

A malware classification method based on the multi-layer

feature fusion of malware image representations and opcode

Markov images

by

Jinwei Xu

Supervisor: Dr Michael Dacey

Project submitted as part of the requirements for the award of

MSc Computer Networks and Cyber Security

August 2024

Declaration of Originality

I Jinwei Xu declare that I am the sole author of this Project; that all references cited

have been consulted; that I have conducted all work of which this is a record, and that

the finished work lies within the prescribed word limits.

This work has not previously been accepted as part of any other degree submission.

Signed : ...

Date : ...

i

FORM OF CONSENT

I Jinwei Xu hereby consent that my Project, submitted in candidature for the degree

MSC Computer Networks and Cyber Security, if successful, may be made available

for inter-library loan or photocopying (subject to the law of copyright), and that the title

and abstract may be made available to outside organisations.

Signed : ...

Date : ...

ii

Abstract

As the threat of malware to information security becomes increasingly severe, the

study of efficient malware classification methods has become more urgent. This paper

proposes a multilayer malware classification method based on the fusion of image

representation and opcode features. By integrating the features of image-based

malware representation and opcode Markov image, the classification performance is

enhanced. Specifically, our model introduces two feature fusion modules: a cross-

attention-based fusion module and a multiplication-based low-level feature fusion

module. These modules achieve effective fusion of deep features, thereby improving

the accuracy of malware classification. Experimental results show that the model

combining malware image features extracted by ResNet18 and malware opcode

Markov image features extracted by EfficientNetB0 performs the best. Comparative

experiments with traditional feature fusion methods demonstrate that our approach

has significant advantages in classification performance. Further experiments on

another dataset validate the generalization ability of our method. This research

provides an efficient and effective solution for malware classification.

iii

Table of Contents

Abstract ..iii

Acknowledgment.. x

1. Introduction.. 1

1.1 Introduction ... 1

1.2 Research Aim and Objectives... 4

1.3 Research Questions ... 4

1.4 Structure of The Project .. 6

2. Literature Review... 7

2.1 Image-based Malware Representation ... 7

2.2 Opcode ... 12

2.3 Feature Fusion in Malware Classification 15

2.4 Research Gap... 19

3. Research Methodology.. 20

3.1 Research Philosophy .. 20

3.2 Research Process... 20

3.3 Data Collection.. 21

3.3.1 Honeypot.. 21

3.3.2 Third-party malware sample sharing websites 22

3.3.3 Open-source datasets.. 22

3.4 Data Pre-processing ... 22

3.4.1 Image-based Malware Representations Extraction.......... 22

3.4.2 Malware Opcode Markov Image Extraction...................... 24

3.5 Malware Classification Models Design.. 25

3.5.1 Convolutional Neural Network.. 25

3.5.1.1 ResNet ... 25

3.5.1.2 VGG ... 26

3.5.1.3 EfficientNet... 26

3.5.2 Feature Fusion ... 26

3.5.2.1 Feature Concatenate ... 26

3.5.2.2 Multilayer Deep Network based Feature Fusion 27

3.5.2.3 Cross-Attention Mechanism based Feature Fusion 27

3.5.2.4 Multiplication based Low-level Feature Fusion Method.... 29

iv

3.6 Model Training .. 29

3.6.1 Loss Function... 29

3.6.1.1 Cross-entropy Loss .. 29

3.6.2 Optimization Algorithm ... 29

3.6.2.1 Stochastic Gradient Descent.. 30

3.6.2.2 Adam Algorithm.. 30

3.6.3 Learning Rate... 31

3.6.4 Batch Size.. 31

3.6.5 Training Epochs ... 32

3.6.6 Data Augmentation .. 32

3.6.6.1 Random Cropping and Horizontal Flip 32

3.6.7 Transfer Learning... 32

3.7 Model Evaluation .. 33

3.7.1 Accuracy .. 33

3.7.2 Precision .. 33

3.7.3 Recall ... 34

3.7.4 The F1 Score ... 34

3.7.5 The confusion matrix.. 34

4. Design ... 35

4.1 Data Collection.. 35

4.2 Data Pre-processing Design ... 37

4.2.1 Image-based Malware Representations Extraction.......... 37

4.2.2 Opcode Markov Image Extraction 38

4.3 Model Design .. 39

4.3.1 Image-based Malware Presentation Feature Extraction

Module 41

4.3.2 Opcode Markov Image Feature Extraction Module 43

4.3.3 Cross-attention Feature Fusion Module 45

4.3.4 Multiplication Based Low Level Feature Fusion Module .. 47

4.4 Model Training .. 49

4.5 Model Evaluation .. 49

5. Implementation .. 50

5.1 Hardware and Software Resource .. 50

5.1.1 Hardware Resource ... 50

v

5.1.2 Software Resource... 50

5.2 Data Pre-processing Implementation.. 50

5.2.1 Opcode Sequences Extraction... 50

5.2.2 Opcode Markov Image Extraction 51

5.2.3 Image-based Malware Representations Extraction.......... 51

5.3 Model Implementation... 52

5.4 Model Training Implementation... 53

5.5 Model Evaluation Implementation ... 54

6. Experiments... 55

6.1 Evaluation of Various Convolutional Neural Networks for Malware

Classification 55

6.1.1 Experiment Settings ... 55

6.1.2 Experiment Results .. 56

6.1.3 Analysis.. 56

6.2 Comparison of Feature Fusion Techniques for Malware

Classification 58

6.2.1 Experiment Settings ... 58

6.2.2 Experiments Results .. 59

6.2.2.1 Results for Model 1(Feature Fusion based via

Concatenation) 59

6.2.2.2 Result for Model 2(Feature Fusion based via Multilayer

Deep Network) 61

6.2.2.3 Result for Model 3(Feature Fusion based via Cross

Attention) 63

6.2.2.4 Result for Model 4(Feature Fusion based via Multilayer

Feature Fusion) 65

6.2.3 Analysis.. 67

6.3 Performance Analysis of Malware Classification Models Across

Different Datasets ... 68

6.3.1 Experiment Settings ... 68

6.3.2 Experiment Results .. 68

6.3.3 Discuss... 69

7. Discussion ... 70

7.1 Discussing Results for each Research Question 70

vi

7.2 Comparison with Existing Literature.. 71

8. Conclusion... 75

8.1 Conclusion .. 75

8.2 Future Work .. 76

9. Reflection... 77

10. Reference.. 78

Appendice .. 82

vii

List of Figures

Figure 1 Malware visualization algorithm by Nataraj et al. 22

Figure 2 Malware visualization algorithm by Tekerak et al. 23

Figure 3 Multilayer deep network ... 27

Figure 4 Image-based malware representations extraction...................................... 37

Figure 5 Process of extracting an Opcode Markov Image.. 38

Figure 6 Model architecture.. 40

Figure 7 Modified VGG16... 42

Figure 8 Modified ResNet18... 42

Figure 9 Modified EfficientNetB0.. 42

Figure 10 VGG16 ... 44

Figure 11 ResNet18 ... 44

Figure 12 EfficientNetB0 .. 44

Figure 13 Cross-attention based feature fusion module... 46

Figure 14 Multiplication Based Low Level Feature Fusion Module 48

Figure 15 Confusion matrix of model 1... 59

Figure 16 Confusion matrix for model 2 ... 61

Figure 17 Confusion matrix for model 3 ... 63

Figure 18 Confusion matrix for model 4 ... 65

Figure 19 Confusion matrix .. 68

viii

List of Tables

Table 1 Adam algorithm process 31

Table 2 Microsoft Malware Classification Challenge dataset 35

Table 3 CCF BDCI 2021 dataset 36

Table 4 Model configurations 55

Table 5 Experiments results 56

Table 6 Model configurations 58

Table 7 Results of model 1 59

Table 8 Results for model 2 61

Table 9 Results for model 3 63

Table 10 Results for model 4 65

Table 11 Experiment results 69

ix

Acknowledgment

I would like to sincerely thank my advisor, Michael Dacey, for his guidance on my

academic and research journey. I am also deeply grateful to my family for their

encouragement and support throughout this process. Additionally, I want to express

my appreciation to my friends for their assistance in my studies. Without your help, I

would not have achieved the results I have today. Thank you all!

x

1. Introduction

1.1 Introduction

In recent years, with the rapid development of the internet industry, an increasing

number of devices have connected to the internet, significantly transforming people's

lifestyles and work habits. However, alongside the broad application of new

technologies, information security issues have become increasingly prominent.

Cybercriminals employ various methods to carry out attacks, causing severe damage

to both individuals and businesses. Among these, malware attacks are one of the

primary threats to current information security. Malware can spread through various

channels, such as email attachments, malicious website links, and infected

applications. If a user inadvertently clicks or downloads these, malware may be

implanted in the device, leading to the theft of sensitive information, locking of system

files, or even ransom demands. These attacks not only threaten users' privacy and

security but also pose the risk of data breaches and business disruptions for

enterprises, resulting in immeasurable losses.

Malware is not only increasing rapidly in quantity, but its complexity and diversity are

also continuously evolving. As cyber defense mechanisms advance, attackers have

adopted more sophisticated techniques to bypass security measures. By continuously

improving and updating malware code, they make it more stealthy, destructive, and

harder to detect and defend against. This rapid evolution poses significant challenges

to the cybersecurity field. According to the SonicWall 2024 Mid-Year Threat Report[1],

the total amount of malware increased by 30% in the first half of 2024, a significant

rise compared to the same period last year. The growth was particularly notable

between March and May, with a 92% increase in May alone. According to the

1

VirusTotal Malware Trends Report[2], malware is increasingly utilizing newer and

more covert distribution methods. The use of traditional file formats such as Excel,

RTF, CAB, and compressed files in malware distribution is gradually decreasing, being

replaced by emerging file types and distribution methods. In 2023, OneNote files and

JavaScript distributed through HTML quickly became mainstream distribution

mediums.

In recent years, deep learning technology has made significant advancements across

various fields, demonstrating its powerful capabilities in handling complex data and

tasks. Particularly in the domain of malware classification, deep learning has emerged

as a highly regarded and widely applied approach.

The image-based representation of malware has become a significant approach in the

field of deep learning-based malware classification. This method involves converting

malware bytecode into images, enabling deep learning models to automatically learn

and extract useful features, thereby enhancing the accuracy and efficiency of malware

detection. The image-based representation of malware refers to the process of

converting malware bytecode data into grayscale or color images. This approach

offers several advantages. Firstly, The image-based approach allows deep learning

models to automatically learn and extract features by transforming malware bytecode

into images, thereby reducing the reliance on manual feature engineering. Secondly,

The image-based method effectively addresses code obfuscation by distinguishing

malware from legitimate software through visual features, without depending on

specific code structures or patterns. Thirdly, The image-based method is highly cross-

platform adaptable, enabling unified application across different operating systems

without the need to develop separate detection algorithms for each platform.

2

The Markov image of malware opcodes is another commonly used feature for malware

classification based on deep learning methods. The use of the Markov image of

malware opcodes is justified because opcodes represent the sequence of instructions

that an application executes during its runtime, reflecting the application's low-level

operations. By analyzing these opcode sequences, it is possible to capture the

behavioral characteristics of the application, which is crucial for distinguishing different

types of malware. Moreover, compared to higher-level features in the code (such as

API calls), opcodes are closer to machine code and are less affected by techniques

such as code obfuscation and compression[3]. Therefore, extracting features from

opcodes enhances the capability to detect malware, particularly when dealing with

obfuscated malware.

Traditional classification methods typically rely on the analysis of a single feature, such

as image-based malware representation or opcode Markov image analysis. However,

as malware technology continues to evolve, these single-feature analysis methods

face certain limitations when dealing with complex and diverse malware. Therefore, it

is particularly necessary and promising to propose a joint analysis method that

combines malware's image-based presentation with opcode Markov images. The

image-based presentation of malware intuitively displays the overall structural

characteristics of the malware, making patterns and features that are difficult to detect

in binary data more apparent. Meanwhile, the opcode Markov image captures subtle

behavioral differences by analyzing the statistical characteristics of the malware’s

instruction sequence. The combination of these two approaches not only enhances

the diversity of malware feature extraction but also improves the robustness and

accuracy of detection. However, effectively integrating these two features still presents

several challenges. First, a key issue is how to fully leverage the advantages of both

3

approaches in feature extraction and representation. Additionally, capturing and

representing the connections between image-based features and opcode Markov

features to improve the classifier's ability to recognize malware is also a major difficulty.

In response to these challenges, this research will explore different fusion strategies

with the aim of proposing a malware classification method that fully utilizes the

advantages of both features.

1.2 Research Aim and Objectives

The purpose of this study is to propose a malware classification method based on a

multi-level feature fusion of image-based presentations and opcode Markov images of

malware. The specific objectives of this research include: conducting a comprehensive

literature review to understand the current malware detection techniques using image-

based presentations and opcode Markov images, as well as their developments;

designing a malware classification method that incorporates multilayer feature fusion;

testing the proposed method on publicly available datasets to validate its effectiveness;

and evaluating the method using various metrics to comprehensively assess its

performance and practicality. Through these steps, this study aims to provide a novel

and effective malware classification solution for the field of cybersecurity.

1.3 Research Questions

⚫ Which deep learning model is optimal for extracting image representations of

malware and opcode Markov image features?

In the study of malware classification models, selecting an appropriate model to extract

image representations of malware and opcode Markov image features is a crucial

question. Therefore, this study will investigate and validate the performance of

4

commonly used models in extracting malware image representations and opcode

Markov image features.

⚫ Can an effective technique for malware feature fusion be developed?

Feature fusion techniques have been widely applied in the field of malware

classification. However, existing research primarily focuses on simple feature fusion

methods, which often overlook the complex relationships and potential

complementarity between features, leading to limited improvements in classification

performance. Thus, the critical question of this research is: How can a more effective

feature fusion method be designed to deeply explore and utilize the relationships

between features, thereby significantly improving the accuracy and robustness of

malware classification? To address this issue, this study will investigate various

feature fusion strategies and integrate advanced machine learning techniques, aiming

to develop a new method that fully leverages the power of features.

⚫ Can a robust and generalizable malware classification algorithm be developed?

In the field of malware classification, robustness and generalizability are key criteria

for evaluating the quality of classification algorithms. Malware comes in many forms,

and attack methods are constantly evolving. Therefore, an effective classification

algorithm should maintain efficient and accurate classification capabilities even when

faced with diverse datasets. This study will validate the proposed method's

classification performance across different malware datasets to assess its adaptability

and stability in various environments.

5

1.4 Structure of The Project

In the first chapter, Introduction, the research content is introduced, providing an

overview of the study and its objectives. The second chapter, Literature Review,

presents a review of related literature, discussing the background and context of the

research. The third chapter, Methodology, details the methods employed in this study.

The fourth chapter, Design, describes the design of a classification method based on

the multi-layer feature fusion of malware image representations and opcode Markov

images. The fifth chapter, Implementation, explains how the algorithm was

implemented. The sixth chapter, Experiment, involves conducting experiments to

answer the research questions posed in the study. The seventh chapter, Discussion,

explores the answers to the research questions, comparing the findings with existing

literature. Finally, the eighth chapter, Conclusion, offers conclusions and provides

insights for future research directions.

6

2. Literature Review

2.1 Image-based Malware Representation

In the field of malware analysis, traditional approaches are increasingly facing complex

challenges. To more effectively identify and classify malware, researchers have

proposed an innovative method: representing malware by converting its binary data

into image form. This image-based malware representation approach not only reveals

the unique patterns of malware but also opens up new possibilities for utilizing

computer vision and deep learning techniques in malware detection. In the following,

we will review the relevant research achievements in this area.

The research by Nataraj et al.[4] was the first to visualize malware into images. The

core idea of the study is to visualize the binary files of malware as grayscale images,

noting that images belonging to the same malware family often exhibit similar layouts

and textures. Based on this visual similarity, the research introduces a method for

classification using standard image features, without the need for code disassembly

or execution. The main experimental results show that this method achieved a

classification accuracy of 98% in a database containing 25 different malware families.

Additionally, the technique demonstrated a certain level of resilience against common

obfuscation techniques, such as partial encryption. The innovation of this research lies

in the use of image features for malware analysis, opening new avenues for future

malware analysis based on computer vision techniques.

Tekerek et al.'s research[5] proposes an algorithm called B2IMG, which is designed

to convert byte files into image format for the purpose of malware classification. The

specific steps of this algorithm include reading the byte files, data processing, image

generation, and image conversion. By directly converting byte data into image data,

7

the B2IMG algorithm avoids the information loss often encountered in traditional

analysis methods, thereby improving the accuracy of malware classification. To

address the issue of data imbalance, the study also introduces CycleGAN (Cycle-

Consistent Generative Adversarial Network) for data augmentation. Finally, the study

employs DenseNet to classify the image-based malware representations.

Experimental results demonstrate that using the image data converted by the B2IMG

algorithm, combined with data augmentation via CycleGAN, can significantly improve

malware classification accuracy. Notably, the classification accuracy reached 99.86%

on RGB images.

The study by Shaukat et al.[6] proposes an innovative malware detection method

based on deep learning. The proposed method first visualizes executable files (PE

files) as color images, then uses a fine-tuned model to extract deep features from

these images. Finally, it employs a Support Vector Machine (SVM) to detect malware

based on these deep features. Experimental results show that this method

outperforms existing methods on multiple benchmark datasets, achieving an accuracy

of 99.06% on the Malimg dataset. Additionally, the study introduces data augmentation

techniques to address the issues of data imbalance and the scarcity of publicly

available malware detection datasets, significantly enhancing detection performance.

Chaganti et al.[7] explored a malware classification method based on image

representation. The study proposed using the EfficientNetB1 model for classifying

malware families, leveraging byte-level image representation techniques of malware.

After comparing the performance of various CNN pre-trained models, the authors

found that EfficientNetB1 achieved a classification accuracy of 99% while requiring

significantly fewer network parameters than other pre-trained models. Additionally,

various visualization techniques were employed in the study to compare the

8

performance of different CNN models. The research demonstrated that EfficientNetB1

not only effectively improves accuracy in malware classification but also reduces the

consumption of computational resources.

The study by Acharya et al.[8] proposes a malware classification framework based on

the EfficientNet-B1 model. The malware samples in the study are represented as byte

code grayscale images and classified using the EfficientNet-B1 model. The

experimental results demonstrate that the model achieved a classification accuracy of

98.57% on a dataset comprising 10,868 samples from 9 different malware families,

significantly outperforming other pretrained deep learning models.

The research by Yadav et al.[9] proposes using deep learning methods for automated

malware detection. The research compares the performance of 26 convolutional

neural network models in Android malware detection and proposes a detection method

based on the EfficientNet-B4 model. This method involves converting Android's DEX

files into images, extracting features from these images using the EfficientNet-B4

model, and finally performing binary classification to distinguish between malware and

benign software through a Softmax classifier. Experimental results demonstrate that

the proposed model achieves a 95.7% accuracy rate in the binary classification task,

outperforming other comparative models.

In the study conducted by Lojain et al.[10], the core components of APK files, such as

classes.dex, resources, manifest, and certificates, were utilized. These binary data

were converted into 8-bit vectors and then transformed into grayscale images. These

grayscale images were subsequently used to train and test the model. The study

employed the ResNet-50 model, replacing its softmax classification layer with an SVM

model (using a Gaussian kernel) to enhance detection performance. After conducting

9

experiments on the DREBIN dataset, the research results showed that the grayscale

image model, which combined Certificates (CR) and Android Manifest (AM), achieved

a classification accuracy of 97%. Additionally, the model performed exceptionally well

on other metrics such as precision, recall, and F1-score, all exceeding 95%.

The work by Asam et al.[11] involves detecting and classifying malware variants

using deep learning and machine learning techniques. The research introduces two

novel malware classification frameworks: Malware Classification based on Deep

Feature Space (DFS-MC) and Malware Classification based on Deep Boosted

Feature Space (DBFS-MC). In the DFS-MC framework, a custom Convolutional

Neural Network (CNN) architecture is employed to generate deep features, which

are then input into a Support Vector Machine (SVM) algorithm for malware

classification. In the DBFS-MC framework, an enhanced feature space is generated

by combining the deep feature spaces of two custom CNN architectures, aiming to

improve classification discrimination. On the MalImg malware dataset, an accuracy

of 98.61% was achieved.

The study by Ahmed et al.[12] proposed the use of a transfer learning approach with

the Inception V3 model to classify malware samples from the BIG15 dataset. The

research also compared the performance of several other machine learning and deep

learning models, including Logistic Regression (LR), Artificial Neural Networks (ANN),

Convolutional Neural Networks (CNN), and Long Short-Term Memory networks

(LSTM). In the experiments, the transfer learning approach using the Inception V3

model achieved a classification accuracy of 98.76% on the test dataset, while the

accuracy on the training dataset reached 99.6%.

10

The research by Mallik et al.[13] proposes a convolutional recurrent-based malware

classification technique that leverages visual recurrent features in grayscale malware

images for classification. Initially, the malware samples are converted into grayscale

images, and convolutional neural networks (CNNs) are used to extract structural

similarity features. To balance the dataset and reduce class bias, data augmentation

is applied. Subsequently, visual features are extracted using the VGG16 feature

extractor, and these features are processed through two stacked Bidirectional Long

Short-Term Memory (BiLSTM) layers. Finally, the processed features are fused for the

final malware family classification. The authors tested the model's performance on two

benchmark datasets, demonstrating that this approach is both practical and effective

for malware family classification.

Currently, classification methods based on image-based representation of malware

have become a common and effective technical approach. These methods typically

incorporate convolutional neural networks (CNNs) such as VGG, ResNet, EfficientNet,

and other models, demonstrating outstanding classification performance. However,

selecting the appropriate convolutional neural network model remains a topic that

requires further research. Additionally, solely relying on image-based representation

techniques may sometimes fail to fully realize their potential. It might be necessary to

combine them with other analytical methods or more sophisticated feature extraction

and fusion techniques to further enhance classification accuracy and robustness.

11

2.2 Opcode

Opcode, short for operation code, is a portion of a machine language instruction that

specifies the operation to be performed. While obtained from a decompiled .asm file,

opcodes provide a detailed view of the low-level instructions executed by a program.

Using opcodes for malware classification offers several benefits. They reveal the

specific behaviors and operational details of the malware, allowing for precise

identification of its functions and intents. This granularity aids in distinguishing between

different types of malware and understanding their underlying mechanisms.

The research by Singh et al.[3] develops and evaluates a multimodal deep learning

framework called SHIELD, designed for detecting malware within Android systems.

The framework integrates opcode Markov images and dynamic API calls, utilizing a

Multimodal Autoencoder (MAE) to minimize the reliance on feature engineering and

to autonomously discover relevant features for malware detection. SHIELD

demonstrated strong performance on two benchmark datasets, CICandMal2020 and

AMD, achieving detection rates of 94% and 87%, respectively.

The study by Deng et al.[14] aims to enhance the effectiveness of malware detection

through a novel three-channel visualization approach. The deep learning model

employed in this research includes a Convolutional Neural Network (CNN) for feature

extraction and classification. The study utilizes a publicly available malware dataset

from Microsoft, which contains multiple malware families, to evaluate the effectiveness

of the proposed method. The feature extraction techniques involve generating images

from assembly instructions and creating three distinct channels using Markov

transition matrices, which retain the essential information required for malware

classification. The three channels correspond to Letter Markov Images, Opcode Initial

Markov Images, and Opcode Markov Images. The research findings indicate that

12

MCTVD exhibits an extremely high accuracy rate (99.44%) in malware classification,

along with significant precision, recall, and F1 scores, demonstrating the effective

integration of multi-channel data.

The study by Gao et al.[15] proposes an anti-obfuscation Android malware analysis

method named CorDroid. The authors propose a method that combines various

features to counteract code obfuscation, and they develop CorDroid based on two new

features: the Enhanced Sensitive Function Call Graph (E-SFCG) and the Opcode-

based Markov Transition Matrix (OMM). E-SFCG describes the relationships between

sensitive function calls, while OMM reflects the transition probabilities between

opcodes. The authors validate the complementarity of E-SFCG and OMM in the face

of different obfuscation techniques through experiments and demonstrate CorDroid's

high execution efficiency. Experimental results show that algorithm outperforms

existing detection methods.

The study by Zhao et al.[16] proposes a deep learning-based method for classifying

malware families through visualization techniques. By converting binary files into

images and utilizing the texture features within these images for clustering, the

researchers employed a deep convolutional neural network (CNN) to perform feature

fusion and classification on Markov images generated from bytecode and opcode.

Specifically, the bytes and opcodes in malware binary files were transformed into

Markov images based on transition probability matrices. Experiments conducted on

Microsoft's malware dataset demonstrated that the method, which fuses image

features from both bytecode and opcode, achieved an accuracy of 99.76% and an F-

score of 98.91%.

13

The research by Mai et al.[17] proposes a malware detection method based on Markov

images and the MobileNet model, emphasizing the generation of Markov images from

opcode sequences and the subsequent classification of these images using the

lightweight MobileNet model. This method achieves good detection performance while

maintaining low computational resource consumption. Experimental results indicate

that classifying the generated Markov images with the MobileNet model can effectively

detect malware in IoT scenarios.

The opcode Markov images have been widely applied in the field of malware

classification, demonstrating exceptional performance in handling complex malware

detection tasks, particularly when dealing with obfuscation techniques and unknown

malware, thereby overcoming the limitations of traditional detection methods. Various

convolutional neural networks, as commonly used feature extractors, have enhanced

detection accuracy. However, research on combining opcode Markov images with

image-based representations of malware for classification is relatively limited. Future

work could further explore new feature extraction methods and model architectures to

improve the system's robustness and adaptability.

14

2.3 Feature Fusion in Malware Classification

Feature fusion has been widely applied in the field of malware classification. By

integrating different features, it effectively enhances the classification performance of

models.

The paper by Chen et al.[18] proposes an innovative approach to Android malware

detection by utilizing Graph Attention Networks (GAT) and the deep fusion of

multimodal features. This paper introduces a novel type of call graph, named the

Class-Set Call Graph (CSCG), designed to effectively extract both structural and

semantic features of Android applications. Furthermore, the paper presents a feature

fusion network that integrates CSCG features with permission features to enhance

malware detection. In this network, features are progressively fused through a three-

layer deep network. Experimental results demonstrate that this method achieves

detection accuracy ranging from 97.28% to 99.54% across three constructed datasets,

outperforming existing approaches.

The paper by Xuan et al.[19] proposes a malware classification method combining

Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous

Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet.

This method enhances classification accuracy by fusing multiple features, utilizing

malware assembly data and API sequences as features, and introducing a

bidirectional temporal convolutional network to capture bidirectional temporal features.

Additionally, the paper employs a fusion classifier and Quantum Particle Swarm

Optimization (QPSO) algorithm to optimize BiTCN-TAEfficientNet, which further

enhances the algorithm's accuracy and robustness while reducing the impact of

adversarial techniques. The fusion classifier achieves feature fusion through

concatenation. Experimental results show that this method achieves classification

15

accuracies of 99.461% and 97.92% on the Kaggle and DataCon datasets, respectively,

representing improvements of 0.38% and 0.87% compared to other methods.

The study by Li et al.[20] proposes a method for classifying malware families based

on multimodal fusion and weight self-learning. Firstly, the study extracts

multidimensional features of malware through static analysis, including byte, format,

statistical, and semantic features, which are then fused during the feature engineering

phase through concatenation. In the model construction phase, a weight self-learning

mechanism is introduced to automatically learn the weights of different features within

each family. This approach demonstrates great classification performance on

imbalanced malware datasets.

The study by Kumar et al.[21] proposes a novel architecture for malware classification

based on image visualization. This approach utilizes a VGG16 model as a feature

extractor, combined with three convolutional neural network models to obtain varied

feature maps. The extracted features are concatenated to form a feature map, which

is then trained using six classifiers. The experiments were conducted using the MalImg

dataset, which contains 9,339 images from 25 families, as well as real-world packed

malware to validate the method's generalization ability. The results show that the MLP

model achieved an accuracy of 98.55% on the MalImg dataset and 94.78% on the

real-world malware dataset.

The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning

framework aimed at enhancing cybersecurity by analyzing the classification of Internet

of Things (IoT) malware. The research focuses on utilizing strings extracted from

malware executables and image-based features. In the "feature fusion and

classification" step, these features learned from different data representations are

16

concatenated to form a shared multimodal representation. This concatenated

multimodal representation is then input into a neural network with fully connected

layers for final, efficient classification. The study analyzed over 70,000 recently

detected IoT malware samples, using Convolutional Neural Networks (CNN) and Long

Short-Term Memory Networks (LSTM) to process image and string data, respectively.

Experimental results indicate that this multi-layered deep learning framework

significantly outperforms traditional single-layer classifiers in classification accuracy,

achieving an accuracy rate of 99.78%.

The research of Chen et al.[23] proposes a novel method for detecting Android

malware by integrating various features of Android applications. First, the paper

introduces a new Class Set Call Graph (CSCG), which uses Java class sets as nodes

and designs a CSCG construction method that can determine node size based on the

application's scale. Then, a topic model is used to mine semantic features from the

source code. Next, a Graph Attention Network (GAT) is employed to extract CSCG

features. Finally, the study constructs a deep learning-based multimodal feature fusion

network. This network enhances the accuracy and robustness of malware detection

by concatenating CSCG features with permission features at multiple fusion points

and classifying the fused features using a deep neural network model. Experimental

results show that this method achieves a detection accuracy of 97.28% to 99.54%

across three constructed datasets, outperforming existing methods.

Yang et al.[24] introduced a hybrid attention network model for malware detection that

enhances accuracy by aligning and integrating multiple features, specifically

combining binary file and opcode features. The model initially extracts temporal

sequences and jump characteristics from binary files using stacked convolutional

networks while employing a triangular attention algorithm to extract opcode features

17

from assembly code. Subsequently, a cross-attention mechanism is used to align and

fuse these two distinct sources of features, resulting in more stable and representative

feature representations. The literature emphasizes the crucial role of the cross-

attention mechanism in this process, as it establishes deep connections between

different modal features, enabling the model to better understand and learn the

relationships between binary files and assembly code, thereby significantly improving

malware detection performance. Experimental results demonstrate that this multi-

feature fusion strategy, based on mutual attention, outperforms existing benchmark

methods across multiple datasets, showcasing its advantages and effectiveness in

malware detection tasks.

The work by Snow et al.[25] proposes an end-to-end multi-model deep learning

framework aimed at directly extracting features from malware data to enhance

classification accuracy and generalization ability. The model integrates three distinct

deep neural network architectures to process different attributes of malware data. The

model concatenates various features and then classifies them using a Multi-Layer

Perceptron (MLP). Experimental results demonstrate that the proposed model excels

in both classification accuracy and training time. The model achieves an average

classification accuracy of 98.35% in 4-fold cross-validation, with a best classification

accuracy of 99.23%, and its training time is lower compared to other methods.

Currently, in the field of malware classification research, feature fusion methods have

been widely applied. These methods significantly enhance classification accuracy by

extracting and integrating structural features, semantic features, permission features,

and image-based features. However, the current feature fusion methods still primarily

rely on traditional approaches such as concatenation and addition, which to some

extent limit the potential of feature fusion technology in malware classification.

18

Moreover, the classification methods that integrate malware image features with

opcode Markov image features have not been sufficiently explored, and further

research and optimization are required.

2.4 Research Gap

Although image-based malware classification techniques have shown outstanding

performance, many studies still rely on a single feature representation, such as images

generated only from bytecode or opcode. These methods perform well on specific

datasets; however, they exhibit significant limitations when dealing with data

imbalance, adversarial attacks, and unknown malware variants. Therefore, research

on combining image representations of malware with Opcode Markov images for

classification is not only necessary but also has great potential.

Most current feature fusion methods rely on traditional operations like concatenation

and addition, failing to fully exploit and utilize the potential of multiple features.

Therefore, proposing a more effective feature fusion method is crucial for improving

malware classification performance.

In research on classification based on malware image representations and Opcode

Markov images, convolutional neural networks are commonly used as feature

extraction tools. However, the actual performance of different convolutional neural

networks in malware classification still requires further in-depth study.

Moreover, the robustness of malware classification algorithms across different

datasets is equally critical and urgently needs further validation and improvement.

19

3. Research Methodology

3.1 Research Philosophy

The philosophical foundation of this research is positivism. Positivism emphasizes the

validation of hypotheses through objective data, which aligns with the experimental

approach of classifying malware based on real-world data in this study.

3.2 Research Process

Figure 2 illustrates our research process, which comprises five key steps: data

collection, data preprocessing, model design, model training, and model evaluation.

These steps form the core of our research methodology.

Figure 2-Research Process

Data Collection: In the research of malware classification, collecting a high-quality

malware dataset is crucial. Common methods for data collection include honeypots,

third-party sharing sites, and open-source datasets. Each of these methods has its

own advantages and disadvantages.

Data Preprocessing: In deep learning-based malware classification research, data

preprocessing is essential, as this step involves extracting features from malware data

that can be processed by deep learning algorithms. In our research, we utilized two

types of features: image based malware representations and malware opcode Markov

images.

20

Model Design: This study employs a fusion of malware images and malware opcode

Markov images for malware classification. Therefore, it is necessary to select an

appropriate deep learning algorithm to extract features from these two types of images.

Additionally, a feature fusion method needs to be designed to effectively combine

these features.

Model Training: Model training is the process by which the model learns from the data

and updates its parameters. This includes forward propagation, loss calculation, and

backpropagation. Furthermore, training a deep learning model requires setting a loss

function and an optimization algorithm. The loss function measures the accuracy of

the model’s predictions, while the optimization algorithm helps the model update its

parameters.

Model Evaluation: After completing model training, it is necessary to evaluate its

performance in the malware classification task. Common evaluation metrics include

accuracy, precision, recall, F1-score, and confusion matrix.

3.3 Data Collection

In malware research, collecting high-quality datasets is a crucial step in the study.

Currently, commonly used methods for collecting malware datasets include honeypots,

third-party malware sharing websites, and open-source datasets.

3.3.1 Honeypot

Honeypot technology is a widely used method for collecting malware, designed to

deceive attackers to capture malicious behavior[26]. This is achieved by configuring

vulnerable network services on certain decoy hosts to attract and capture attack

behaviors. Honeypots are categorized into low-interaction[26] and high-interaction

honeypots[27].

21

3.3.2 Third-party malware sample sharing websites

Third-party malware sample sharing websites are another commonly used method for

collecting malware. Users can upload and download various malware samples for

research and analysis purposes.

3.3.3 Open-source datasets

Open-source datasets are an important resource frequently used in malware research.

Open-source malware datasets often contain a large number of labeled malware

samples, providing convenience for researchers.

3.4 Data Pre-processing

3.4.1 Image-based Malware Representations Extraction

Nataraj et al.[4]were the first to propose a method for mapping malware into images

and utilizing these images for malware classification. In this method, the binary file of

the malware is first read into a one-dimensional array of 8-bit unsigned integers. This

one-dimensional array is then reshaped into a two-dimensional array, generating the

corresponding grayscale image. The width of the image is adaptively adjusted based

on the file size: smaller files result in narrower image widths, while larger files

correspond to wider image widths. The processing workflow is illustrated in Figure 1,

Figure 1 Malware visualization algorithm by Nataraj et al.

Tekerek et al.[5] proposed an algorithm for mapping malware into grayscale and color

images. Unlike the method introduced by Nataraj et al., this algorithm is capable of

22

generating color images with richer textures and organizing them into square images

that are better suited for deep learning processing.

The image generation process, whether for grayscale or color images, shares the

following common steps: First, the binary file of the malware, represented as

hexadecimal characters, is read. Then, based on the predetermined image type, the

dimensions of the corresponding image matrix are calculated. Subsequently, the

malware's numeric data is populated into the matrix to generate the corresponding

image.

The key difference lies in the fact that grayscale images use only a single channel to

represent pixel intensity, whereas color images utilize multiple channels, thereby

capturing more complex textures. Additionally, to enhance the feature representation

of the images, the method proposed by Tekerek et al.[5] specifically excludes

meaningless zero values, thereby optimizing the image generation process. The

processing workflow is illustrated in the accompanying Figure 2.

Figure 2 Malware visualization algorithm by Tekerak et al.

23

3.4.2 Malware Opcode Markov Image Extraction

The Markov image of malware is a method used to represent and analyze malware

characteristics by converting the statistical features of malware opcode sequences

into images. This approach visualises the transition probability matrix of byte pairs (or

opcode pairs) in the malware as an image, thereby capturing its statistical properties.

This image format can be used as input for deep learning models for malware

detection and classification.

The generation of Markov images is based on Markov chain theory[17]. A Markov

chain assumes that the future state of a system depends only on its current state,

independent of previous states. In the context of malware analysis, this implies that

the occurrence probability of an opcode depends solely on the preceding opcode. By

calculating the transition frequencies of all adjacent opcode pairs within the entire

malware sample, a transition probability matrix can be constructed. Each element of

this matrix represents the probability of transitioning from one opcode to another.

Finally, by visualizing the transition probability matrix as an image, a Markov image is

generated.

According to research by Zhao et al.[16], the steps to generate a Markov image from

malware opcodes include the following: opcode sequence extraction, opcode pair

statistics, transition probability matrix generation and markov image generation.

⚫ Opcode Sequence Extraction: Extracting opcode sequences from malware.

⚫ Opcode Pair Statistics: Counting the frequency of each opcode pair in malware

samples.

24

⚫ Transition Probability Matrix Generation: Calculating the transition probabilities

based on the statistics of opcode pairs and generating the transition probability

matrix.

⚫ Markov Image Generation: Multiplying the values in the transition probability

matrix by 255 to meet pixel requirements and storing the results as grayscale

images.

3.5 Malware Classification Models Design

This study proposes a malware classification method based on multi-level feature

fusion, incorporating both image-based malware representation and malware opcode

features. To achieve this, we selected deep learning models to extract features from

these two types of images. In the current field of malware classification, convolutional

neural networks (CNNs) are widely used for image feature extraction, with commonly

employed models including ResNet, VGG, and EfficientNet. Therefore, this study will

utilize these models for feature extraction. Additionally, to effectively fuse these two

types of features, we will select appropriate existing feature fusion methods and

propose a novel low-level feature fusion approach.

3.5.1 Convolutional Neural Network

3.5.1.1 ResNet

ResNet (Residual Network)[28] was proposed by Microsoft Research as a

convolutional neural network architecture that employs residual connections. These

residual connections, which allow the input data to be directly passed to subsequent

layers, address the issues of vanishing and exploding gradients in deep convolutional

neural networks. This enables deeper networks to effectively learn and significantly

improves their performance.

25

3.5.1.2 VGG

The VGG model[29] is a classic convolutional neural network originally proposed by

the Visual Geometry Group (VGG) at the University of Oxford in 2014. Due to its simple

yet effective structure, the VGG model has been widely applied in image recognition

and computer vision tasks. The core design principle of the VGG model is to construct

a deep network by stacking multiple small 3x3 convolutional kernels, which enables

the network to capture more image features. The most common VGG networks are

VGG-16 and VGG-19, which consist of 16 and 19 trainable layers, respectively. This

deep structure allows the model to learn more complex and rich feature

representations.

3.5.1.3 EfficientNet

EfficientNet, proposed by Google[30] in 2019, is a convolutional neural network

architecture renowned for its higher efficiency and superior performance. The core

idea behind EfficientNet is the use of a method called "compound scaling," which

simultaneously balances the network's depth, width, and resolution. This approach

enables EfficientNet to maintain high accuracy while significantly reducing

computational costs.

3.5.2 Feature Fusion

3.5.2.1 Feature Concatenate

The feature fusion method based on Feature Concatenation is a technique that directly

concatenates multiple feature vectors column-wise.

26

3.5.2.2 Multilayer Deep Network based Feature Fusion

Chen et al.[18] proposed a feature fusion method based on a multilayer deep network.

In this approach, two feature sets of different lengths are processed independently

through separate network branches. The features are then fused at an intermediate

layer to form a new feature representation, which is subsequently passed through the

output layer to generate the final result. The multilayer deep network is shown in Figure

3.

Figure 3 Multilayer deep network

3.5.2.3 Cross-Attention Mechanism based Feature Fusion

Yang et al.[24] proposed a feature fusion method known as the cross-attention

mechanism, which is an improvement based on the self-attention mechanism. This

mechanism enhances the fusion and interaction of information by exchanging or

sharing keys, queries, or values between different features.

27

The self-attention mechanism is a technique that can establish dynamic weighting

relationships between different positions within the same sequence. Specifically, in a

self-attention mechanism, each element in the input sequence is treated as a query,

key, and value. The attention weights are obtained by calculating the dot product

between the queries and keys, which are then applied to the corresponding values to

generate a weighted representation of the input sequence. The advantage of the self-

attention mechanism lies in its ability to capture global dependencies within the input

sequence, even if these dependencies are far apart in the sequence.

While the self-attention mechanism performs well when processing a single feature

sequence, its limitation is that it operates only within the same feature space. This

means it can only compute self-correlations for a single input feature sequence and

cannot directly handle interaction information between multiple features.

The cross-attention mechanism is an extension and improvement of the self-attention

mechanism. Unlike the self-attention mechanism, which performs correlation

calculations within a single feature space, the cross-attention mechanism aims to

capture complex relationships across different feature spaces. In the cross-attention

mechanism, keys, queries, and values between different features are exchanged or

shared, enabling the model to capture associative information across feature spaces.

The core idea of the cross-attention mechanism is to establish associations between

different feature representations. Through this exchange or sharing, the model can

capture richer associative information across different feature spaces, thereby

enhancing the final representational capability.

28

3.5.2.4 Multiplication based Low-level Feature Fusion Method

This research will design a multiplication based low-level feature fusion method to

integrate the high-level features of opcode Markov images with the low-level features

of image-based malware representations through multiplication.

3.6 Model Training

In this section, we will introduce the key components involved in the model training

process, including the loss function, optimization algorithm, learning rate, batch size,

training epochs, data augmentation, and transfer learning.

3.6.1 Loss Function

A loss function is a mathematical function used to quantify the difference between the

predicted values generated by a model and the actual target values; the primary goal

in training a model is to minimize the value of this function, thereby reducing prediction

errors.

3.6.1.1 Cross-entropy Loss

Cross-entropy loss is a loss function commonly used in deep learning for classification

tasks. It evaluates the performance of a model by measuring the difference between

the true class distribution and the predicted probability distribution.

𝐶 𝐿(𝒚, 𝒑) = − ∑𝑖=1 𝑦𝑖 log(𝑝𝑖) (1)

Here, 𝑦𝑖 represents the true class label, and 𝑝𝑖 denotes the predicted probability that

the sample belongs to class .

3.6.2 Optimization Algorithm

An optimization algorithm is a method used to adjust model parameters in order to

minimize the loss function value, thereby improving model performance.

29

3.6.2.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a commonly used optimization algorithm in

deep learning model training. This algorithm calculates the gradient of the loss

function with respect to a single sample, and then iteratively updates the model

parameters. The update rule is defined as follows:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐽(𝜃; 𝑥(𝑖), 𝑦(𝑖)) (2)

where 𝜃 represents the model parameters, 𝜂 is the learning rate, and ∇𝜃𝐽(𝜃; 𝑥(𝑖), 𝑦(𝑖))

denotes the gradient of the loss function with respect to the sample. Due to its high

computational efficiency and low memory requirements, SGD is particularly well-

suited for training on large-scale datasets. However, since the direction of the

updates may experience significant fluctuations, it can lead to slower convergence

rates and even potential entrapment in local minima, thereby affecting the overall

training effectiveness of the model.

3.6.2.2 Adam Algorithm

The Adam algorithm is a widely used optimization method in deep learning training.

This algorithm employs an adaptive learning rate mechanism, which can

automatically adjust the learning rate based on the variation in gradients. By

estimating the first and second moments of the gradients, Adam dynamically scales

the learning rate, allowing for more precise parameter updates. This mechanism

enables the algorithm to balance the update rates of different parameters during

training, thereby improving convergence speed and overall learning performance.

However, in certain specific scenarios, the convergence of the Adam algorithm may

not meet expectations. The Adam algorithm is shown in Table 1.

30

Adam algorithm process

Required inputs: Initial parameter 𝜃, momentum Variable 𝑣, global learning rate 𝛼,

momentum factor 𝛽1, accumulated squared variable 𝑠, accumulated gradient

squared factor 𝛽2

1. Randomly select a sample

2. Calculate the loss function:

∇θ𝐽(θ)

3. Update the momentum term 𝑣 and the squared gradients accumulation 𝑠:

𝑣 = β1𝑣 + (1 − β1)∇θ𝐽(θ)

2
𝑠 = β2𝑠 + (1 − β2)(∇θ𝐽(θ))

4. Bias correction:

𝑡)𝑣 = 𝑣/(1 − 𝛽1

𝑡)�̂� = 𝑠/(1 − 𝛽2

5. Update the parameters:

θ = θ − α𝑣/(√�̂� + 𝜖) ϵ = 10−8

6. Return the updated parameter θ

Table 1 Adam algorithm process

3.6.3 Learning Rate

Learning rate is a hyperparameter that controls the step size of each update to the

model parameters during the optimization process.

3.6.4 Batch Size

Batch size is the number of training examples processed simultaneously before

updating the model's parameters in one iteration.

31

3.6.5 Training Epochs

Batch size is the number of training examples processed simultaneously before

updating the model's parameters in one iteration.

3.6.6 Data Augmentation

Data augmentation is a technique that artificially increases the diversity of a training

dataset by applying random transformations, such as rotations or flips, to the input

data.

3.6.6.1 Random Cropping and Horizontal Flip

Random cropping and horizontal flip were first employed in the work of Krizhevsky et

al.[31] to increase the diversity of training data and thereby enhance the model's

generalization ability.

3.6.7 Transfer Learning

Transfer learning is a machine learning technique that leverages knowledge gained

from a pre-trained model on one task and applies it to a new, related task, reducing

the need for extensive training data and time on the new task.

32

3.7 Model Evaluation

In this section, we will introduce several key metrics for evaluating the performance of

the proposed classification model, including accuracy, precision, recall, F1 score, and

confusion matrix.

3.7.1 Accuracy

Accuracy is one of the fundamental metrics used to evaluate the performance of

classification models. It represents the proportion of correctly predicted samples out

of the total number of samples.

The equation for calculating accuracy is as equation3:

𝑇𝑃+𝑇𝑁
Accuracy = (3)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Where:

⚫ TP (True Positive): The number of positive samples correctly classified as positive.

⚫ TN (True Negative): The number of negative samples correctly classified as

negative.

⚫ FP (False Positive): The number of negative samples incorrectly classified as

positive.

⚫ FN (False Negative): The number of positive samples incorrectly classified as

negative.

3.7.2 Precision

Precision is one of the key metrics used to evaluate the performance of a classification

model. It represents the proportion of actual positive samples among all samples that

the model has predicted as positive.

33

The equation for calculating precision is as equation 4:

𝑇𝑃
Accuracy = (4)

𝑇𝑃+𝐹𝑃

3.7.3 Recall

Recall is an important metric for evaluating the performance of classification models.

It represents the proportion of actual positive samples that the model correctly

identifies as positive.

The equation for calculating recall is as equation 5:

𝑇𝑃
Accuracy = (5)

𝑇𝑃+𝐹𝑁

3.7.4 The F1 Score

The F1 Score is a comprehensive metric for evaluating the performance of

classification models. It is the harmonic mean of Precision and Recall. The F1 Score

aims to balance Precision and Recall, making it particularly useful in scenarios with

imbalanced classes.

The equation for calculating the F1 Score is as equation 6:

Precision×Recall
𝐹1 = 2 × (6)

Precision+Recall

3.7.5 The confusion matrix

The confusion matrix is one of the essential tools for evaluating the performance of

classification models. It presents the relationship between the model's predictions and

the actual labels in a tabular format, thereby aiding in the analysis of the model's

performance across various categories.

34

4. Design

4.1 Data Collection

In malware research, common data collection methods include honeypots, third-party

sharing websites, and open-source datasets. We chose to use open-source datasets

because, compared to the other two methods, they offer clear classification labels,

lower costs, and do not involve complex security and legal issues.

The Microsoft Malware Classification Challenge dataset originates from the Microsoft

Malware Classification Challenge and contains samples of nine types of malware. The

dataset is divided into training and testing sets, with labeled samples in the training

set. The number of samples for each type is shown in Table 2. Each malware sample

includes two files: a .bytes file, which represents the binary content of the malware in

hexadecimal format, and a decompiled .asm file. The reason for selecting this dataset

lies in its widespread use in malware classification research, facilitating comparison

with various methods. Additionally, the decompiled files provided by this dataset allow

for the extraction of opcode sequences, further enhancing the depth of the research.

Malware Family Number of Samples

Ramnit 1541

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos_ver1 398

Obfuscator.ACY 1228

Gatak 1013
Table 2 Microsoft Malware Classification Challenge dataset

35

The CCF BDCI 2021 Malware Dataset is sourced from the CCF BDCI 2021 Digital

Security Competition—AI-based Malware Family Classification Contest. This dataset

provides samples of ten types of malware, similarly divided into training and testing

sets, with the types and quantities of training samples shown in Table 3. Each malware

sample includes two files: a PE file without the PE header and an .asm file generated

using IDA Pro. The reason for selecting this dataset is that it offers a large number of

diverse samples and also provides decompiled files, making it convenient to extract

opcode sequences.

Malware Family Number of Samples

0 428

1 746

2 20

3 261

4 321

5 181

6 776

7 1350

8 594

9 1164
Table 3 CCF BDCI 2021 dataset

36

4.2 Data Pre-processing Design

4.2.1 Image-based Malware Representations Extraction

Inspired by the study conducted by Tekerek et al.[5], the process of visualizing

malware in this research includes the following steps: reading the binary file, adjusting

the array length and calculating the image dimensions, and generating the image (as

shown in Figure 4). The specific steps are as follows:

Figure 4 Image-based malware representations extraction

⚫ Reading the Binary File: Extract the binary data of the malware sample, which

serves as the foundation for subsequent processing.

⚫ Adjusting the Array Length and Calculating the Image Dimensions: Based on the

size of the read data, determine the appropriate image dimensions. If the data

length is insufficient, padding is performed to match the required image

dimensions.

⚫ Generating the Image: The adjusted array is reshaped into a square matrix and

saved as an image file for further analysis.

37

4.2.2 Opcode Markov Image Extraction

The process of extracting an Opcode Markov Image, inspired by the study of Zhao et

al.[16], involves three steps, as illustrated in Figure 5.

Figure 5 Process of extracting an Opcode Markov Image

⚫ Opcode Sequence Acquisition: Opcode sequences are extracted from

decompiled malware samples. The extraction process is based on a commonly

used set of opcodes from the x86 instruction set, identified and extracted from the

decompiled files through string matching. To enhance data purity, irrelevant

content such as line numbers and comments beginning with a semicolon are

filtered out, ensuring that the extracted opcode sequences remain undisturbed.

⚫ Construction of the Opcode Pair Occurrence Matrix: The frequency of each

opcode and its subsequent opcode in the extracted sequences is counted. Rarely

occurring opcodes are categorized as one type. The resulting occurrence matrix

is structured in a 224x224 format.

⚫ Generation of the Opcode Markov Image: Each element in the opcode pair

occurrence matrix is divided by the sum of the elements in its row to calculate the

transition probability, which is then multiplied by 255 to generate pixel values.

Finally, the transition frequency matrix is converted into a grayscale image.

38

4.3 Model Design

In this study, a deep learning model based on multilayer feature fusion is proposed to

enhance the accuracy and robustness of malware detection. Specifically, the model

integrates two different data representations: image-based malware representation

and malware opcode Markov images, leveraging a multi-level feature fusion

mechanism to fully exploit their complementary information in the malware

classification task.

The multilayer feature fusion mechanism includes a feature fusion module based on

cross-attention and a low-level feature fusion module based on multiplication. In the

cross-attention-based feature fusion module, the high-level features of the image-

based malware representation and opcode Markov image are integrated. Meanwhile,

in the multiplication-based low-level feature fusion module, the low-level features of

the image-based malware representation are combined with the high-level features of

the opcode Markov image. Through this multilayer feature fusion, the two types of

features can interact more comprehensively and deeply, enabling the model to more

effectively extract and identify malware characteristics.

The model primarily consists of five modules: an image-based malware representation

feature extraction module, a malware opcode Markov image feature extraction module,

a cross-attention based feature fusion module, and a multiplication-based low-level

feature fusion module, with the final output of malware categories achieved through a

fully connected layer. The architecture of the proposed model is illustrated in Figure 6.

39

Figure 6 Model architecture

⚫ Image-based Malware Representation Feature Extraction Module: This module

extracts deep features from image-based malware representation using

convolutional neural networks (CNNs). In this study, VGG16, ResNet18, and

EfficientNetB0 are employed as feature extractors.

⚫ Malware Opcode Markov Image Feature Extraction Module: Similarly, this module

employs another convolutional neural network to extract features from the

malware opcode Markov images. Likewise, VGG16, ResNet18, and

EfficientNetB0 are used as feature extractors in this study.

⚫ Cross Attention Feature Fusion Module: This module designs a cross attention

mechanism for fusing the features extracted by the first two modules.

⚫ Multiplication-based Low Level Feature Fusion Module: In this module, the

features from the Markov images are first upsampled to match the size of the low

level image-based malware representations features extracted by the

convolutional neural network, and then the two are fused through a multiplication

operation.

40

⚫ Fully Connected Layer: The fully connected layer receives the features fused

through the mutual attention mechanism and ultimately outputs the prediction of

the malware category.

4.3.1 Image-based Malware Presentation Feature Extraction Module

The study employs VGG16, ResNet18, and EfficientNetB0 as the feature extraction

modules for Image-based Malware Presentation. The performance of these models

will be evaluated in subsequent experiments through comparative analysis. To adapt

these models for the malware image feature extraction module, necessary

modifications were made, focusing primarily on two aspects: the fully connected layers

of the convolutional neural networks (CNNs) and the addition of a Multiplication Layer

in the lower convolutional layers, aimed at integrating low-level features.

In the original models, the fully connected layers classify the output features extracted

by the CNNs. However, in this study, the output size of the fully connected layers was

adjusted to 1 × 512 to align with the dimensions of the Image-based Malware

Presentation features and Opcode Markov image features, facilitating subsequent

processing.

Although the structures of these CNNs differ, this study introduced a Multiplication

module after the fourth or fifth convolutional layer in the lower layers of these networks.

This modification aims to integrate the Opcode Markov image features with the low-

level features of the Image-based Malware Presentation, thereby enhancing the

model's classification performance by combining multi-level feature information.

The modified structures of the VGG16, ResNet18, and EfficientNetB0 models are

illustrated in Figures 7, Figure 8, and Figure 9, respectively.

41

Figure 7 Modified VGG16

Figure 8 Modified ResNet18

Figure 9 Modified EfficientNetB0

42

4.3.2 Opcode Markov Image Feature Extraction Module

In this study, VGG16, ResNet18, and EfficientNetB0 were selected as the Opcode

Markov Image Feature Extraction Modules. Subsequent experiments conducted a

detailed evaluation of the extraction performance of these different models through

comparative analysis.

To effectively apply these models to malware image feature extraction, two key

modifications were made. First, the fully connected layer of the convolutional neural

networks (CNNs) was adjusted. Second, the features from the last convolutional layer

of each model were extracted and utilized as the high level feature output for the

Opcode Markov images.

In the original models, the output from the fully connected layer is typically used for

classification tasks. However, in this study, the output dimension of the fully connected

layer was adjusted to 1 ×512 to align with the feature dimensions of the image-based

malware representation, thereby simplifying the subsequent feature fusion process.

Additionally, the features extracted from the final convolutional layer were used as

additional outputs, which were then fused with the low-level features of the image-

based malware representation.

The architectures of the modified VGG16, ResNet18, and EfficientNetB0 models are

illustrated in Figures 10, Figure 11, and Figure 12, respectively.

43

Figure 10 VGG16

Figure 11 ResNet18

Figure 12 EfficientNetB0

44

4.3.3 Cross-attention Feature Fusion Module

The cross-attention-based feature fusion module demonstrates superior performance

in current technologies. Compared to simple concatenation-based feature fusion

methods, the cross-attention mechanism allows for interaction between features from

different modalities. In contrast to layer-by-layer fusion methods based on multi-layer

neural networks, the cross-attention mechanism can dynamically adjust weights

based on the relevance of input features. As a result, the model can dynamically

capture the most meaningful associations between different inputs, rather than simply

assigning fixed feature weights. This dynamic capability makes the model more

flexible and effective in capturing relationships between various features when dealing

with multiple types of features.

The cross-attention-based feature fusion model proposed in this study consists of four

modules: the feature transformation module, the attention computation module, the

residual module, and the concatenation module, as illustrated in Figure 1. In the

feature transformation module, the query, key, and value for the image-based malware

representation features and the malware opcode image features are calculated using

Equations 7 through 12. In the attention computation module, attention weights are

first computed, followed by a weighted sum of the values. The attention weights are

calculated using Equations 13 and 14, and the final attention output is obtained using

Equations 15 and 16. In the residual module, the features before and after cross-

attention processing are summed to compensate for information loss. Finally, the

features are fused through a concatenation operation.

The cross-attention-based feature fusion module is shown in Figure 13.

45

Figure 13 Cross-attention based feature fusion module

𝑄malimg = 𝑋malimg𝑊𝑄malimg
(7)

𝐾malimg = 𝑋malimg𝑊𝐾malimg
(8)

𝑉malimg = 𝑋malimg𝑊𝑉malimg
(9)

𝑄opimg = 𝑋opimg𝑊𝑄opimg
(10)

𝐾opimg = 𝑋opimg𝑊𝐾opimg
(11)

𝑉opimg = 𝑋opimg𝑊𝑉opimg
(12)

⊤𝑄malimg𝐾opimg = Softmax ()𝐴malimg √𝑑𝑘
(13)

⊤𝑄opimg𝐾malimg = Softmax ()𝐴opimg √𝑑𝑘
(14)

𝑍malimg = 𝐴malimg𝑉malimg (15)

𝑍opimg = 𝐴opimg𝑉opimg (16)

46

4.3.4 Multiplication Based Low Level Feature Fusion Module

The feature fusion module based on cross-attention integrates the image-based

malware representations with the high-level features of the opcode Markov images.

However, to better extract the texture features of the image-based malware

representations, it is necessary to fuse the high-level features of the opcode Markov

images with the low-level features of the image-based malware representations. Since

image-based malware representations contain rich texture information, enhancing the

extraction of their low-level features through the high-level features of the opcode

Markov images is beneficial. Low-level features of convolutional neural networks

typically capture local information such as edges and textures, while high-level

features primarily represent global semantic information. By fusing high-level and low-

level features, the model can leverage features at different levels simultaneously,

enhancing its ability to capture complex patterns. Moreover, as the number of layers

in the convolutional neural network increases, some local details may be lost in the

high-level features. Therefore, relying solely on cross-attention-based feature fusion

may not fully exploit the relationships between these features, thereby limiting the

improvement in classification performance. To address this, this paper proposes a

multiplication-based low-level feature fusion method. This method achieves dynamic

weight adjustment by performing a multiplication between the high-level features of

the opcode Markov images and the low-level features of the image-based malware

representations, allowing the model to more flexibly capture the relationships between

features, thereby enhancing classification performance.

In this method, the high-level features are extracted from the last convolutional layer

of the opcode Markov image feature extractor, while the low-level features are

obtained from the fourth or fifth convolutional layer of the image-based malware

47

representations feature extractor. Since the dimensions of high-level features and low-

level features are usually different, with high-level features typically having smaller

width and height, it is necessary to upsample the high-level features. In this study,

upsampling is achieved through a transposed convolutional layer, as the transposed

convolutional layer can learn an upsampling method more suitable for specific tasks.

The stride, padding, and other parameters of the transposed convolutional layer are

finely tuned to achieve effective upsampling of features with different dimensions.

The structure of this module is shown in Figure 14.

Figure 14 Multiplication Based Low Level Feature Fusion Module

48

4.4 Model Training

In this study, the cross-entropy loss function, a commonly used loss function, was

employed. The Adam optimizer was chosen over Stochastic Gradient Descent (SGD)

due to its advantages in avoiding local optima, which can negatively impact the

model's classification performance. The training process was conducted with 100

epochs, a batch size of 32, and a fixed learning rate of 0.001. Additionally, data

augmentation techniques, including random cropping and horizontal flipping, were

applied. Transfer learning was also utilized to further enhance the model's training

efficiency and effectiveness.

4.5 Model Evaluation

In this study, the performance of the model is evaluated using accuracy, precision,

recall, F1-score, and the confusion matrix.

49

5. Implementation

5.1 Hardware and Software Resource

5.1.1 Hardware Resource

This study was primarily conducted on Colab. Colab instances are typically equipped

with around 12GB to 25GB of RAM and 50GB of virtual hard disk space. Google Drive

was mounted on Colab to extend storage capacity. An A100 GPU was used for deep

learning training.

5.1.2 Software Resource

The primary programming language used in this study is Python. The Pandas library

was utilized for reading .csv files, the Numpy library for matrix manipulation, the PIL

library for image storage, and the Torch library for creating and training deep learning

models.

5.2 Data Pre-processing Implementation

5.2.1 Opcode Sequences Extraction

In this project, I developed a Python script to extract opcode sequences from assembly

code files. The script accomplishes the opcode extraction through the following steps:

⚫ Loading the Opcode Set: First, the script loads the opcode set from a CSV file.

Each opcode is stored as an element in a set, allowing for quick matching during

subsequent processing.

⚫ Processing the Assembly Code File: The script reads the assembly code file (.asm)

line by line. For each line, it uses the .split(';') method to remove any potential

comments (i.e., content starting from the semicolon ;). Then, it applies the .split()

method to split the remaining code into a sequence of independent strings based

on whitespace characters.

50

⚫ Opcode Matching: For each split string, the script checks whether it exists in the

opcode set. If a match is found, the corresponding opcode is saved into a list.

⚫ Storing the Results: All matched opcodes are eventually written to a new CSV file,

facilitating subsequent analysis and processing.

5.2.2 Opcode Markov Image Extraction

In this project, I developed a Python script to extract opcode Markov images from

sequences of opcodes. The script accomplishes the extraction of opcodes through the

following steps:

⚫ Loading Opcode Sequences: First, the script loads the opcode sequences from a

CSV file.

⚫ Obtaining the Opcode Pair Frequency Matrix: The code traverses adjacent pairs

in the opcode sequences and counts their occurrences.

⚫ Generating the Probability Transition Matrix: Each row of the frequency matrix is

divided by the sum of the respective row to obtain a probability transition matrix.

⚫ Converting the Matrix into an Image: The normalized matrix is multiplied by 255

to convert it into a grayscale image. Finally, the matrix is saved as a PNG image

using the plt.imsave function.

5.2.3 Image-based Malware Representations Extraction

In this project, to extract image-based malware representations from malware binary

data, I developed a Python script. The script accomplishes the extraction of opcodes

through the following steps:

51

Reading the Binary File: We use Python's open function to open the file in binary mode

and read its contents into a byte array.

Filtering Invalid Data: To enhance the usability of the image, we filter out all byte values

of 0 from the array, as these typically represent invalid information.

Adjusting Array Length: To convert the byte array into an RGB image, we need to

ensure that the array length is a multiple of 3. If the length is insufficient, we pad zeros

at the end of the array.

Calculating Image Dimensions: We calculate the side length of the square image that

the byte array can represent and pad additional zeros if necessary to ensure the array

length equals the square of the side length multiplied by 3.

Generating the Image: We reshape the adjusted array into a numpy array with the

shape (side_length, side_length, 3) and use the PIL library to convert it into an RGB

image.

To extract the binary data of malware from the .bytes files in the Microsoft Malware

Classification Challenge dataset, we have adjusted the script accordingly. The script

reads the file content line by line, skips the line numbers, and excludes meaningless

symbols such as "00" and "??." It then reads and retains the remaining valid data.

5.3 Model Implementation

In this study, the model implementation was based on the PyTorch framework. The

torch.nn module provided various neural network components, while

torchvision.models offered pre-trained classical models. The image feature extraction

module and the opcode-based Markov image feature extraction module utilized these

52

https://torch.nn

pre-trained models with corresponding modifications. The cross-attention-based

feature fusion module and the multiplication-based low-level feature fusion module

were custom-designed according to specific requirements. Finally, all modules were

integrated into the MultilayerFeatureFusionModel class, achieving multilayer feature

fusion for malware classification.

5.4 Model Training Implementation

First, the preprocessed training and test sets are loaded into memory from the

specified paths. Then, the training set is split into a training set and a validation set in

an 8:2 ratio.

In the implementation process, the PyTorch library is used to build and train the model.

PyTorch provides the DataLoader class for loading data in batches, and by loading

the data onto the GPU, it significantly improves the efficiency of data processing.

During model training, PyTorch's automatic differentiation feature is utilized, with the

torch.autograd module automatically computing gradients, enabling backpropagation

and parameter updates in each epoch.

The model training process is divided into several epochs. In each epoch, the model

first enters training mode by calling the model.train() method, which performs forward

propagation, loss calculation, backpropagation, and parameter updates using an

optimizer (e.g., Adam) on the training data. Then, the model enters evaluation mode,

where it is evaluated on the validation set. The model.eval() method is used to ensure

that gradients are not calculated during inference, saving computational resources and

improving inference speed.

53

After training is complete, the model weights that performed best on the validation set

are used for final evaluation on the test set. Finally, the torch.save() function is used

to save the model weights for use in future research or applications.

5.5 Model Evaluation Implementation

The study uses the sklearn.metrics library to calculate the accuracy, precision, recall,

and F1 score of the model, and the confusion matrix is visualized through sns.heatmap.

54

6. Experiments

6.1 Evaluation of Various Convolutional Neural Networks for Malware

Classification

6.1.1 Experiment Settings

This experiment aims to compare the performance of different convolutional neural

networks (CNNs) in the task of malware classification. To evaluate the classification

effectiveness, multiple malware classification models will be used. These models

employ VGG16, ResNet, or EfficientNet as the feature extractors for image-based

malware representation and Opcode Markov Image. All models incorporate a multi-

level feature fusion mechanism proposed in this study. A total of nine models are

evaluated in the experiment, with their names and configurations detailed in Table 4.

Model Name
Feature Extractor for

Image-based Malware
Representations

Feature Extractor for
Opcode Markov Image

Model 1 VGG16 VGG16

Model 2 VGG16 ResNet18

Model 3 VGG16 EfficientNetB0

Model 4 ResNet18 VGG16

Model 5 ResNet18 ResNet18

Model 6 ResNet18 EfficientNetB0

Model 7 EfficientNetB0 VGG16

Model 8 EfficientNetB0 ResNet18

Model 9 EfficientNetB0 EfficientNetB0
Table 4 Model configurations

55

During the experiment, the ResNet18 and EfficientNetB0 models were initialized using

PyTorch's pretrained models to accelerate training and improve classification

accuracy. To enhance the generalization ability of the models, data augmentation

techniques such as random cropping and random flipping were applied to the malware

images in the training set. The experimental dataset is sourced from the Microsoft

Malware Classification Challenge. During the training phase, cross-entropy loss was

used as the loss function, Adam optimizer as the optimization algorithm, with a

learning rate set at 0.001, a batch size of 32, and a total of 100 epochs. The evaluation

metrics for the experiment include accuracy, precision, recall, and F1-score.

6.1.2 Experiment Results

Model Accuracy Precision Recall F1 Score

Model1 0.9640 0.9649 0.9640 0.9644

Model2 0.9668 0.9674 0.9668 0.9671

Model3 0.9825 0.9836 0.9825 0.9827

Model4 0.9709 0.9713 0.9709 0.9711

Model5 0.9732 0.9735 0.9732 0.9734

Model6 0.9949 0.9950 0.9949 0.9949

Model7 0.9862 0.9863 0.9862 0.9860

Model8 0.9843 0.9848 0.9843 0.9843

Model9 0.9931 0.9933 0.9931 0.9931
Table 5 Experiments results

The experiment results are show on Table 5.

6.1.3 Analysis

Based on Table 5, Model 6 demonstrates the best performance across all metrics. The

model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%,

and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature

extractors, indicating that the combination of these two feature extractors is highly

56

effective in the task of malware classification. Following closely is Model 9, which

achieves 99.31% in all metrics, also performing exceptionally well. Model 9 also

employs EfficientNetB0 as a feature extractor, further demonstrating the superiority of

EfficientNetB0.

The comparison reveals that model performance significantly improves when

EfficientNetB0 is used for feature extraction. This improvement could be due to

EfficientNetB0’s ability to balance model complexity and accuracy effectively. Notably,

even though Model 9 uses dual EfficientNetB0 as feature extractors, Model 6

outperforms it. This could be because the deep residual network of ResNet18 excels

at extracting complex texture features in image-based malware representations, while

EfficientNetB0 is more effective in extracting opcode Markov image features with fewer

texture details.

Overall, models using VGG16 as a feature extractor (Model 1, Model 2, Model 3,

Model 4) perform relatively poorly, especially compared to models combining

EfficientNetB0 and ResNet18. This could be attributed to the relatively older

architecture of VGG16, which, despite having a large number of parameters, is less

efficient than more recent networks. ResNet18, on the other hand, performs quite well,

with its deep residual networks effectively capturing malware features, particularly in

the complex patterns found in image representations.

Based on the experimental results, Model 6, which uses ResNet18 to extract image-

based malware representation features and EfficientNetB0 to extract opcode Markov

image features, is the optimal model.

57

6.2 Comparison of Feature Fusion Techniques for Malware Classification

6.2.1 Experiment Settings

This experiment will compare the performance of different feature fusion methods in

the task of malware classification, utilizing multiple malware classification models to

assess their effectiveness. The feature extractors are configured based on the optimal

settings identified in previous experiments. In each model, the image features of the

malware and the opcode Markov image features will be integrated using various fusion

methods, including feature concatenation, a multilayer deep network-based fusion

method, a cross-attention-based feature fusion method, and the multilayer feature

fusion method proposed in this study. The experiments will be conducted on the

Microsoft Malware Classification Challenge dataset. A total of four models are

evaluated in the experiment, with their names and configurations detailed in Table 6.

Model Name Feature Fusion Method

Model 1 Feature Fusion based via
Concatenation

Model 2 Feature Fusion based via Multilayer
Deep Network

Model 3 Feature Fusion based via Cross
Attention

Model 4 Feature Fusion based via Multilayer
Feature Fusion

Table 6 Model configurations

58

6.2.2 Experiments Results

6.2.2.1 Results for Model 1(Feature Fusion based via Concatenation)

Figure 15 Confusion matrix of model 1

Accuracy Precision Recall F1 Score

0.9825 0.9829 0.9825 0.9825
Table 7 Results of model 1

Model 1 employs the concatenate method proposed in this research for feature fusion.

The confusion matrix shown in Figure 15 and evaluation metrics in Table 7 present

59

the classification results. According to the confusion matrix, the model correctly

classified 2,130 malware samples and misclassified 38 samples. It can be observed

that the model performs best on class 0 and class 7, with only two misclassified

samples in each of these classes. This could be because the features of class 0 and

class 7 are more distinct and have a greater degree of separation from other classes,

allowing the model to classify these classes more accurately. The model performs

worst on class 4, with 11 samples misclassified. This may be due to the higher internal

feature diversity within class 4, meaning that the malware samples in this class have

significant differences, making it challenging for the model to learn a unified pattern

for correct classification. Additionally, 21 samples from other classes were

misclassified as class 5. This could be because the features of class 5 significantly

overlap with other classes in the feature space. The model struggles to distinguish

samples from these overlapping regions, leading to a tendency to classify them as

class 5.

In terms of evaluation metrics, the model achieved an accuracy of 0.9825, a precision

of 0.9829, a recall of 0.9825, and an F1 score of 0.9825.

60

6.2.2.2 Result for Model 2(Feature Fusion based via Multilayer Deep Network)

Figure 16 Confusion matrix for model 2

Accuracy Precision Recall F1 Score

0.9852 0.9856 0.9852 0.9852
Table 8 Results for model 2

Model 2 employs the multilayer deep network method for feature fusion. The confusion

matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate

the classification results. According to the confusion matrix, the model correctly

classified 2,136 malware samples and misclassified 32 samples. It is evident that the

61

model performed best in classifying Category 0, with all Category 0 samples being

accurately identified. This could be attributed to the more distinct features of Category

0, which have greater differentiability from other categories, allowing the model to

classify these samples more accurately. The model performed worst in classifying

Category 4, with 8 Category 4 malware samples being misclassified, of which 7 were

incorrectly identified as Category 5. This may be due to the similar internal features

between Category 4 and Category 5. Additionally, it can be observed that 14 malware

samples from other categories were erroneously classified as Category 5.

Regarding the evaluation metrics, the model achieved a classification accuracy of

0.9852, a precision of 0.9856, a recall of 0.9852, and an F1 score of 0.9852.

62

6.2.2.3 Result for Model 3(Feature Fusion based via Cross Attention)

Figure 17 Confusion matrix for model 3

Accuracy Precision Recall F1 Score

0.9912 0.9914 0.9912 0.9913
Table 9 Results for model 3

Model 3 employs the cross attention method for feature fusion. The confusion matrix

and evaluation metrics presented in Table 9 illustrate the classification results.

According to the confusion matrix shown in Figure 17, the model correctly classified

2,149 malware samples and misclassified 19 samples. It is evident that the model

63

performs best in classifying categories 0 and 8, with only one sample from category 0

being misclassified, and category 8 being entirely correctly classified. The model

performs worst in classifying category 4, where six malware samples from category 4

were misclassified, all of which were incorrectly identified as category 5. This

misclassification may be due to the internal similarity between categories 4 and 5.

Additionally, 12 samples from other categories were misclassified as category 5.

In terms of evaluation metrics, the model achieved an accuracy of 0.9912, a precision

of 0.9914, a recall of 0.9912, and an F1 score of 0.9913.

64

6.2.2.4 Result for Model 4(Feature Fusion based via Multilayer Feature Fusion)

Figure 18 Confusion matrix for model 4

Accuracy Precision Recall F1 Score

0.9949 0.9950 0.9949 0.9949
Table 10 Results for model 4

Model 4 employs the multilayer feature fusion method proposed in this research for

feature fusion. The confusion matrix and evaluation metrics shown in Table 10

illustrate the classification results. According to the confusion matrix shown in Figure

18, the model correctly classified 2,157 malware samples and misclassified 11

malware samples. It can be observed that the model performs best in classifying

65

categories 0, 1, 2, 6, and 8, with these categories being completely correctly classified.

The model performs worst in classifying category 4, with 6 samples from category 4

being misclassified, all of which were incorrectly identified as category 5. This may be

due to the similarity in internal features between categories 4 and 5. Additionally, it is

evident that 8 malware samples from other categories were misclassified as category

5.

In terms of evaluation metrics, the model achieves an accuracy of 0.9949, a precision

of 0.9950, a recall of 0.9949, and an F1 score of 0.9949.

66

6.2.3 Analysis

In this experiment, we compared the performance of several commonly used feature

fusion methods in the context of malware classification. The methods evaluated

include feature fusion based on concatenation, multilayer deep network based feature

fusion, cross-attention based feature fusion, and the novel multilayer feature fusion

method proposed in this research. The experimental results demonstrate that the

proposed multi-level feature fusion method outperforms the others across all metrics.

Specifically, this method achieved an accuracy of 99.49%, a precision of 99.50%, a

recall of 99.49%, and an F1 score of 99.49%. The experimental results indicate that

the proposed multi-level feature fusion method successfully integrates features from

image-based malware representation and Opcode Markov Image, effectively

capturing inter-feature relationships and highlighting critical information within key

features. Therefore, the proposed multi-level feature fusion method is a reliable feature

fusion approach.

67

6.3 Performance Analysis of Malware Classification Models Across

Different Datasets

6.3.1 Experiment Settings

This experiment employed the optimal configuration validated in previous experiments

and was trained and evaluated on the CCF BDCI malware classification dataset.

6.3.2 Experiment Results

The experiment results are shown on Table 11 and Figure 19.

Figure 19 Confusion matrix

68

Accuracy Precision Recall F1 Score

0.9940 0.9941 0.9940 0.9940
Table 11 Experiment results

6.3.3 Discuss

The experimental results show that the proposed method in this study achieved an

accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of

99.40%. This indicates that the method proposed in this research is effective in

classifying different types of malware. From the confusion matrix, it can be observed

that misclassifications occurred in malware categories 0, 2, 3, 4, and 5. Specifically,

categories 3 and 4 each had two misclassifications: two samples of category 3 were

incorrectly identified as category 4, and two samples of category 4 were misidentified

as category 3. This may be due to the similarity between categories 3 and 4.

Additionally, a total of four samples were misclassified as category 4. Overall, the

method proposed in this study performs well in classifying samples from the CCF BDCI

malware classification dataset.

69

7. Discussion

7.1 Discussing Results for each Research Question

⚫ Which deep learning model is optimal for extracting image representations of

malware features and opcode Markov image features?

To address this issue, we conducted an experiment to evaluate the performance of

different models in the malware classification method proposed in this study. Three

deep learning models, widely used in the field of image processing, were selected for

this research: VGG16, ResNet18, and EfficientNetB0. These three convolutional

neural networks were tested in combination during the experiment. The results

indicated that the model performed best when ResNet18 was used as the feature

extractor for image-based malware representations, and EfficientNetB0 was used as

the feature extractor for opcode Markov images.

⚫ Can an effective technique for malware feature fusion be developed?

To validate that our proposed multilayer feature fusion method outperforms commonly

used methods in existing research, we compared it with feature fusion methods based

on concatenation, multilayer deep network, and cross-attention. The experimental

results on the Microsoft Malware Classification Challenge dataset showed that our

method achieved the best performance across all metrics, with an accuracy of 0.9949,

a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. These results

indicate that our method enables the model to more deeply learn the correlations

between the two types of features, highlighting critical knowledge through information

interaction.

⚫ Can a robust and generalizable malware classification algorithm be developed?

70

To validate the accuracy of the proposed method for malware classification across

different datasets, this study trained and evaluated the model using the CCF BDCI

Malware Classification Dataset. The experimental results demonstrate that the

proposed method achieves an accuracy of 99.40%, a precision of 99.41%, a recall of

99.40%, and an F1 score of 99.40% on this dataset. These results indicate that the

proposed method is effective on other type of malwares.

7.2 Comparison with Existing Literature

Ahmed et al.[12] proposed a method for malware classification based on transfer

learning using Inception V3, where the byte data of malware is converted into image

features. On the Microsoft malware dataset, they achieved an accuracy of 98.76% and

a recall of 94.8%. However, our approach achieved even better metrics, with an

accuracy of 99.49% and a recall of 99.54%. This indicates that our method, which

integrates malware image features with malware opcode features, can identify a

broader range of malware category information. In comparison, the superior

performance of our model can be attributed to the additional semantic information

provided by the opcode features, enabling the classifier to capture deeper behavioral

patterns of the malware.

Mallik et al.[13] proposed a method for classifying malware grayscale images using a

convolutional recurrent network. Experimental results on the Microsoft Malware

Classification Challenge dataset show that their method achieved an accuracy of

0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast,

our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949,

and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms

71

theirs across all metrics. While the difference in precision between the two methods is

minimal, our approach surpasses theirs by more than one percentage point in the

other metrics. This indicates that when relying solely on malware grayscale images for

classification, the model captures less informative content compared to when the

features from malware images are combined with opcode features for classification.

Deng et al.[14] proposed a novel approach for generating malware images using

assembly instructions and Markov transition matrices. Based on this, they designed a

convolutional neural network (CNN) for malware classification. Their method achieved

a test accuracy of 99.44% on the Microsoft malware dataset. In comparison, our

feature fusion method achieved an accuracy of 99.49%, slightly surpassing their result,

indicating a certain advantage in accuracy. Furthermore, their precision was 99.44%,

while our precision reached 99.50%, suggesting that a higher proportion of files

predicted as a certain type of malware indeed belonged to that category in our

approach. Additionally, their recall rate was 99.13%, whereas ours was 99.54%,

implying that our method was more effective in identifying various types of malware.

Finally, the F1-score of Deng et al.'s method was 99.29%, while our method achieved

99.52%, demonstrating that our approach better handles minority classes in the

imbalanced Microsoft malware dataset.

Zhao et al.[16] proposed a visualization-based method for malware family

classification utilizing deep learning. They convert binary files into images and cluster

the malware based on texture features within these images. The researchers

employed a deep convolutional neural network to fuse and classify features from

Markov images generated from both bytecode and opcode. Experimental results on

the Microsoft Malware Classification Challenge dataset demonstrated that their model

achieved an accuracy of 0.9976, precision of 0.9901, recall of 0.9881, and an F1 score

72

of 0.9891. In comparison, our method achieved an accuracy of 0.9949, precision of

0.9950, recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Although

our method slightly underperformed Zhao et al.'s method in terms of precision, our

model excelled in other metrics. It is noteworthy that while both methods utilized

Markov images generated from opcode for malware classification, Zhao et al. further

incorporated Markov images generated from bytecode. Our method, on the other hand,

is based on an image-based malware representation generated directly from binary

files. Theoretically, this image-based malware representation should encompass more

malware information than Markov images generated from bytecode, but our

experimental results did not outperform their method. This could be attributed to the

fact that ResNet18 may have inferior feature extraction capabilities compared to the

convolutional neural network used in their approach. In future research, we will

consider optimizing the convolutional neural network architecture to further improve

classification performance.

Yang et al.[24] proposed a hybrid attention network based on multi-feature alignment

and fusion for malware detection. This method first utilizes a 1D convolutional neural

network to extract time series features of binary files and applies a triangular attention

algorithm to extract opcode features from assembly code. Then, a cross-attention

module is used to align and fuse the binary file features with the assembly code

features, and finally, a deep neural network is employed to detect malware.

Experimental results on the Microsoft Malware dataset demonstrate that this method

achieves outstanding performance in terms of accuracy, precision, recall, and F1-

score, reaching 99.54%, 99.40%, 99.41%, and 99.40%, respectively. In our study,

although both methods employ cross-attention-based feature fusion strategies, our

model exhibits better balance across performance metrics, achieving 99.49%

73

accuracy, 99.50% precision, 99.49% recall, and 99.49% F1-score. Specifically, while

Yang et al.'s method slightly outperforms in accuracy, our model shows superior

performance in precision, recall, and F1-score. This may indicate that the introduction

of low-level feature fusion components in our approach further enhances the overall

performance of the model.

Snow et al.[25] proposed an end-to-end multi-model deep learning framework for

addressing the problem of malware classification. Their approach utilizes a fully

connected network to process metadata, a convolutional neural network (CNN) to

handle grayscale images derived from malware bytecode, and an LSTM network to

process opcode sequences within malware files. On the Microsoft malware dataset,

their method achieved an accuracy of 98.35%. In comparison, our approach reached

an accuracy of 99.49%, significantly outperforming theirs. This indicates that, although

their method also employs a multi-feature fusion mechanism, our method

demonstrates more pronounced advantages in the comprehensiveness of feature

selection and the effectiveness of the fusion mechanism.

74

8. Conclusion

8.1 Conclusion

Nowadays, malware has become a significant threat to information security, making

the study of malware classification highly urgent. Traditional methods typically rely on

single-feature approaches for malware classification, but these methods often struggle

to cope with obfuscation techniques employed by malware to evade detection.

Therefore, research on malware classification based on feature fusion is both

necessary and promising.

We propose a malware classification method based on the fusion of malware images

and malware opcode features, effectively classifying malware by fusing features from

both image-based malware representation and opcode sources. Specifically, our

model employs two feature fusion modules: a cross-attention-based feature fusion

module and a low-level feature fusion module based on multiplication. These modules

enable deep feature fusion, thereby classifying malware more effectively.

To determine the most suitable model for extracting image-based malware

representation features and malware opcode Markov image features and accurately

classifying malware, we conducted comparative experiments. We selected three

common convolutional neural networks to extract the corresponding opcode

information. Experimental results indicate that the best model combination is to use

ResNet18 for extracting malware image features and EfficientNetB0 for extracting

malware opcode Markov image features.

To further validate the effectiveness of our method, we compared the classification

performance of traditional feature fusion methods with our approach. The results show

that our method outperforms traditional methods in metrics such as accuracy and

75

recall. Moreover, to evaluate the classification effectiveness of our method on different

types of malware, we tested it using the CCF BDCI 21 dataset. The experimental

results demonstrate that our method can effectively classify malware on this dataset.

In conclusion, our research provides a reliable and effective new approach for malware

classification and lays a solid foundation for future research on malware classification

based on multi-feature fusion. Moving forward, research on malware classification

methods based on multi-feature fusion will continue to address the increasingly

complex malware threats.

8.2 Future Work

In future work, we will continue to delve deeper into malware classification methods

based on multi-level feature fusion. Although we have already implemented a feature

fusion method based on mutual attention, there remains significant room for further

exploration in this area. Additionally, we plan to incorporate other deep learning

models for feature extraction and investigate the potential application of additional

features in malware classification.

76

9. Reflection

Throughout the research process, I encountered several challenges related to both

technical aspects and time management. Initially, file operations and string processing

posed significant difficulties for me. Due to the frequent need to handle files and

accurately process strings during data processing, I spent a considerable amount of

time on these tasks, which slowed down the progress of my research. However,

through continuous practice and repeated trials, I gradually became proficient in these

technical areas, leading to a significant improvement in processing efficiency.

In terms of time management, I noticed that my efficiency was relatively low at the

beginning of the project, primarily because I did not plan the allocation of time between

experiments and writing effectively. To address this issue, I decided to start writing the

dissertation while conducting experiments. This approach of simultaneously

conducting experiments and writing not only improved my work efficiency but also

helped me maintain a consistent train of thought when documenting the research

process. Additionally, communication with my supervisor played a crucial role.

Through multiple discussions with my supervisor, I received valuable advice that

helped me better plan the research timeline and overcome the challenges I faced

during the project.

By overcoming these challenges, I not only enhanced my technical skills but also

learned to manage my time more effectively. These experiences will have a profound

impact on my future research and learning endeavors.

77

10. Reference

[1] "SonicWall 2024 Mid-Year Threat Report," SonicWall, American, 2024. [Online]

Available: https://www.sonicwall.com/resources/white-papers/mid-year-2024-

sonicwall-cyber-threat-report [Accessed Aug. 20, 2024].

[2] "VirusTotal Malware Trends Report: Emerging Formats and Delivery Techniques,"

VirusTotal, Spain, 2023. [Online] Available:

https://blog.virustotal.com/2023/07/virustotal-malware-trends-report.html

[Accessed Aug. 20, 2024].

[3] N. Singh, S. Tripathy and B. Bezawada, "SHIELD : A multimodal deep learning

framework for Android malware detection ", Proc. Int. Conf. Inf. Syst. Secur., pp.

64-83, 2022.

[4] L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, "Malware images:

Visualization and automatic classification", Proc. 8th Int. Symp. Vis. Cyber Secur.,

pp. 4, Jul. 2011.

[5] Tekerek and M. M. Yapici, "A novel malware classification and augmentation

model based on convolutional neural network", Computers Security, vol. 112, pp.

102515, 2022.

[6] K. Shaukat, S. Luo and V. Varadharajan, "A novel deep learning-based approach

for malware detection", Eng. Appl. Artif. Intell., vol. 122, Jun. 2023.

[7] R. Chaganti, V. Ravi and T. D. Pham, "Image-based malware representation

approach with EfficientNet convolutional neural networks for effective malware

classification", J. Inf. Secur. Appl., vol. 69, Sep. 2022.

[8] V. Acharya, V. Ravi and N. Mohammad, "EfficientNet-based Convolutional Neural

Networks for Malware Classification", International Conference on Computing

Communication and Networking Technologies (ICCCNT), pp. 1-6, 2021.

[9] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan and T. D. Pham, "EfficientNet

convolutional neural networks-based android malware detection", Comput. Secur.,

vol. 115, 2022.

78

https://blog.virustotal.com/2023/07/virustotal-malware-trends-report.html
https://www.sonicwall.com/resources/white-papers/mid-year-2024

[10] N. Lojain, A. Marwan, A. Abdullah and J. Anca, "Android Malware Detection

Using ResNet-50 Stacking", Computers Materials & Continua, vol. 74, no. 2, pp.

3997-4014, 2023.

[11] M. Asam, S. J. Hussain, M. Mohatram, S. H. Khan, T. Jamal, A. Zafar, et al.,

"Detection of exceptional malware variants using deep boosted feature spaces

and machine learning", Appl. Sci., vol. 11, no. 21, pp. 10464, Nov. 2021.

[12] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer and J. Ahamed, "An inception v3

approach for malware classification using machine learning and transfer learning",

Int. J. Intell. Netw., vol. 4, pp. 11-18, 2023.

[13] A. Mallik, A. Khetarpal and S. Kumar, "ConRec: malware classification using

convolutional recurrence", J Comput Virol Hack Tech, 2022.

[14] H. Deng, C. Guo, G. Shen, Y. Cui and Y. Ping, "MCTVD: A malware classification

method based on three-channel visualization and deep learning", Comput Secur,

vol. 126, Mar. 2023.

[15] C. Gao et al., "Obfuscation-resilient Android malware analysis based on

complementary features", IEEE Trans. Inf. Forensics Security, vol. 18, pp. 5056-

5068, 2023.

[16] Z Zhao et al., "Malware classification based on visualization and feature fusion",

2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC).

IEEE, 2021: 53-60.

[17] Mai, Changren et al., "MobileNet-Based IoT Malware Detection with Opcode

Features." Journal of Communications and Information Networks 8.3 (2023): 221-

230.

[18] S. Chen, B. Lang, H. Liu, Y. Chen and Y. Song, "Android malware detection

method based on graph attention networks and deep fusion of multimodal

features" in Expert Systems with Applications, Elsevier, vol. 237, pp. 121617,

2024.

79

[19] Xuan, Bona, Jin Li, and Yafei Song, "BiTCN-TAEfficientNet malware classification

approach based on sequence and RGB fusion." Computers & Security 139 (2024):

103734.

[20] S. Li, Y. Li, X. Wu, S. A. Otaibi and Z. Tian, "Imbalanced malware family

classification using multimodal fusion and weight self-learning", IEEE Trans. Intell.

Transp. Syst., Oct. 2022.

[21] Sanjeev Kumar and Kajal Panda, "Sdif-cnn: Stacking deep image features using

fine-tuned convolution neural network models for real-world malware detection

and classification", Applied Soft Computing, vol. 146, pp. 110676, 2023.

[22] M. Dib, S. Torabi, E. Bou-Harb and C. Assi, "A multi-dimensional deep learning

framework for IoT malware classification and family attribution", IEEE Trans. Netw.

Service Manage., vol. 18, no. 2, pp. 1165-1177, Jun. 2021.

[23] S. Chen, B. Lang, H. Liu, Y. Chen and Y. Song, "Android malware detection

method based on graph attention networks and deep fusion of multimodal

features" in Expert Systems with Applications, Elsevier, vol. 237, pp. 121617,

2024.

[24] Xing Yang, Denghui Yang and Yizhou Li, "A hybrid attention network for malware

detection based on multi-feature aligned and fusion", Electronics (Switzerland),

vol. 12, 2 2023.

[25] E. Snow, M. Alam, A. Glandon and K. Iftekharuddin, "End-to-end multimodel deep

learning for malware classification", Proc. IEEE Int. Joint Conf. Neural Netw., pp.

1-7, 2020.

[26] S. Madan, S. Sofat and D. Bansal, "Tools and techniques for collection and

analysis of Internet-of-Things malware: A systematic state-of-art review", J. King

Saud Univ.-Comput. Inf. Sci., vol. 34, no. 10, pp. 9867-9888, Nov. 2022.

80

[27] B. Wang, Y. Dou, Y. Sang, Y. Zhang and J. Huang, "IoTCMal: Towards a hybrid

IoT honeypot for capturing and analyzing malware", Proc. IEEE Int. Conf.

Commun. (ICC), pp. 1-7, 2020.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, "Deep residual learning

for image recognition", Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 770-778, 2016.

[29] Simonyan K. Very deep convolutional networks for large-scale image

recognition[J]. arXiv preprint arXiv:1409.1556, 2014.

[30] M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for convolutional neural

networks", Proc. Int. Conf. Mach. Learn., pp. 6105-6114, 2019.

[31] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton, "Imagenet classification

with deep convolutional neural networks", Communications of the ACM, vol. 60,

no. 6, pp. 84-90, 2017.

81

Appendice

82

Declaration of Originality

I Jinwei Xu declare that I am the sole author of this Project; that all references cited

have been consulted; that I have conducted all work of which this is a record, and that

the finished work lies within the prescribed word limits.

This work has not previously been accepted as part of any other degree submission.

Signed : ...

Date : ...

83

FORM OF CONSENT

I Jinwei Xu hereby consent that my Project, submitted in candidature for the degree

MSC Computer Networks and Cyber Security, if successful, may be made available

for inter-library loan or photocopying (subject to the law of copyright), and that the title

and abstract may be made available to outside organisations.

Signed : ...

Date : ...

84

	Structure Bookmarks
	Figure
	A malware classification method based on the multi-layer feature fusion of malware image representations and opcode Markov images
	A malware classification method based on the multi-layer feature fusion of malware image representations and opcode Markov images
	by

	Jinwei Xu
	Jinwei Xu
	Supervisor: Dr Michael Dacey

	Project submitted as part of the requirements for the award of MSc Computer Networks and Cyber Security
	Project submitted as part of the requirements for the award of MSc Computer Networks and Cyber Security
	August 2024
	Declaration of Originality
	I Jinwei Xu declare that I am the sole author of this Project; that all references cited have been consulted; that I have conducted all work of which this is a record, and that the finished work lies within the prescribed word limits.
	This work has not previously been accepted as part of any other degree submission.
	Signed : ...
	Date : ...
	FORM OF CONSENT
	I Jinwei Xu hereby consent that my Project, submitted in candidature for the degree MSC Computer Networks and Cyber Security, if successful, may be made available for inter-library loan or photocopying (subject to the law of copyright), and that the title and abstract may be made available to outside organisations.
	Signed : ...
	Date : ...
	Abstract
	Abstract
	As the threat of malware to information security becomes increasingly severe, the study of efficient malware classification methods has become more urgent. This paper proposes a multilayer malware classification method based on the fusion of image representation and opcode features. By integrating the features of image-based malware representation and opcode Markov image, the classification performance is enhanced. Specifically, our model introduces two feature fusion modules: a crossattention-based fusion
	-

	Table of Contents
	Abstract
	Abstract
	Abstract
	..
	iii

	Acknowledgment
	Acknowledgment
	..
	x

	1.
	1.
	Introduction
	..
	1

	1.1
	1.1
	Introduction
	...
	1

	1.2
	1.2
	Research Aim and Objectives
	...
	4

	1.3
	1.3
	Research Questions
	...
	4

	1.4
	1.4
	Structure of The Project
	..
	6

	2.
	2.
	Literature Review
	...
	7

	2.1
	2.1
	Image-based Malware Representation
	...
	7

	2.2
	2.2
	Opcode
	...
	12

	2.3
	2.3
	Feature Fusion in Malware Classification

	15

	2.4
	2.4
	Research Gap
	...
	19

	3.
	3.
	Research Methodology
	..
	20

	3.1
	3.1
	Research Philosophy
	..
	20

	3.2
	3.2
	Research Process
	...
	20

	3.3
	3.3
	Data Collection
	..
	21

	3.3.1
	3.3.1
	Honeypot
	..
	21

	3.3.2
	3.3.2
	Third-party malware sample sharing websites

	22

	3.3.3
	3.3.3
	Open-source datasets
	..
	22

	3.4
	3.4
	Data Pre-processing
	...
	22

	3.4.1
	3.4.1
	Image-based Malware Representations Extraction

	22

	3.4.2
	3.4.2
	Malware Opcode Markov Image Extraction

	24

	3.5
	3.5
	Malware Classification Models Design
	..
	25

	3.5.1
	3.5.1
	Convolutional Neural Network
	..
	25

	3.5.1.1
	3.5.1.1
	ResNet
	...
	25

	3.5.1.2
	3.5.1.2
	VGG
	...
	26

	3.5.1.3
	3.5.1.3
	EfficientNet
	...
	26

	3.5.2
	3.5.2
	Feature Fusion
	...
	26

	3.5.2.1
	3.5.2.1
	Feature Concatenate
	...
	26

	3.5.2.2
	3.5.2.2
	Multilayer Deep Network based Feature Fusion

	27

	3.5.2.3
	3.5.2.3
	Cross-Attention Mechanism based Feature Fusion

	27

	3.5.2.4
	3.5.2.4
	Multiplication based Low-level Feature Fusion Method

	29

	3.6
	3.6
	Model Training
	..
	29

	3.6.1
	3.6.1
	Loss Function
	...
	29

	3.6.1.1
	3.6.1.1
	Cross-entropy Loss
	..
	29

	3.6.2
	3.6.2
	Optimization Algorithm
	...
	29

	3.6.2.1
	3.6.2.1
	Stochastic Gradient Descent
	..
	30

	3.6.2.2
	3.6.2.2
	Adam Algorithm
	..
	30

	3.6.3
	3.6.3
	Learning Rate
	...
	31

	3.6.4
	3.6.4
	BatchSize
	..
	31

	3.6.5
	3.6.5
	Training Epochs
	...
	32

	3.6.6
	3.6.6
	Data Augmentation
	..
	32

	3.6.6.1
	3.6.6.1
	Random Cropping and Horizontal Flip

	32

	3.6.7
	3.6.7
	Transfer Learning
	...
	32

	3.7
	3.7
	Model Evaluation
	..
	33

	3.7.1
	3.7.1
	Accuracy
	..
	33

	3.7.2
	3.7.2
	Precision
	..
	33

	3.7.3
	3.7.3
	Recall
	...
	34

	3.7.4
	3.7.4
	The F1 Score
	...
	34

	3.7.5
	3.7.5
	The confusion matrix
	..
	34

	4.
	4.
	Design
	...
	35

	4.1
	4.1
	Data Collection
	..
	35

	4.2
	4.2
	Data Pre-processing Design
	...
	37

	4.2.1
	4.2.1
	Image-based Malware Representations Extraction

	37

	4.2.2
	4.2.2
	Opcode Markov Image Extraction

	38

	4.3
	4.3
	Model Design
	..
	39

	4.3.1
	4.3.1
	Image-based Malware Presentation Feature Extraction

	Module
	Module
	41

	4.3.2
	4.3.2
	Opcode Markov Image Feature Extraction Module

	43

	4.3.3
	4.3.3
	Cross-attention Feature Fusion Module

	45

	4.3.4
	4.3.4
	Multiplication Based Low Level Feature Fusion Module
	..
	47

	4.4
	4.4
	Model Training
	..
	49

	4.5
	4.5
	Model Evaluation
	..
	49

	5.
	5.
	Implementation
	..
	50

	5.1
	5.1
	Hardware and Software Resource
	..
	50

	5.1.1
	5.1.1
	Hardware Resource
	...
	50

	5.1.2
	5.1.2
	Software Resource
	...
	50

	5.2
	5.2
	Data Pre-processing Implementation
	..
	50

	5.2.1
	5.2.1
	Opcode Sequences Extraction
	...
	50

	5.2.2
	5.2.2
	Opcode Markov Image Extraction

	51

	5.2.3
	5.2.3
	Image-based Malware Representations Extraction

	51

	5.3
	5.3
	Model Implementation
	...
	52

	5.4
	5.4
	Model Training Implementation
	...
	53

	5.5
	5.5
	Model Evaluation Implementation
	...
	54

	6.
	6.
	Experiments
	...
	55

	6.1
	6.1
	Evaluation of Various Convolutional Neural Networks for Malware

	Classification
	Classification
	55

	6.1.1
	6.1.1
	Experiment Settings
	...
	55

	6.1.2
	6.1.2
	Experiment Results
	..
	56

	6.1.3
	6.1.3
	Analysis
	..
	56

	6.2
	6.2
	Comparison of Feature Fusion Techniques for Malware

	Classification
	Classification
	58

	6.2.1
	6.2.1
	Experiment Settings
	...
	58

	6.2.2
	6.2.2
	Experiments Results
	..
	59

	6.2.2.1
	6.2.2.1
	Results for Model 1(Feature Fusion based via

	Concatenation)
	Concatenation)
	59

	6.2.2.2
	6.2.2.2
	Result for Model 2(Feature Fusion based via Multilayer

	Deep Network)
	Deep Network)
	61

	6.2.2.3
	6.2.2.3
	Result for Model 3(Feature Fusion based via Cross

	Attention)
	Attention)
	63

	6.2.2.4
	6.2.2.4
	Result for Model 4(Feature Fusion based via Multilayer

	Feature Fusion)
	Feature Fusion)
	65

	6.2.3
	6.2.3
	Analysis
	..
	67

	6.3
	6.3
	Performance Analysis of Malware Classification Models Across

	Different Datasets
	Different Datasets
	...
	68

	6.3.1
	6.3.1
	Experiment Settings
	...
	68

	6.3.2
	6.3.2
	Experiment Results
	..
	68

	6.3.3
	6.3.3
	Discuss
	...
	69

	7.
	7.
	Discussion
	...
	70

	7.1
	7.1
	Discussing Results for each Research Question

	70

	7.2
	7.2
	Comparison with Existing Literature
	..
	71

	8.
	8.
	Conclusion
	...
	75

	8.1
	8.1
	Conclusion
	..
	75

	8.2
	8.2
	Future Work
	..
	76

	9.
	9.
	Reflection
	...
	77

	10.
	10.
	Reference
	..
	78

	Appendice
	Appendice
	..
	82

	List of Figures
	Figure 1 Malware visualization algorithm by Nataraj et al.
	Figure 1 Malware visualization algorithm by Nataraj et al.

	22

	Figure 2 Malware visualization algorithm by Tekerak et al.
	Figure 2 Malware visualization algorithm by Tekerak et al.

	23

	Figure 3 Multilayer deep network
	Figure 3 Multilayer deep network
	...
	27

	Figure 4 Image-based malware representations extraction
	Figure 4 Image-based malware representations extraction

	37

	Figure 5 Process of extracting an Opcode Markov Image
	Figure 5 Process of extracting an Opcode Markov Image
	..
	38

	Figure 6 Model architecture
	Figure 6 Model architecture
	..
	40

	Figure 7 Modified VGG16
	Figure 7 Modified VGG16
	...
	42

	Figure 8 Modified ResNet18
	Figure 8 Modified ResNet18
	...
	42

	Figure 9 Modified EfficientNetB0
	Figure 9 Modified EfficientNetB0
	..
	42

	Figure 10 VGG16
	Figure 10 VGG16
	...
	44

	Figure 11 ResNet18
	Figure 11 ResNet18
	...
	44

	Figure 12 EfficientNetB0
	Figure 12 EfficientNetB0
	..
	44

	Figure 13 Cross-attention based feature fusion module
	Figure 13 Cross-attention based feature fusion module
	...
	46

	Figure 14 Multiplication Based Low Level Feature Fusion Module
	Figure 14 Multiplication Based Low Level Feature Fusion Module

	48

	Figure 15 Confusion matrix of model 1
	Figure 15 Confusion matrix of model 1
	...
	59

	Figure 16 Confusion matrix for model 2
	Figure 16 Confusion matrix for model 2
	...
	61

	Figure 17 Confusion matrix for model 3
	Figure 17 Confusion matrix for model 3
	...
	63

	Figure 18 Confusion matrix for model 4
	Figure 18 Confusion matrix for model 4
	...
	65

	Figure 19 Confusion matrix
	Figure 19 Confusion matrix
	..
	68

	List of Tables
	List of Tables
	Table 1 Adam algorithm process 31 Table 2 Microsoft Malware Classification Challenge dataset 35 Table 3 CCF BDCI 2021 dataset 36 Table 4 Model configurations 55 Table 5 Experiments results 56 Table 6 Model configurations 58 Table 7 Results of model 1 59 Table 8 Results for model 2 61 Table 9 Results for model 3 63 Table 10 Results for model 4 65 Table 11 Experiment results 69

	Acknowledgment
	Acknowledgment
	I would like to sincerely thank my advisor, Michael Dacey, for his guidance on my academic and research journey. I am also deeply grateful to my family for their encouragement and support throughout this process. Additionally, I want to express my appreciation to my friends for their assistance in my studies. Without your help, I would not have achieved the results I have today. Thank you all!
	1. Introduction
	1.1 Introduction
	In recent years, with the rapid development of the internet industry, an increasing number of devices have connected to the internet, significantly transforming people's lifestyles and work habits. However, alongside the broad application of new technologies, information security issues have become increasingly prominent. Cybercriminals employ various methods to carry out attacks, causing severe damage to both individuals and businesses. Among these, malware attacks are one of the primary threats to current
	Malware is not only increasing rapidly in quantity, but its complexity and diversity are also continuously evolving. As cyber defense mechanisms advance, attackers have adopted more sophisticated techniques to bypass security measures. By continuously improving and updating malware code, they make it more stealthy, destructive, and harder to detect and defend against. This rapid evolution poses significant challenges to the cybersecurity field. According to the SonicWall 2024 Mid-Year Threat Report[1], the
	VirusTotal Malware Trends Report[2], malware is increasingly utilizing newer and more covert distribution methods. The use of traditional file formats such as Excel, RTF, CAB, and compressed files in malware distribution is gradually decreasing, being replaced by emerging file types and distribution methods. In 2023, OneNote files and JavaScript distributed through HTML quickly became mainstream distribution mediums.
	In recent years, deep learning technology has made significant advancements across various fields, demonstrating its powerful capabilities in handling complex data and tasks. Particularly in the domain of malware classification, deep learning has emerged as a highly regarded and widely applied approach.
	The image-based representation of malware has become a significant approach in the field of deep learning-based malware classification. This method involves converting malware bytecode into images, enabling deep learning models to automatically learn and extract useful features, thereby enhancing the accuracy and efficiency of malware detection. The image-based representation of malware refers to the process of converting malware bytecode data into grayscale or color images. This approach offers several adv
	-

	The Markov image of malware opcodes is another commonly used feature for malware classification based on deep learning methods. The use of the Markov image of malware opcodes is justified because opcodes represent the sequence of instructions that an application executes during its runtime, reflecting the application's low-level operations. By analyzing these opcode sequences, it is possible to capture the behavioral characteristics of the application, which is crucial for distinguishing different types of
	Traditional classification methods typically rely on the analysis of a single feature, such as image-based malware representation or opcode Markov image analysis. However, as malware technology continues to evolve, these single-feature analysis methods face certain limitations when dealing with complex and diverse malware. Therefore, it is particularly necessary and promising to propose a joint analysis method that combines malware's image-based presentation with opcode Markov images. The image-based presen
	approaches in feature extraction and representation. Additionally, capturing and representing the connections between image-based features and opcode Markov features to improve the classifier's ability to recognize malware is also a major difficulty.
	In response to these challenges, this research will explore different fusion strategies with the aim of proposing a malware classification method that fully utilizes the advantages of both features.
	1.2 Research Aim and Objectives
	1.2 Research Aim and Objectives
	The purpose of this study is to propose a malware classification method based on a multi-level feature fusion of image-based presentations and opcode Markov images of malware. The specific objectives of this research include: conducting a comprehensive literature review to understand the current malware detection techniques using imagebased presentations and opcode Markov images, as well as their developments; designing a malware classification method that incorporates multilayer feature fusion; testing the
	-

	1.3 Research Questions
	1.3 Research Questions
	Which deep learning model is optimal for extracting image representations of malware and opcode Markov image features?
	⚫

	In the study of malware classification models, selecting an appropriate model to extract image representations of malware and opcode Markov image features is a crucial question. Therefore, this study will investigate and validate the performance of
	commonly used models in extracting malware image representations and opcode Markov image features.
	⚫
	⚫
	⚫
	⚫
	⚫

	Can an effective technique for malware feature fusion be developed?

	Feature fusion techniques have been widely applied in the field of malware classification. However, existing research primarily focuses on simple feature fusion methods, which often overlook the complex relationships and potential complementarity between features, leading to limited improvements in classification performance. Thus, the critical question of this research is: How can a more effective feature fusion method be designed to deeply explore and utilize the relationships between features, thereby si

	⚫
	⚫
	⚫

	Can a robust and generalizable malware classification algorithm be developed?

	In the field of malware classification, robustness and generalizability are key criteria for evaluating the quality of classification algorithms. Malware comes in many forms, and attack methods are constantly evolving. Therefore, an effective classification algorithm should maintain efficient and accurate classification capabilities even when faced with diverse datasets. This study will validate the proposed method's classification performance across different malware datasets to assess its adaptability and

	1.4 Structure of The Project
	1.4 Structure of The Project
	In the first chapter, Introduction, the research content is introduced, providing an overview of the study and its objectives. The second chapter, Literature Review, presents a review of related literature, discussing the background and context of the research. The third chapter, Methodology, details the methods employed in this study. The fourth chapter, Design, describes the design of a classification method based on the multi-layer feature fusion of malware image representations and opcode Markov images.
	2. Literature Review
	2.1 Image-based Malware Representation
	In the field of malware analysis, traditional approaches are increasingly facing complex challenges. To more effectively identify and classify malware, researchers have proposed an innovative method: representing malware by converting its binary data into image form. This image-based malware representation approach not only reveals the unique patterns of malware but also opens up new possibilities for utilizing computer vision and deep learning techniques in malware detection. In the following, we will revi
	The research by Nataraj et al.[4] was the first to visualize malware into images. The core idea of the study is to visualize the binary files of malware as grayscale images, noting that images belonging to the same malware family often exhibit similar layouts and textures. Based on this visual similarity, the research introduces a method for classification using standard image features, without the need for code disassembly or execution. The main experimental results show that this method achieved a classif
	Tekerek et al.'s research[5] proposes an algorithm called B2IMG, which is designed to convert byte files into image format for the purpose of malware classification. The specific steps of this algorithm include reading the byte files, data processing, image generation, and image conversion. By directly converting byte data into image data,
	the B2IMG algorithm avoids the information loss often encountered in traditional analysis methods, thereby improving the accuracy of malware classification. To address the issue of data imbalance, the study also introduces CycleGAN (Cycle-Consistent Generative Adversarial Network) for data augmentation. Finally, the study employs DenseNet to classify the image-based malware representations. Experimental results demonstrate that using the image data converted by the B2IMG algorithm, combined with data augmen
	The study by Shaukat et al.[6] proposes an innovative malware detection method based on deep learning. The proposed method first visualizes executable files (PE files) as color images, then uses a fine-tuned model to extract deep features from these images. Finally, it employs a Support Vector Machine (SVM) to detect malware based on these deep features. Experimental results show that this method outperforms existing methods on multiple benchmark datasets, achieving an accuracy of 99.06% on the Malimg datas
	Chaganti et al.[7] explored a malware classification method based on image representation. The study proposed using the EfficientNetB1 model for classifying malware families, leveraging byte-level image representation techniques of malware. After comparing the performance of various CNN pre-trained models, the authors found that EfficientNetB1 achieved a classification accuracy of 99% while requiring significantly fewer network parameters than other pre-trained models. Additionally, various visualization te
	performance of different CNN models. The research demonstrated that EfficientNetB1 not only effectively improves accuracy in malware classification but also reduces the consumption of computational resources.
	The study by Acharya et al.[8] proposes a malware classification framework based on the EfficientNet-B1 model. The malware samples in the study are represented as byte code grayscale images and classified using the EfficientNet-B1 model. The experimental results demonstrate that the model achieved a classification accuracy of 98.57% on a dataset comprising 10,868 samples from 9 different malware families, significantly outperforming other pretrained deep learning models.
	The research by Yadav et al.[9] proposes using deep learning methods for automated malware detection. The research compares the performance of 26 convolutional neural network models in Android malware detection and proposes a detection method based on the EfficientNet-B4 model. This method involves converting Android's DEX files into images, extracting features from these images using the EfficientNet-B4 model, and finally performing binary classification to distinguish between malware and benign software t
	In the study conducted by Lojain et al.[10], the core components of APK files, such as classes.dex, resources, manifest, and certificates, were utilized. These binary data were converted into 8-bit vectors and then transformed into grayscale images. These grayscale images were subsequently used to train and test the model. The study employed the ResNet-50 model, replacing its softmax classification layer with an SVM model (using a Gaussian kernel) to enhance detection performance. After conducting
	experiments on the DREBIN dataset, the research results showed that the grayscale image model, which combined Certificates (CR) and Android Manifest (AM), achieved a classification accuracy of 97%. Additionally, the model performed exceptionally well on other metrics such as precision, recall, and F1-score, all exceeding 95%.
	The work by Asam et al.[11] involves detecting and classifying malware variants using deep learning and machine learning techniques. The research introduces two novel malware classification frameworks: Malware Classification based on Deep Feature Space (DFS-MC) and Malware Classification based on Deep Boosted Feature Space (DBFS-MC). In the DFS-MC framework, a custom Convolutional Neural Network (CNN) architecture is employed to generate deep features, which are then input into a Support Vector Machine (SVM
	The study by Ahmed et al.[12] proposed the use of a transfer learning approach with the Inception V3 model to classify malware samples from the BIG15 dataset. The research also compared the performance of several other machine learning and deep learning models, including Logistic Regression (LR), Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory networks (LSTM). In the experiments, the transfer learning approach using the Inception V3 model achieved a classifi
	The research by Mallik et al.[13] proposes a convolutional recurrent-based malware classification technique that leverages visual recurrent features in grayscale malware images for classification. Initially, the malware samples are converted into grayscale images, and convolutional neural networks (CNNs) are used to extract structural similarity features. To balance the dataset and reduce class bias, data augmentation is applied. Subsequently, visual features are extracted using the VGG16 feature extractor,
	Currently, classification methods based on image-based representation of malware have become a common and effective technical approach. These methods typically incorporate convolutional neural networks (CNNs) such as VGG, ResNet, EfficientNet, and other models, demonstrating outstanding classification performance. However, selecting the appropriate convolutional neural network model remains a topic that requires further research. Additionally, solely relying on image-based representation techniques may some
	2.2 Opcode
	Opcode, short for operation code, is a portion of a machine language instruction that specifies the operation to be performed. While obtained from a decompiled .asm file, opcodes provide a detailed view of the low-level instructions executed by a program. Using opcodes for malware classification offers several benefits. They reveal the specific behaviors and operational details of the malware, allowing for precise identification of its functions and intents. This granularity aids in distinguishing between d
	The research by Singh et al.[3] develops and evaluates a multimodal deep learning framework called SHIELD, designed for detecting malware within Android systems. The framework integrates opcode Markov images and dynamic API calls, utilizing a Multimodal Autoencoder (MAE) to minimize the reliance on feature engineering and to autonomously discover relevant features for malware detection. SHIELD demonstrated strong performance on two benchmark datasets, CICandMal2020 and AMD, achieving detection rates of 94%
	The study by Deng et al.[14] aims to enhance the effectiveness of malware detection through a novel three-channel visualization approach. The deep learning model employed in this research includes a Convolutional Neural Network (CNN) for feature extraction and classification. The study utilizes a publicly available malware dataset from Microsoft, which contains multiple malware families, to evaluate the effectiveness of the proposed method. The feature extraction techniques involve generating images from as
	The study by Deng et al.[14] aims to enhance the effectiveness of malware detection through a novel three-channel visualization approach. The deep learning model employed in this research includes a Convolutional Neural Network (CNN) for feature extraction and classification. The study utilizes a publicly available malware dataset from Microsoft, which contains multiple malware families, to evaluate the effectiveness of the proposed method. The feature extraction techniques involve generating images from as
	MCTVD exhibits an extremely high accuracy rate (99.44%) in malware classification, along with significant precision, recall, and F1 scores, demonstrating the effective integration of multi-channel data.

	The study by Gao et al.[15] proposes an anti-obfuscation Android malware analysis method named CorDroid. The authors propose a method that combines various features to counteract code obfuscation, and they develop CorDroid based on two new features: the Enhanced Sensitive Function Call Graph (E-SFCG) and the Opcodebased Markov Transition Matrix (OMM). E-SFCG describes the relationships between sensitive function calls, while OMM reflects the transition probabilities between opcodes. The authors validate the
	-

	The study by Zhao et al.[16] proposes a deep learning-based method for classifying malware families through visualization techniques. By converting binary files into images and utilizing the texture features within these images for clustering, the researchers employed a deep convolutional neural network (CNN) to perform feature fusion and classification on Markov images generated from bytecode and opcode. Specifically, the bytes and opcodes in malware binary files were transformed into Markov images based o
	-

	The research by Mai et al.[17] proposes a malware detection method based on Markov images and the MobileNet model, emphasizing the generation of Markov images from opcode sequences and the subsequent classification of these images using the lightweight MobileNet model. This method achieves good detection performance while maintaining low computational resource consumption. Experimental results indicate that classifying the generated Markov images with the MobileNet model can effectively detect malware in Io
	The opcode Markov images have been widely applied in the field of malware classification, demonstrating exceptional performance in handling complex malware detection tasks, particularly when dealing with obfuscation techniques and unknown malware, thereby overcoming the limitations of traditional detection methods. Various convolutional neural networks, as commonly used feature extractors, have enhanced detection accuracy. However, research on combining opcode Markov images with image-based representations
	2.3 Feature Fusion in Malware Classification
	Feature fusion has been widely applied in the field of malware classification. By integrating different features, it effectively enhances the classification performance of models.
	The paper by Chen et al.[18] proposes an innovative approach to Android malware detection by utilizing Graph Attention Networks (GAT) and the deep fusion of multimodal features. This paper introduces a novel type of call graph, named the Class-Set Call Graph (CSCG), designed to effectively extract both structural and semantic features of Android applications. Furthermore, the paper presents a feature fusion network that integrates CSCG features with permission features to enhance malware detection. In this
	-

	The paper by Xuan et al.[19] proposes a malware classification method combining Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet. This method enhances classification accuracy by fusing multiple features, utilizing malware assembly data and API sequences as features, and introducing a bidirectional temporal convolutional network to capture bidirectional temporal features. Additionally, the paper
	The paper by Xuan et al.[19] proposes a malware classification method combining Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet. This method enhances classification accuracy by fusing multiple features, utilizing malware assembly data and API sequences as features, and introducing a bidirectional temporal convolutional network to capture bidirectional temporal features. Additionally, the paper
	accuracies of 99.461% and 97.92% on the Kaggle and DataCon datasets, respectively, representing improvements of 0.38% and 0.87% compared to other methods.

	The study by Li et al.[20] proposes a method for classifying malware families based on multimodal fusion and weight self-learning. Firstly, the study extracts multidimensional features of malware through static analysis, including byte, format, statistical, and semantic features, which are then fused during the feature engineering phase through concatenation. In the model construction phase, a weight self-learning mechanism is introduced to automatically learn the weights of different features within each f
	The study by Kumar et al.[21] proposes a novel architecture for malware classification based on image visualization. This approach utilizes a VGG16 model as a feature extractor, combined with three convolutional neural network models to obtain varied feature maps. The extracted features are concatenated to form a feature map, which is then trained using six classifiers. The experiments were conducted using the MalImg dataset, which contains 9,339 images from 25 families, as well as real-world packed malware
	The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning framework aimed at enhancing cybersecurity by analyzing the classification of Internet of Things (IoT) malware. The research focuses on utilizing strings extracted from malware executables and image-based features. In the "feature fusion and classification" step, these features learned from different data representations are
	The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning framework aimed at enhancing cybersecurity by analyzing the classification of Internet of Things (IoT) malware. The research focuses on utilizing strings extracted from malware executables and image-based features. In the "feature fusion and classification" step, these features learned from different data representations are
	concatenated to form a shared multimodal representation. This concatenated multimodal representation is then input into a neural network with fully connected layers for final, efficient classification. The study analyzed over 70,000 recently detected IoT malware samples, using Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM) to process image and string data, respectively. Experimental results indicate that this multi-layered deep learning framework significantly outperforms tra

	The research of Chen et al.[23] proposes a novel method for detecting Android malware by integrating various features of Android applications. First, the paper introduces a new Class Set Call Graph (CSCG), which uses Java class sets as nodes and designs a CSCG construction method that can determine node size based on the application's scale. Then, a topic model is used to mine semantic features from the source code. Next, a Graph Attention Network (GAT) is employed to extract CSCG features. Finally, the stu
	Yang et al.[24] introduced a hybrid attention network model for malware detection that enhances accuracy by aligning and integrating multiple features, specifically combining binary file and opcode features. The model initially extracts temporal sequences and jump characteristics from binary files using stacked convolutional networks while employing a triangular attention algorithm to extract opcode features
	Yang et al.[24] introduced a hybrid attention network model for malware detection that enhances accuracy by aligning and integrating multiple features, specifically combining binary file and opcode features. The model initially extracts temporal sequences and jump characteristics from binary files using stacked convolutional networks while employing a triangular attention algorithm to extract opcode features
	from assembly code. Subsequently, a cross-attention mechanism is used to align and fuse these two distinct sources of features, resulting in more stable and representative feature representations. The literature emphasizes the crucial role of the crossattention mechanism in this process, as it establishes deep connections between different modal features, enabling the model to better understand and learn the relationships between binary files and assembly code, thereby significantly improving malware detect
	-
	-

	The work by Snow et al.[25] proposes an end-to-end multi-model deep learning framework aimed at directly extracting features from malware data to enhance classification accuracy and generalization ability. The model integrates three distinct deep neural network architectures to process different attributes of malware data. The model concatenates various features and then classifies them using a Multi-Layer Perceptron (MLP). Experimental results demonstrate that the proposed model excels in both classificati
	Currently, in the field of malware classification research, feature fusion methods have been widely applied. These methods significantly enhance classification accuracy by extracting and integrating structural features, semantic features, permission features, and image-based features. However, the current feature fusion methods still primarily rely on traditional approaches such as concatenation and addition, which to some extent limit the potential of feature fusion technology in malware classification.
	Moreover, the classification methods that integrate malware image features with opcode Markov image features have not been sufficiently explored, and further research and optimization are required.

	2.4 Research Gap
	2.4 Research Gap
	Although image-based malware classification techniques have shown outstanding performance, many studies still rely on a single feature representation, such as images generated only from bytecode or opcode. These methods perform well on specific datasets; however, they exhibit significant limitations when dealing with data imbalance, adversarial attacks, and unknown malware variants. Therefore, research on combining image representations of malware with Opcode Markov images for classification is not only nec
	Most current feature fusion methods rely on traditional operations like concatenation and addition, failing to fully exploit and utilize the potential of multiple features. Therefore, proposing a more effective feature fusion method is crucial for improving malware classification performance.
	In research on classification based on malware image representations and Opcode Markov images, convolutional neural networks are commonly used as feature extraction tools. However, the actual performance of different convolutional neural networks in malware classification still requires further in-depth study.
	Moreover, the robustness of malware classification algorithms across different datasets is equally critical and urgently needs further validation and improvement.
	3. Research Methodology
	3.1 Research Philosophy
	The philosophical foundation of this research is positivism. Positivism emphasizes the validation of hypotheses through objective data, which aligns with the experimental approach of classifying malware based on real-world data in this study.
	3.2 Research Process
	Figure 2 illustrates our research process, which comprises five key steps: data collection, data preprocessing, model design, model training, and model evaluation. These steps form the core of our research methodology.
	Figure
	Figure 2-Research Process
	Data Collection: In the research of malware classification, collecting a high-quality malware dataset is crucial. Common methods for data collection include honeypots, third-party sharing sites, and open-source datasets. Each of these methods has its own advantages and disadvantages.
	Data Preprocessing: In deep learning-based malware classification research, data preprocessing is essential, as this step involves extracting features from malware data that can be processed by deep learning algorithms. In our research, we utilized two types of features: image based malware representations and malware opcode Markov images.
	Model Design: This study employs a fusion of malware images and malware opcode Markov images for malware classification. Therefore, it is necessary to select an appropriate deep learning algorithm to extract features from these two types of images. Additionally, a feature fusion method needs to be designed to effectively combine these features.
	Model Training: Model training is the process by which the model learns from the data and updates its parameters. This includes forward propagation, loss calculation, and backpropagation. Furthermore, training a deep learning model requires setting a loss function and an optimization algorithm. The loss function measures the accuracy of
	the model’s predictions, while the optimization algorithm helps the model update its
	parameters.
	Model Evaluation: After completing model training, it is necessary to evaluate its performance in the malware classification task. Common evaluation metrics include accuracy, precision, recall, F1-score, and confusion matrix.
	3.3 Data Collection
	In malware research, collecting high-quality datasets is a crucial step in the study. Currently, commonly used methods for collecting malware datasets include honeypots, third-party malware sharing websites, and open-source datasets.
	3.3.1 Honeypot
	Honeypot technology is a widely used method for collecting malware, designed to deceive attackers to capture malicious behavior[26]. This is achieved by configuring vulnerable network services on certain decoy hosts to attract and capture attack behaviors. Honeypots are categorized into low-interaction[26] and high-interaction honeypots[27].
	3.3.2 Third-party malware sample sharing websites
	Third-party malware sample sharing websites are another commonly used method for collecting malware. Users can upload and download various malware samples for research and analysis purposes.
	3.3.3 Open-source datasets
	Open-source datasets are an important resource frequently used in malware research. Open-source malware datasets often contain a large number of labeled malware samples, providing convenience for researchers.
	3.4 Data Pre-processing
	3.4.1 Image-based Malware Representations Extraction
	Nataraj et al.[4]were the first to propose a method for mapping malware into images and utilizing these images for malware classification. In this method, the binary file of the malware is first read into a one-dimensional array of 8-bit unsigned integers. This one-dimensional array is then reshaped into a two-dimensional array, generating the corresponding grayscale image. The width of the image is adaptively adjusted based on the file size: smaller files result in narrower image widths, while larger files
	Figure
	Figure 1 Malware visualization algorithm by Nataraj et al.
	Tekerek et al.[5] proposed an algorithm for mapping malware into grayscale and color images. Unlike the method introduced by Nataraj et al., this algorithm is capable of
	generating color images with richer textures and organizing them into square images that are better suited for deep learning processing.
	The image generation process, whether for grayscale or color images, shares the following common steps: First, the binary file of the malware, represented as hexadecimal characters, is read. Then, based on the predetermined image type, the dimensions of the corresponding image matrix are calculated. Subsequently, the malware's numeric data is populated into the matrix to generate the corresponding image.
	The key difference lies in the fact that grayscale images use only a single channel to represent pixel intensity, whereas color images utilize multiple channels, thereby capturing more complex textures. Additionally, to enhance the feature representation of the images, the method proposed by Tekerek et al.[5] specifically excludes meaningless zero values, thereby optimizing the image generation process. The processing workflow is illustrated in the accompanying Figure 2.
	Figure
	Figure 2 Malware visualization algorithm by Tekerak et al.
	3.4.2 Malware Opcode Markov Image Extraction
	The Markov image of malware is a method used to represent and analyze malware characteristics by converting the statistical features of malware opcode sequences into images. This approach visualises the transition probability matrix of byte pairs (or opcode pairs) in the malware as an image, thereby capturing its statistical properties. This image format can be used as input for deep learning models for malware detection and classification.
	The generation of Markov images is based on Markov chain theory[17]. A Markov chain assumes that the future state of a system depends only on its current state, independent of previous states. In the context of malware analysis, this implies that the occurrence probability of an opcode depends solely on the preceding opcode. By calculating the transition frequencies of all adjacent opcode pairs within the entire malware sample, a transition probability matrix can be constructed. Each element of this matrix
	According to research by Zhao et al.[16], the steps to generate a Markov image from malware opcodes include the following: opcode sequence extraction, opcode pair statistics, transition probability matrix generation and markov image generation.
	⚫
	⚫
	⚫
	⚫

	Opcode Sequence Extraction: Extracting opcode sequences from malware.

	⚫
	⚫
	⚫

	Opcode Pair Statistics: Counting the frequency of each opcode pair in malware samples.

	⚫
	⚫
	⚫

	Transition Probability Matrix Generation: Calculating the transition probabilities based on the statistics of opcode pairs and generating the transition probability matrix.

	⚫
	⚫
	⚫

	Markov Image Generation: Multiplying the values in the transition probability matrix by 255 to meet pixel requirements and storing the results as grayscale images.

	3.5 Malware Classification Models Design
	This study proposes a malware classification method based on multi-level feature fusion, incorporating both image-based malware representation and malware opcode features. To achieve this, we selected deep learning models to extract features from these two types of images. In the current field of malware classification, convolutional neural networks (CNNs) are widely used for image feature extraction, with commonly employed models including ResNet, VGG, and EfficientNet. Therefore, this study will utilize t
	3.5.1 Convolutional Neural Network
	3.5.1.1 ResNet
	ResNet (Residual Network)[28] was proposed by Microsoft Research as a convolutional neural network architecture that employs residual connections. These residual connections, which allow the input data to be directly passed to subsequent layers, address the issues of vanishing and exploding gradients in deep convolutional neural networks. This enables deeper networks to effectively learn and significantly improves their performance.
	3.5.1.2 VGG
	The VGG model[29] is a classic convolutional neural network originally proposed by the Visual Geometry Group (VGG) at the University of Oxford in 2014. Due to its simple yet effective structure, the VGG model has been widely applied in image recognition and computer vision tasks. The core design principle of the VGG model is to construct a deep network by stacking multiple small 3x3 convolutional kernels, which enables the network to capture more image features. The most common VGG networks are VGG-16 and V
	3.5.1.3 EfficientNet
	EfficientNet, proposed by Google[30] in 2019, is a convolutional neural network architecture renowned for its higher efficiency and superior performance. The core idea behind EfficientNet is the use of a method called "compound scaling," which simultaneously balances the network's depth, width, and resolution. This approach enables EfficientNet to maintain high accuracy while significantly reducing computational costs.
	3.5.2 Feature Fusion
	3.5.2.1 Feature Concatenate
	The feature fusion method based on Feature Concatenation is a technique that directly concatenates multiple feature vectors column-wise.
	3.5.2.2 Multilayer Deep Network based Feature Fusion
	Chen et al.[18] proposed a feature fusion method based on a multilayer deep network. In this approach, two feature sets of different lengths are processed independently through separate network branches. The features are then fused at an intermediate layer to form a new feature representation, which is subsequently passed through the output layer to generate the final result. The multilayer deep network is shown in Figure 3.
	Figure
	Figure 3 Multilayer deep network
	3.5.2.3 Cross-Attention Mechanism based Feature Fusion
	Yang et al.[24] proposed a feature fusion method known as the cross-attention mechanism, which is an improvement based on the self-attention mechanism. This mechanism enhances the fusion and interaction of information by exchanging or sharing keys, queries, or values between different features.
	The self-attention mechanism is a technique that can establish dynamic weighting relationships between different positions within the same sequence. Specifically, in a self-attention mechanism, each element in the input sequence is treated as a query, key, and value. The attention weights are obtained by calculating the dot product between the queries and keys, which are then applied to the corresponding values to generate a weighted representation of the input sequence. The advantage of the selfattention m
	-

	While the self-attention mechanism performs well when processing a single feature sequence, its limitation is that it operates only within the same feature space. This means it can only compute self-correlations for a single input feature sequence and cannot directly handle interaction information between multiple features.
	The cross-attention mechanism is an extension and improvement of the self-attention mechanism. Unlike the self-attention mechanism, which performs correlation calculations within a single feature space, the cross-attention mechanism aims to capture complex relationships across different feature spaces. In the cross-attention mechanism, keys, queries, and values between different features are exchanged or shared, enabling the model to capture associative information across feature spaces.
	The core idea of the cross-attention mechanism is to establish associations between different feature representations. Through this exchange or sharing, the model can capture richer associative information across different feature spaces, thereby enhancing the final representational capability.
	3.5.2.4 Multiplication based Low-level Feature Fusion Method
	This research will design a multiplication based low-level feature fusion method to integrate the high-level features of opcode Markov images with the low-level features of image-based malware representations through multiplication.
	3.6 Model Training
	In this section, we will introduce the key components involved in the model training process, including the loss function, optimization algorithm, learning rate, batch size, training epochs, data augmentation, and transfer learning.
	3.6.1 Loss Function
	A loss function is a mathematical function used to quantify the difference between the predicted values generated by a model and the actual target values; the primary goal in training a model is to minimize the value of this function, thereby reducing prediction errors.
	3.6.1.1 Cross-entropy Loss
	Cross-entropy loss is a loss function commonly used in deep learning for classification tasks. It evaluates the performance of a model by measuring the difference between the true class distribution and the predicted probability distribution.
	𝐶
	𝐿(𝒚,𝒑) = −∑𝑦log(𝑝) (1) Here, 𝑦represents the true class label, and 𝑝denotes the predicted probability that the sample belongs to class .
	𝑖=1
	𝑖
	𝑖
	𝑖
	𝑖

	3.6.2 Optimization Algorithm
	An optimization algorithm is a method used to adjust model parameters in order to minimize the loss function value, thereby improving model performance.
	3.6.2.1 Stochastic Gradient Descent
	Stochastic Gradient Descent (SGD) is a commonly used optimization algorithm in deep learning model training. This algorithm calculates the gradient of the loss function with respect to a single sample, and then iteratively updates the model parameters. The update rule is defined as follows:
	𝜃= 𝜃−𝜂∇𝐽(𝜃;𝑥,𝑦) (2) where 𝜃 represents the model parameters, 𝜂 is the learning rate, and ∇𝐽(𝜃; 𝑥, 𝑦) denotes the gradient of the loss function with respect to the sample. Due to its high computational efficiency and low memory requirements, SGD is particularly wellsuited for training on large-scale datasets. However, since the direction of the updates may experience significant fluctuations, it can lead to slower convergence rates and even potential entrapment in local minima, thereby affecting
	𝑡+1
	𝑡
	𝜃
	(
	𝑖
)
	(
	𝑖
)
	𝜃
	(
	𝑖
)
	(
	𝑖
)
	-

	3.6.2.2 Adam Algorithm
	The Adam algorithm is a widely used optimization method in deep learning training. This algorithm employs an adaptive learning rate mechanism, which can automatically adjust the learning rate based on the variation in gradients. By estimating the first and second moments of the gradients, Adam dynamically scales the learning rate, allowing for more precise parameter updates. This mechanism enables the algorithm to balance the update rates of different parameters during training, thereby improving convergenc
	Adam algorithm process
	Required inputs: Initial parameter 𝜃, momentum Variable 𝑣, global learning rate 𝛼, momentum factor 𝛽, accumulated squared variable 𝑠, accumulated gradient squared factor 𝛽
	1
	2

	1.
	1.
	1.
	Randomly select a sample

	2.
	2.
	Calculate the loss function:

	∇𝐽(θ)
	θ

	3. Update the momentum term 𝑣 and the squared gradients accumulation 𝑠:
	𝑣 = β𝑣 + (1 − β)∇𝐽(θ) 2
	1
	1
	θ

	𝑠 = β𝑠 + (1 − β)(∇𝐽(θ))
	2
	2
	θ

	4. Bias correction:
	𝑡
)

	𝑣̂ = 𝑣/(1 − 𝛽𝑡
	1
)

	𝑠̂ = 𝑠/(1 − 𝛽
	2

	5. Update the parameters:
	θ = θ − α𝑣̂/(√+ 𝜖) ϵ = 10
	𝑠̂
	−8

	6. Return the updated parameter θ
	Table 1 Adam algorithm process
	3.6.3 Learning Rate
	Learning rate is a hyperparameter that controls the step size of each update to the model parameters during the optimization process.
	3.6.4 Batch Size
	Batch size is the number of training examples processed simultaneously before updating the model's parameters in one iteration.
	3.6.5 Training Epochs
	Batch size is the number of training examples processed simultaneously before updating the model's parameters in one iteration.
	3.6.6 Data Augmentation
	Data augmentation is a technique that artificially increases the diversity of a training dataset by applying random transformations, such as rotations or flips, to the input data.
	3.6.6.1 Random Cropping and Horizontal Flip
	Random cropping and horizontal flip were first employed in the work of Krizhevsky et al.[31] to increase the diversity of training data and thereby enhance the model's generalization ability.
	3.6.7 Transfer Learning
	Transfer learning is a machine learning technique that leverages knowledge gained from a pre-trained model on one task and applies it to a new, related task, reducing the need for extensive training data and time on the new task.
	3.7 Model Evaluation
	In this section, we will introduce several key metrics for evaluating the performance of the proposed classification model, including accuracy, precision, recall, F1 score, and confusion matrix.
	3.7.1 Accuracy
	Accuracy is one of the fundamental metrics used to evaluate the performance of classification models. It represents the proportion of correctly predicted samples out of the total number of samples.
	The equation for calculating accuracy is as equation3:
	𝑇𝑃+𝑇𝑁
	Accuracy = (3)
	𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
	Where:
	⚫
	⚫
	⚫
	⚫

	TP (True Positive): The number of positive samples correctly classified as positive.

	⚫
	⚫
	⚫

	TN (True Negative): The number of negative samples correctly classified as negative.

	⚫
	⚫
	⚫

	FP (False Positive): The number of negative samples incorrectly classified as positive.

	⚫
	⚫
	⚫

	FN (False Negative): The number of positive samples incorrectly classified as negative.

	3.7.2 Precision
	Precision is one of the key metrics used to evaluate the performance of a classification model. It represents the proportion of actual positive samples among all samples that the model has predicted as positive.
	The equation for calculating precision is as equation 4:
	𝑇𝑃
	Accuracy = (4)
	𝑇𝑃+𝐹𝑃
	3.7.3 Recall
	Recall is an important metric for evaluating the performance of classification models. It represents the proportion of actual positive samples that the model correctly identifies as positive.
	The equation for calculating recall is as equation 5:
	𝑇𝑃
	Accuracy = (5)
	𝑇𝑃+𝐹𝑁
	3.7.4 The F1 Score
	The F1 Score is a comprehensive metric for evaluating the performance of classification models. It is the harmonic mean of Precision and Recall. The F1 Score aims to balance Precision and Recall, making it particularly useful in scenarios with imbalanced classes.
	The equation for calculating the F1 Score is as equation 6:
	Precision×Recall
	𝐹= 2× (6)
	1

	Precision+Recall
	3.7.5 The confusion matrix
	The confusion matrix is one of the essential tools for evaluating the performance of classification models. It presents the relationship between the model's predictions and the actual labels in a tabular format, thereby aiding in the analysis of the model's performance across various categories.
	4. Design
	4.1 Data Collection
	In malware research, common data collection methods include honeypots, third-party sharing websites, and open-source datasets. We chose to use open-source datasets because, compared to the other two methods, they offer clear classification labels, lower costs, and do not involve complex security and legal issues.
	The Microsoft Malware Classification Challenge dataset originates from the Microsoft Malware Classification Challenge and contains samples of nine types of malware. The dataset is divided into training and testing sets, with labeled samples in the training set. The number of samples for each type is shown in Table 2. Each malware sample includes two files: a .bytes file, which represents the binary content of the malware in hexadecimal format, and a decompiled .asm file. The reason for selecting this datase
	Malware Family
	Malware Family
	Malware Family
	Number of Samples

	Ramnit
	Ramnit
	1541

	Lollipop
	Lollipop
	2478

	Kelihos_ver3
	Kelihos_ver3
	2942

	Vundo
	Vundo
	475

	Simda
	Simda
	42

	Tracur
	Tracur
	751

	Kelihos_ver1
	Kelihos_ver1
	398

	Obfuscator.ACY
	Obfuscator.ACY
	1228

	Gatak
	Gatak
	1013

	Table 2 Microsoft Malware Classification Challenge dataset
	The CCF BDCI 2021 Malware Dataset is sourced from the CCF BDCI 2021 Digital Security Competition—AI-based Malware Family Classification Contest. This dataset provides samples of ten types of malware, similarly divided into training and testing sets, with the types and quantities of training samples shown in Table 3. Each malware sample includes two files: a PE file without the PE header and an .asm file generated using IDA Pro. The reason for selecting this dataset is that it offers a large number of divers
	Malware Family
	Malware Family
	Malware Family
	Number of Samples

	0
	0
	428

	1
	1
	746

	2
	2
	20

	3
	3
	261

	4
	4
	321

	5
	5
	181

	6
	6
	776

	7
	7
	1350

	8
	8
	594

	9
	9
	1164

	Table 3 CCF BDCI 2021 dataset
	4.2 Data Pre-processing Design
	4.2.1 Image-based Malware Representations Extraction
	Inspired by the study conducted by Tekerek et al.[5], the process of visualizing malware in this research includes the following steps: reading the binary file, adjusting the array length and calculating the image dimensions, and generating the image (as shown in Figure 4). The specific steps are as follows:
	Figure
	Figure 4 Image-based malware representations extraction
	⚫
	⚫
	⚫
	⚫

	Reading the Binary File: Extract the binary data of the malware sample, which serves as the foundation for subsequent processing.

	⚫
	⚫
	⚫

	Adjusting the Array Length and Calculating the Image Dimensions: Based on the size of the read data, determine the appropriate image dimensions. If the data length is insufficient, padding is performed to match the required image dimensions.

	⚫
	⚫
	⚫

	Generating the Image: The adjusted array is reshaped into a square matrix and saved as an image file for further analysis.

	4.2.2 Opcode Markov Image Extraction
	The process of extracting an Opcode Markov Image, inspired by the study of Zhao et al.[16], involves three steps, as illustrated in Figure 5.
	Figure
	Figure 5 Process of extracting an Opcode Markov Image
	Figure 5 Process of extracting an Opcode Markov Image
	Figure 5 Process of extracting an Opcode Markov Image

	⚫
	⚫
	⚫

	Opcode
	Sequence
	Acquisition:
	Opcode
	sequences
	are
	extracted
	from

	TR
	decompiled malware samples. The extraction process is based on a commonly

	TR
	used set of opcodes from the x86 instruction set, identified and extracted from the

	TR
	decompiled files through string matching. To enhance data purity, irrelevant

	TR
	content such as line numbers and comments beginning with a semicolon are

	TR
	filtered out, ensuring that the extracted opcode sequences remain undisturbed.

	⚫
	⚫
	⚫

	Construction of the Opcode Pair Occurrence Matrix: The frequency of each

	TR
	opcode and its subsequent opcode in the extracted sequences is counted. Rarely

	TR
	occurring opcodes are categorized as one type. The resulting occurrence matrix

	TR
	is structured in a 224x224 format.

	⚫
	⚫
	⚫

	Generation of the Opcode Markov Image: Each element in the opcode pair

	TR
	occurrence matrix is divided by the sum of the elements in its row to calculate the

	TR
	transition probability, which is then multiplied by 255 to generate pixel values.

	TR
	Finally, the transition frequency matrix is converted into a grayscale image.

	4.3 Model Design
	In this study, a deep learning model based on multilayer feature fusion is proposed to enhance the accuracy and robustness of malware detection. Specifically, the model integrates two different data representations: image-based malware representation and malware opcode Markov images, leveraging a multi-level feature fusion mechanism to fully exploit their complementary information in the malware classification task.
	The multilayer feature fusion mechanism includes a feature fusion module based on cross-attention and a low-level feature fusion module based on multiplication. In the cross-attention-based feature fusion module, the high-level features of the imagebased malware representation and opcode Markov image are integrated. Meanwhile, in the multiplication-based low-level feature fusion module, the low-level features of the image-based malware representation are combined with the high-level features of the opcode M
	-

	The model primarily consists of five modules: an image-based malware representation feature extraction module, a malware opcode Markov image feature extraction module, a cross-attention based feature fusion module, and a multiplication-based low-level feature fusion module, with the final output of malware categories achieved through a fully connected layer. The architecture of the proposed model is illustrated in Figure 6.
	Figure
	Figure 6 Model architecture
	⚫
	⚫
	⚫
	⚫

	Image-based Malware Representation Feature Extraction Module: This module extracts deep features from image-based malware representation using convolutional neural networks (CNNs). In this study, VGG16, ResNet18, and EfficientNetB0 are employed as feature extractors.

	⚫
	⚫
	⚫

	Malware Opcode Markov Image Feature Extraction Module: Similarly, this module employs another convolutional neural network to extract features from the malware opcode Markov images. Likewise, VGG16, ResNet18, and EfficientNetB0 are used as feature extractors in this study.

	⚫
	⚫
	⚫

	Cross Attention Feature Fusion Module: This module designs a cross attention mechanism for fusing the features extracted by the first two modules.

	⚫
	⚫
	⚫

	Multiplication-based Low Level Feature Fusion Module: In this module, the features from the Markov images are first upsampled to match the size of the low level image-based malware representations features extracted by the convolutional neural network, and then the two are fused through a multiplication operation.

	⚫
	⚫
	⚫

	Fully Connected Layer: The fully connected layer receives the features fused through the mutual attention mechanism and ultimately outputs the prediction of the malware category.

	4.3.1 Image-based Malware Presentation Feature Extraction Module
	4.3.1 Image-based Malware Presentation Feature Extraction Module
	The study employs VGG16, ResNet18, and EfficientNetB0 as the feature extraction modules for Image-based Malware Presentation. The performance of these models will be evaluated in subsequent experiments through comparative analysis. To adapt these models for the malware image feature extraction module, necessary modifications were made, focusing primarily on two aspects: the fully connected layers of the convolutional neural networks (CNNs) and the addition of a Multiplication Layer in the lower convolutiona
	In the original models, the fully connected layers classify the output features extracted by the CNNs. However, in this study, the output size of the fully connected layers was adjusted to 1 × 512 to align with the dimensions of the Image-based Malware Presentation features and Opcode Markov image features, facilitating subsequent processing.
	Although the structures of these CNNs differ, this study introduced a Multiplication module after the fourth or fifth convolutional layer in the lower layers of these networks. This modification aims to integrate the Opcode Markov image features with the lowlevel features of the Image-based Malware Presentation, thereby enhancing the model's classification performance by combining multi-level feature information.
	-

	The modified structures of the VGG16, ResNet18, and EfficientNetB0 models are illustrated in Figures 7, Figure 8, and Figure 9, respectively.
	Figure
	Figure 7 Modified VGG16
	Figure
	Figure 8 Modified ResNet18
	Figure
	Figure 9 Modified EfficientNetB0

	4.3.2 Opcode Markov Image Feature Extraction Module
	4.3.2 Opcode Markov Image Feature Extraction Module
	In this study, VGG16, ResNet18, and EfficientNetB0 were selected as the Opcode Markov Image Feature Extraction Modules. Subsequent experiments conducted a detailed evaluation of the extraction performance of these different models through comparative analysis.
	To effectively apply these models to malware image feature extraction, two key modifications were made. First, the fully connected layer of the convolutional neural networks (CNNs) was adjusted. Second, the features from the last convolutional layer of each model were extracted and utilized as the high level feature output for the Opcode Markov images.
	In the original models, the output from the fully connected layer is typically used for classification tasks. However, in this study, the output dimension of the fully connected layer was adjusted to 1 ×512 to align with the feature dimensions of the image-based malware representation, thereby simplifying the subsequent feature fusion process. Additionally, the features extracted from the final convolutional layer were used as additional outputs, which were then fused with the low-level features of the imag
	-

	The architectures of the modified VGG16, ResNet18, and EfficientNetB0 models are illustrated in Figures 10, Figure 11, and Figure 12, respectively.
	Figure
	Figure 10 VGG16
	Figure 10 VGG16

	Figure
	Figure 11 ResNet18
	Figure 11 ResNet18

	Figure
	Figure 12 EfficientNetB0
	Figure 12 EfficientNetB0

	4.3.3 Cross-attention Feature Fusion Module
	4.3.3 Cross-attention Feature Fusion Module
	The cross-attention-based feature fusion module demonstrates superior performance in current technologies. Compared to simple concatenation-based feature fusion methods, the cross-attention mechanism allows for interaction between features from different modalities. In contrast to layer-by-layer fusion methods based on multi-layer neural networks, the cross-attention mechanism can dynamically adjust weights based on the relevance of input features. As a result, the model can dynamically capture the most mea
	The cross-attention-based feature fusion model proposed in this study consists of four modules: the feature transformation module, the attention computation module, the residual module, and the concatenation module, as illustrated in Figure 1. In the feature transformation module, the query, key, and value for the image-based malware representation features and the malware opcode image features are calculated using Equations 7 through 12. In the attention computation module, attention weights are first comp
	-

	The cross-attention-based feature fusion module is shown in Figure 13.
	Figure
	Figure 13 Cross-attention based feature fusion module
	Figure 13 Cross-attention based feature fusion module
	Figure 13 Cross-attention based feature fusion module

	𝑄malimg = 𝑋malimg𝑊𝑄malimg
	𝑄malimg = 𝑋malimg𝑊𝑄malimg
	(7)

	𝐾malimg = 𝑋malimg𝑊𝐾malimg
	𝐾malimg = 𝑋malimg𝑊𝐾malimg
	(8)

	𝑉malimg = 𝑋malimg𝑊𝑉malimg
	𝑉malimg = 𝑋malimg𝑊𝑉malimg
	(9)

	𝑄opimg = 𝑋opimg𝑊𝑄opimg
	𝑄opimg = 𝑋opimg𝑊𝑄opimg
	(10)

	𝐾opimg = 𝑋opimg𝑊𝐾opimg
	𝐾opimg = 𝑋opimg𝑊𝐾opimg
	(11)

	𝑉opimg = 𝑋opimg𝑊𝑉opimg
	𝑉opimg = 𝑋opimg𝑊𝑉opimg
	(12)

	⊤𝑄malimg𝐾opimg = Softmax ()𝐴malimg √𝑑𝑘
	⊤𝑄malimg𝐾opimg = Softmax ()𝐴malimg √𝑑𝑘
	(13)

	⊤𝑄opimg𝐾malimg = Softmax ()𝐴opimg √𝑑𝑘
	⊤𝑄opimg𝐾malimg = Softmax ()𝐴opimg √𝑑𝑘
	(14)

	𝑍malimg = 𝐴malimg𝑉malimg
	𝑍malimg = 𝐴malimg𝑉malimg
	(15)

	𝑍opimg = 𝐴opimg𝑉opimg
	𝑍opimg = 𝐴opimg𝑉opimg
	(16)

	4.3.4 Multiplication Based Low Level Feature Fusion Module
	4.3.4 Multiplication Based Low Level Feature Fusion Module
	The feature fusion module based on cross-attention integrates the image-based malware representations with the high-level features of the opcode Markov images. However, to better extract the texture features of the image-based malware representations, it is necessary to fuse the high-level features of the opcode Markov images with the low-level features of the image-based malware representations. Since image-based malware representations contain rich texture information, enhancing the extraction of their lo
	-

	In this method, the high-level features are extracted from the last convolutional layer of the opcode Markov image feature extractor, while the low-level features are obtained from the fourth or fifth convolutional layer of the image-based malware
	In this method, the high-level features are extracted from the last convolutional layer of the opcode Markov image feature extractor, while the low-level features are obtained from the fourth or fifth convolutional layer of the image-based malware
	representations feature extractor. Since the dimensions of high-level features and lowlevel features are usually different, with high-level features typically having smaller width and height, it is necessary to upsample the high-level features. In this study, upsampling is achieved through a transposed convolutional layer, as the transposed convolutional layer can learn an upsampling method more suitable for specific tasks. The stride, padding, and other parameters of the transposed convolutional layer are
	-

	The structure of this module is shown in Figure 14.
	Figure
	Figure 14 Multiplication Based Low Level Feature Fusion Module
	Figure 14 Multiplication Based Low Level Feature Fusion Module

	4.4 Model Training
	In this study, the cross-entropy loss function, a commonly used loss function, was employed. The Adam optimizer was chosen over Stochastic Gradient Descent (SGD) due to its advantages in avoiding local optima, which can negatively impact the model's classification performance. The training process was conducted with 100 epochs, a batch size of 32, and a fixed learning rate of 0.001. Additionally, data augmentation techniques, including random cropping and horizontal flipping, were applied. Transfer learning
	4.5 Model Evaluation
	In this study, the performance of the model is evaluated using accuracy, precision, recall, F1-score, and the confusion matrix.
	5. Implementation
	5.1 Hardware and Software Resource
	5.1.1 Hardware Resource
	This study was primarily conducted on Colab. Colab instances are typically equipped with around 12GB to 25GB of RAM and 50GB of virtual hard disk space. Google Drive was mounted on Colab to extend storage capacity. An A100 GPU was used for deep learning training.
	5.1.2 Software Resource
	The primary programming language used in this study is Python. The Pandas library was utilized for reading .csv files, the Numpy library for matrix manipulation, the PIL library for image storage, and the Torch library for creating and training deep learning models.
	5.2 Data Pre-processing Implementation
	5.2.1 Opcode Sequences Extraction
	In this project, I developed a Python script to extract opcode sequences from assembly code files. The script accomplishes the opcode extraction through the following steps:
	⚫
	⚫
	⚫
	⚫

	Loading the Opcode Set: First, the script loads the opcode set from a CSV file. Each opcode is stored as an element in a set, allowing for quick matching during subsequent processing.

	⚫
	⚫
	⚫

	Processing the Assembly Code File: The script reads the assembly code file (.asm) line by line. For each line, it uses the .split(';') method to remove any potential comments (i.e., content starting from the semicolon ;). Then, it applies the .split() method to split the remaining code into a sequence of independent strings based on whitespace characters.

	⚫
	⚫
	⚫

	Opcode Matching: For each split string, the script checks whether it exists in the opcode set. If a match is found, the corresponding opcode is saved into a list.

	⚫
	⚫
	⚫

	Storing the Results: All matched opcodes are eventually written to a new CSV file, facilitating subsequent analysis and processing.

	5.2.2 Opcode Markov Image Extraction
	In this project, I developed a Python script to extract opcode Markov images from sequences of opcodes. The script accomplishes the extraction of opcodes through the following steps:
	⚫
	⚫
	⚫
	⚫

	Loading Opcode Sequences: First, the script loads the opcode sequences from a CSV file.

	⚫
	⚫
	⚫

	Obtaining the Opcode Pair Frequency Matrix: The code traverses adjacent pairs in the opcode sequences and counts their occurrences.

	⚫
	⚫
	⚫

	Generating the Probability Transition Matrix: Each row of the frequency matrix is divided by the sum of the respective row to obtain a probability transition matrix.

	⚫
	⚫
	⚫

	Converting the Matrix into an Image: The normalized matrix is multiplied by 255 to convert it into a grayscale image. Finally, the matrix is saved as a PNG image using the plt.imsave function.

	5.2.3 Image-based Malware Representations Extraction
	In this project, to extract image-based malware representations from malware binary data, I developed a Python script. The script accomplishes the extraction of opcodes through the following steps:
	Reading the Binary File: We use Python's open function to open the file in binary mode and read its contents into a byte array.
	Filtering Invalid Data: To enhance the usability of the image, we filter out all byte values of 0 from the array, as these typically represent invalid information.
	Adjusting Array Length: To convert the byte array into an RGB image, we need to ensure that the array length is a multiple of 3. If the length is insufficient, we pad zeros at the end of the array.
	Calculating Image Dimensions: We calculate the side length of the square image that the byte array can represent and pad additional zeros if necessary to ensure the array length equals the square of the side length multiplied by 3.
	Generating the Image: We reshape the adjusted array into a numpy array with the shape (side_length, side_length, 3) and use the PIL library to convert it into an RGB image.
	To extract the binary data of malware from the .bytes files in the Microsoft Malware Classification Challenge dataset, we have adjusted the script accordingly. The script reads the file content line by line, skips the line numbers, and excludes meaningless symbols such as "00" and "??." It then reads and retains the remaining valid data.
	5.3 Model Implementation
	In this study, the model implementation was based on the PyTorch framework. The module provided various neural network components, while torchvision.models offered pre-trained classical models. The image feature extraction module and the opcode-based Markov image feature extraction module utilized these
	In this study, the model implementation was based on the PyTorch framework. The module provided various neural network components, while torchvision.models offered pre-trained classical models. The image feature extraction module and the opcode-based Markov image feature extraction module utilized these
	torch.nn

	pre-trained models with corresponding modifications. The cross-attention-based feature fusion module and the multiplication-based low-level feature fusion module were custom-designed according to specific requirements. Finally, all modules were integrated into the MultilayerFeatureFusionModel class, achieving multilayer feature fusion for malware classification.

	5.4 Model Training Implementation
	First, the preprocessed training and test sets are loaded into memory from the specified paths. Then, the training set is split into a training set and a validation set in an 8:2 ratio.
	In the implementation process, the PyTorch library is used to build and train the model. PyTorch provides the DataLoader class for loading data in batches, and by loading the data onto the GPU, it significantly improves the efficiency of data processing. During model training, PyTorch's automatic differentiation feature is utilized, with the torch.autograd module automatically computing gradients, enabling backpropagation and parameter updates in each epoch.
	The model training process is divided into several epochs. In each epoch, the model first enters training mode by calling the model.train() method, which performs forward propagation, loss calculation, backpropagation, and parameter updates using an optimizer (e.g., Adam) on the training data. Then, the model enters evaluation mode, where it is evaluated on the validation set. The model.eval() method is used to ensure that gradients are not calculated during inference, saving computational resources and imp
	After training is complete, the model weights that performed best on the validation set are used for final evaluation on the test set. Finally, the torch.save() function is used to save the model weights for use in future research or applications.
	5.5 Model Evaluation Implementation
	The study uses the sklearn.metrics library to calculate the accuracy, precision, recall, and F1 score of the model, and the confusion matrix is visualized through sns.heatmap.
	6. Experiments
	6.1 Evaluation of Various Convolutional Neural Networks for Malware Classification
	6.1.1 Experiment Settings
	This experiment aims to compare the performance of different convolutional neural networks (CNNs) in the task of malware classification. To evaluate the classification effectiveness, multiple malware classification models will be used. These models employ VGG16, ResNet, or EfficientNet as the feature extractors for image-based malware representation and Opcode Markov Image. All models incorporate a multilevel feature fusion mechanism proposed in this study. A total of nine models are evaluated in the experi
	-

	Model Name
	Model Name
	Model Name
	Feature Extractor for Image-based Malware Representations
	Feature Extractor for Opcode Markov Image

	Model 1
	Model 1
	VGG16
	VGG16

	Model 2
	Model 2
	VGG16
	ResNet18

	Model 3
	Model 3
	VGG16
	EfficientNetB0

	Model 4
	Model 4
	ResNet18
	VGG16

	Model 5
	Model 5
	ResNet18
	ResNet18

	Model 6
	Model 6
	ResNet18
	EfficientNetB0

	Model 7
	Model 7
	EfficientNetB0
	VGG16

	Model 8
	Model 8
	EfficientNetB0
	ResNet18

	Model 9
	Model 9
	EfficientNetB0
	EfficientNetB0

	Table 4 Model configurations
	During the experiment, the ResNet18 and EfficientNetB0 models were initialized using PyTorch's pretrained models to accelerate training and improve classification accuracy. To enhance the generalization ability of the models, data augmentation techniques such as random cropping and random flipping were applied to the malware images in the training set. The experimental dataset is sourced from the Microsoft Malware Classification Challenge. During the training phase, cross-entropy loss was used as the loss f
	6.1.2 Experiment Results
	Model
	Model
	Model
	Accuracy
	Precision
	Recall
	F1 Score

	Model1
	Model1
	0.9640
	0.9649
	0.9640
	0.9644

	Model2
	Model2
	0.9668
	0.9674
	0.9668
	0.9671

	Model3
	Model3
	0.9825
	0.9836
	0.9825
	0.9827

	Model4
	Model4
	0.9709
	0.9713
	0.9709
	0.9711

	Model5
	Model5
	0.9732
	0.9735
	0.9732
	0.9734

	Model6
	Model6
	0.9949
	0.9950
	0.9949
	0.9949

	Model7
	Model7
	0.9862
	0.9863
	0.9862
	0.9860

	Model8
	Model8
	0.9843
	0.9848
	0.9843
	0.9843

	Model9
	Model9
	0.9931
	0.9933
	0.9931
	0.9931

	Table 5 Experiments results
	The experiment results are show on Table 5.
	6.1.3 Analysis
	Based on Table 5, Model 6 demonstrates the best performance across all metrics. The model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%, and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature extractors, indicating that the combination of these two feature extractors is highly
	Based on Table 5, Model 6 demonstrates the best performance across all metrics. The model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%, and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature extractors, indicating that the combination of these two feature extractors is highly
	effective in the task of malware classification. Following closely is Model 9, which achieves 99.31% in all metrics, also performing exceptionally well. Model 9 also employs EfficientNetB0 as a feature extractor, further demonstrating the superiority of EfficientNetB0.

	The comparison reveals that model performance significantly improves when EfficientNetB0 is used for feature extraction. This improvement could be due to
	EfficientNetB0’s ability to balance model complexity and accuracy effectively. Notably,
	even though Model 9 uses dual EfficientNetB0 as feature extractors, Model 6 outperforms it. This could be because the deep residual network of ResNet18 excels at extracting complex texture features in image-based malware representations, while EfficientNetB0 is more effective in extracting opcode Markov image features with fewer texture details.
	Overall, models using VGG16 as a feature extractor (Model 1, Model 2, Model 3, Model 4) perform relatively poorly, especially compared to models combining EfficientNetB0 and ResNet18. This could be attributed to the relatively older architecture of VGG16, which, despite having a large number of parameters, is less efficient than more recent networks. ResNet18, on the other hand, performs quite well, with its deep residual networks effectively capturing malware features, particularly in the complex patterns
	Based on the experimental results, Model 6, which uses ResNet18 to extract imagebased malware representation features and EfficientNetB0 to extract opcode Markov image features, is the optimal model.
	-

	6.2 Comparison of Feature Fusion Techniques for Malware Classification
	6.2.1 Experiment Settings
	This experiment will compare the performance of different feature fusion methods in the task of malware classification, utilizing multiple malware classification models to assess their effectiveness. The feature extractors are configured based on the optimal settings identified in previous experiments. In each model, the image features of the malware and the opcode Markov image features will be integrated using various fusion methods, including feature concatenation, a multilayer deep network-based fusion m
	Model Name
	Model Name
	Model Name
	Feature Fusion Method

	Model 1
	Model 1
	Feature Fusion based via Concatenation

	Model 2
	Model 2
	Feature Fusion based via Multilayer Deep Network

	Model 3
	Model 3
	Feature Fusion based via Cross Attention

	Model 4
	Model 4
	Feature Fusion based via Multilayer Feature Fusion

	Table 6 Model configurations
	6.2.2 Experiments Results
	6.2.2.1 Results for Model 1(Feature Fusion based via Concatenation)
	Figure
	Figure 15 Confusion matrix of model 1
	Figure 15 Confusion matrix of model 1

	Accuracy
	Accuracy
	Accuracy
	Precision
	Recall
	F1 Score

	0.9825
	0.9825
	0.9829
	0.9825
	0.9825

	Table 7 Results of model 1
	Model 1 employs the concatenate method proposed in this research for feature fusion. The confusion matrix shown in Figure 15 and evaluation metrics in Table 7 present
	the classification results. According to the confusion matrix, the model correctly classified 2,130 malware samples and misclassified 38 samples. It can be observed that the model performs best on class 0 and class 7, with only two misclassified samples in each of these classes. This could be because the features of class 0 and class 7 are more distinct and have a greater degree of separation from other classes, allowing the model to classify these classes more accurately. The model performs worst on class
	In terms of evaluation metrics, the model achieved an accuracy of 0.9825, a precision of 0.9829, a recall of 0.9825, and an F1 score of 0.9825.
	6.2.2.2 Result for Model 2(Feature Fusion based via Multilayer Deep Network)
	Figure
	Figure 16 Confusion matrix for model 2
	Figure 16 Confusion matrix for model 2

	Accuracy
	Accuracy
	Accuracy
	Precision
	Recall
	F1 Score

	0.9852
	0.9852
	0.9856
	0.9852
	0.9852

	Table 8 Results for model 2
	Model 2 employs the multilayer deep network method for feature fusion. The confusion matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate the classification results. According to the confusion matrix, the model correctly classified 2,136 malware samples and misclassified 32 samples. It is evident that the
	Model 2 employs the multilayer deep network method for feature fusion. The confusion matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate the classification results. According to the confusion matrix, the model correctly classified 2,136 malware samples and misclassified 32 samples. It is evident that the
	model performed best in classifying Category 0, with all Category 0 samples being accurately identified. This could be attributed to the more distinct features of Category 0, which have greater differentiability from other categories, allowing the model to classify these samples more accurately. The model performed worst in classifying Category 4, with 8 Category 4 malware samples being misclassified, of which 7 were incorrectly identified as Category 5. This may be due to the similar internal features betw

	Regarding the evaluation metrics, the model achieved a classification accuracy of 0.9852, a precision of 0.9856, a recall of 0.9852, and an F1 score of 0.9852.
	6.2.2.3 Result for Model 3(Feature Fusion based via Cross Attention)
	Figure
	Figure 17 Confusion matrix for model 3
	Figure 17 Confusion matrix for model 3

	Accuracy
	Accuracy
	Accuracy
	Precision
	Recall
	F1 Score

	0.9912
	0.9912
	0.9914
	0.9912
	0.9913

	Table 9 Results for model 3
	Model 3 employs the cross attention method for feature fusion. The confusion matrix and evaluation metrics presented in Table 9 illustrate the classification results. According to the confusion matrix shown in Figure 17, the model correctly classified 2,149 malware samples and misclassified 19 samples. It is evident that the model
	Model 3 employs the cross attention method for feature fusion. The confusion matrix and evaluation metrics presented in Table 9 illustrate the classification results. According to the confusion matrix shown in Figure 17, the model correctly classified 2,149 malware samples and misclassified 19 samples. It is evident that the model
	performs best in classifying categories 0 and 8, with only one sample from category 0 being misclassified, and category 8 being entirely correctly classified. The model performs worst in classifying category 4, where six malware samples from category 4 were misclassified, all of which were incorrectly identified as category 5. This misclassification may be due to the internal similarity between categories 4 and 5. Additionally, 12 samples from other categories were misclassified as category 5.

	In terms of evaluation metrics, the model achieved an accuracy of 0.9912, a precision of 0.9914, a recall of 0.9912, and an F1 score of 0.9913.
	6.2.2.4 Result for Model 4(Feature Fusion based via Multilayer Feature Fusion)
	Figure
	Figure 18 Confusion matrix for model 4
	Figure 18 Confusion matrix for model 4

	Accuracy
	Accuracy
	Accuracy
	Precision
	Recall
	F1 Score

	0.9949
	0.9949
	0.9950
	0.9949
	0.9949

	Table 10 Results for model 4
	Table 10 Results for model 4

	Model 4 employs the multilayer feature fusion method proposed in this research for feature fusion. The confusion matrix and evaluation metrics shown in Table 10 illustrate the classification results. According to the confusion matrix shown in Figure 18, the model correctly classified 2,157 malware samples and misclassified 11 malware samples. It can be observed that the model performs best in classifying
	Model 4 employs the multilayer feature fusion method proposed in this research for feature fusion. The confusion matrix and evaluation metrics shown in Table 10 illustrate the classification results. According to the confusion matrix shown in Figure 18, the model correctly classified 2,157 malware samples and misclassified 11 malware samples. It can be observed that the model performs best in classifying
	categories 0, 1, 2, 6, and 8, with these categories being completely correctly classified. The model performs worst in classifying category 4, with 6 samples from category 4 being misclassified, all of which were incorrectly identified as category 5. This may be due to the similarity in internal features between categories 4 and 5. Additionally, it is evident that 8 malware samples from other categories were misclassified as category 5.

	In terms of evaluation metrics, the model achieves an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949.

	6.2.3 Analysis
	6.2.3 Analysis
	In this experiment, we compared the performance of several commonly used feature fusion methods in the context of malware classification. The methods evaluated include feature fusion based on concatenation, multilayer deep network based feature fusion, cross-attention based feature fusion, and the novel multilayer feature fusion method proposed in this research. The experimental results demonstrate that the proposed multi-level feature fusion method outperforms the others across all metrics. Specifically, t
	6.3 Performance Analysis of Malware Classification Models Across Different Datasets

	6.3.1 Experiment Settings
	6.3.1 Experiment Settings
	This experiment employed the optimal configuration validated in previous experiments and was trained and evaluated on the CCF BDCI malware classification dataset.

	6.3.2 Experiment Results
	6.3.2 Experiment Results
	The experiment results are shown on Table 11 and Figure 19.
	Figure
	Figure 19 Confusion matrix
	Figure 19 Confusion matrix

	Accuracy
	Accuracy
	Accuracy
	Precision
	Recall
	F1 Score

	0.9940
	0.9940
	0.9941
	0.9940
	0.9940

	Table 11 Experiment results
	Table 11 Experiment results

	6.3.3 Discuss
	The experimental results show that the proposed method in this study achieved an accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of 99.40%. This indicates that the method proposed in this research is effective in classifying different types of malware. From the confusion matrix, it can be observed that misclassifications occurred in malware categories 0, 2, 3, 4, and 5. Specifically, categories 3 and 4 each had two misclassifications: two samples of category 3 were incorrectly
	7. Discussion
	7.1 Discussing Results for each Research Question
	⚫
	⚫
	⚫
	⚫
	⚫

	Which deep learning model is optimal for extracting image representations of malware features and opcode Markov image features?

	To address this issue, we conducted an experiment to evaluate the performance of different models in the malware classification method proposed in this study. Three deep learning models, widely used in the field of image processing, were selected for this research: VGG16, ResNet18, and EfficientNetB0. These three convolutional neural networks were tested in combination during the experiment. The results indicated that the model performed best when ResNet18 was used as the feature extractor for image-based m

	⚫
	⚫
	⚫
	⚫

	Can an effective technique for malware feature fusion be developed?

	To validate that our proposed multilayer feature fusion method outperforms commonly used methods in existing research, we compared it with feature fusion methods based on concatenation, multilayer deep network, and cross-attention. The experimental results on the Microsoft Malware Classification Challenge dataset showed that our method achieved the best performance across all metrics, with an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. These results indicate tha

	⚫
	⚫
	⚫

	Can a robust and generalizable malware classification algorithm be developed?

	To validate the accuracy of the proposed method for malware classification across different datasets, this study trained and evaluated the model using the CCF BDCI Malware Classification Dataset. The experimental results demonstrate that the proposed method achieves an accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of 99.40% on this dataset. These results indicate that the proposed method is effective on other type of malwares.
	7.2 Comparison with Existing Literature
	Ahmed et al.[12] proposed a method for malware classification based on transfer learning using Inception V3, where the byte data of malware is converted into image features. On the Microsoft malware dataset, they achieved an accuracy of 98.76% and a recall of 94.8%. However, our approach achieved even better metrics, with an accuracy of 99.49% and a recall of 99.54%. This indicates that our method, which integrates malware image features with malware opcode features, can identify a broader range of malware
	Mallik et al.[13] proposed a method for classifying malware grayscale images using a convolutional recurrent network. Experimental results on the Microsoft Malware Classification Challenge dataset show that their method achieved an accuracy of 0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast, our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms
	Mallik et al.[13] proposed a method for classifying malware grayscale images using a convolutional recurrent network. Experimental results on the Microsoft Malware Classification Challenge dataset show that their method achieved an accuracy of 0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast, our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms
	theirs across all metrics. While the difference in precision between the two methods is minimal, our approach surpasses theirs by more than one percentage point in the other metrics. This indicates that when relying solely on malware grayscale images for classification, the model captures less informative content compared to when the features from malware images are combined with opcode features for classification.

	Deng et al.[14] proposed a novel approach for generating malware images using assembly instructions and Markov transition matrices. Based on this, they designed a convolutional neural network (CNN) for malware classification. Their method achieved a test accuracy of 99.44% on the Microsoft malware dataset. In comparison, our feature fusion method achieved an accuracy of 99.49%, slightly surpassing their result, indicating a certain advantage in accuracy. Furthermore, their precision was 99.44%, while our pr
	Zhao et al.[16] proposed a visualization-based method for malware family classification utilizing deep learning. They convert binary files into images and cluster the malware based on texture features within these images. The researchers employed a deep convolutional neural network to fuse and classify features from Markov images generated from both bytecode and opcode. Experimental results on the Microsoft Malware Classification Challenge dataset demonstrated that their model achieved an accuracy of 0.9976
	Zhao et al.[16] proposed a visualization-based method for malware family classification utilizing deep learning. They convert binary files into images and cluster the malware based on texture features within these images. The researchers employed a deep convolutional neural network to fuse and classify features from Markov images generated from both bytecode and opcode. Experimental results on the Microsoft Malware Classification Challenge dataset demonstrated that their model achieved an accuracy of 0.9976
	of 0.9891. In comparison, our method achieved an accuracy of 0.9949, precision of 0.9950, recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Although our method slightly underperformed Zhao et al.'s method in terms of precision, our model excelled in other metrics. It is noteworthy that while both methods utilized Markov images generated from opcode for malware classification, Zhao et al. further incorporated Markov images generated from bytecode. Our method, on the other hand, is based on an

	Yang et al.[24] proposed a hybrid attention network based on multi-feature alignment and fusion for malware detection. This method first utilizes a 1D convolutional neural network to extract time series features of binary files and applies a triangular attention algorithm to extract opcode features from assembly code. Then, a cross-attention module is used to align and fuse the binary file features with the assembly code features, and finally, a deep neural network is employed to detect malware. Experimenta
	-

	accuracy, 99.50% precision, 99.49% recall, and 99.49% F1-score. Specifically, while Yang et al.'s method slightly outperforms in accuracy, our model shows superior performance in precision, recall, and F1-score. This may indicate that the introduction of low-level feature fusion components in our approach further enhances the overall performance of the model.
	Snow et al.[25] proposed an end-to-end multi-model deep learning framework for addressing the problem of malware classification. Their approach utilizes a fully connected network to process metadata, a convolutional neural network (CNN) to handle grayscale images derived from malware bytecode, and an LSTM network to process opcode sequences within malware files. On the Microsoft malware dataset, their method achieved an accuracy of 98.35%. In comparison, our approach reached an accuracy of 99.49%, significa
	8. Conclusion
	8.1 Conclusion
	Nowadays, malware has become a significant threat to information security, making the study of malware classification highly urgent. Traditional methods typically rely on single-feature approaches for malware classification, but these methods often struggle to cope with obfuscation techniques employed by malware to evade detection. Therefore, research on malware classification based on feature fusion is both necessary and promising.
	We propose a malware classification method based on the fusion of malware images and malware opcode features, effectively classifying malware by fusing features from both image-based malware representation and opcode sources. Specifically, our model employs two feature fusion modules: a cross-attention-based feature fusion module and a low-level feature fusion module based on multiplication. These modules enable deep feature fusion, thereby classifying malware more effectively.
	To determine the most suitable model for extracting image-based malware representation features and malware opcode Markov image features and accurately classifying malware, we conducted comparative experiments. We selected three common convolutional neural networks to extract the corresponding opcode information. Experimental results indicate that the best model combination is to use ResNet18 for extracting malware image features and EfficientNetB0 for extracting malware opcode Markov image features.
	To further validate the effectiveness of our method, we compared the classification performance of traditional feature fusion methods with our approach. The results show that our method outperforms traditional methods in metrics such as accuracy and
	To further validate the effectiveness of our method, we compared the classification performance of traditional feature fusion methods with our approach. The results show that our method outperforms traditional methods in metrics such as accuracy and
	recall. Moreover, to evaluate the classification effectiveness of our method on different types of malware, we tested it using the CCF BDCI 21 dataset. The experimental results demonstrate that our method can effectively classify malware on this dataset.

	In conclusion, our research provides a reliable and effective new approach for malware classification and lays a solid foundation for future research on malware classification based on multi-feature fusion. Moving forward, research on malware classification methods based on multi-feature fusion will continue to address the increasingly complex malware threats.
	8.2 Future Work
	In future work, we will continue to delve deeper into malware classification methods based on multi-level feature fusion. Although we have already implemented a feature fusion method based on mutual attention, there remains significant room for further exploration in this area. Additionally, we plan to incorporate other deep learning models for feature extraction and investigate the potential application of additional features in malware classification.
	9. Reflection
	Throughout the research process, I encountered several challenges related to both technical aspects and time management. Initially, file operations and string processing posed significant difficulties for me. Due to the frequent need to handle files and accurately process strings during data processing, I spent a considerable amount of time on these tasks, which slowed down the progress of my research. However, through continuous practice and repeated trials, I gradually became proficient in these technical
	In terms of time management, I noticed that my efficiency was relatively low at the beginning of the project, primarily because I did not plan the allocation of time between experiments and writing effectively. To address this issue, I decided to start writing the dissertation while conducting experiments. This approach of simultaneously conducting experiments and writing not only improved my work efficiency but also helped me maintain a consistent train of thought when documenting the research process. Add
	By overcoming these challenges, I not only enhanced my technical skills but also learned to manage my time more effectively. These experiences will have a profound impact on my future research and learning endeavors.
	10. Reference
	[1] "SonicWall 2024 Mid-Year Threat Report," SonicWall, American, 2024. [Online] Available: sonicwall-cyber-threat-report [Accessed Aug. 20, 2024].
	https://www.sonicwall.com/resources/white-papers/mid-year-2024
	-

	[2] "VirusTotal Malware Trends Report: Emerging Formats and Delivery Techniques," VirusTotal, Spain, 2023. [Online] Available: [Accessed Aug. 20, 2024].
	https://blog.virustotal.com/2023/07/virustotal-malware-trends-report.html

	[3] N. Singh, S. Tripathy and B. Bezawada, "SHIELD : A multimodal deep learning framework for Android malware detection ", Proc. Int. Conf. Inf. Syst. Secur., pp. 64-83, 2022.
	[4] L. Nataraj, S. Karthikeyan, G. Jacob and B. S. Manjunath, "Malware images: Visualization and automatic classification", Proc. 8th Int. Symp. Vis. Cyber Secur., pp. 4, Jul. 2011.
	[5] Tekerek and M. M. Yapici, "A novel malware classification and augmentation model based on convolutional neural network", Computers Security, vol. 112, pp. 102515, 2022.
	[6] K. Shaukat, S. Luo and V. Varadharajan, "A novel deep learning-based approach
	for malware detection", Eng. Appl. Artif. Intell., vol. 122, Jun. 2023.
	[7] R. Chaganti, V. Ravi and T. D. Pham, "Image-based malware representation approach with EfficientNet convolutional neural networks for effective malware classification", J. Inf. Secur. Appl., vol. 69, Sep. 2022.
	[8] V. Acharya, V. Ravi and N. Mohammad, "EfficientNet-based Convolutional Neural
	Networks for Malware Classification", International Conference on Computing
	Communication and Networking Technologies (ICCCNT), pp. 1-6, 2021.
	[9] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan and T. D. Pham, "EfficientNet
	convolutional neural networks-based android malware detection", Comput. Secur.,
	vol. 115, 2022.
	[10] N. Lojain, A. Marwan, A. Abdullah and J. Anca, "Android Malware Detection Using ResNet-50 Stacking", Computers Materials & Continua, vol. 74, no. 2, pp. 3997-4014, 2023.
	[11] M. Asam, S. J. Hussain, M. Mohatram, S. H. Khan, T. Jamal, A. Zafar, et al., "Detection of exceptional malware variants using deep boosted feature spaces and machine learning", Appl. Sci., vol. 11, no. 21, pp. 10464, Nov. 2021.
	[12] M. Ahmed, N. Afreen, M. Ahmed, M. Sameer and J. Ahamed, "An inception v3 approach for malware classification using machine learning and transfer learning", Int. J. Intell. Netw., vol. 4, pp. 11-18, 2023.
	[13] A. Mallik, A. Khetarpal and S. Kumar, "ConRec: malware classification using convolutional recurrence", J Comput Virol Hack Tech, 2022.
	[14] H. Deng, C. Guo, G. Shen, Y. Cui and Y. Ping, "MCTVD: A malware classification method based on three-channel visualization and deep learning", Comput Secur, vol. 126, Mar. 2023.
	[15] C. Gao et al., "Obfuscation-resilient Android malware analysis based on complementary features", IEEE Trans. Inf. Forensics Security, vol. 18, pp. 50565068, 2023.
	-

	[16] Z Zhao et al., "Malware classification based on visualization and feature fusion", 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). IEEE, 2021: 53-60.
	[17] Mai, Changren et al., "MobileNet-Based IoT Malware Detection with Opcode Features." Journal of Communications and Information Networks 8.3 (2023): 221230.
	-

	[18] S. Chen, B. Lang, H. Liu, Y. Chen and Y. Song, "Android malware detection method based on graph attention networks and deep fusion of multimodal features" in Expert Systems with Applications, Elsevier, vol. 237, pp. 121617, 2024.
	[19] Xuan, Bona, Jin Li, and Yafei Song, "BiTCN-TAEfficientNet malware classification approach based on sequence and RGB fusion." Computers & Security 139 (2024): 103734.
	[20] S. Li, Y. Li, X. Wu, S. A. Otaibi and Z. Tian, "Imbalanced malware family classification using multimodal fusion and weight self-learning", IEEE Trans. Intell. Transp. Syst., Oct. 2022.
	[21] Sanjeev Kumar and Kajal Panda, "Sdif-cnn: Stacking deep image features using fine-tuned convolution neural network models for real-world malware detection and classification", Applied Soft Computing, vol. 146, pp. 110676, 2023.
	[22] M. Dib, S. Torabi, E. Bou-Harb and C. Assi, "A multi-dimensional deep learning framework for IoT malware classification and family attribution", IEEE Trans. Netw. Service Manage., vol. 18, no. 2, pp. 1165-1177, Jun. 2021.
	[23] S. Chen, B. Lang, H. Liu, Y. Chen and Y. Song, "Android malware detection method based on graph attention networks and deep fusion of multimodal features" in Expert Systems with Applications, Elsevier, vol. 237, pp. 121617, 2024.
	[24] Xing Yang, Denghui Yang and Yizhou Li, "A hybrid attention network for malware detection based on multi-feature aligned and fusion", Electronics (Switzerland), vol. 12, 2 2023.
	[25] E. Snow, M. Alam, A. Glandon and K. Iftekharuddin, "End-to-end multimodel deep learning for malware classification", Proc. IEEE Int. Joint Conf. Neural Netw., pp. 1-7, 2020.
	[26] S. Madan, S. Sofat and D. Bansal, "Tools and techniques for collection and analysis of Internet-of-Things malware: A systematic state-of-art review", J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 10, pp. 9867-9888, Nov. 2022.
	[27] B. Wang, Y. Dou, Y. Sang, Y. Zhang and J. Huang, "IoTCMal: Towards a hybrid IoT honeypot for capturing and analyzing malware", Proc. IEEE Int. Conf. Commun. (ICC), pp. 1-7, 2020.
	[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, "Deep residual learning for image recognition", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
	[29] Simonyan K. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
	[30] M. Tan and Q. Le, "EfficientNet: Rethinking model scaling for convolutional neural networks", Proc. Int. Conf. Mach. Learn., pp. 6105-6114, 2019.
	[31] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton, "Imagenet classification
	with deep convolutional neural networks", Communications of the ACM, vol. 60,
	no. 6, pp. 84-90, 2017.
	Appendice
	Declaration of Originality
	I Jinwei Xu declare that I am the sole author of this Project; that all references cited have been consulted; that I have conducted all work of which this is a record, and that the finished work lies within the prescribed word limits.
	This work has not previously been accepted as part of any other degree submission.
	Signed : ...
	Date : ...
	FORM OF CONSENT
	I Jinwei Xu hereby consent that my Project, submitted in candidature for the degree MSC Computer Networks and Cyber Security, if successful, may be made available for inter-library loan or photocopying (subject to the law of copyright), and that the title and abstract may be made available to outside organisations.
	Signed : ...
	Date : ...

