture of YOLO algorithms have 

dramatically improved both the speed and accuracy of target detection. These 

advancements have rendered YOLO particularly suitable for deployment on resource-

constrained edge devices, where efficiency is crucial. The article underscores the 

advantages of utilizing YOLO algorithms for industrial surface defect detection, noting 

their high efficiency, lightweight framework, and real-time detection capabilities. These 

features make YOLO an excellent choice for automated quality inspection systems, 

significantly enhancing both productivity and product quality in manufacturing processes. 

1.2 Research problem statement 

While the YOLO series has marked significant achievements in target detection, it 

currently faces a range of challenges that limit its effectiveness in specific scenarios. 

Santoso, et al. [10] emphasized that poor image quality and low visibility of defects are 

major impediments to the performance of target detection models, particularly affecting 

the accuracy and reliability of detections. 

Qiu, et al. [11] mentioned in the article that the targets being detected in the field of defect 

detection are usually small, which makes the traditional YOLO model miss a portion of the 

targets when the samples are detected. 

In the context of bridge pier surface defect detection, the similarity of defects in color to 

the background, combined with their small size, significantly hinders the accuracy of 

defect detection, making it challenging to distinguish defects from their surroundings. 

1.3 Aim 
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The main aim of this report is to propose a method for detecting surface defects on bridge 

piers that combines an image enhancement method and an improved YOLO model. 

1.4 Objectives 

The objectives are to: 

 Evaluate various image enhancement techniques to identify those that most effectively 

aid the model in defect detection. 

 Modify the original YOLO model's structure to better suit this research. 

 Incorporate various modules into the benchmark model to facilitate comparative 

experiments. 

 Analyze and evaluate the final results. 

1.5 Structure of the project 

The Section 2 of the article comprehensively reviews existing literature on image 

enhancement, target detection, and defect detection techniques, establishing a theoretical 

foundation relevant to the focus of this study. Section 3 outlines the research methodology 

employed in this study, detailing the research process, data collection strategies, and the 

experimental equipment used, providing a clear framework for the experiments conducted. 

Section 4 details the experiments conducted to validate the research methodology, 

describing the specific tests and their configurations. Section 5 then reviews and evaluates 

both the methodology and the experimental results, ensuring a comprehensive analysis of 

the study's findings. In addition to reviewing the methodology and results, Section 5 

discusses and summarizes key findings, highlights the limitations of the study, and outlines 

potential directions for future research, making it a crucial component of the study’s 

overall analysis. Section 6 provides a conclusive overview of the entire study, 

summarizing the research question, methodology, and experimental demonstrations, and 

drawing final conclusions from the study's findings. 
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CHAPTER 2 - RESEARCH & REVIEW OF LITERATURE 

This section provides an overview of popular image enhancement methods, target 

detection methods and defect detection techniques. 

2.1 Image enhancement 

Image enhancement techniques play a pivotal role in defect detection, significantly 

boosting both the accuracy and efficiency of inspection systems. These techniques are 

essential for optimizing the detection process in various industrial and technological 

contexts. By enhancing the contrast, sharpness, and detail of images, these techniques 

facilitate a clearer presentation of target object features. This clarity is crucial for detecting 

small or subtle defects that might otherwise be overlooked, thereby improving the overall 

reliability of the inspection process [12]. 

Qi, et al. [13] outlined a comprehensive range of image enhancement techniques, including 

adaptive methods, multi-scale approaches, detailed edge enhancement, substantial noise 

reduction, deblurring techniques, and deep learning-based methods. These techniques are 

versatile, designed to improve image quality across diverse scenarios and applications. In 

this study, the similarity in color between the defects and the background complicates the 

target detection model's ability to recognize defects. To address this, it is crucial to employ 

an image enhancement technique that not only boosts the contrast between the defects and 

the background but also accentuates the defects' features, thereby facilitating more 

accurate detection. 

Kaur, et al. [14] explained that histogram equalization improves overall image contrast by 

modifying the histogram to distribute brightness more uniformly across the image. This 

technique specifically enhances the distinction between darker and lighter areas by 

broadening the range of more commonly occurring brightness levels, thereby making 

subtle variations in the image more discernible. 

Gupta, et al. [15] provided a comprehensive examination of histogram equalization, 

beginning with the concept of an image histogram. This histogram quantifies the number 

of pixels at each of the 256 possible gray levels in an image, depicted in the form of a bar 

graph, offering a visual representation of pixel distribution across these levels. In 

histogram equalization, the horizontal axis of the histogram graphically represents the gray 

levels, while the vertical axis quantifies the pixel count at each level. This technique 

systematically redistributes these pixel values to achieve a more uniform gray level 

distribution across the entire image. The result is a significant enhancement in image 
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contrast and a more pronounced presentation of details, making the image visually more 

distinct and easier to analyze. The procedure for histogram equalization involves several 

detailed steps: first, calculating a histogram of the original image to understand its gray 

level distribution; second, deriving a cumulative distribution function from this histogram 

to assess cumulative pixel density; third, creating a new gray level mapping table based on 

this cumulative function; and finally, applying this new mapping to the original image. 

This sequence of actions effectively enhances the image's contrast, bringing subtle details 

into sharper relief. According to the authors, histogram equalization markedly enhances 

image contrast and clarity, particularly effective in images with limited gray level variation. 

Its computational simplicity and straightforward implementation make it well-suited for 

diverse image processing systems and extensive tasks. Moreover, it can be adapted for use 

with color images, further broadening its applicability across various image enhancement 

and preprocessing applications. 

Kaur and Singh [16] highlighted the drawbacks of histogram equalization despite its 

significant benefits in enhancing image contrast and detail presentation. Particularly, in 

images characterized by uneven grey level distribution or high levels of noise, histogram 

equalization can inadvertently amplify this noise. This amplification can degrade image 

quality, detracting from the clarity and sharpness the technique is intended to enhance. 

Additionally, when applied to color images, treating each color channel with histogram 

equalization independently can cause distortions in color balance, leading to unnatural 

color representations. To mitigate these issues, additional processing steps such as 

histogram matching or conversion to alternative color spaces are often necessary. 

Furthermore, Kaur and Singh [16] observed that histogram equalization can sometimes 

result in an overly contrasted image. This over-enhancement can make certain details 

appear too bright or too dark, leading to a visual output that lacks balance and may obscure 

critical information rather than revealing it. 

Pizer, et al. [17] discussed how Adaptive Histogram Equalization (AHE) specifically 

enhances the contrast in localized areas of an image, offering a distinct advantage over 

standard histogram equalization. This targeted approach makes AHE particularly effective 

for images affected by local shadows and uneven illumination, where it can significantly 

improve visibility and detail clarity in these challenging conditions. AHE operates by 

dividing the image into numerous small cell blocks and applying histogram equalization 

independently to each block. This method allows for precise contrast adjustment tailored to 
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the specific lighting and detail of each segment, thereby enhancing the overall image 

quality by addressing local contrast variations more effectively. 

Lidong, et al. [18] provided an in-depth exploration of Adaptive Histogram Equalization 

(AHE), a technique that notably enhances both contrast and detail through localized 

processing. This method specifically targets smaller, distinct areas of an image to tailor 

contrast enhancements directly to the varying needs of different image sections. Initially, 

the image is segmented into multiple small local regions, or sub-blocks. For each of these 

sub-blocks, a unique histogram is calculated independently. Subsequent local histogram 

equalization on each histogram focuses on optimizing contrast and detail specifically for 

that region, adapting to the local content's unique characteristics. Once the local regions 

have been individually equalized, they are reassembled into a single, cohesive image. To 

ensure a seamless integration, interpolation methods are employed to smooth the 

transitions between these sub-blocks, effectively preventing any apparent boundaries or 

visual discontinuities that might detract from the overall image quality. 

Thakur and Singh [19] provided a thorough analysis of the advantages and limitations of 

Adaptive Histogram Equalization (AHE), detailing how it impacts image processing in 

various conditions. The primary advantage of AHE is its proficiency in significantly 

enhancing details within low-contrast regions of an image. This capability makes local 

features more pronounced, proving particularly beneficial in conditions where images are 

marred by uneven lighting or possess intricate backgrounds. Additionally, AHE exhibits 

high adaptability, allowing it to be finely adjusted to meet the distinct contrast needs of 

different areas within an image. This customization enhances its utility across varied 

imaging requirements. However, AHE also presents certain drawbacks; notably, it can 

amplify existing noise within an image. This amplification tends to occur particularly in 

areas already afflicted with noise, becoming more pronounced as contrast is enhanced, 

which can detract from the overall image quality. Additionally, the computational demands 

of AHE are considerable, owing to its processing of multiple local regions individually. 

This complexity can lead to extended processing times, which may become particularly 

cumbersome in large-scale image processing operations. 

Zuiderveld [20] described Contrast Limited Adaptive Histogram Equalization (CLAHE) as 

a sophisticated improvement upon traditional AHE, specifically engineered to curb the 

over-amplification of noise by imposing limits on contrast adjustments during the 

equalization process. CLAHE provides significant advancements over AHE by effectively 

mitigating issues related to over-enhancement and noise amplification. This is achieved 
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through the strategic incorporation of contrast constraints, which carefully regulate the 

enhancement process to preserve image quality. CLAHE controls the contrast within 

individual local regions by trimming the cumulative distribution function of local 

histograms. This method ensures that the natural appearance of the image is maintained, 

avoiding the artificial effects often introduced by standard histogram equalization 

techniques. Furthermore, CLAHE significantly enhances image clarity, especially in 

environments with substantial noise, by optimizing block sizes to suit varying regional 

contrast demands. Additionally, it employs advanced interpolation techniques to ensure 

seamless transitions and minimize any visual discontinuities between sub-blocks. These 

technical enhancements enable CLAHE to balance local detail with overall image 

consistency more effectively than traditional methods. The result is a more stable and 

naturally enhanced image that faithfully represents the original scene. 

Musa, et al. [21] provided a thorough analysis of the advantages and disadvantages of 

Contrast-Constrained Adaptive Histogram Equalization (CLAHE), offering insights into 

both its efficacy and the challenges associated with its use. The primary advantages of 

CLAHE include its effective control over image contrast enhancement and its ability to 

significantly reduce noise amplification. This is achieved by limiting contrast in the 

cumulative distribution function of local histograms, which results in clearer and more 

visually natural images, even in challenging lighting conditions. CLAHE excels in 

maintaining high image quality against complex or noisy backgrounds, facilitating smooth 

transitions across image areas through carefully optimized block sizes and advanced 

interpolation techniques. These methods help prevent abrupt changes that can disrupt the 

visual flow of the image. However, CLAHE presents certain drawbacks, notably its high 

computational complexity. This complexity stems from the need to process multiple local 

regions individually and to apply contrast limitations within these areas, which can 

significantly extend processing times, especially in larger or more detailed images. 

Although CLAHE surpasses traditional AHE in terms of noise suppression, its approach to 

local contrast adjustment can sometimes result in a loss of detail or a degradation in overall 

image quality, particularly when applied to areas with subtle features. Consequently, while 

CLAHE is effective across a wide range of applications, the optimal performance of this 

technique requires meticulous adjustment of its parameters to suit specific scene 

requirements, ensuring the best possible outcome in each unique situation. 

Farid [22] elucidated how gamma correction finely adjusts the brightness of an image by 

applying a nonlinear gamma function to each pixel’s value. This method specifically 
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targets and modifies the luminance levels to suit visual perception more accurately. This 

technique effectively enhances details in both dimly lit and overly bright areas by non-

linearly amplifying or dampening their brightness levels, respectively. Such adjustments 

result in a significant improvement in the image's overall contrast, making it easier to 

discern finer details and subtleties. 

Rahman, et al. [23] provided an in-depth explanation of gamma correction, a technique 

designed to enhance visual effects by fine-tuning an image's brightness and contrast. This 

adjustment is specifically aimed at aligning with the perceptual properties of the human 

eye, making images appear more natural and visually pleasing. The process involves a 

non-linear transformation of pixel values, which is controlled by a parameter known as the 

gamma value. This transformation adjusts the intensity of the pixels based on their original 

levels, which affects the image's overall luminance. When the gamma value exceeds 1, it 

results in a darkening of the image, as it compresses the higher grey levels, thereby 

enhancing both contrast and the visibility of details. On the other hand, a gamma value 

below 1 causes the image to brighten by expanding the lower grey levels, which improves 

not only the overall brightness but also makes details more visible. Thus, gamma 

correction strategically adjusts the range of brightness across an image to optimize the 

rendering of details and improve visual effects, making it a crucial tool in digital image 

processing. However, it's important to note that gamma correction primarily modifies 

brightness and contrast without directly enhancing color saturation or other intrinsic image 

details. Therefore, it is frequently used in conjunction with other image processing 

techniques to achieve a more comprehensive optimization of images. 

Amiri and Hassanpour [24] comprehensively analyzed gamma correction, highlighting its 

significant advantages and notable disadvantages in image processing. The primary 

advantage of gamma correction is its ability to substantially improve the visual effects of 

an image by adjusting brightness and contrast, which significantly enhances the visibility 

of details, making it especially useful in images where detail clarity is essential. By 

adjusting the gamma value, contrast can be effectively enhanced, particularly beneficial in 

low-contrast or underexposed images, where it improves both overall brightness and the 

clarity of details, thus transforming the visual presentation. Furthermore, gamma 

correction is adaptable to the characteristics of different display devices, ensuring that 

images are consistently presented across various types of screens, which is crucial for 

applications where uniform visual experience is necessary. However, gamma correction 

primarily focuses on adjusting brightness and contrast without directly improving color 
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saturation or the fineness of details. This can limit its effectiveness in applications where 

enhanced color performance and intricate detail are critical. Moreover, excessive 

application of gamma correction may lead to distortions in brightness or detail, particularly 

if the gamma value is not appropriately calibrated, potentially compromising image quality. 

Therefore, gamma correction is typically employed in conjunction with other image 

processing techniques to achieve a more balanced and comprehensive optimization of 

images, ensuring that all visual aspects are adequately enhanced. 

Each contrast-enhancing image enhancement method offers unique advantages and poses 

specific limitations. Therefore, the choice of the most suitable method for a given study 

should be informed by detailed experimental results that evaluate the effectiveness of these 

methods under various conditions. This data-driven approach ensures the selected method 

aligns optimally with the specific requirements and challenges of the research. 

2.2 Object detection 

Object Detection (OD) represents a critical component of computer vision, primarily 

focused on both identifying and precisely locating objects within images or videos. This 

process involves more than merely recognizing the objects present; it also entails 

pinpointing their exact positions within the image, providing both qualitative and 

quantitative data about the scene [25]. 

Bai, et al. [26] provided a summary of traditional machine learning-based object detection 

methods, which relied on hand-designed features and classic algorithms. These methods 

were the standard before the advent of deep learning technologies, and they involved 

manually crafted features tailored to specific applications. Despite being less effective in 

complex scenarios and multi-category detection, these traditional methods still hold value 

in resource-constrained environments due to their lower computational demands. They 

extract crucial image features and employ classifiers to detect objects, providing a viable 

solution where advanced computing resources are limited [27]. 

Zhao, et al. [28] discussed the significant advancements brought by deep learning-based 

object detection methods, particularly those utilizing Convolutional Neural Networks 

(CNNs). These methods have notably improved both the accuracy and speed of object 

detection, marking a substantial evolution in the field. These deep learning approaches are 

categorized into two primary types: region proposal methods, which first suggest potential 

object locations before classifying them, and single-stage methods, which simultaneously 

detect and classify objects in one pass, streamlining the process. 
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A foundational approach within the realm of region proposal methods in object detection is 

represented by the R-CNN family [25]. Girshick, et al. [29] pioneered the development of 

Regions with Convolutional Neural Network features (R-CNN), an innovative method that 

synergizes region proposals with CNNs, substantially elevating object detection accuracy. 

The R-CNN operates through a structured three-step process: First, it generates 

approximately 2000 candidate regions from the input image via Selective Search. Second, 

it extracts features from each region using pre-trained CNNs like AlexNet. Finally, it 

classifies these regions using Support Vector Machines (SVMs) and refines them using 

bounding box regression, each step building towards accurate object identification. The 

primary advantage of R-CNN lies in its utilization of deep learning techniques, which 

markedly improves detection accuracy by effectively learning from vast amounts of visual 

data. However, R-CNN is hampered by low computational efficiency and a complex 

training process. Each candidate region is processed independently for feature extraction 

by a CNN, leading to redundant computations and substantial consumption of 

computational resources, which can be impractical in real-time applications. 

Bharati and Pramanik [30] highlighted that R-CNN significantly boosts object detection 

accuracy by utilizing Convolutional Neural Networks (CNNs) for feature extraction, 

achieving remarkable performance improvements across a variety of benchmark datasets. 

This approach leverages the deep learning capabilities of CNNs to discern and classify 

intricate features within images. The modular design of R-CNN, which includes separate 

modules for candidate region generation, feature extraction, classification, and bounding 

box regression, allows for the independent optimization of each component. This modular 

approach not only facilitates targeted improvements but also exemplifies the effectiveness 

of deep learning in refining various aspects of object detection tasks. However, R-CNN 

faces significant challenges, including low computational efficiency, a complex training 

process, and substantial memory consumption. These issues stem from the intensive 

computational demands of processing multiple candidate regions through deep neural 

networks. The requirement for each candidate region to undergo individual feature 

extraction by a CNN results in extensive redundant computations, significantly slowing 

down processing speeds. Additionally, the multi-stage training process complicates the 

implementation of R-CNN, and its reliance on selective search to generate candidate 

regions introduces delays that can adversely affect overall detection performance. This 

reliance on a time-consuming search process can hinder the model's applicability in 

dynamic environments. 
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Girshick [31] introduced Fast R-CNN, marking a substantial advancement in the field of 

object detection. This innovation significantly improved the efficiency and speed of 

detecting objects while maintaining high accuracy. Fast R-CNN enhances detection speed 

and operational efficiency by utilizing shared computation across multiple detection tasks, 

thereby optimizing the overall process and maintaining high accuracy. Fast R-CNN 

processes the entire input image through a single convolution operation to create a shared 

feature map, which effectively eliminates the need for repetitive computation across each 

candidate region. This approach significantly reduces redundancy and increases processing 

speed. Following the initial convolution, candidate regions are generated either through 

selective search or a Region Proposal Network (RPN), and then mapped onto fixed-size 

feature regions using an ROI pooling layer, which standardizes the input size for 

subsequent classification tasks. Classification and bounding box regression tasks are 

carried out through fully connected layers and a softmax layer, respectively. A multi-task 

loss function is employed to optimize these tasks simultaneously, enhancing the model’s 

accuracy and reliability. Although Fast R-CNN requires substantial memory, particularly 

with high-resolution images and numerous candidate regions, it achieves outstanding 

accuracies across various benchmarks. This model not only advanced the state of object 

detection technology but also laid the foundational work for subsequent innovations such 

as Faster R-CNN and Mask R-CNN. 

Ren, et al. [32] introduced Faster R-CNN, a significant evolution in object detection that 

integrates a Region Proposal Network (RPN) with Fast R-CNN. This integration allows for 

end-to-end training of both candidate region generation and detection processes, 

significantly enhancing the system's speed and accuracy. Faster R-CNN starts by 

extracting features from the entire image using a convolutional neural network (CNN). It 

then employs an RPN to generate candidate regions directly on this feature map, 

optimizing the detection workflow by leveraging the extracted features efficiently. The 

integration with Fast R-CNN's shared convolutional features significantly minimizes 

redundant computations across the detection process, thereby boosting overall efficiency 

and streamlining the computational workload. Once resized by the ROI pooling layer to 

ensure uniformity, candidate regions are processed through fully connected layers for 

classification and bounding box regression, further refining the detection accuracy. The 

primary innovation of Faster R-CNN is its unified framework that combines region 

proposal and object detection into a single streamlined process. This simplification not 

only reduces computational complexity but also enhances processing efficiency across 
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various detection tasks. Despite its considerable resource demands, Faster R-CNN delivers 

superior performance across multiple benchmarks. Its extensive utilization in a variety of 

object detection applications attests to its effectiveness and versatility, setting the stage for 

future advancements in the field. 

Zhao, et al. [28] provided a comprehensive analysis of the significant advantages and 

notable drawbacks of region proposal methods in object detection, offering a balanced 

perspective on their efficacy and limitations. Among the advantages, region proposal 

methods are highly accurate, enhancing target detection by generating high-quality 

candidate regions. These regions facilitate more effective classification and bounding box 

regression, crucial for precise object localization. Additionally, region proposal methods 

are highly adaptable and versatile, suitable for a wide range of image types and detection 

tasks. This flexibility makes them applicable across diverse applications and scenarios. 

Both traditional methods and modern deep learning approaches are capable of generating 

fine-grained candidate regions. This capability is particularly beneficial for detecting 

complex and fine targets, where detail is paramount. However, the notable drawbacks of 

region proposal methods include their high computational complexity. This complexity 

can be a significant barrier in environments where computational resources are limited. 

Traditional methods such as selective search are particularly slow, rendering them 

unsuitable for real-time applications where quick processing is essential. The performance 

of region proposal methods heavily depends on the quality of the candidate regions. Poor 

quality regions can significantly impact the accuracy of the final detection results, 

underscoring the importance of precision in the initial stages of detection. Deep learning-

based region proposal methods demand significant memory and robust hardware 

capabilities, particularly when processing high-resolution images and a large number of 

candidate regions. These requirements can limit their deployment in less capable systems. 

Additionally, the complex training processes associated with these methods require 

extensive fine-tuning and a substantial amount of labeled data. This not only increases the 

difficulty of model development but also escalates the costs associated with it. 

The You Only Look Once (YOLO) series stands as a prime example of the single-stage 

object detection methodology, streamlining the process from image input to detection 

output [25]. Redmon, et al. [33] introduced YOLO as an innovative single-stage object 

detection method that accomplishes end-to-end processing by conceptualizing object 

detection as a regression problem. This approach allows for direct prediction of bounding 

boxes and class probabilities from full images in a single evaluation. Although YOLO has 
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certain limitations in accurately detecting dense and small targets, its capabilities for real-

time and global inference render it highly effective across a wide range of real-world 

applications. These strengths are particularly valuable in scenarios requiring fast and 

efficient detection. The YOLO series has undergone continual improvements, achieving 

significant advances in both detection speed and accuracy. Each iteration of YOLO has 

introduced enhancements that have incrementally optimized its performance and 

broadened its applicability [9]. 

Table.1. Model Performance Comparison 

Model mAP50(%) 

R-CNN [29] 58.5 

Fast R-CNN [31] 70 

Faster R-CNN [32] 73.2 

YOLOV3 [34] 79.5 

YOLOV5-S [34] 78 

YOLOV7 [34] 69.1 

YOLOV8-S [34] 83.1 

According to Table 1, which showcases various models' performance on the PASCAL 

VOC 2007 dataset, the YOLO series has significantly outperformed regionally proposed 

method-based models. This demonstrates the YOLO series' superior efficacy in object 

detection, marking it as a standout performer in the field [35]. 

Terven, et al. [36] observed that YOLO has become a pivotal technology in real-time 

object detection, attributed to its rapid processing speeds and efficient end-to-end training 

capabilities. These features make YOLO particularly effective for applications requiring 

immediate detection responses. However, YOLO has shown limitations in accuracy, 

particularly exhibiting high false detection rates when dealing with small, dense targets set 

against complex backgrounds. This challenge highlights areas where YOLO’s detection 

algorithm may require further refinement. Subsequent iterations, including YOLOv2, 

YOLOv3, and YOLOv4, have addressed these accuracy issues to some extent, reducing 

false detection rates and enhancing overall performance. However, a trade-off between 

speed and accuracy still persists in some scenarios, indicating ongoing challenges in 

balancing these critical aspects. 

Yung, et al. [37] provided a detailed analysis of the evolutionary progress in the YOLO 

series, specifically through the advancements presented in YOLOv5, YOLOv6, and 
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YOLOv7. Each version represents significant technological strides in object detection, 

showcasing continual improvements in processing efficiency and detection capabilities. 

YOLOv5 utilizes the CSPNet architecture, which strategically divides and then merges the 

feature map. This approach significantly reduces computational demands while 

maintaining a rich representation of features, optimizing both the efficiency and 

effectiveness of the detection process. YOLOv5 introduces Mosaic data augmentation, a 

technique that stitches together four images to enhance the model's adaptability. This 

method improves the system's ability to handle various object sizes and backgrounds, thus 

broadening its application in diverse scenarios. Additionally, YOLOv5 features dynamic 

adjustment of anchor frames, which allows it to better accommodate a range of target 

shapes and sizes, enhancing the model’s versatility in detecting diverse objects. YOLOv6 

advances further by enhancing its convolutional layers and optimizing sampling strategies, 

which collectively boost both the speed and accuracy of the detection process. The 

architecture of YOLOv6 is refined using Network Architecture Search (NAS), a method 

that identifies optimal configurations, ensuring that the model achieves the best possible 

performance. Furthermore, YOLOv6 improves the Non-Maximum Suppression (NMS) 

algorithm, effectively reducing the processing time required after detection, thus 

streamlining the overall object detection process [38]. YOLOv7 employs a deeper 

network architecture, enhancing its ability to learn from complex scenes. It also introduces 

the EvoNorm layer, which contributes to better training stability and expressiveness, 

facilitating more effective learning and adaptation. Additionally, YOLOv7 utilizes 

advanced training techniques such as dynamic image resizing, which speeds up model 

convergence and enhances efficiency, making it more effective in practical applications 

[39]. 

In their comprehensive analysis, Wang, et al. [40] explored the capabilities and 

enhancements introduced in YOLOv8, marking a significant evolution in the YOLO series 

for real-time object detection. YOLOv8 advances as a highly sophisticated real-time object 

detection system that not only retains the renowned high speed and user-friendliness of the 

YOLO series but also significantly improves upon model accuracy and generalization 

capabilities. These improvements in YOLOv8 stem from the integration of advanced 

technologies such as deep separable convolution, adaptive feature fusion, and sophisticated 

data enhancement techniques, each contributing to a more robust and adaptable detection 

system. 
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Wang, et al. [41] unveiled YOLOv9, a groundbreaking advancement in object detection 

technology that significantly boosts detection accuracy and supports real-time, high-

precision detection capabilities. YOLOv9 employs a novel architecture, the Generalised 

Efficient Layer Aggregation Network (GELAN), which is optimized through sophisticated 

gradient path planning techniques. This architectural innovation allows for enhanced 

performance through better utilization of computational resources. This innovative 

approach in YOLOv9 surpasses existing methods by optimizing parameter utilization 

efficiency using conventional convolution operators, thereby significantly enhancing both 

the performance and efficiency of the model. As a result, YOLOv9 achieves unparalleled 

accuracy and operational speed, all while maintaining a lightweight structure, setting a 

new standard in the field of object detection. 

Wang, et al. [42] unveiled YOLOv10, a breakthrough in object detection that achieves top-

tier performance while significantly reducing computational overhead. This is 

accomplished by dispensing with traditional non-maximal suppression (NMS) and through 

strategic refinements in the model’s architecture. YOLOv10 employs a consistent dual 

allocation strategy that eliminates the need for NMS, thereby lowering inference latency 

and streamlining the detection process. This strategy optimizes the allocation of 

computational resources, enhancing real-time processing capabilities. YOLOv10 

incorporates several component enhancements to boost both inference efficiency and 

accuracy. These include lightweight classification headers that reduce computational load, 

spatial channel decoupling for more efficient downsampling, and a hierarchical bootstrap 

block design that improves learning effectiveness. Furthermore, YOLOv10 integrates large 

kernel convolutions and partial self-attention modules, which elevate performance by 

enhancing feature extraction and attention mechanisms without significantly increasing 

computational demands. This integration allows for deeper, more nuanced learning of 

image features. 

While the YOLO family is celebrated for its real-time object detection capabilities, it also 

exhibits a number of limitations that affect its performance across various scenarios. 

Specific limitations of the YOLO series include inadequate detection of small objects, 

comparatively lower accuracy than region-based methods, and a marked sensitivity to 

variations in training data, which can compromise the model’s reliability under varying 

conditions. Furthermore, YOLO often struggles with precise bounding box localization, 

especially in complex scenes with ambiguous boundaries or intricate backgrounds, where 

precise object delineation is critical. The design philosophy of YOLO often prioritizes 
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speed over generalization capabilities and positional accuracy. This trade-off can lead to 

challenges in dynamic environments where adaptability and accuracy are essential [43]. 

Although each successive generation of YOLO has improved upon its predecessors, these 

versions continue to exhibit significant shortcomings in handling complex object detection 

challenges, indicating room for substantial enhancements. These persistent issues 

underscore the need for further modifications to the YOLO model to enhance its 

effectiveness and suitability for advanced research applications, aiming to overcome its 

current limitations. 

2.3 Defect detection 

Bridge pier surface defect detection is a critical aspect of structural health monitoring 

(SHM), playing a pivotal role in safeguarding the structural integrity and extending the 

longevity of bridges. The timely identification and remediation of defects on abutment 

surfaces are essential for effective bridge maintenance and evaluation. These practices are 

crucial not only for preventing potential structural failures but also for extending the 

operational lifespan of bridges, thereby ensuring ongoing safety and functionality. These 

defects, including cracks, depressions, and other forms of physical damage, typically arise 

from natural deterioration, environmental influences, or mechanical stress. Each type of 

damage has its own implications for the structural health of the bridge, making early 

detection and appropriate remediation critical. 

Chen, et al. [44] provided a comprehensive classification of defect detection methods, 

distinguishing between traditional approaches and modern deep learning techniques, each 

characterized by distinct methodologies and applications. Traditional defect detection 

methods encompass manual labeling and various machine learning techniques. Each 

method offers distinct advantages but also presents unique challenges, making them 

suitable for specific scenarios based on the requirements of accuracy, efficiency, and 

complexity. 

Xie [45] elaborated on the manual annotation method, a traditional technique in defect 

detection that heavily relies on the expertise and judgment of skilled professionals. This 

method remains critical in scenarios where detailed, nuanced understanding of defects is 

necessary. Initially, the process involves selecting suitable labeling tools and defining the 

types of defects and the criteria for identification, which sets the groundwork for consistent 

and accurate data collection. During the inspection phase, trained professionals 

meticulously identify and mark potential defects, carefully noting each defect's type, size, 
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and location, which are crucial for subsequent analyses and remediation strategies. To 

ensure accuracy and consistency, the process includes internal audits and feedback 

mechanisms that help standardize defect identification and reduce subjective discrepancies 

among different annotators. Once collected, the data is compiled and systematically stored, 

enabling detailed analysis and facilitating future reference and comparison. Although 

manual labeling excels in accuracy and adaptability, especially in complex scenarios, it 

becomes notably inefficient and costly when dealing with large datasets due to its heavy 

reliance on skilled labor. Additionally, variability in annotator judgment can lead to 

inconsistencies and challenges in data reproducibility. Prolonged engagement in repetitive 

tasks may also cause operator fatigue, further compromising the accuracy of the data. 

Despite these challenges, the evolution of technology is making automated and machine 

learning methods increasingly viable alternatives, particularly for applications requiring 

large-scale and rapid processing. 

Shahrabadi, et al. [46] detailed a machine learning-based approach to defect detection, 

specifically designed to enhance both the efficiency and accuracy of the detection process 

through automation. The process initiates with data preparation, involving the collection of 

extensive labeled data that includes both defective and non-defective samples. This 

comprehensive dataset provides a robust foundation for effective training of the machine 

learning models. Following data preparation, feature engineering takes place, which 

includes preprocessing and extracting key features from the data, such as image 

greyscaling and edge detection. These features are critical for enhancing the model’s 

ability to recognize and classify defects accurately. The selection of an appropriate 

machine learning model is the next step. Options include support vector machines, random 

forests, and deep learning models such as convolutional neural networks, each offering 

unique advantages depending on the complexity and type of defects. These models are 

employed for their capability to facilitate effective pattern recognition and learning, crucial 

for accurately detecting and classifying various types of defects. Model training involves 

the optimization of model parameters using well-labeled datasets, tailored to meet specific 

defect detection needs and ensure the model performs optimally under various conditions. 

Validation and testing are conducted with an independent dataset to ensure the model's 

generalization capability and maintain high accuracy across different scenarios, crucial for 

reliable deployment. The final stage of the process involves deploying the trained model 

into production lines or inspection systems for real-time detection. This stage also includes 
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ongoing optimization and adjustments to accommodate new types of defects or changes in 

the production environment, ensuring the model remains effective over time.. 

Saufi, et al. [47] conducted a comprehensive analysis of the advantages and disadvantages 

associated with the application of machine learning in defect detection, providing insights 

into both its beneficial impacts and the challenges it presents. A primary advantage of 

machine learning in defect detection is its efficiency. This technology enables the 

processing of large-scale datasets, which significantly enhances the speed and accuracy of 

inspections along production lines, streamlining quality control processes. Additionally, 

machine learning ensures consistent, standardized, and repeatable results in defect 

detection, significantly reducing the potential for human error and enhancing the reliability 

of inspections. Furthermore, machine learning offers cost-effectiveness by substantially 

lowering long-term operational expenses, presenting a financially viable alternative to 

manual inspections once it is fully implemented and integrated into systems. However, 

challenges persist with machine learning in defect detection, particularly the need for 

extensive labeled data for training. This requirement can be resource-intensive and costly 

initially, posing a significant barrier to implementation. Additionally, while machine 

learning models generally excel with the training data, they often struggle with 

generalization when encountering new or unseen types of defects, which can limit their 

effectiveness in dynamic environments. Lastly, the inherent complexity of these models, 

especially those based on deep learning, often results in a lack of interpretability. This 

makes it challenging for users to understand and trust the decision-making process, which 

is critical for acceptance and effective use in practical settings. 

Deep learning-based defect detection has become the predominant method in the field, 

leveraging extensive labeled datasets and sophisticated neural network models to achieve 

highly precise and efficient automatic detection. This technological advancement enables 

superior accuracy and speed in identifying defects, transforming the landscape of industrial 

quality control [48]. 

Among deep learning models, YOLO stands out as a leading solution specifically tailored 

for defect detection. Its real-time processing capabilities and high accuracy make it a 

preferred choice for industrial applications. YOLO offers real-time detection capabilities, 

enabling high-precision identification and classification of a wide range of surface defects. 

This makes it exceptionally useful in scenarios where quick decision-making and accuracy 

are critical. YOLO enhances defect detection across various sizes and shapes through its 

implementation of multi-scale feature fusion and attention mechanisms. These 
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technologies allow YOLO to maintain robust performance even in complex environments 

and under variable lighting conditions, adapting effectively to diverse operational 

challenges. YOLO's streamlined and lightweight architecture facilitates its easy integration 

into industrial equipment and embedded systems, significantly enhancing detection 

accuracy and operational efficiency. This integration is pivotal in advancing smart 

manufacturing and industrial automation, driving innovations in production processes [49, 

50]. 

In recent years, the YOLO series of models has gained significant prominence in the field 

of industrial defect detection, becoming a preferred choice for their efficiency and 

accuracy. Li, et al. [51] developed an innovative real-time method for detecting surface 

defects on steel strips by enhancing the YOLO network with advanced data enhancement 

and preprocessing techniques. This approach significantly improves the detection process, 

making it more efficient and accurate. Experimental results validated the superior accuracy 

and real-time capabilities of this enhanced YOLO model, confirming its broad 

applicability across various industrial sectors where quick and accurate defect detection is 

crucial. 

Xu, et al. [52] specifically enhanced the YOLO algorithm to improve the detection of 

defects on metal surfaces, integrating a feature enhancement module and an attention 

mechanism to refine detection accuracy. Their version of the YOLO algorithm 

significantly improves defect detection across different scales and effectively minimizes 

background noise through the innovative use of a feature enhancement module and an 

attention mechanism. These enhancements help in distinguishing defects more clearly 

against noisy backgrounds. Experimental validations of their enhancements showed 

notable improvements in both accuracy and speed, enabling more efficient identification 

and classification of metal surface defects. This makes the algorithm particularly effective 

for real-time industrial applications where timely and accurate defect detection is essential. 

Hatab, et al. [53] developed a YOLO-based method for surface defect detection that 

specifically optimizes the model's structure and parameters, enhancing its ability to 

efficiently detect and classify a wide range of surface defects. This tailored approach 

improves the model's applicability and effectiveness in diverse industrial settings. 

Experimental results confirm significant improvements in detection accuracy and speed, 

demonstrating that this optimized YOLO model meets the rigorous demands of industrial 

real-time defect detection and contributes to enhanced production quality control. 
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These studies not only demonstrate the effectiveness and potential of YOLO models in 

industrial defect detection but also highlight certain limitations of the original model, 

including its inadequate detail capture and performance degradation in complex 

environments. Nonetheless, these shortcomings present opportunities for further research 

and can be addressed by modifying the YOLO model to better suit specific industrial and 

research needs, thereby extending its utility and enhancing its performance. 



A Template For Final Year Projects. 

CHAPTER 3 - RESEARCH & REVIEW OF LITERATURE 

This section describes the research methodology used in this study, the overall process of 

the defect detection model, the image enhancement methodology, and the new modules 

proposed in this work. 

3.1 Research method 

This study adopts a mixed-methods approach that combines the image enhancement 

method and object detection method, which are very popular in the current defect detection 

field [41, 54-57]. The image enhancement method can make the defects on the samples 

more prominent and obvious, which makes it easier to capture the target detection model; 

while the object detection method can accurately and quickly capture where the defects are 

on the surface of the bridge piers, and mark them[9, 58]. 

An inductive approach based on a fully supervised learning paradigm is used in this study. 

The detection algorithm relies on many post-labelling image data for training. The 

algorithm learns the relationship between defect type and performance from specific 

instances of bridge piers surface defect image samples to derive a method for detecting 

bridge piers surface defects [10, 59]. 

The research strategy is experimental. The detection method of this research is completed 

by two steps of image enhancement and target detection, in order to ensure the accuracy 

and robustness of the algorithm, it is firstly necessary to experimentally test the validity 

and superiority of the methods used in each step, in addition to this, it is also necessary to 

experimentally suggest whether the methods used in the two steps are coordinated, and 

whether they are paired together to produce better results. 

3.2 Research model 

This section will present the overall process of bridge abutment surface defect detection 

including image enhancement methods and new modules proposed for this research. 

3.2.1 Overview 

In this study, the complete framework of YOLOV9-S is retained and the original 

RepNCSPELAN4 module is replaced with the newly proposed GhostBottleNeck(GBN) 

module. 

The Fig.1 presents a comprehensive flowchart of a deep learning model designed for 

detecting surface defects on bridge piers, detailing the process from input to output. 
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Initially, the surface image of the bridge abutment is captured and input into the target 

detection model following enhancement by the Gamma correction method [8, 36]. 

In the Backbone section of the target detection model, the image undergoes initial feature 

extraction through two convolutional (Conv) layers. Subsequently, features from multiple 

layers are aggregated via the ELAN layer to enhance their expressiveness, then passed 

through the AConv module, incorporating average pooling and convolution operations, 

and finally into the GhostBottleNeck (GBN) module, designed specifically for detecting 

small targets. This sequence aims to extract valuable information across various scales. 

Furthermore, the SPPELAN module combines multiple convolution and pooling 

operations to further aggregate and condense these features, preparing them for advanced 

processing [41, 57, 60]. 

In the Neck section, the model integrates multi-scale features from the Backbone using 

concatenation and up-sampling techniques to create a detailed feature map that combines 

both deep and shallow features, enhancing the accuracy of the final detection. Repeated 

applications of the AConv and GBN modules in this section further refine the features, 

improving defect identification [41]. 

In the final Head section, the accumulated and optimized features are applied to detect 

defects. These features are further refined through two convolutional layers and then fused 

via a concatenation operation to enable effective object detection. The resulting image 

displays the detected defect within a rectangular box [12, 41]. 

Fig. 1.Overall process for detection of surface defects on bridge piers 

Gamma correction enhances the image contrast between defective areas and the 

background, facilitating defect identification by the target detection model. This model, 
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based on YOLOv9, incorporates a specially designed GhostBottleNeck (GBN) module, 

replacing the original ELAN module. GBN improves the model's ability to detect small 

targets through dynamic convolution, thereby enhancing overall performance. 

3.2.2 Gamma correction 

Gamma correction is a widely employed image enhancement technique that adjusts 

brightness and enhances contrast, particularly in an image's darker regions. This process 

not only renders colors more naturally but also enhances the visual effects crucial for 

computer vision systems [61]. 

The gamma correction formula adjusts each pixel value of the image � , based on a 

predefined gamma value γ. The formula is expressed as follows:: 
γ # 1�out = �in 

In formula (1), �in represents the pixel value of the input image, ranging from 0 to 1. The 

gamma correction parameter, γ regulates the image's brightness enhancement or 

reduction. �out denotes the pixel value after gamma correction. 

When γ<1, dark regions of the image brighten, enhancing visibility in shadowed details. 

Conversely, when γ>1, brighter areas darken, increasing image contrast and sharpening 

bright details [55]. 

In this study, the surface defects on bridge piers are similar in color to the background, 

posing significant challenges for the detection model. Adjusting the gamma value to less 

than 1 enhances the brightness of darker areas without overly brightening lighter areas, 

thus improving the dynamic range and visual contrast of the image. Gamma correction 

impacts not only brightness but also indirectly influences color saturation and depth. By 

applying appropriate gamma correction, color differences between similar targets and 

backgrounds become more distinct, aiding in distinguishing the target more clearly from 

its surroundings [45, 53]. 

3.2.3 GhostBottleNeck 

Fig 2 illustrates the overall structure of the GhostBottleNeck (GBN), which resembles the 

basic residual block found in ResNet. The main pathway of GBN consists of two 

sequential Ghost Modules: the first module expands the number of channels, while the 

second reduces them back to the original count of the input channels. The residual 

connections are similar to those used in ResNet [57, 62]. 
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Fig. 2.GhostBottleNeck Overall Structure 

GBN does not reduce the height and width of the input feature maps; instead, it increases 

the network's depth to capture more feature information [57]. 

Fig. 3.Internal structure of the GhostModule module 

As illustrated in Fig.3, the GhostModule leverages advancements in modern deep learning, 

including dynamic convolution techniques and dynamic activation layers, to reduce 

computational demands and enhance efficiency. It begins with a dynamic convolution layer 

(DynamicConv), which conducts a convolution from the input channel to the initialization 

channel, followed by a batch normalization layer (BatchNorm2d) and a dynamic activation 

layer (DynamicActivation). These steps are repeated, and the outputs of these operations 

are combined using a concatenation operation. The convolution kernels for dynamic 

convolution are dynamically generated based on the input data, with adjustable parameters 

for varying inputs, enhancing the network's adaptability [57, 60, 63]. 

Each input sample is processed by compressing its features into a vector using global 

pooling, followed by passing through one or more fully connected layers employing 

functions like softmax to produce a set of weights. These weights, reflecting the relevance 

of different convolutional kernels, are multiplied with the parameters of each kernel. The 

accumulated results form the final convolution kernel for the operation, effectively 

adapting the kernel parameters to suit the current input [64]. 

The essence of dynamic convolution lies in its ability to adapt convolution kernel 

parameters to specific inputs, rather than merely selecting the most relevant kernels. This 

method significantly enhances the network's adaptability and flexibility across diverse 

inputs, optimizing for particular data features. Such adaptability not only enables the 

network to better handle input variations but also boosts its overall performance and 

generalization capabilities [65]. 

Dynamic activation function selection is a deep learning technique enabling neural 

networks to dynamically choose the most suitable activation function based on input data 

or their internal state [66]. 
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Several activation functions are stored in a dictionary and are switched during training 

based on specific criteria. 

The main benefits of dynamic activation function selection include enhanced learning of 

complex nonlinear patterns through adaptation to various input types, reduced risk of 

overfitting, and improved model performance on unseen data. This adaptability is crucial 

for handling diverse or variably distributed data, optimizing processing strategies for each 

specific scenario [67]. 

The dynamic convolution technique selects convolution kernels based on input, enhancing 

the model's focus on varied input features and boosting its defect detection capabilities. 

Similarly, dynamic activation functions increase the model's flexibility and adaptability, 

significantly aiding in performance enhancement. 

3.3 Data collection 

This study utilizes a subset of 1500 images from the SDNET2018 dataset, comprising 

common defects such as cracks and depressions on bridge piers [68]. Given the challenges 

of acquiring extensive data in industrial defect detection, this research asserts that effective 

defect detection is achievable with limited datasets. Therefore, these 1500 images were 

specifically selected to train and evaluate the model, reflecting the pragmatic constraints in 

the industrial context [69]. 

Fig. 4. Example of dataset content 

Fig.4 displays various images from the dataset, highlighting the variability in crack 

thickness and shape, as well as the irregularity and diverse sizes of depressions. These 

characteristics aim to mirror the real-world conditions of surface defects on bridge piers. 

Additionally, the inconsistent background colors of construction materials and varying 

lighting conditions in the images further prepare the model to handle complex 

environments and backgrounds [70]. 
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3.4 Evaluation metrics 

In this study, the performance of the model was evaluated using several key metrics: mean 

Average Precision (mAP), the number of parameters, and Giga Floating Point Operations 

Per Second (GFLOPS). The mAP metric was specifically employed to assess the accuracy 

and effectiveness of the model in detecting and classifying targets. In contrast, the number 

of parameters and GFLOPS were utilized to evaluate the model's efficiency and 

computational lightness, indicating how well the model performs under resource 

constraints [71, 72]. 

Mean Average Precision (mAP) is calculated by first determining the Average Precision 

(AP) for each category within a multi-category target detection or classification framework. 

AP for each category is derived from the area under the curve in a Precision vs. Recall 

graph. The mAP is then obtained by averaging these AP values across all categories. This 

metric is crucial for understanding the model's precision in distinguishing between 

different types of targets, which is especially important in complex scenarios where 

multiple categories are present [73]. 

Precision quantifies the proportion of positive identifications made by the model that are 

actually correct. This metric is calculated using the following 

True Positives (TP) formula:Precision = #(2)# 
True Positives (TP) + False Positives (FP) 

True Positives (TP) represent the number of positive class samples that the model correctly 

identifies as positive. Conversely, False Positives (FP) are instances where the model 

incorrectly identifies a negative class sample as positive [74]. 

Recall measures the proportion of actual positives correctly identified by the model, 

reflecting the model's ability to detect all relevant instances [75]. It is computed using the 

following formula: 
True Positives (TP) 

Recall = #(3)# 
True Positives (TP) + False Negatives (FN) 

The GFLOPS (Giga Floating Point Operations Per Second) metric measures the 

computational cost of models and hardware, significantly influencing the speed and 

efficiency of both training and inference phases. Effective evaluation and strategic use of 

GFLOPS are crucial for optimizing deep learning tasks, ensuring that resources are used 

efficiently to achieve the best performance [76]. 

The number of parameters is a fundamental metric that gauges the size and complexity of a 

neural network. It quantifies the total count of trainable elements within the model, such as 
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weights and biases. A higher number of parameters generally indicates a more complex 

model, which can significantly affect performance, extend training durations, increase 

memory demands, and influence inference speeds [77]. 

3.5 Research material 

During the research, Visual Studio Code was employed for writing code, while LabelImg 

was utilized for annotating the data. For training the model, the study utilized a 2080TI 

GPU, leveraging CUDA version 11.6, Python version 3.8, and Pytorch version 1.13.1 to 

ensure efficient computation and compatibility. 
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CHAPTER 4 - EXPERIMENTAL 

This section describes the experiments conducted in the study, including the baseline 

model experiment, the image enhancement experiment, and the GhostBottleNeck module 

fusion experiment. 

4.1 Baseline model 

In this study, to optimize model performance, comparative experiments were conducted 

using state-of-the-art YOLO series models—YOLOV8-S, YOLOV9-S, GELAN-S, and the 

newly released YOLOV10—all of which were trained and evaluated on the dataset [9, 41, 

42]. 

Table.2. Baseline Model Performance Comparison 

Model mAP50(%) Parameters GFLOPs 

YOLOV8-S 74.3 111.3M 28.6 

YOLOV9-S 76.4 95.9M 38.7 

GELAN-S 76.1 71.9M 26.9 

YOLOV10-S 71.8 80.6M 24.8 

According to the data presented in Table 2, YOLOV9-S stands out as the leading model in 

terms of detection accuracy, achieving a mean Average Precision (mAP50) of 76.4%. This 

performance not only highlights its superior capability but also sets a benchmark for other 

models. Close on its heels is GELAN-S, which showcases a comparable detection prowess 

with a mAP50 of 76.1%. This slight variance underscores the competitive nature of these 

models in handling complex detection tasks. Following them, YOLOV10-S demonstrates a 

commendable mAP50 of 71.8%, proving itself as a robust contender in the realm of object 

detection. Despite its strengths, YOLOV8-S lags slightly behind, with a mAP50 of 74.3%, 

indicating room for improvement in future iterations of the model. 

When assessing model complexity, YOLOV8-S emerges as the most intricate, featuring 

111.3 million parameters. This high parameter count is reflective of its complex 

architecture designed to capture nuanced features in data. YOLOV9-S, with 95.9 million 

parameters, presents a slightly simpler yet robust architecture that strategically balances 

complexity with high performance, making it suitable for varied detection tasks. 

YOLOV10-S, with 80.6 million parameters, offers moderate complexity and is tailored for 
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efficient performance without overburdening computational resources. Conversely, 

GELAN-S stands as the most streamlined model with only 71.9 million parameters, 

emphasizing simplicity and speed, which may benefit applications requiring lower 

resource consumption. 

YOLOV9-S, demanding the most computational resources at 38.7 GFLOPs, reflects its 

capacity for handling complex tasks at a higher computational cost. YOLOV8-S, using 

28.6 GFLOPs, offers a balance, consuming less than YOLOV9-S but more than other 

models. GELAN-S, at 26.9 GFLOPs, proves to be more resource-efficient than YOLOV8-

S, suitable for tasks needing lower GFLOP consumption. YOLOV10-S is exceptionally 

efficient, requiring only 24.8 GFLOPs, yet achieves a higher mAP50 than YOLOV8-S, 

demonstrating an excellent balance of low computational demand and high performance. 

In industrial defect detection, accuracy is paramount, as the primary objective is to identify 

defects effectively. Given its superior performance metrics, YOLOV9-S emerges as the 

most appropriate benchmark model for this specific research task. 

4.2 Image enhancement 

In this study, to tackle the challenge of distinguishing defective parts from the background 

due to color similarities, several image enhancement techniques were employed on the 

original dataset to improve image contrast. These methods included linear transformation, 

histogram equalization, contrast-limited adaptive histogram equalization (CLAHE), and 

gamma correction [15, 23, 78, 79]. Each technique aimed to modify the visual aspects of 

the images, making the defects more discernible against similarly colored backgrounds. 

Subsequently, the enhanced datasets were used to train and evaluate the original 

YOLOV9-S model. 

Table.3. Comparison of the effect of different image enhancement methods 

Model IMAGE 
ENHANCEMENT 

mAP50(%) 

Linear 69.4 

YOLOV9-S 
AHE 

CLAHE 

75.7 

74.5 

Gamma Correction 78.9 
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As detailed in Table 3, the YOLOV9-S model's performance after applying the linear 

enhancement method registers at 69.4%, a significant 7% decrease from the baseline 

model. This reduction underscores that linear enhancement, while straightforward, lacks 

the complexity needed to effectively highlight essential features within the images. This 

method fails to optimize the visibility of critical elements that aid the model in accurately 

recognizing the targets, suggesting that more sophisticated techniques might be necessary 

for handling such nuanced data scenarios. 

Employing the Adaptive Histogram Equalisation (AHE) method elevates the model’s 

performance to 75.7%, closely approaching but still slightly below the benchmark by 0.7 

percentage points. This enhancement nears but does not exceed the benchmark model’s 

efficiency, demonstrating AHE's capacity to considerably enhance image contrast and 

facilitate better target detection. However, it subtly implies that while AHE significantly 

bolsters contrast and clarity, thereby aiding in target delineation, it still does not fully 

optimize performance to surpass the highest standards set by the benchmark model. This 

could point to inherent limitations in how AHE handles data variability and complex 

scenarios within the dataset. 

Contrast-Limited Adaptive Histogram Equalisation (CLAHE) achieves a performance of 

74.5%, falling 1.9 percentage points short of the benchmark model. Despite its 

effectiveness in controlling image noise and preventing excessive enhancement, CLAHE 

does not reach the high performance standards set by the benchmark. This outcome 

suggests that while CLAHE is beneficial for maintaining image quality by avoiding over-

enhancement, it might not sufficiently highlight the critical features required for optimal 

defect detection in more complex scenarios. 

Gamma correction emerges as the most effective method, achieving a mean Average 

Precision (mAP) of 78.9%, which surpasses the benchmark by 2.5 percentage points. This 

superior performance demonstrates gamma correction's ability to significantly enhance 

image details through precise luminance distribution adjustments, particularly in both dark 

and bright areas. This enhancement directly contributes to the model's improved capability 

in accurately detecting targets within complex visual environments. 

Collectively, these results underscore gamma correction as the standout performer in these 

experiments, significantly enhancing model performance. In contrast, other tested methods, 

while beneficial, do not exceed or only marginally improve upon the baseline model's 

capabilities. This disparity emphasizes the critical role of selecting appropriate image 
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enhancement techniques tailored to specific model requirements and scene complexities, 

ultimately impacting the overall effectiveness of defect detection. 

4.3 GhostBottleneck 

This research investigates the efficacy of substituting the RepNCSPELAN4 module in 

YOLOV9 with a range of alternative modules specifically designed to enhance the model's 

capability in detecting small targets. Extensive training and testing were carried out on a 

dataset that was enhanced for image quality, employing these innovative modules to assess 

their performance enhancements. 

Table.4. Effect of replacing the RepNCSPELAN4 module with a different module 

Model Module mAP50(%) Parameters GFLOPs 

RepNCSPELAN4 78.9 95.9M 38.7 

YOLOV9-S 

DCNv3 [80] 

Context Guided Block 
[81] 

GhostBottleneck 

69.2 

79.4 

80.3 

102.4M 

98.4M 

86.5M 

40.2 

39.6 

31.2 

DiverseBranchBlock [82] 71.4 98.2M 38.4 

FasterBlock [83] 76.1 87.6M 33.4 

MSBlock [84] 78.6 84.7M 29.6 

According to the results detailed in Table 4, the GhostBottleneck module outperformed 

others with a remarkable mAP50 of 80.3%, closely followed by the Context Guided Block, 

which achieved a 79.4% score. In comparison, the original RepNCSPELAN4 module 

reached a score of 78.9%. While other modules like DCNv3 and DiverseBranchBlock 

showed competent performance, their scores of 69.2% and 71.4% respectively were 

considerably lower. This differential performance highlights the superior efficacy of the 

GhostBottleneck and Context Guided Block in enhancing target recognition accuracy 

within the model. 

Regarding model parameters, the GhostBottleneck module is the most streamlined, 

featuring 86.5 million parameters, in contrast to DCNv3, which holds the highest count at 

102.4 million parameters. This variance in parameter count directly influences the model's 

complexity and the computational resources it demands during operation. This aspect is 

crucial for understanding the balance between model depth and operational efficiency. 
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In terms of computational efficiency, the GFLOPs metric reveals that MSBlock leads with 

a low 29.6 GFLOPs, highlighting its superior efficiency. Conversely, DCNv3 exhibits the 

highest computational load, demanding 40.2 GFLOPs. Models with lower GFLOPs are 

generally more efficient, utilizing fewer computational resources, which is advantageous 

for deploying models in resource-constrained environments. 

Collectively, the diverse modules tested showcase varying trade-offs among performance 

metrics, model size, and computational efficiency. Notably, GhostBottleneck emerges as 

the most balanced option, excelling in both accuracy and efficiency. This optimal 

performance profile makes it particularly suitable for applications where both high 

precision and computational frugality are essential. 

4.4 Ablation Study 

This study implemented an ablation experiment to rigorously assess the individual and 

combined impacts of various image enhancement techniques and the GhostBottleneck 

module on the accuracy of the model. 

Table.5. Gamma corrected(GC) and GhostBottleNeck(GBN) ablation experiments 

Model GC GBN mAP50(%) 

76.4 

√ 78.9 
YOLOV9-S 

√ 78.2 

√ √ 80.3 

According to Table 5, the implementation of gamma correction significantly increases the 

model’s mean Average Precision (mAP50) from 76.1% to 78.9%. This substantial 

improvement underscores the effectiveness of enhancing image contrast in boosting the 

model's ability to recognize and accurately classify targets. Utilizing the GhostBottleneck 

module independently results in an mAP50 of 77.8%, an improvement over the baseline 

though slightly less than that achieved with gamma correction. This enhancement 

highlights the module’s effectiveness in refining the model's capability to detect smaller 

targets, affirming its role in optimizing component-specific performance. When both 

gamma correction and the GhostBottleneck module are simultaneously employed, the 

model achieves an optimal mAP50 of 80.3%. This peak performance demonstrates the 
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synergistic effect of combining these techniques, significantly enhancing the model's 

overall effectiveness and accuracy in complex scenarios. 

Additionally, this study implemented decimation experiments on the dynamic convolution 

(DC) and dynamic activation (DA) functions within the GhostModule. These experiments 

were conducted using the YOLOV9-S-GM model, which was equipped with the 

GhostBottleNeck replacement and tested on gamma-corrected datasets. The objective was 

to assess how these nuanced, target-specific components—DC and DA—contribute to 

enhancing the model’s performance, particularly in identifying and classifying small 

targets more effectively. 

Table.6. Dynamic convolution and dynamic activation function ablation experiments 

Model DC DA mAP50(%) Parameters GFLOPs 

78.2 76.8M 31.9 

√ 79.2 85.6M 30.9 
YOLOV9-S-GM 

√ 78.3 77.4M 32.0 

√ √ 80.3 86.5M 31.2 

The experimental results were analyzed across four configurations: The baseline, with no 

dynamic features enabled, demonstrated a mean Average Precision (mAP50) of 78.2%, 

utilized 76.8 million parameters, and required 31.9 GFLOPs, serving as a control to gauge 

the impact of dynamic enhancements on model performance. In the second configuration, 

with only dynamic convolution activated, the model achieved a higher mAP50 of 79.2% 

and required more parameters at 85.6 million; however, the computational demand, 

measured in GFLOPs, decreased to 30.9, underscoring an enhancement in computational 

efficiency attributed to dynamic convolution. In the third configuration, where only 

dynamic activation is implemented, there is a marginal decrease in mAP50 to 78.3%, with 

parameters rising to 77.4 million and GFLOPs increasing to 32.0. This indicates that while 

dynamic activation adds complexity, it offers minimal gains in performance efficiency. 

When both dynamic convolution and dynamic activation are employed, the model reaches 

an optimal performance with an mAP50 of 80.3% and a parameter tally of 86.5 million. 

Furthermore, this configuration reduces the GFLOPs to 31.2, showcasing a significant 

boost in performance and computational efficiency through the synergistic effects of these 

features. 
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The integration of dynamic convolution and activation significantly enhances the model’s 

accuracy in target detection tasks while optimizing computational resource usage. This 

balance of performance and efficiency is crucial in resource-limited settings, enabling the 

model to operate effectively without compromising on accuracy. 

4.5 Final Performance Comparison 

This study compares the performance of the improved model with current popular defect 

detection models. 

Table.7. Final Model Performance Comparison 

Model mAP50(%) Parameters GFLOPs 

YOLOV8-S 74.3 111.3M 28.6 

YOLOV9-S 76.4 95.9M 38.7 

GELAN-S 76.1 71.9M 26.9 

YOLOV10-S 71.8 80.6M 24.8 

This Study 80.3 86.5M 31.2 

According to the data presented in Table 7, the model developed in this study significantly 

enhances detection accuracy, achieving an mAP50 of 80.3%. This represents an 

impressive gain of 3.9 percentage points over the original YOLOV9-S model, which 

scored 76.4% in the same metric. This substantial increase not only demonstrates the 

model’s enhanced ability to accurately identify targets but also highlights the effectiveness 

of the improvements implemented in the model’s design and function. 

In addition, the model in this study demonstrates an optimized use of parameters, utilizing 

only 86.5 million parameters compared to the 95.9 million used by the YOLOV9-S. This 

reduction of approximately 9.4 million parameters signifies a streamlined yet efficient 

architecture. Such optimization not only preserves high accuracy but also enhances the 

model’s feasibility for deployment and storage, particularly in environments where 

memory and processing power are limited. 

In the realm of computational complexity, measured in GFLOPs, the model developed in 

this study operates at 31.2 GFLOPs, a substantial reduction from the 38.7 GFLOPs 

required by the YOLOV9-S model. This decrease of 7.5 GFLOPs suggests a significant 

enhancement in operational efficiency, including lower energy demands and accelerated 
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processing speeds, which are crucial for real-world application scenarios where quick 

response times and energy efficiency are valued. 

Overall, the model presented in this study not only achieves the highest detection accuracy 

but also optimizes both the number of parameters and computational complexity. This 

balance of high precision, streamlined architecture, and reduced computational demands 

underscores the model’s superior performance and efficiency, making it particularly well-

suited for deployment in resource-sensitive environments where maintaining operational 

effectiveness without overburdening system resources is critical. 
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CHAPTER 5 - DISCUSSIONS 

This section will summarise the contributions of this study as well as the shortcomings and 

future expectations 

5.1 Contributions 

In this study, we have effectively improved the accuracy and efficiency of bridge abutment 

surface defect detection by introducing advanced image enhancement techniques and 

target detection methods, especially Gamma correction and GhostBottleneck (GBN) 

module. Combined with dynamic convolution and activation techniques, our model shows 

significant performance advantages in dealing with fine targets and complex backgrounds, 

and the effectiveness of this study on the task of bridge abutment surface defect detection 

is demonstrated through a series of experiments. 

Among the various image enhancement methods employed, Gamma correction is 

distinguished by its exceptional capability for contrast adjustment, which markedly 

influences the overall efficacy of the model. Gamma correction amplifies the details in 

both dark and bright areas by modulating the luminance distribution within the image. This 

adjustment is particularly vital for distinguishing between defects and backgrounds that are 

visually similar. These observations align with extant literature that elucidates the 

enhancement of target detection performance through image contrast modification. 

The GhostBottleneck (GBN) module is ingeniously crafted to minimize computational 

complexity while preserving efficient information processing capabilities. Empirical 

comparisons reveal that the GBN module significantly augments the model's proficiency in 

recognizing small-scale targets, concurrently reducing the parameter count and 

computational expenditure. This enhancement is of paramount importance for identifying 

defects on the surfaces of bridge abutments, which are typically minor in size and 

heterogeneous in form. The superior performance of GBN over traditional ResNet-like 

modules substantiates the efficacy of deploying deep learning for meticulous target 

detection. 

The integration of dynamic convolution and activation techniques introduces a 

methodology for tailoring the network's response to varying input data. This adaptive 

strategy enhances the model's flexibility in accommodating diverse input features, which 

in turn elevates the precision of defect detection and amplifies the model's generalization 

capacity. Moreover, the strategic application of dynamic techniques facilitates the optimal 
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utilization of computational resources, an aspect critical in scenarios where such resources 

are constrained. 

This research contributes substantially to the precision and efficiency of defect detection 

on bridge abutment surfaces, diminishing the reliance on manual inspections and the 

potential for human errors. Additionally, the model's robust performance renders it suitable 

for real-time monitoring systems, offering a viable technical solution for the surveillance 

of bridge integrity. 

5.2 Limitations and expectations 

Gamma correction, a widely used image enhancement technique, plays a significant role in 

adjusting the luminance distribution to improve contrast in various imaging tasks. In the 

context of defect detection on bridge abutment surfaces, gamma correction proves 

beneficial by enhancing the visibility of details in both dark and bright regions of the 

image. This adjustment is crucial for distinguishing between subtle variations in defect 

features and background textures. However, gamma correction may not universally apply 

to all datasets or defect types due to its fixed parameterization and limited adaptability to 

varying image conditions. 

To address this limitation, it is essential to explore more sophisticated and adaptive image 

enhancement techniques. Advanced methods, such as adaptive histogram equalization or 

data-driven enhancement approaches using generative models, could potentially offer 

more nuanced adjustments tailored to specific image characteristics. These intelligent 

enhancement techniques can dynamically adapt to the image content and noise levels, 

thereby reducing the impact of image noise and improving the robustness of the defect 

detection model. 

This study introduces novel modules, including the GhostBottleneck (GBN) and dynamic 

convolution techniques, to address challenges specific to bridge abutment surface defect 

detection. The GBN module effectively reduces computational complexity while 

maintaining robust information processing capabilities, crucial for detecting small and 

diverse defects. Despite these advancements, there remains room for further improvement 

in model performance through sophisticated feature fusion strategies. 

Feature fusion, which integrates information from multiple sources or scales, can enhance 

the model’s ability to capture and represent complex defect patterns. Techniques such as 

multi-scale feature aggregation, attention mechanisms, or cross-modal fusion can 
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potentially improve the model's performance by leveraging complementary information 

from different feature representations. Incorporating these methods could lead to more 

accurate and comprehensive defect detection, addressing some of the limitations inherent 

in the current model architecture. 

The large size and computational demands of contemporary target detection models pose 

significant challenges for real-world deployment, particularly in resource-constrained 

environments. While this study has made strides in reducing the computational cost by 

employing the GBN module, further optimization is essential for practical application. 

Techniques such as model pruning, quantization, and knowledge distillation can contribute 

to reducing the model's size and computational requirements. Model pruning involves 

removing less significant parameters or neurons, while quantization reduces the precision 

of numerical representations to lower memory and computation needs. Knowledge 

distillation transfers the knowledge from a larger, more complex model to a smaller, more 

efficient one. These approaches can further enhance the deployment feasibility of defect 

detection systems, making them more suitable for real-time monitoring and edge 

applications. 

In summary, while gamma correction and current model innovations significantly 

contribute to defect detection, exploring more adaptive image enhancement techniques and 

advanced feature fusion strategies could further refine model performance. Additionally, 

addressing computational efficiency through pruning and other optimization techniques 

will be crucial for the practical deployment of defect detection technologies. Future 

research should focus on integrating these advanced methodologies to achieve more 

accurate, efficient, and deployable defect detection solutions. 
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CHAPTER 6 - CONCLUSION 

In this comprehensive study, we introduced a deep learning-based method for detecting 

defects on bridge pier surfaces, which addresses the inherent challenges faced by current 

methodologies due to the diverse appearances of defects, complex backgrounds, varying 

lighting conditions, and issues with detecting small targets. 

Key to this research was the innovative use of gamma correction as a preprocessing 

technique to enhance image quality. This method significantly improved visual clarity by 

enhancing the contrast and sharpness of the images, making darker details more 

discernible. The application of gamma correction on a dataset of bridge abutment surface 

defects led to a marked improvement in the model's ability to distinguish and accurately 

identify features. This enhancement was pivotal in enabling more nuanced feature 

extraction processes essential for the precise identification of structural anomalies, thereby 

enhancing the reliability of structural health monitoring systems based on image analysis. 

Further advancing our model's capabilities, the GhostBottleneck (GBN) module was 

integrated to address the challenges posed by diverse defect characteristics and the 

detection of small targets. The GBN module employs dynamic convolutional layers that 

adjust their parameters in response to the input image's features, allowing for more 

accurate feature extraction and improved adaptability of the model. This dynamic 

adjustment is critical for effectively detecting small defects, which are often overlooked by 

traditional convolutional networks due to the limitations of fixed convolutional kernels. 

The GBN module not only refined the detection process by optimizing kernel adjustments 

but also enhanced the overall model efficiency by judiciously using computational 

resources. It adapted the computational complexity according to the necessity for intensive 

feature extraction, maintaining lower processing levels in less demanding regions. This 

adaptive feature extraction significantly improved the model's performance in real-time 

applications by responding adeptly to complex backgrounds and varied defect types. 

The integration of the GBN module provided a robust and flexible solution for bridge 

defect detection, significantly improving the performance of the target detection model 

through a dynamically tailored deep learning architecture. This approach proved 

particularly effective in scenarios involving a wide range of defect sizes and complexities. 

Finally, the effectiveness of the gamma correction technique and the GBN module was 

rigorously validated through exhaustive ablation studies. These studies assessed the 
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individual contributions of each component to the model's performance, affirming their 

significant roles in enhancing detection accuracy and operational efficiency. Moreover, 

comparative experiments with state-of-the-art models demonstrated the superior 

performance and practical value of the proposed model, particularly in its adaptability to 

complex scenarios and its efficiency in processing. 

In summary, this research not only demonstrated significant improvements over existing 

defect detection methods but also laid a strong foundation for future advancements in 

structural health monitoring, ensuring more reliable and efficient detection of defects in 

bridge infrastructure. 
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CHAPTER 7 - REFLECTIONS 

The principal objective of this study was to devise a novel technique for detecting surface 

defects on bridge piers by merging sophisticated image enhancement technologies with an 

advanced target detection model. The results affirm that this objective has been 

substantially met, as evidenced by a 3.9% improvement in the mean Average Precision 

(mAP50) relative to the baseline model. Additionally, the new method demonstrates a 

reduction in both computational demand and the number of parameters by 9.8% and 7.5 

GFLOPS respectively, suggesting enhanced feasibility for practical implementation in 

future deployments. 

Despite these advancements, certain aspects of the project suggest potential areas for 

further refinement. Specifically, the use of gamma correction has markedly improved 

recognition capabilities within our dataset; however, its applicability across diverse 

datasets remains limited. Experiments with various adaptive image enhancement 

techniques yielded suboptimal results, indicating that future efforts might benefit from 

exploring deep learning-based image enhancement methods, such as Generative 

Adversarial Networks (GANs). Such techniques could tailor image quality enhancements 

more effectively to specific dataset distributions and user requirements, potentially 

elevating the overall efficacy of the detection system. 

Furthermore, enhancements to the model's 'Neck' component, which integrates different 

scales of features, could yield better focus and detection accuracy for small-scale defects. 

Implementing more targeted image fusion methods could substantially improve the 

model’s sensitivity to smaller targets. Unfortunately, time constraints precluded this 

experimental development during the current phase of research. 

In conclusion, while this study marks a significant step forward in the field of structural 

health monitoring by integrating enhanced imaging with deep learning for defect detection, 

ongoing research is essential to refine these methodologies further. Future investigations 

should focus on extending the applicability of image enhancements and optimizing the 

architectural components of the detection model to maximize performance across varied 

operational contexts. 
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PROJECT MANAGEMENT 

During the actual conduct of this study, a number of unplanned circumstances 

arose that slightly altered the original progress, and the following is a schedule of 

the planned process: 

Fig. 5. Planned schedule 

Here is the actual schedule: 

Fig. 6. Actual time schedule 

First of all, I changed the title from underwater abutment surface defects detection 

to abutment surface defects detection, this is because I did not collect the 

appropriate underwater abutment surface defects dataset, I tried to contact a lot of 
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scholars in the related fields, but I did not get the dataset I wanted, which took me 

a certain amount of time, in terms of the progress of the data collection, I was 

planning to collect the data in a short period of time, and then go into the 

experimentation stage, however, there are not many public datasets related to this 

study, let alone the labelled dataset. phase, however, there are not many publicly 

available datasets related to this study, let alone labelled datasets, and it took me 

a long time to find the datasets that are currently being used in this study and to 

select and manually label the dataset contents. However, I did not let this process 

delay my progress as it required more experimentation, and while labelling the 

data, I have started to design the whole model architecture and think about the 

experimental design. 

Secondly, more time was spent on model design than originally planned, as I did a 

lot of literature reading on choosing the BASELINE model and inserting the 

modules, and tried out all these different combinations. 

At the same time, the process of experimentation was longer than originally 

planned, and many combinations of the image enhancement module and the 

newly inserted module were attempted, and at the same time, during this period, 

there were three other days in which it was not possible to connect to the server 

and carry out the experiment due to network reasons, which delayed the progress 

of the experimentation. 

In the end, I started the process early in order to be able to write a higher quality 

report, especially by writing the first and second parts of the report in advance. 

In regard to the data collection phase, the initial plan was to rapidly acquire 

datasets and advance to the experimental phase. However, the scarcity of publicly 

available datasets relevant to this research, particularly labeled ones, necessitated 

extensive searches to identify suitable datasets for this study. Once identified, 

these datasets required careful selection and manual annotation. Despite these 

challenges, these preparatory tasks did not impede the overall project timeline, as 

experimental design and model architecture planning were concurrently executed 

during the data labeling process. 

Furthermore, the model design phase extended beyond initial estimates due to 

comprehensive literature reviews conducted to select an appropriate baseline 

model and integrate various modules. This phase involved testing multiple 

combinations to optimize the model configuration. 
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The experimental phase also exceeded planned durations, primarily due to the 

iterative testing of different configurations involving the image enhancement and 

newly integrated modules. Additionally, there were three instances of server 

connectivity issues due to network disruptions, further delaying experimental 

progress. 

To ensure the submission of a high-quality report, I initiated the writing phase early, 

drafting the first and second sections of the report in advance to accommodate 

these delays. 
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LOGBOOK 

Date Range Task Description 

Background 2024-02-27 Reading 

Engaged in extensive background reading to establish 
a solid foundation for the research. Reviewed scholarly 
articles, books, and previous studies related to defect 
detection in bridge piers, focusing on methodologies 
and technologies previously used. This foundational 
reading helped identify gaps in current research and 
shaped the direction of the study by highlighting 
innovative approaches and potential areas for 
technological advancement in the field of structural 
health monitoring. 

Proposal 2024-03-05 to Development 03-12 and Writing 

Developed a comprehensive research proposal that 
outlined the scope, objectives, and methods of the 
study. The proposal defined specific goals such as 
enhancing defect detection accuracy using the 
YOLOV9 model integrated with advanced image 
enhancement techniques. It also detailed the 
methodology, including the types of data to be 
collected, the experimental design, and the analytical 
techniques to be used for evaluating the model's 
performance. 

2024-03-13 to Literature 
03-26 Review 

I I conducted an in-depth review of a broad spectrum 
of literature encompassing defect detection, image 
enhancement technologies, and target detection fields. 
This included foundational theoretical research through 
to cutting-edge practical applications, such as the use 
of deep learning algorithms for image analysis and 
enhancement, and various machine learning models 
applied in object detection. Special attention was given 
to studies that provided innovative approaches or 
improvements to existing techniques, such as 
employing Convolutional Neural Networks (CNN) to 
identify and classify defects in images, or developing 
new image preprocessing algorithms to enhance the 
accuracy and efficiency of detection systems. 
Additionally, I reviewed numerous articles on 
advanced object detection frameworks, such as the 
YOLO (You Only Look Once) series, exploring their 
balance between processing speed and accuracy, and 
their practical application effectiveness in real bridge 
defect detection scenarios. 
Based on extensive reading and in-depth analysis of a 

2024-03-27 to 
04-09 

Research 
Design and 
Methodology 

multitude of documents, I designed a detailed set of 
research steps and an overall plan. These documents 
span foundational theories to applied technologies, 
particularly the latest advancements in image 
processing, defects detection. Integrating these 
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Date Range Task Description 

research outcomes, I identified key areas and potential 
innovations for my study. My research plan includes 
several critical steps: Firstly, experimental design to 
ensure scientific rigor and operability; secondly, data 
collection and preprocessing, establishing stringent 
standards to ensure data quality and experiment 
effectiveness; thirdly, model development and testing, 
selecting and optimizing algorithms and models suited 
to solving practical problems; and finally, results 
analysis and validation, where experimental outcomes 
are compared against theoretical expectations to verify 
the correctness and practicality of the research 
hypotheses. The formulation of this comprehensive 
plan aims to ensure the systematic nature of the 
research process and the reliability of the results, 
thereby contributing new theoretical and practical 
knowledge to the advancement of bridge defect 
detection technology. 

Data Collection 2024-04-10 to and 04-23 Preprocessing 

To better support my research, I conducted an 
extensive search and organized currently available 
datasets related to surface defects on bridge piers. 
These datasets primarily come from various 
internationally recognized databases and research 
institutions, encompassing everything from small-scale 
experimental data to large-scale field-collected data. 
After a detailed analysis of these datasets, I carefully 
selected those that include well-defined defect types, 
high-quality images, and precise annotations. This 
selection process considered not only the 
representativeness and diversity of the data but also its 
practicality and reliability to ensure that the chosen 
datasets could effectively support the development and 
testing of image processing and defect detection 
algorithms. 

2024-04-24 to Model Design 05-07 

To delve deeper into and optimize the detection 
methods for surface defects on bridge piers, I first 
conducted a comprehensive summary of the currently 
popular defect detection techniques. These methods 
include those based on traditional image processing 
technologies as well as those leveraging deep learning, 
each possessing unique advantages and limitations. By 
comparing the performance of these methods in terms 
of accuracy, speed, and resource consumption, 
selected the most suitable object detection framework 
for our research needs. 

After selecting the framework, I designed entirely new 
modules tailored to the specific requirements of our 

I 
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study to enhance the performance of the target 
detection framework. These custom modules are aimed 
at addressing specific issues encountered by traditional 
models when dealing with complex defects on bridge 
surfaces, such as variations in lighting, differences in 
defect sizes, and background noise. The new modules 
include advanced image preprocessing features to 
improve the quality of input images and enhanced 
feature extraction mechanisms to more accurately 
identify and classify various defects. 

2024-05-08 to Experiments 05-21 

To ensure optimal performance of our bridge pier 
surface defect detection system, I systematically 
conducted experimental comparisons on a carefully 
curated dataset using mainstream image enhancement 
methods and object detection models. These datasets 
were designed to simulate defect characteristics under 
various environmental conditions, providing an ideal 
platform for a comprehensive assessment of model 
performance. In the experiments, I first applied several 
different image enhancement techniques, such as 
contrast adjustment, sharpening, and noise suppression, 
to improve image quality and enhance model 
recognition capabilities. 

Subsequently, I selected several widely used object 
detection models, such as YOLO, SSD, and Faster R-
CNN, and compared their effectiveness and efficiency 
in handling defects of varying complexity. Each model 
was evaluated in detail for its accuracy, detection 
speed, and computational resource consumption to 
determine the most suitable model for our project 
needs. 

Additionally, to further enhance model performance, I 
attempted to integrate various functional modules into 
the chosen object detection framework. These modules 
included new feature extraction layers, more complex 
classifiers, and task-specific optimization algorithms. 
Through this approach, I was able to test the impact of 
each module on the overall performance of the 
detection system, thereby selecting the most effective 
combination. 

Ultimately, through this series of exhaustive 
experiments and comparative analyses, I not only 
selected the most suitable image enhancement 
techniques and object detection models for bridge pier 
surface defect detection but also optimized the 
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architecture of the entire detection system, ensuring its 
efficiency and accuracy in practical applications. 

Results 2024-05-22 to Analysis and 06-04 Interpretation 

2024-06-05 to Report Writing 06-18 

After completing a series of experiments with various 
image enhancement techniques and object detection 
models, I conducted a detailed comparison of the 
results to deeply analyze the performance and 
efficiency of each method in detecting surface defects 
on bridge piers. Initially, I statistically processed and 
visualized the data obtained from the experiments, 
including key metrics such as the accuracy rates, 
detection speeds, and resource consumption of each 
model, thus clearly illustrating the performance 
differences between the techniques. 

Next, for those experiments that showed significant 
performance variances, I delved into potential reasons. 
For instance, some image enhancement methods might 
have caused loss of detail due to over-processing, 
while some object detection models might have 
responded slowly in real-time tasks due to their depth 
or complexity of structure. Additionally, I considered 
the characteristics of the datasets, such as the diversity 
of images and the complexity of defects, which could 
also impact the final detection outcomes. 

Through this series of comparative analyses, I not only 
identified the strengths and limitations of various 
approaches but also proposed improvement strategies 
for specific issues. These included optimizing the 
image preprocessing workflow, adjusting model 
parameters, or redesigning certain layers of the model 
to enhance the overall performance and adaptability of 
the detection system. Ultimately, these analyses helped 
me develop a more precise and efficient plan for 
detecting surface defects on bridge piers. 
As the research project drew to a close, I began 
composing a detailed research report to 
comprehensively summarize the experimental process, 
analysis results, and key findings of the study. This 
report initially outlined the background and objectives 
of the research, followed by a thorough description of 
the methods used, experimental design, data collection, 
and processing procedures. During the writing process, 
I elaborately explained the reasons for choosing 
specific technologies and models, and how these 
choices impacted the experimental results. 

The analysis section of the report emphasized the 
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statistical handling and interpretation of experimental 
data, visually presenting comparative results through 
charts and data tables, and highlighting differences 
between experimental and control groups. 
Additionally, I critically reflected on the challenges 
and limitations encountered during the experiments 
and suggested possible improvements for future 
research. 

After completing the first draft, I underwent several 
rounds of revisions and proofreading to ensure the 
accuracy, clarity, and fluency of the report’s content. 
During this process, I also sought feedback and 
suggestions from my supervisor and classmates, who 
provided invaluable input that helped enhance the 
academic quality and professionalism of the report. 
Through this rigorous writing and revision process, a 
detailed and authoritative research report was 
ultimately produced, contributing new theoretical and 
practical insights to the field of bridge pier surface 
defect detection. 

2024-06-19 to 
07-03 

Final 
Submission 

Reviewing and submitting the final report 
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