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Abstract 

As the threat of malware to information security becomes increasingly severe, the 

study of efficient malware classification methods has become more urgent. This paper 

proposes a multilayer malware classification method based on the fusion of image 

representation and opcode features. By integrating the features of image-based 

malware representation and opcode Markov image, the classification performance is 

enhanced. Specifically, our model introduces two feature fusion modules: a cross-

attention-based fusion module and a multiplication-based low-level feature fusion 

module. These modules achieve effective fusion of deep features, thereby improving 

the accuracy of malware classification. Experimental results show that the model 

combining malware image features extracted by ResNet18 and malware opcode 

Markov image features extracted by EfficientNetB0 performs the best. Comparative 

experiments with traditional feature fusion methods demonstrate that our approach 

has significant advantages in classification performance. Further experiments on 

another dataset validate the generalization ability of our method. This research 

provides an efficient and effective solution for malware classification. 
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1. Introduction 

1.1 Introduction 

In recent years, with the rapid development of the internet industry, an increasing 

number of devices have connected to the internet, significantly transforming people's 

lifestyles and work habits. However, alongside the broad application of new 

technologies, information security issues have become increasingly prominent. 

Cybercriminals employ various methods to carry out attacks, causing severe damage 

to both individuals and businesses. Among these, malware attacks are one of the 

primary threats to current information security. Malware can spread through various 

channels, such as email attachments, malicious website links, and infected 

applications. If a user inadvertently clicks or downloads these, malware may be 

implanted in the device, leading to the theft of sensitive information, locking of system 

files, or even ransom demands. These attacks not only threaten users' privacy and 

security but also pose the risk of data breaches and business disruptions for 

enterprises, resulting in immeasurable losses. 

Malware is not only increasing rapidly in quantity, but its complexity and diversity are 

also continuously evolving. As cyber defense mechanisms advance, attackers have 

adopted more sophisticated techniques to bypass security measures. By continuously 

improving and updating malware code, they make it more stealthy, destructive, and 

harder to detect and defend against. This rapid evolution poses significant challenges 

to the cybersecurity field. According to the SonicWall 2024 Mid-Year Threat Report[1], 

the total amount of malware increased by 30% in the first half of 2024, a significant 

rise compared to the same period last year. The growth was particularly notable 

between March and May, with a 92% increase in May alone. According to the 
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VirusTotal Malware Trends Report[2], malware is increasingly utilizing newer and 

more covert distribution methods. The use of traditional file formats such as Excel, 

RTF, CAB, and compressed files in malware distribution is gradually decreasing, being 

replaced by emerging file types and distribution methods. In 2023, OneNote files and 

JavaScript distributed through HTML quickly became mainstream distribution 

mediums. 

In recent years, deep learning technology has made significant advancements across 

various fields, demonstrating its powerful capabilities in handling complex data and 

tasks. Particularly in the domain of malware classification, deep learning has emerged 

as a highly regarded and widely applied approach. 

The image-based representation of malware has become a significant approach in the 

field of deep learning-based malware classification. This method involves converting 

malware bytecode into images, enabling deep learning models to automatically learn 

and extract useful features, thereby enhancing the accuracy and efficiency of malware 

detection. The image-based representation of malware refers to the process of 

converting malware bytecode data into grayscale or color images. This approach 

offers several advantages. Firstly, The image-based approach allows deep learning 

models to automatically learn and extract features by transforming malware bytecode 

into images, thereby reducing the reliance on manual feature engineering. Secondly, 

The image-based method effectively addresses code obfuscation by distinguishing 

malware from legitimate software through visual features, without depending on 

specific code structures or patterns. Thirdly, The image-based method is highly cross-

platform adaptable, enabling unified application across different operating systems 

without the need to develop separate detection algorithms for each platform. 

2 



 

 

        

           

        

         

          

  

       

          

      

     

  

      

     

    

   

       

     

     

          

     

     

      

    

     

      

The Markov image of malware opcodes is another commonly used feature for malware 

classification based on deep learning methods. The use of the Markov image of 

malware opcodes is justified because opcodes represent the sequence of instructions 

that an application executes during its runtime, reflecting the application's low-level 

operations. By analyzing these opcode sequences, it is possible to capture the 

behavioral characteristics of the application, which is crucial for distinguishing different 

types of malware. Moreover, compared to higher-level features in the code (such as 

API calls), opcodes are closer to machine code and are less affected by techniques 

such as code obfuscation and compression[3]. Therefore, extracting features from 

opcodes enhances the capability to detect malware, particularly when dealing with 

obfuscated malware. 

Traditional classification methods typically rely on the analysis of a single feature, such 

as image-based malware representation or opcode Markov image analysis. However, 

as malware technology continues to evolve, these single-feature analysis methods 

face certain limitations when dealing with complex and diverse malware. Therefore, it 

is particularly necessary and promising to propose a joint analysis method that 

combines malware's image-based presentation with opcode Markov images. The 

image-based presentation of malware intuitively displays the overall structural 

characteristics of the malware, making patterns and features that are difficult to detect 

in binary data more apparent. Meanwhile, the opcode Markov image captures subtle 

behavioral differences by analyzing the statistical characteristics of the malware’s 

instruction sequence. The combination of these two approaches not only enhances 

the diversity of malware feature extraction but also improves the robustness and 

accuracy of detection. However, effectively integrating these two features still presents 

several challenges. First, a key issue is how to fully leverage the advantages of both 
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approaches in feature extraction and representation. Additionally, capturing and 

representing the connections between image-based features and opcode Markov 

features to improve the classifier's ability to recognize malware is also a major difficulty. 

In response to these challenges, this research will explore different fusion strategies 

with the aim of proposing a malware classification method that fully utilizes the 

advantages of both features. 

1.2 Research Aim and Objectives 

The purpose of this study is to propose a malware classification method based on a 

multi-level feature fusion of image-based presentations and opcode Markov images of 

malware. The specific objectives of this research include: conducting a comprehensive 

literature review to understand the current malware detection techniques using image-

based presentations and opcode Markov images, as well as their developments; 

designing a malware classification method that incorporates multilayer feature fusion; 

testing the proposed method on publicly available datasets to validate its effectiveness; 

and evaluating the method using various metrics to comprehensively assess its 

performance and practicality. Through these steps, this study aims to provide a novel 

and effective malware classification solution for the field of cybersecurity. 

1.3 Research Questions 

⚫ Which deep learning model is optimal for extracting image representations of 

malware and opcode Markov image features? 

In the study of malware classification models, selecting an appropriate model to extract 

image representations of malware and opcode Markov image features is a crucial 

question. Therefore, this study will investigate and validate the performance of 
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commonly used models in extracting malware image representations and opcode 

Markov image features. 

⚫ Can an effective technique for malware feature fusion be developed? 

Feature fusion techniques have been widely applied in the field of malware 

classification. However, existing research primarily focuses on simple feature fusion 

methods, which often overlook the complex relationships and potential 

complementarity between features, leading to limited improvements in classification 

performance. Thus, the critical question of this research is: How can a more effective 

feature fusion method be designed to deeply explore and utilize the relationships 

between features, thereby significantly improving the accuracy and robustness of 

malware classification? To address this issue, this study will investigate various 

feature fusion strategies and integrate advanced machine learning techniques, aiming 

to develop a new method that fully leverages the power of features. 

⚫ Can a robust and generalizable malware classification algorithm be developed? 

In the field of malware classification, robustness and generalizability are key criteria 

for evaluating the quality of classification algorithms. Malware comes in many forms, 

and attack methods are constantly evolving. Therefore, an effective classification 

algorithm should maintain efficient and accurate classification capabilities even when 

faced with diverse datasets. This study will validate the proposed method's 

classification performance across different malware datasets to assess its adaptability 

and stability in various environments. 
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1.4 Structure of The Project 

In the first chapter, Introduction, the research content is introduced, providing an 

overview of the study and its objectives. The second chapter, Literature Review, 

presents a review of related literature, discussing the background and context of the 

research. The third chapter, Methodology, details the methods employed in this study. 

The fourth chapter, Design, describes the design of a classification method based on 

the multi-layer feature fusion of malware image representations and opcode Markov 

images. The fifth chapter, Implementation, explains how the algorithm was 

implemented. The sixth chapter, Experiment, involves conducting experiments to 

answer the research questions posed in the study. The seventh chapter, Discussion, 

explores the answers to the research questions, comparing the findings with existing 

literature. Finally, the eighth chapter, Conclusion, offers conclusions and provides 

insights for future research directions. 
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2. Literature Review 

2.1 Image-based Malware Representation 

In the field of malware analysis, traditional approaches are increasingly facing complex 

challenges. To more effectively identify and classify malware, researchers have 

proposed an innovative method: representing malware by converting its binary data 

into image form. This image-based malware representation approach not only reveals 

the unique patterns of malware but also opens up new possibilities for utilizing 

computer vision and deep learning techniques in malware detection. In the following, 

we will review the relevant research achievements in this area. 

The research by Nataraj et al.[4] was the first to visualize malware into images. The 

core idea of the study is to visualize the binary files of malware as grayscale images, 

noting that images belonging to the same malware family often exhibit similar layouts 

and textures. Based on this visual similarity, the research introduces a method for 

classification using standard image features, without the need for code disassembly 

or execution. The main experimental results show that this method achieved a 

classification accuracy of 98% in a database containing 25 different malware families. 

Additionally, the technique demonstrated a certain level of resilience against common 

obfuscation techniques, such as partial encryption. The innovation of this research lies 

in the use of image features for malware analysis, opening new avenues for future 

malware analysis based on computer vision techniques. 

Tekerek et al.'s research[5] proposes an algorithm called B2IMG, which is designed 

to convert byte files into image format for the purpose of malware classification. The 

specific steps of this algorithm include reading the byte files, data processing, image 

generation, and image conversion. By directly converting byte data into image data, 
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the B2IMG algorithm avoids the information loss often encountered in traditional 

analysis methods, thereby improving the accuracy of malware classification. To 

address the issue of data imbalance, the study also introduces CycleGAN (Cycle-

Consistent Generative Adversarial Network) for data augmentation. Finally, the study 

employs DenseNet to classify the image-based malware representations. 

Experimental results demonstrate that using the image data converted by the B2IMG 

algorithm, combined with data augmentation via CycleGAN, can significantly improve 

malware classification accuracy. Notably, the classification accuracy reached 99.86% 

on RGB images. 

The study by Shaukat et al.[6] proposes an innovative malware detection method 

based on deep learning. The proposed method first visualizes executable files (PE 

files) as color images, then uses a fine-tuned model to extract deep features from 

these images. Finally, it employs a Support Vector Machine (SVM) to detect malware 

based on these deep features. Experimental results show that this method 

outperforms existing methods on multiple benchmark datasets, achieving an accuracy 

of 99.06% on the Malimg dataset. Additionally, the study introduces data augmentation 

techniques to address the issues of data imbalance and the scarcity of publicly 

available malware detection datasets, significantly enhancing detection performance. 

Chaganti et al.[7] explored a malware classification method based on image 

representation. The study proposed using the EfficientNetB1 model for classifying 

malware families, leveraging byte-level image representation techniques of malware. 

After comparing the performance of various CNN pre-trained models, the authors 

found that EfficientNetB1 achieved a classification accuracy of 99% while requiring 

significantly fewer network parameters than other pre-trained models. Additionally, 

various visualization techniques were employed in the study to compare the 
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performance of different CNN models. The research demonstrated that EfficientNetB1 

not only effectively improves accuracy in malware classification but also reduces the 

consumption of computational resources. 

The study by Acharya et al.[8] proposes a malware classification framework based on 

the EfficientNet-B1 model. The malware samples in the study are represented as byte 

code grayscale images and classified using the EfficientNet-B1 model. The 

experimental results demonstrate that the model achieved a classification accuracy of 

98.57% on a dataset comprising 10,868 samples from 9 different malware families, 

significantly outperforming other pretrained deep learning models. 

The research by Yadav et al.[9] proposes using deep learning methods for automated 

malware detection. The research compares the performance of 26 convolutional 

neural network models in Android malware detection and proposes a detection method 

based on the EfficientNet-B4 model. This method involves converting Android's DEX 

files into images, extracting features from these images using the EfficientNet-B4 

model, and finally performing binary classification to distinguish between malware and 

benign software through a Softmax classifier. Experimental results demonstrate that 

the proposed model achieves a 95.7% accuracy rate in the binary classification task, 

outperforming other comparative models. 

In the study conducted by Lojain et al.[10], the core components of APK files, such as 

classes.dex, resources, manifest, and certificates, were utilized. These binary data 

were converted into 8-bit vectors and then transformed into grayscale images. These 

grayscale images were subsequently used to train and test the model. The study 

employed the ResNet-50 model, replacing its softmax classification layer with an SVM 

model (using a Gaussian kernel) to enhance detection performance. After conducting 
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experiments on the DREBIN dataset, the research results showed that the grayscale 

image model, which combined Certificates (CR) and Android Manifest (AM), achieved 

a classification accuracy of 97%. Additionally, the model performed exceptionally well 

on other metrics such as precision, recall, and F1-score, all exceeding 95%. 

The work by Asam et al.[11] involves detecting and classifying malware variants 

using deep learning and machine learning techniques. The research introduces two 

novel malware classification frameworks: Malware Classification based on Deep 

Feature Space (DFS-MC) and Malware Classification based on Deep Boosted 

Feature Space (DBFS-MC). In the DFS-MC framework, a custom Convolutional 

Neural Network (CNN) architecture is employed to generate deep features, which 

are then input into a Support Vector Machine (SVM) algorithm for malware 

classification. In the DBFS-MC framework, an enhanced feature space is generated 

by combining the deep feature spaces of two custom CNN architectures, aiming to 

improve classification discrimination. On the MalImg malware dataset, an accuracy 

of 98.61% was achieved. 

The study by Ahmed et al.[12] proposed the use of a transfer learning approach with 

the Inception V3 model to classify malware samples from the BIG15 dataset. The 

research also compared the performance of several other machine learning and deep 

learning models, including Logistic Regression (LR), Artificial Neural Networks (ANN), 

Convolutional Neural Networks (CNN), and Long Short-Term Memory networks 

(LSTM). In the experiments, the transfer learning approach using the Inception V3 

model achieved a classification accuracy of 98.76% on the test dataset, while the 

accuracy on the training dataset reached 99.6%. 
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The research by Mallik et al.[13] proposes a convolutional recurrent-based malware 

classification technique that leverages visual recurrent features in grayscale malware 

images for classification. Initially, the malware samples are converted into grayscale 

images, and convolutional neural networks (CNNs) are used to extract structural 

similarity features. To balance the dataset and reduce class bias, data augmentation 

is applied. Subsequently, visual features are extracted using the VGG16 feature 

extractor, and these features are processed through two stacked Bidirectional Long 

Short-Term Memory (BiLSTM) layers. Finally, the processed features are fused for the 

final malware family classification. The authors tested the model's performance on two 

benchmark datasets, demonstrating that this approach is both practical and effective 

for malware family classification. 

Currently, classification methods based on image-based representation of malware 

have become a common and effective technical approach. These methods typically 

incorporate convolutional neural networks (CNNs) such as VGG, ResNet, EfficientNet, 

and other models, demonstrating outstanding classification performance. However, 

selecting the appropriate convolutional neural network model remains a topic that 

requires further research. Additionally, solely relying on image-based representation 

techniques may sometimes fail to fully realize their potential. It might be necessary to 

combine them with other analytical methods or more sophisticated feature extraction 

and fusion techniques to further enhance classification accuracy and robustness. 

11 



 

 

  

        

            

           

    

       

     

 

           

     

      

       

    

        

 

              

      

  

     

       

        

       

     

      

      

2.2 Opcode 

Opcode, short for operation code, is a portion of a machine language instruction that 

specifies the operation to be performed. While obtained from a decompiled .asm file, 

opcodes provide a detailed view of the low-level instructions executed by a program. 

Using opcodes for malware classification offers several benefits. They reveal the 

specific behaviors and operational details of the malware, allowing for precise 

identification of its functions and intents. This granularity aids in distinguishing between 

different types of malware and understanding their underlying mechanisms. 

The research by Singh et al.[3] develops and evaluates a multimodal deep learning 

framework called SHIELD, designed for detecting malware within Android systems. 

The framework integrates opcode Markov images and dynamic API calls, utilizing a 

Multimodal Autoencoder (MAE) to minimize the reliance on feature engineering and 

to autonomously discover relevant features for malware detection. SHIELD 

demonstrated strong performance on two benchmark datasets, CICandMal2020 and 

AMD, achieving detection rates of 94% and 87%, respectively. 

The study by Deng et al.[14] aims to enhance the effectiveness of malware detection 

through a novel three-channel visualization approach. The deep learning model 

employed in this research includes a Convolutional Neural Network (CNN) for feature 

extraction and classification. The study utilizes a publicly available malware dataset 

from Microsoft, which contains multiple malware families, to evaluate the effectiveness 

of the proposed method. The feature extraction techniques involve generating images 

from assembly instructions and creating three distinct channels using Markov 

transition matrices, which retain the essential information required for malware 

classification. The three channels correspond to Letter Markov Images, Opcode Initial 

Markov Images, and Opcode Markov Images. The research findings indicate that 
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MCTVD exhibits an extremely high accuracy rate (99.44%) in malware classification, 

along with significant precision, recall, and F1 scores, demonstrating the effective 

integration of multi-channel data. 

The study by Gao et al.[15] proposes an anti-obfuscation Android malware analysis 

method named CorDroid. The authors propose a method that combines various 

features to counteract code obfuscation, and they develop CorDroid based on two new 

features: the Enhanced Sensitive Function Call Graph (E-SFCG) and the Opcode-

based Markov Transition Matrix (OMM). E-SFCG describes the relationships between 

sensitive function calls, while OMM reflects the transition probabilities between 

opcodes. The authors validate the complementarity of E-SFCG and OMM in the face 

of different obfuscation techniques through experiments and demonstrate CorDroid's 

high execution efficiency. Experimental results show that algorithm outperforms 

existing detection methods. 

The study by Zhao et al.[16] proposes a deep learning-based method for classifying 

malware families through visualization techniques. By converting binary files into 

images and utilizing the texture features within these images for clustering, the 

researchers employed a deep convolutional neural network (CNN) to perform feature 

fusion and classification on Markov images generated from bytecode and opcode. 

Specifically, the bytes and opcodes in malware binary files were transformed into 

Markov images based on transition probability matrices. Experiments conducted on 

Microsoft's malware dataset demonstrated that the method, which fuses image 

features from both bytecode and opcode, achieved an accuracy of 99.76% and an F-

score of 98.91%. 
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The research by Mai et al.[17] proposes a malware detection method based on Markov 

images and the MobileNet model, emphasizing the generation of Markov images from 

opcode sequences and the subsequent classification of these images using the 

lightweight MobileNet model. This method achieves good detection performance while 

maintaining low computational resource consumption. Experimental results indicate 

that classifying the generated Markov images with the MobileNet model can effectively 

detect malware in IoT scenarios. 

The opcode Markov images have been widely applied in the field of malware 

classification, demonstrating exceptional performance in handling complex malware 

detection tasks, particularly when dealing with obfuscation techniques and unknown 

malware, thereby overcoming the limitations of traditional detection methods. Various 

convolutional neural networks, as commonly used feature extractors, have enhanced 

detection accuracy. However, research on combining opcode Markov images with 

image-based representations of malware for classification is relatively limited. Future 

work could further explore new feature extraction methods and model architectures to 

improve the system's robustness and adaptability. 

14 



 

 

  

          

        

 

           

          

     

     

  

      

    

    

         

   

        

     

    

     

       

   

      

     

          

     

   

2.3 Feature Fusion in Malware Classification 

Feature fusion has been widely applied in the field of malware classification. By 

integrating different features, it effectively enhances the classification performance of 

models. 

The paper by Chen et al.[18] proposes an innovative approach to Android malware 

detection by utilizing Graph Attention Networks (GAT) and the deep fusion of 

multimodal features. This paper introduces a novel type of call graph, named the 

Class-Set Call Graph (CSCG), designed to effectively extract both structural and 

semantic features of Android applications. Furthermore, the paper presents a feature 

fusion network that integrates CSCG features with permission features to enhance 

malware detection. In this network, features are progressively fused through a three-

layer deep network. Experimental results demonstrate that this method achieves 

detection accuracy ranging from 97.28% to 99.54% across three constructed datasets, 

outperforming existing approaches. 

The paper by Xuan et al.[19] proposes a malware classification method combining 

Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous 

Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet. 

This method enhances classification accuracy by fusing multiple features, utilizing 

malware assembly data and API sequences as features, and introducing a 

bidirectional temporal convolutional network to capture bidirectional temporal features. 

Additionally, the paper employs a fusion classifier and Quantum Particle Swarm 

Optimization (QPSO) algorithm to optimize BiTCN-TAEfficientNet, which further 

enhances the algorithm's accuracy and robustness while reducing the impact of 

adversarial techniques. The fusion classifier achieves feature fusion through 

concatenation. Experimental results show that this method achieves classification 
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accuracies of 99.461% and 97.92% on the Kaggle and DataCon datasets, respectively, 

representing improvements of 0.38% and 0.87% compared to other methods. 

The study by Li et al.[20] proposes a method for classifying malware families based 

on multimodal fusion and weight self-learning. Firstly, the study extracts 

multidimensional features of malware through static analysis, including byte, format, 

statistical, and semantic features, which are then fused during the feature engineering 

phase through concatenation. In the model construction phase, a weight self-learning 

mechanism is introduced to automatically learn the weights of different features within 

each family. This approach demonstrates great classification performance on 

imbalanced malware datasets. 

The study by Kumar et al.[21] proposes a novel architecture for malware classification 

based on image visualization. This approach utilizes a VGG16 model as a feature 

extractor, combined with three convolutional neural network models to obtain varied 

feature maps. The extracted features are concatenated to form a feature map, which 

is then trained using six classifiers. The experiments were conducted using the MalImg 

dataset, which contains 9,339 images from 25 families, as well as real-world packed 

malware to validate the method's generalization ability. The results show that the MLP 

model achieved an accuracy of 98.55% on the MalImg dataset and 94.78% on the 

real-world malware dataset. 

The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning 

framework aimed at enhancing cybersecurity by analyzing the classification of Internet 

of Things (IoT) malware. The research focuses on utilizing strings extracted from 

malware executables and image-based features. In the "feature fusion and 

classification" step, these features learned from different data representations are 
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concatenated to form a shared multimodal representation. This concatenated 

multimodal representation is then input into a neural network with fully connected 

layers for final, efficient classification. The study analyzed over 70,000 recently 

detected IoT malware samples, using Convolutional Neural Networks (CNN) and Long 

Short-Term Memory Networks (LSTM) to process image and string data, respectively. 

Experimental results indicate that this multi-layered deep learning framework 

significantly outperforms traditional single-layer classifiers in classification accuracy, 

achieving an accuracy rate of 99.78%. 

The research of Chen et al.[23] proposes a novel method for detecting Android 

malware by integrating various features of Android applications. First, the paper 

introduces a new Class Set Call Graph (CSCG), which uses Java class sets as nodes 

and designs a CSCG construction method that can determine node size based on the 

application's scale. Then, a topic model is used to mine semantic features from the 

source code. Next, a Graph Attention Network (GAT) is employed to extract CSCG 

features. Finally, the study constructs a deep learning-based multimodal feature fusion 

network. This network enhances the accuracy and robustness of malware detection 

by concatenating CSCG features with permission features at multiple fusion points 

and classifying the fused features using a deep neural network model. Experimental 

results show that this method achieves a detection accuracy of 97.28% to 99.54% 

across three constructed datasets, outperforming existing methods. 

Yang et al.[24] introduced a hybrid attention network model for malware detection that 

enhances accuracy by aligning and integrating multiple features, specifically 

combining binary file and opcode features. The model initially extracts temporal 

sequences and jump characteristics from binary files using stacked convolutional 

networks while employing a triangular attention algorithm to extract opcode features 
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from assembly code. Subsequently, a cross-attention mechanism is used to align and 

fuse these two distinct sources of features, resulting in more stable and representative 

feature representations. The literature emphasizes the crucial role of the cross-

attention mechanism in this process, as it establishes deep connections between 

different modal features, enabling the model to better understand and learn the 

relationships between binary files and assembly code, thereby significantly improving 

malware detection performance. Experimental results demonstrate that this multi-

feature fusion strategy, based on mutual attention, outperforms existing benchmark 

methods across multiple datasets, showcasing its advantages and effectiveness in 

malware detection tasks. 

The work by Snow et al.[25] proposes an end-to-end multi-model deep learning 

framework aimed at directly extracting features from malware data to enhance 

classification accuracy and generalization ability. The model integrates three distinct 

deep neural network architectures to process different attributes of malware data. The 

model concatenates various features and then classifies them using a Multi-Layer 

Perceptron (MLP). Experimental results demonstrate that the proposed model excels 

in both classification accuracy and training time. The model achieves an average 

classification accuracy of 98.35% in 4-fold cross-validation, with a best classification 

accuracy of 99.23%, and its training time is lower compared to other methods. 

Currently, in the field of malware classification research, feature fusion methods have 

been widely applied. These methods significantly enhance classification accuracy by 

extracting and integrating structural features, semantic features, permission features, 

and image-based features. However, the current feature fusion methods still primarily 

rely on traditional approaches such as concatenation and addition, which to some 

extent limit the potential of feature fusion technology in malware classification. 
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Moreover, the classification methods that integrate malware image features with 

opcode Markov image features have not been sufficiently explored, and further 

research and optimization are required. 

2.4 Research Gap 

Although image-based malware classification techniques have shown outstanding 

performance, many studies still rely on a single feature representation, such as images 

generated only from bytecode or opcode. These methods perform well on specific 

datasets; however, they exhibit significant limitations when dealing with data 

imbalance, adversarial attacks, and unknown malware variants. Therefore, research 

on combining image representations of malware with Opcode Markov images for 

classification is not only necessary but also has great potential. 

Most current feature fusion methods rely on traditional operations like concatenation 

and addition, failing to fully exploit and utilize the potential of multiple features. 

Therefore, proposing a more effective feature fusion method is crucial for improving 

malware classification performance. 

In research on classification based on malware image representations and Opcode 

Markov images, convolutional neural networks are commonly used as feature 

extraction tools. However, the actual performance of different convolutional neural 

networks in malware classification still requires further in-depth study. 

Moreover, the robustness of malware classification algorithms across different 

datasets is equally critical and urgently needs further validation and improvement. 
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3. Research Methodology 

3.1 Research Philosophy 

The philosophical foundation of this research is positivism. Positivism emphasizes the 

validation of hypotheses through objective data, which aligns with the experimental 

approach of classifying malware based on real-world data in this study. 

3.2 Research Process 

Figure 2 illustrates our research process, which comprises five key steps: data 

collection, data preprocessing, model design, model training, and model evaluation. 

These steps form the core of our research methodology. 

Figure 2-Research Process 

Data Collection: In the research of malware classification, collecting a high-quality 

malware dataset is crucial. Common methods for data collection include honeypots, 

third-party sharing sites, and open-source datasets. Each of these methods has its 

own advantages and disadvantages. 

Data Preprocessing: In deep learning-based malware classification research, data 

preprocessing is essential, as this step involves extracting features from malware data 

that can be processed by deep learning algorithms. In our research, we utilized two 

types of features: image based malware representations and malware opcode Markov 

images. 
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Model Design: This study employs a fusion of malware images and malware opcode 

Markov images for malware classification. Therefore, it is necessary to select an 

appropriate deep learning algorithm to extract features from these two types of images. 

Additionally, a feature fusion method needs to be designed to effectively combine 

these features. 

Model Training: Model training is the process by which the model learns from the data 

and updates its parameters. This includes forward propagation, loss calculation, and 

backpropagation. Furthermore, training a deep learning model requires setting a loss 

function and an optimization algorithm. The loss function measures the accuracy of 

the model’s predictions, while the optimization algorithm helps the model update its 

parameters. 

Model Evaluation: After completing model training, it is necessary to evaluate its 

performance in the malware classification task. Common evaluation metrics include 

accuracy, precision, recall, F1-score, and confusion matrix. 

3.3 Data Collection 

In malware research, collecting high-quality datasets is a crucial step in the study. 

Currently, commonly used methods for collecting malware datasets include honeypots, 

third-party malware sharing websites, and open-source datasets. 

3.3.1 Honeypot 

Honeypot technology is a widely used method for collecting malware, designed to 

deceive attackers to capture malicious behavior[26]. This is achieved by configuring 

vulnerable network services on certain decoy hosts to attract and capture attack 

behaviors. Honeypots are categorized into low-interaction[26] and high-interaction 

honeypots[27]. 
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3.3.2 Third-party malware sample sharing websites 

Third-party malware sample sharing websites are another commonly used method for 

collecting malware. Users can upload and download various malware samples for 

research and analysis purposes. 

3.3.3 Open-source datasets 

Open-source datasets are an important resource frequently used in malware research. 

Open-source malware datasets often contain a large number of labeled malware 

samples, providing convenience for researchers. 

3.4 Data Pre-processing 

3.4.1 Image-based Malware Representations Extraction 

Nataraj et al.[4]were the first to propose a method for mapping malware into images 

and utilizing these images for malware classification. In this method, the binary file of 

the malware is first read into a one-dimensional array of 8-bit unsigned integers. This 

one-dimensional array is then reshaped into a two-dimensional array, generating the 

corresponding grayscale image. The width of the image is adaptively adjusted based 

on the file size: smaller files result in narrower image widths, while larger files 

correspond to wider image widths. The processing workflow is illustrated in Figure 1, 

Figure 1 Malware visualization algorithm by Nataraj et al. 

Tekerek et al.[5] proposed an algorithm for mapping malware into grayscale and color 

images. Unlike the method introduced by Nataraj et al., this algorithm is capable of 
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generating color images with richer textures and organizing them into square images 

that are better suited for deep learning processing. 

The image generation process, whether for grayscale or color images, shares the 

following common steps: First, the binary file of the malware, represented as 

hexadecimal characters, is read. Then, based on the predetermined image type, the 

dimensions of the corresponding image matrix are calculated. Subsequently, the 

malware's numeric data is populated into the matrix to generate the corresponding 

image. 

The key difference lies in the fact that grayscale images use only a single channel to 

represent pixel intensity, whereas color images utilize multiple channels, thereby 

capturing more complex textures. Additionally, to enhance the feature representation 

of the images, the method proposed by Tekerek et al.[5] specifically excludes 

meaningless zero values, thereby optimizing the image generation process. The 

processing workflow is illustrated in the accompanying Figure 2. 

Figure 2 Malware visualization algorithm by Tekerak et al. 
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3.4.2 Malware Opcode Markov Image Extraction 

The Markov image of malware is a method used to represent and analyze malware 

characteristics by converting the statistical features of malware opcode sequences 

into images. This approach visualises the transition probability matrix of byte pairs (or 

opcode pairs) in the malware as an image, thereby capturing its statistical properties. 

This image format can be used as input for deep learning models for malware 

detection and classification. 

The generation of Markov images is based on Markov chain theory[17]. A Markov 

chain assumes that the future state of a system depends only on its current state, 

independent of previous states. In the context of malware analysis, this implies that 

the occurrence probability of an opcode depends solely on the preceding opcode. By 

calculating the transition frequencies of all adjacent opcode pairs within the entire 

malware sample, a transition probability matrix can be constructed. Each element of 

this matrix represents the probability of transitioning from one opcode to another. 

Finally, by visualizing the transition probability matrix as an image, a Markov image is 

generated. 

According to research by Zhao et al.[16], the steps to generate a Markov image from 

malware opcodes include the following: opcode sequence extraction, opcode pair 

statistics, transition probability matrix generation and markov image generation. 

⚫ Opcode Sequence Extraction: Extracting opcode sequences from malware. 

⚫ Opcode Pair Statistics: Counting the frequency of each opcode pair in malware 

samples. 
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⚫ Transition Probability Matrix Generation: Calculating the transition probabilities 

based on the statistics of opcode pairs and generating the transition probability 

matrix. 

⚫ Markov Image Generation: Multiplying the values in the transition probability 

matrix by 255 to meet pixel requirements and storing the results as grayscale 

images. 

3.5 Malware Classification Models Design 

This study proposes a malware classification method based on multi-level feature 

fusion, incorporating both image-based malware representation and malware opcode 

features. To achieve this, we selected deep learning models to extract features from 

these two types of images. In the current field of malware classification, convolutional 

neural networks (CNNs) are widely used for image feature extraction, with commonly 

employed models including ResNet, VGG, and EfficientNet. Therefore, this study will 

utilize these models for feature extraction. Additionally, to effectively fuse these two 

types of features, we will select appropriate existing feature fusion methods and 

propose a novel low-level feature fusion approach. 

3.5.1 Convolutional Neural Network 

3.5.1.1 ResNet 

ResNet (Residual Network)[28] was proposed by Microsoft Research as a 

convolutional neural network architecture that employs residual connections. These 

residual connections, which allow the input data to be directly passed to subsequent 

layers, address the issues of vanishing and exploding gradients in deep convolutional 

neural networks. This enables deeper networks to effectively learn and significantly 

improves their performance. 
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3.5.1.2 VGG 

The VGG model[29] is a classic convolutional neural network originally proposed by 

the Visual Geometry Group (VGG) at the University of Oxford in 2014. Due to its simple 

yet effective structure, the VGG model has been widely applied in image recognition 

and computer vision tasks. The core design principle of the VGG model is to construct 

a deep network by stacking multiple small 3x3 convolutional kernels, which enables 

the network to capture more image features. The most common VGG networks are 

VGG-16 and VGG-19, which consist of 16 and 19 trainable layers, respectively. This 

deep structure allows the model to learn more complex and rich feature 

representations. 

3.5.1.3 EfficientNet 

EfficientNet, proposed by Google[30] in 2019, is a convolutional neural network 

architecture renowned for its higher efficiency and superior performance. The core 

idea behind EfficientNet is the use of a method called "compound scaling," which 

simultaneously balances the network's depth, width, and resolution. This approach 

enables EfficientNet to maintain high accuracy while significantly reducing 

computational costs. 

3.5.2 Feature Fusion 

3.5.2.1 Feature Concatenate 

The feature fusion method based on Feature Concatenation is a technique that directly 

concatenates multiple feature vectors column-wise. 
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3.5.2.2 Multilayer Deep Network based Feature Fusion 

Chen et al.[18] proposed a feature fusion method based on a multilayer deep network. 

In this approach, two feature sets of different lengths are processed independently 

through separate network branches. The features are then fused at an intermediate 

layer to form a new feature representation, which is subsequently passed through the 

output layer to generate the final result. The multilayer deep network is shown in Figure 

3. 

Figure 3 Multilayer deep network 

3.5.2.3 Cross-Attention Mechanism based Feature Fusion 

Yang et al.[24] proposed a feature fusion method known as the cross-attention 

mechanism, which is an improvement based on the self-attention mechanism. This 

mechanism enhances the fusion and interaction of information by exchanging or 

sharing keys, queries, or values between different features. 
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The self-attention mechanism is a technique that can establish dynamic weighting 

relationships between different positions within the same sequence. Specifically, in a 

self-attention mechanism, each element in the input sequence is treated as a query, 

key, and value. The attention weights are obtained by calculating the dot product 

between the queries and keys, which are then applied to the corresponding values to 

generate a weighted representation of the input sequence. The advantage of the self-

attention mechanism lies in its ability to capture global dependencies within the input 

sequence, even if these dependencies are far apart in the sequence. 

While the self-attention mechanism performs well when processing a single feature 

sequence, its limitation is that it operates only within the same feature space. This 

means it can only compute self-correlations for a single input feature sequence and 

cannot directly handle interaction information between multiple features. 

The cross-attention mechanism is an extension and improvement of the self-attention 

mechanism. Unlike the self-attention mechanism, which performs correlation 

calculations within a single feature space, the cross-attention mechanism aims to 

capture complex relationships across different feature spaces. In the cross-attention 

mechanism, keys, queries, and values between different features are exchanged or 

shared, enabling the model to capture associative information across feature spaces. 

The core idea of the cross-attention mechanism is to establish associations between 

different feature representations. Through this exchange or sharing, the model can 

capture richer associative information across different feature spaces, thereby 

enhancing the final representational capability. 
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3.5.2.4 Multiplication based Low-level Feature Fusion Method 

This research will design a multiplication based low-level feature fusion method to 

integrate the high-level features of opcode Markov images with the low-level features 

of image-based malware representations through multiplication. 

3.6 Model Training 

In this section, we will introduce the key components involved in the model training 

process, including the loss function, optimization algorithm, learning rate, batch size, 

training epochs, data augmentation, and transfer learning. 

3.6.1 Loss Function 

A loss function is a mathematical function used to quantify the difference between the 

predicted values generated by a model and the actual target values; the primary goal 

in training a model is to minimize the value of this function, thereby reducing prediction 

errors. 

3.6.1.1 Cross-entropy Loss 

Cross-entropy loss is a loss function commonly used in deep learning for classification 

tasks. It evaluates the performance of a model by measuring the difference between 

the true class distribution and the predicted probability distribution. 

𝐶 𝐿(𝒚, 𝒑) = − ∑𝑖=1 𝑦𝑖 log(𝑝𝑖) (1) 

Here, 𝑦𝑖 represents the true class label, and 𝑝𝑖 denotes the predicted probability that 

the sample belongs to class . 

3.6.2 Optimization Algorithm 

An optimization algorithm is a method used to adjust model parameters in order to 

minimize the loss function value, thereby improving model performance. 
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3.6.2.1 Stochastic Gradient Descent 

Stochastic Gradient Descent (SGD) is a commonly used optimization algorithm in 

deep learning model training. This algorithm calculates the gradient of the loss 

function with respect to a single sample, and then iteratively updates the model 

parameters. The update rule is defined as follows: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃𝐽(𝜃; 𝑥(𝑖), 𝑦(𝑖)) (2) 

where 𝜃 represents the model parameters, 𝜂 is the learning rate, and ∇𝜃𝐽(𝜃; 𝑥(𝑖), 𝑦(𝑖)) 

denotes the gradient of the loss function with respect to the sample. Due to its high 

computational efficiency and low memory requirements, SGD is particularly well-

suited for training on large-scale datasets. However, since the direction of the 

updates may experience significant fluctuations, it can lead to slower convergence 

rates and even potential entrapment in local minima, thereby affecting the overall 

training effectiveness of the model. 

3.6.2.2 Adam Algorithm 

The Adam algorithm is a widely used optimization method in deep learning training. 

This algorithm employs an adaptive learning rate mechanism, which can 

automatically adjust the learning rate based on the variation in gradients. By 

estimating the first and second moments of the gradients, Adam dynamically scales 

the learning rate, allowing for more precise parameter updates. This mechanism 

enables the algorithm to balance the update rates of different parameters during 

training, thereby improving convergence speed and overall learning performance. 

However, in certain specific scenarios, the convergence of the Adam algorithm may 

not meet expectations. The Adam algorithm is shown in Table 1. 
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Adam algorithm process 

Required inputs: Initial parameter 𝜃, momentum Variable 𝑣, global learning rate 𝛼, 

momentum factor 𝛽1, accumulated squared variable 𝑠, accumulated gradient 

squared factor 𝛽2 

1. Randomly select a sample 

2. Calculate the loss function: 

∇θ𝐽(θ) 

3. Update the momentum term 𝑣 and the squared gradients accumulation 𝑠: 

𝑣 = β1𝑣 + (1 − β1)∇θ𝐽(θ) 

2 
𝑠 = β2𝑠 + (1 − β2)(∇θ𝐽(θ)) 

4. Bias correction: 

𝑡)𝑣 = 𝑣/(1 − 𝛽1 

𝑡)�̂� = 𝑠/(1 − 𝛽2 

5. Update the parameters: 

θ = θ − α𝑣/(√�̂� + 𝜖) ϵ = 10−8 

6. Return the updated parameter θ 

Table 1 Adam algorithm process 

3.6.3 Learning Rate 

Learning rate is a hyperparameter that controls the step size of each update to the 

model parameters during the optimization process. 

3.6.4 Batch Size 

Batch size is the number of training examples processed simultaneously before 

updating the model's parameters in one iteration. 
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3.6.5 Training Epochs 

Batch size is the number of training examples processed simultaneously before 

updating the model's parameters in one iteration. 

3.6.6 Data Augmentation 

Data augmentation is a technique that artificially increases the diversity of a training 

dataset by applying random transformations, such as rotations or flips, to the input 

data. 

3.6.6.1 Random Cropping and Horizontal Flip 

Random cropping and horizontal flip were first employed in the work of Krizhevsky et 

al.[31] to increase the diversity of training data and thereby enhance the model's 

generalization ability. 

3.6.7 Transfer Learning 

Transfer learning is a machine learning technique that leverages knowledge gained 

from a pre-trained model on one task and applies it to a new, related task, reducing 

the need for extensive training data and time on the new task. 
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3.7 Model Evaluation 

In this section, we will introduce several key metrics for evaluating the performance of 

the proposed classification model, including accuracy, precision, recall, F1 score, and 

confusion matrix. 

3.7.1 Accuracy 

Accuracy is one of the fundamental metrics used to evaluate the performance of 

classification models. It represents the proportion of correctly predicted samples out 

of the total number of samples. 

The equation for calculating accuracy is as equation3: 

𝑇𝑃+𝑇𝑁 
Accuracy = (3)

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

Where: 

⚫ TP (True Positive): The number of positive samples correctly classified as positive. 

⚫ TN (True Negative): The number of negative samples correctly classified as 

negative. 

⚫ FP (False Positive): The number of negative samples incorrectly classified as 

positive. 

⚫ FN (False Negative): The number of positive samples incorrectly classified as 

negative. 

3.7.2 Precision 

Precision is one of the key metrics used to evaluate the performance of a classification 

model. It represents the proportion of actual positive samples among all samples that 

the model has predicted as positive. 
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The equation for calculating precision is as equation 4: 

𝑇𝑃 
Accuracy = (4)

𝑇𝑃+𝐹𝑃 

3.7.3 Recall 

Recall is an important metric for evaluating the performance of classification models. 

It represents the proportion of actual positive samples that the model correctly 

identifies as positive. 

The equation for calculating recall is as equation 5: 

𝑇𝑃 
Accuracy = (5)

𝑇𝑃+𝐹𝑁 

3.7.4 The F1 Score 

The F1 Score is a comprehensive metric for evaluating the performance of 

classification models. It is the harmonic mean of Precision and Recall. The F1 Score 

aims to balance Precision and Recall, making it particularly useful in scenarios with 

imbalanced classes. 

The equation for calculating the F1 Score is as equation 6: 

Precision×Recall 
𝐹1 = 2 × (6)

Precision+Recall 

3.7.5 The confusion matrix 

The confusion matrix is one of the essential tools for evaluating the performance of 

classification models. It presents the relationship between the model's predictions and 

the actual labels in a tabular format, thereby aiding in the analysis of the model's 

performance across various categories. 
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4. Design 

4.1 Data Collection 

In malware research, common data collection methods include honeypots, third-party 

sharing websites, and open-source datasets. We chose to use open-source datasets 

because, compared to the other two methods, they offer clear classification labels, 

lower costs, and do not involve complex security and legal issues. 

The Microsoft Malware Classification Challenge dataset originates from the Microsoft 

Malware Classification Challenge and contains samples of nine types of malware. The 

dataset is divided into training and testing sets, with labeled samples in the training 

set. The number of samples for each type is shown in Table 2. Each malware sample 

includes two files: a .bytes file, which represents the binary content of the malware in 

hexadecimal format, and a decompiled .asm file. The reason for selecting this dataset 

lies in its widespread use in malware classification research, facilitating comparison 

with various methods. Additionally, the decompiled files provided by this dataset allow 

for the extraction of opcode sequences, further enhancing the depth of the research. 

Malware Family Number of Samples 

Ramnit 1541 

Lollipop 2478 

Kelihos_ver3 2942 

Vundo 475 

Simda 42 

Tracur 751 

Kelihos_ver1 398 

Obfuscator.ACY 1228 

Gatak 1013 
Table 2 Microsoft Malware Classification Challenge dataset 
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The CCF BDCI 2021 Malware Dataset is sourced from the CCF BDCI 2021 Digital 

Security Competition—AI-based Malware Family Classification Contest. This dataset 

provides samples of ten types of malware, similarly divided into training and testing 

sets, with the types and quantities of training samples shown in Table 3. Each malware 

sample includes two files: a PE file without the PE header and an .asm file generated 

using IDA Pro. The reason for selecting this dataset is that it offers a large number of 

diverse samples and also provides decompiled files, making it convenient to extract 

opcode sequences. 

Malware Family Number of Samples 

0 428 

1 746 

2 20 

3 261 

4 321 

5 181 

6 776 

7 1350 

8 594 

9 1164 
Table 3 CCF BDCI 2021 dataset 
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4.2 Data Pre-processing Design 

4.2.1 Image-based Malware Representations Extraction 

Inspired by the study conducted by Tekerek et al.[5], the process of visualizing 

malware in this research includes the following steps: reading the binary file, adjusting 

the array length and calculating the image dimensions, and generating the image (as 

shown in Figure 4). The specific steps are as follows: 

Figure 4 Image-based malware representations extraction 

⚫ Reading the Binary File: Extract the binary data of the malware sample, which 

serves as the foundation for subsequent processing. 

⚫ Adjusting the Array Length and Calculating the Image Dimensions: Based on the 

size of the read data, determine the appropriate image dimensions. If the data 

length is insufficient, padding is performed to match the required image 

dimensions. 

⚫ Generating the Image: The adjusted array is reshaped into a square matrix and 

saved as an image file for further analysis. 
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4.2.2 Opcode Markov Image Extraction 

The process of extracting an Opcode Markov Image, inspired by the study of Zhao et 

al.[16], involves three steps, as illustrated in Figure 5. 

Figure 5 Process of extracting an Opcode Markov Image 

⚫ Opcode Sequence Acquisition: Opcode sequences are extracted from 

decompiled malware samples. The extraction process is based on a commonly 

used set of opcodes from the x86 instruction set, identified and extracted from the 

decompiled files through string matching. To enhance data purity, irrelevant 

content such as line numbers and comments beginning with a semicolon are 

filtered out, ensuring that the extracted opcode sequences remain undisturbed. 

⚫ Construction of the Opcode Pair Occurrence Matrix: The frequency of each 

opcode and its subsequent opcode in the extracted sequences is counted. Rarely 

occurring opcodes are categorized as one type. The resulting occurrence matrix 

is structured in a 224x224 format. 

⚫ Generation of the Opcode Markov Image: Each element in the opcode pair 

occurrence matrix is divided by the sum of the elements in its row to calculate the 

transition probability, which is then multiplied by 255 to generate pixel values. 

Finally, the transition frequency matrix is converted into a grayscale image. 
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4.3 Model Design 

In this study, a deep learning model based on multilayer feature fusion is proposed to 

enhance the accuracy and robustness of malware detection. Specifically, the model 

integrates two different data representations: image-based malware representation 

and malware opcode Markov images, leveraging a multi-level feature fusion 

mechanism to fully exploit their complementary information in the malware 

classification task. 

The multilayer feature fusion mechanism includes a feature fusion module based on 

cross-attention and a low-level feature fusion module based on multiplication. In the 

cross-attention-based feature fusion module, the high-level features of the image-

based malware representation and opcode Markov image are integrated. Meanwhile, 

in the multiplication-based low-level feature fusion module, the low-level features of 

the image-based malware representation are combined with the high-level features of 

the opcode Markov image. Through this multilayer feature fusion, the two types of 

features can interact more comprehensively and deeply, enabling the model to more 

effectively extract and identify malware characteristics. 

The model primarily consists of five modules: an image-based malware representation 

feature extraction module, a malware opcode Markov image feature extraction module, 

a cross-attention based feature fusion module, and a multiplication-based low-level 

feature fusion module, with the final output of malware categories achieved through a 

fully connected layer. The architecture of the proposed model is illustrated in Figure 6. 
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Figure 6 Model architecture 

⚫ Image-based Malware Representation Feature Extraction Module: This module 

extracts deep features from image-based malware representation using 

convolutional neural networks (CNNs). In this study, VGG16, ResNet18, and 

EfficientNetB0 are employed as feature extractors. 

⚫ Malware Opcode Markov Image Feature Extraction Module: Similarly, this module 

employs another convolutional neural network to extract features from the 

malware opcode Markov images. Likewise, VGG16, ResNet18, and 

EfficientNetB0 are used as feature extractors in this study. 

⚫ Cross Attention Feature Fusion Module: This module designs a cross attention 

mechanism for fusing the features extracted by the first two modules. 

⚫ Multiplication-based Low Level Feature Fusion Module: In this module, the 

features from the Markov images are first upsampled to match the size of the low 

level image-based malware representations features extracted by the 

convolutional neural network, and then the two are fused through a multiplication 

operation. 
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⚫ Fully Connected Layer: The fully connected layer receives the features fused 

through the mutual attention mechanism and ultimately outputs the prediction of 

the malware category. 

4.3.1 Image-based Malware Presentation Feature Extraction Module 

The study employs VGG16, ResNet18, and EfficientNetB0 as the feature extraction 

modules for Image-based Malware Presentation. The performance of these models 

will be evaluated in subsequent experiments through comparative analysis. To adapt 

these models for the malware image feature extraction module, necessary 

modifications were made, focusing primarily on two aspects: the fully connected layers 

of the convolutional neural networks (CNNs) and the addition of a Multiplication Layer 

in the lower convolutional layers, aimed at integrating low-level features. 

In the original models, the fully connected layers classify the output features extracted 

by the CNNs. However, in this study, the output size of the fully connected layers was 

adjusted to 1 × 512 to align with the dimensions of the Image-based Malware 

Presentation features and Opcode Markov image features, facilitating subsequent 

processing. 

Although the structures of these CNNs differ, this study introduced a Multiplication 

module after the fourth or fifth convolutional layer in the lower layers of these networks. 

This modification aims to integrate the Opcode Markov image features with the low-

level features of the Image-based Malware Presentation, thereby enhancing the 

model's classification performance by combining multi-level feature information. 

The modified structures of the VGG16, ResNet18, and EfficientNetB0 models are 

illustrated in Figures 7, Figure 8, and Figure 9, respectively. 
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Figure 7 Modified VGG16 

Figure 8 Modified ResNet18 

Figure 9 Modified EfficientNetB0 
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4.3.2 Opcode Markov Image Feature Extraction Module 

In this study, VGG16, ResNet18, and EfficientNetB0 were selected as the Opcode 

Markov Image Feature Extraction Modules. Subsequent experiments conducted a 

detailed evaluation of the extraction performance of these different models through 

comparative analysis. 

To effectively apply these models to malware image feature extraction, two key 

modifications were made. First, the fully connected layer of the convolutional neural 

networks (CNNs) was adjusted. Second, the features from the last convolutional layer 

of each model were extracted and utilized as the high level feature output for the 

Opcode Markov images. 

In the original models, the output from the fully connected layer is typically used for 

classification tasks. However, in this study, the output dimension of the fully connected 

layer was adjusted to 1 ×512 to align with the feature dimensions of the image-based 

malware representation, thereby simplifying the subsequent feature fusion process. 

Additionally, the features extracted from the final convolutional layer were used as 

additional outputs, which were then fused with the low-level features of the image-

based malware representation. 

The architectures of the modified VGG16, ResNet18, and EfficientNetB0 models are 

illustrated in Figures 10, Figure 11, and Figure 12, respectively. 
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Figure 10 VGG16 

Figure 11 ResNet18 

Figure 12 EfficientNetB0 
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4.3.3 Cross-attention Feature Fusion Module 

The cross-attention-based feature fusion module demonstrates superior performance 

in current technologies. Compared to simple concatenation-based feature fusion 

methods, the cross-attention mechanism allows for interaction between features from 

different modalities. In contrast to layer-by-layer fusion methods based on multi-layer 

neural networks, the cross-attention mechanism can dynamically adjust weights 

based on the relevance of input features. As a result, the model can dynamically 

capture the most meaningful associations between different inputs, rather than simply 

assigning fixed feature weights. This dynamic capability makes the model more 

flexible and effective in capturing relationships between various features when dealing 

with multiple types of features. 

The cross-attention-based feature fusion model proposed in this study consists of four 

modules: the feature transformation module, the attention computation module, the 

residual module, and the concatenation module, as illustrated in Figure 1. In the 

feature transformation module, the query, key, and value for the image-based malware 

representation features and the malware opcode image features are calculated using 

Equations 7 through 12. In the attention computation module, attention weights are 

first computed, followed by a weighted sum of the values. The attention weights are 

calculated using Equations 13 and 14, and the final attention output is obtained using 

Equations 15 and 16. In the residual module, the features before and after cross-

attention processing are summed to compensate for information loss. Finally, the 

features are fused through a concatenation operation. 

The cross-attention-based feature fusion module is shown in Figure 13. 
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Figure 13 Cross-attention based feature fusion module 

𝑄malimg = 𝑋malimg𝑊𝑄malimg 
(7) 

𝐾malimg = 𝑋malimg𝑊𝐾malimg 
(8) 

𝑉malimg = 𝑋malimg𝑊𝑉malimg 
(9) 

𝑄opimg = 𝑋opimg𝑊𝑄opimg 
(10) 

𝐾opimg = 𝑋opimg𝑊𝐾opimg 
(11) 

𝑉opimg = 𝑋opimg𝑊𝑉opimg 
(12) 

⊤𝑄malimg𝐾opimg = Softmax ( )𝐴malimg √𝑑𝑘 
(13) 

⊤𝑄opimg𝐾malimg = Softmax ( )𝐴opimg √𝑑𝑘 
(14) 

𝑍malimg = 𝐴malimg𝑉malimg (15) 

𝑍opimg = 𝐴opimg𝑉opimg (16) 
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4.3.4 Multiplication Based Low Level Feature Fusion Module 

The feature fusion module based on cross-attention integrates the image-based 

malware representations with the high-level features of the opcode Markov images. 

However, to better extract the texture features of the image-based malware 

representations, it is necessary to fuse the high-level features of the opcode Markov 

images with the low-level features of the image-based malware representations. Since 

image-based malware representations contain rich texture information, enhancing the 

extraction of their low-level features through the high-level features of the opcode 

Markov images is beneficial. Low-level features of convolutional neural networks 

typically capture local information such as edges and textures, while high-level 

features primarily represent global semantic information. By fusing high-level and low-

level features, the model can leverage features at different levels simultaneously, 

enhancing its ability to capture complex patterns. Moreover, as the number of layers 

in the convolutional neural network increases, some local details may be lost in the 

high-level features. Therefore, relying solely on cross-attention-based feature fusion 

may not fully exploit the relationships between these features, thereby limiting the 

improvement in classification performance. To address this, this paper proposes a 

multiplication-based low-level feature fusion method. This method achieves dynamic 

weight adjustment by performing a multiplication between the high-level features of 

the opcode Markov images and the low-level features of the image-based malware 

representations, allowing the model to more flexibly capture the relationships between 

features, thereby enhancing classification performance. 

In this method, the high-level features are extracted from the last convolutional layer 

of the opcode Markov image feature extractor, while the low-level features are 

obtained from the fourth or fifth convolutional layer of the image-based malware 
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representations feature extractor. Since the dimensions of high-level features and low-

level features are usually different, with high-level features typically having smaller 

width and height, it is necessary to upsample the high-level features. In this study, 

upsampling is achieved through a transposed convolutional layer, as the transposed 

convolutional layer can learn an upsampling method more suitable for specific tasks. 

The stride, padding, and other parameters of the transposed convolutional layer are 

finely tuned to achieve effective upsampling of features with different dimensions. 

The structure of this module is shown in Figure 14. 

Figure 14 Multiplication Based Low Level Feature Fusion Module 
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4.4 Model Training 

In this study, the cross-entropy loss function, a commonly used loss function, was 

employed. The Adam optimizer was chosen over Stochastic Gradient Descent (SGD) 

due to its advantages in avoiding local optima, which can negatively impact the 

model's classification performance. The training process was conducted with 100 

epochs, a batch size of 32, and a fixed learning rate of 0.001. Additionally, data 

augmentation techniques, including random cropping and horizontal flipping, were 

applied. Transfer learning was also utilized to further enhance the model's training 

efficiency and effectiveness. 

4.5 Model Evaluation 

In this study, the performance of the model is evaluated using accuracy, precision, 

recall, F1-score, and the confusion matrix. 
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5. Implementation 

5.1 Hardware and Software Resource 

5.1.1 Hardware Resource 

This study was primarily conducted on Colab. Colab instances are typically equipped 

with around 12GB to 25GB of RAM and 50GB of virtual hard disk space. Google Drive 

was mounted on Colab to extend storage capacity. An A100 GPU was used for deep 

learning training. 

5.1.2 Software Resource 

The primary programming language used in this study is Python. The Pandas library 

was utilized for reading .csv files, the Numpy library for matrix manipulation, the PIL 

library for image storage, and the Torch library for creating and training deep learning 

models. 

5.2 Data Pre-processing Implementation 

5.2.1 Opcode Sequences Extraction 

In this project, I developed a Python script to extract opcode sequences from assembly 

code files. The script accomplishes the opcode extraction through the following steps: 

⚫ Loading the Opcode Set: First, the script loads the opcode set from a CSV file. 

Each opcode is stored as an element in a set, allowing for quick matching during 

subsequent processing. 

⚫ Processing the Assembly Code File: The script reads the assembly code file (.asm) 

line by line. For each line, it uses the .split(';') method to remove any potential 

comments (i.e., content starting from the semicolon ;). Then, it applies the .split() 

method to split the remaining code into a sequence of independent strings based 

on whitespace characters. 
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⚫ Opcode Matching: For each split string, the script checks whether it exists in the 

opcode set. If a match is found, the corresponding opcode is saved into a list. 

⚫ Storing the Results: All matched opcodes are eventually written to a new CSV file, 

facilitating subsequent analysis and processing. 

5.2.2 Opcode Markov Image Extraction 

In this project, I developed a Python script to extract opcode Markov images from 

sequences of opcodes. The script accomplishes the extraction of opcodes through the 

following steps: 

⚫ Loading Opcode Sequences: First, the script loads the opcode sequences from a 

CSV file. 

⚫ Obtaining the Opcode Pair Frequency Matrix: The code traverses adjacent pairs 

in the opcode sequences and counts their occurrences. 

⚫ Generating the Probability Transition Matrix: Each row of the frequency matrix is 

divided by the sum of the respective row to obtain a probability transition matrix. 

⚫ Converting the Matrix into an Image: The normalized matrix is multiplied by 255 

to convert it into a grayscale image. Finally, the matrix is saved as a PNG image 

using the plt.imsave function. 

5.2.3 Image-based Malware Representations Extraction 

In this project, to extract image-based malware representations from malware binary 

data, I developed a Python script. The script accomplishes the extraction of opcodes 

through the following steps: 

51 



 

 

          

  

             

  

           

              

   

   

        

 

           

         

 

        

       

        

    

 

  

           

    

 

          

Reading the Binary File: We use Python's open function to open the file in binary mode 

and read its contents into a byte array. 

Filtering Invalid Data: To enhance the usability of the image, we filter out all byte values 

of 0 from the array, as these typically represent invalid information. 

Adjusting Array Length: To convert the byte array into an RGB image, we need to 

ensure that the array length is a multiple of 3. If the length is insufficient, we pad zeros 

at the end of the array. 

Calculating Image Dimensions: We calculate the side length of the square image that 

the byte array can represent and pad additional zeros if necessary to ensure the array 

length equals the square of the side length multiplied by 3. 

Generating the Image: We reshape the adjusted array into a numpy array with the 

shape (side_length, side_length, 3) and use the PIL library to convert it into an RGB 

image. 

To extract the binary data of malware from the .bytes files in the Microsoft Malware 

Classification Challenge dataset, we have adjusted the script accordingly. The script 

reads the file content line by line, skips the line numbers, and excludes meaningless 

symbols such as "00" and "??." It then reads and retains the remaining valid data. 

5.3 Model Implementation 

In this study, the model implementation was based on the PyTorch framework. The 

torch.nn module provided various neural network components, while 

torchvision.models offered pre-trained classical models. The image feature extraction 

module and the opcode-based Markov image feature extraction module utilized these 
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pre-trained models with corresponding modifications. The cross-attention-based 

feature fusion module and the multiplication-based low-level feature fusion module 

were custom-designed according to specific requirements. Finally, all modules were 

integrated into the MultilayerFeatureFusionModel class, achieving multilayer feature 

fusion for malware classification. 

5.4 Model Training Implementation 

First, the preprocessed training and test sets are loaded into memory from the 

specified paths. Then, the training set is split into a training set and a validation set in 

an 8:2 ratio. 

In the implementation process, the PyTorch library is used to build and train the model. 

PyTorch provides the DataLoader class for loading data in batches, and by loading 

the data onto the GPU, it significantly improves the efficiency of data processing. 

During model training, PyTorch's automatic differentiation feature is utilized, with the 

torch.autograd module automatically computing gradients, enabling backpropagation 

and parameter updates in each epoch. 

The model training process is divided into several epochs. In each epoch, the model 

first enters training mode by calling the model.train() method, which performs forward 

propagation, loss calculation, backpropagation, and parameter updates using an 

optimizer (e.g., Adam) on the training data. Then, the model enters evaluation mode, 

where it is evaluated on the validation set. The model.eval() method is used to ensure 

that gradients are not calculated during inference, saving computational resources and 

improving inference speed. 
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After training is complete, the model weights that performed best on the validation set 

are used for final evaluation on the test set. Finally, the torch.save() function is used 

to save the model weights for use in future research or applications. 

5.5 Model Evaluation Implementation 

The study uses the sklearn.metrics library to calculate the accuracy, precision, recall, 

and F1 score of the model, and the confusion matrix is visualized through sns.heatmap. 
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6. Experiments 

6.1 Evaluation of Various Convolutional Neural Networks for Malware 

Classification 

6.1.1 Experiment Settings 

This experiment aims to compare the performance of different convolutional neural 

networks (CNNs) in the task of malware classification. To evaluate the classification 

effectiveness, multiple malware classification models will be used. These models 

employ VGG16, ResNet, or EfficientNet as the feature extractors for image-based 

malware representation and Opcode Markov Image. All models incorporate a multi-

level feature fusion mechanism proposed in this study. A total of nine models are 

evaluated in the experiment, with their names and configurations detailed in Table 4. 

Model Name 
Feature Extractor for 

Image-based Malware 
Representations 

Feature Extractor for 
Opcode Markov Image 

Model 1 VGG16 VGG16 

Model 2 VGG16 ResNet18 

Model 3 VGG16 EfficientNetB0 

Model 4 ResNet18 VGG16 

Model 5 ResNet18 ResNet18 

Model 6 ResNet18 EfficientNetB0 

Model 7 EfficientNetB0 VGG16 

Model 8 EfficientNetB0 ResNet18 

Model 9 EfficientNetB0 EfficientNetB0 
Table 4 Model configurations 

55 



 

 

          

       

        

           

          

        

        

             

  

 

  

     

     

     

     

     

     

     

     

     

     
   

 

  

 

   

         

      

    

       

During the experiment, the ResNet18 and EfficientNetB0 models were initialized using 

PyTorch's pretrained models to accelerate training and improve classification 

accuracy. To enhance the generalization ability of the models, data augmentation 

techniques such as random cropping and random flipping were applied to the malware 

images in the training set. The experimental dataset is sourced from the Microsoft 

Malware Classification Challenge. During the training phase, cross-entropy loss was 

used as the loss function, Adam optimizer as the optimization algorithm, with a 

learning rate set at 0.001, a batch size of 32, and a total of 100 epochs. The evaluation 

metrics for the experiment include accuracy, precision, recall, and F1-score. 

6.1.2 Experiment Results 

Model Accuracy Precision Recall F1 Score 

Model1 0.9640 0.9649 0.9640 0.9644 

Model2 0.9668 0.9674 0.9668 0.9671 

Model3 0.9825 0.9836 0.9825 0.9827 

Model4 0.9709 0.9713 0.9709 0.9711 

Model5 0.9732 0.9735 0.9732 0.9734 

Model6 0.9949 0.9950 0.9949 0.9949 

Model7 0.9862 0.9863 0.9862 0.9860 

Model8 0.9843 0.9848 0.9843 0.9843 

Model9 0.9931 0.9933 0.9931 0.9931 
Table 5 Experiments results 

The experiment results are show on Table 5. 

6.1.3 Analysis 

Based on Table 5, Model 6 demonstrates the best performance across all metrics. The 

model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%, 

and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature 

extractors, indicating that the combination of these two feature extractors is highly 
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effective in the task of malware classification. Following closely is Model 9, which 

achieves 99.31% in all metrics, also performing exceptionally well. Model 9 also 

employs EfficientNetB0 as a feature extractor, further demonstrating the superiority of 

EfficientNetB0. 

The comparison reveals that model performance significantly improves when 

EfficientNetB0 is used for feature extraction. This improvement could be due to 

EfficientNetB0’s ability to balance model complexity and accuracy effectively. Notably, 

even though Model 9 uses dual EfficientNetB0 as feature extractors, Model 6 

outperforms it. This could be because the deep residual network of ResNet18 excels 

at extracting complex texture features in image-based malware representations, while 

EfficientNetB0 is more effective in extracting opcode Markov image features with fewer 

texture details. 

Overall, models using VGG16 as a feature extractor (Model 1, Model 2, Model 3, 

Model 4) perform relatively poorly, especially compared to models combining 

EfficientNetB0 and ResNet18. This could be attributed to the relatively older 

architecture of VGG16, which, despite having a large number of parameters, is less 

efficient than more recent networks. ResNet18, on the other hand, performs quite well, 

with its deep residual networks effectively capturing malware features, particularly in 

the complex patterns found in image representations. 

Based on the experimental results, Model 6, which uses ResNet18 to extract image-

based malware representation features and EfficientNetB0 to extract opcode Markov 

image features, is the optimal model. 
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6.2 Comparison of Feature Fusion Techniques for Malware Classification 

6.2.1 Experiment Settings 

This experiment will compare the performance of different feature fusion methods in 

the task of malware classification, utilizing multiple malware classification models to 

assess their effectiveness. The feature extractors are configured based on the optimal 

settings identified in previous experiments. In each model, the image features of the 

malware and the opcode Markov image features will be integrated using various fusion 

methods, including feature concatenation, a multilayer deep network-based fusion 

method, a cross-attention-based feature fusion method, and the multilayer feature 

fusion method proposed in this study. The experiments will be conducted on the 

Microsoft Malware Classification Challenge dataset. A total of four models are 

evaluated in the experiment, with their names and configurations detailed in Table 6. 

Model Name Feature Fusion Method 

Model 1 Feature Fusion based via 
Concatenation 

Model 2 Feature Fusion based via Multilayer 
Deep Network 

Model 3 Feature Fusion based via Cross 
Attention 

Model 4 Feature Fusion based via Multilayer 
Feature Fusion 

Table 6 Model configurations 
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6.2.2 Experiments Results 

6.2.2.1 Results for Model 1(Feature Fusion based via Concatenation) 

Figure 15 Confusion matrix of model 1 

Accuracy Precision Recall F1 Score 

0.9825 0.9829 0.9825 0.9825 
Table 7 Results of model 1 

Model 1 employs the concatenate method proposed in this research for feature fusion. 

The confusion matrix shown in Figure 15 and evaluation metrics in Table 7 present 
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the classification results. According to the confusion matrix, the model correctly 

classified 2,130 malware samples and misclassified 38 samples. It can be observed 

that the model performs best on class 0 and class 7, with only two misclassified 

samples in each of these classes. This could be because the features of class 0 and 

class 7 are more distinct and have a greater degree of separation from other classes, 

allowing the model to classify these classes more accurately. The model performs 

worst on class 4, with 11 samples misclassified. This may be due to the higher internal 

feature diversity within class 4, meaning that the malware samples in this class have 

significant differences, making it challenging for the model to learn a unified pattern 

for correct classification. Additionally, 21 samples from other classes were 

misclassified as class 5. This could be because the features of class 5 significantly 

overlap with other classes in the feature space. The model struggles to distinguish 

samples from these overlapping regions, leading to a tendency to classify them as 

class 5. 

In terms of evaluation metrics, the model achieved an accuracy of 0.9825, a precision 

of 0.9829, a recall of 0.9825, and an F1 score of 0.9825. 
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6.2.2.2 Result for Model 2(Feature Fusion based via Multilayer Deep Network) 

Figure 16 Confusion matrix for model 2 

Accuracy Precision Recall F1 Score 

0.9852 0.9856 0.9852 0.9852 
Table 8 Results for model 2 

Model 2 employs the multilayer deep network method for feature fusion. The confusion 

matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate 

the classification results. According to the confusion matrix, the model correctly 

classified 2,136 malware samples and misclassified 32 samples. It is evident that the 
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model performed best in classifying Category 0, with all Category 0 samples being 

accurately identified. This could be attributed to the more distinct features of Category 

0, which have greater differentiability from other categories, allowing the model to 

classify these samples more accurately. The model performed worst in classifying 

Category 4, with 8 Category 4 malware samples being misclassified, of which 7 were 

incorrectly identified as Category 5. This may be due to the similar internal features 

between Category 4 and Category 5. Additionally, it can be observed that 14 malware 

samples from other categories were erroneously classified as Category 5. 

Regarding the evaluation metrics, the model achieved a classification accuracy of 

0.9852, a precision of 0.9856, a recall of 0.9852, and an F1 score of 0.9852. 
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6.2.2.3 Result for Model 3(Feature Fusion based via Cross Attention) 

Figure 17 Confusion matrix for model 3 

Accuracy Precision Recall F1 Score 

0.9912 0.9914 0.9912 0.9913 
Table 9 Results for model 3 

Model 3 employs the cross attention method for feature fusion. The confusion matrix 

and evaluation metrics presented in Table 9 illustrate the classification results. 

According to the confusion matrix shown in Figure 17, the model correctly classified 

2,149 malware samples and misclassified 19 samples. It is evident that the model 
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performs best in classifying categories 0 and 8, with only one sample from category 0 

being misclassified, and category 8 being entirely correctly classified. The model 

performs worst in classifying category 4, where six malware samples from category 4 

were misclassified, all of which were incorrectly identified as category 5. This 

misclassification may be due to the internal similarity between categories 4 and 5. 

Additionally, 12 samples from other categories were misclassified as category 5. 

In terms of evaluation metrics, the model achieved an accuracy of 0.9912, a precision 

of 0.9914, a recall of 0.9912, and an F1 score of 0.9913. 
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6.2.2.4 Result for Model 4(Feature Fusion based via Multilayer Feature Fusion) 

Figure 18 Confusion matrix for model 4 

Accuracy Precision Recall F1 Score 

0.9949 0.9950 0.9949 0.9949 
Table 10 Results for model 4 

Model 4 employs the multilayer feature fusion method proposed in this research for 

feature fusion. The confusion matrix and evaluation metrics shown in Table 10 

illustrate the classification results. According to the confusion matrix shown in Figure 

18, the model correctly classified 2,157 malware samples and misclassified 11 

malware samples. It can be observed that the model performs best in classifying 
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categories 0, 1, 2, 6, and 8, with these categories being completely correctly classified. 

The model performs worst in classifying category 4, with 6 samples from category 4 

being misclassified, all of which were incorrectly identified as category 5. This may be 

due to the similarity in internal features between categories 4 and 5. Additionally, it is 

evident that 8 malware samples from other categories were misclassified as category 

5. 

In terms of evaluation metrics, the model achieves an accuracy of 0.9949, a precision 

of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. 
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6.2.3 Analysis 

In this experiment, we compared the performance of several commonly used feature 

fusion methods in the context of malware classification. The methods evaluated 

include feature fusion based on concatenation, multilayer deep network based feature 

fusion, cross-attention based feature fusion, and the novel multilayer feature fusion 

method proposed in this research. The experimental results demonstrate that the 

proposed multi-level feature fusion method outperforms the others across all metrics. 

Specifically, this method achieved an accuracy of 99.49%, a precision of 99.50%, a 

recall of 99.49%, and an F1 score of 99.49%. The experimental results indicate that 

the proposed multi-level feature fusion method successfully integrates features from 

image-based malware representation and Opcode Markov Image, effectively 

capturing inter-feature relationships and highlighting critical information within key 

features. Therefore, the proposed multi-level feature fusion method is a reliable feature 

fusion approach. 
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6.3 Performance Analysis of Malware Classification Models Across 

Different Datasets 

6.3.1 Experiment Settings 

This experiment employed the optimal configuration validated in previous experiments 

and was trained and evaluated on the CCF BDCI malware classification dataset. 

6.3.2 Experiment Results 

The experiment results are shown on Table 11 and Figure 19. 

Figure 19 Confusion matrix 
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Accuracy Precision Recall F1 Score 

0.9940 0.9941 0.9940 0.9940 
Table 11 Experiment results 

6.3.3 Discuss 

The experimental results show that the proposed method in this study achieved an 

accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of 

99.40%. This indicates that the method proposed in this research is effective in 

classifying different types of malware. From the confusion matrix, it can be observed 

that misclassifications occurred in malware categories 0, 2, 3, 4, and 5. Specifically, 

categories 3 and 4 each had two misclassifications: two samples of category 3 were 

incorrectly identified as category 4, and two samples of category 4 were misidentified 

as category 3. This may be due to the similarity between categories 3 and 4. 

Additionally, a total of four samples were misclassified as category 4. Overall, the 

method proposed in this study performs well in classifying samples from the CCF BDCI 

malware classification dataset. 
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7. Discussion 

7.1 Discussing Results for each Research Question 

⚫ Which deep learning model is optimal for extracting image representations of 

malware features and opcode Markov image features? 

To address this issue, we conducted an experiment to evaluate the performance of 

different models in the malware classification method proposed in this study. Three 

deep learning models, widely used in the field of image processing, were selected for 

this research: VGG16, ResNet18, and EfficientNetB0. These three convolutional 

neural networks were tested in combination during the experiment. The results 

indicated that the model performed best when ResNet18 was used as the feature 

extractor for image-based malware representations, and EfficientNetB0 was used as 

the feature extractor for opcode Markov images. 

⚫ Can an effective technique for malware feature fusion be developed? 

To validate that our proposed multilayer feature fusion method outperforms commonly 

used methods in existing research, we compared it with feature fusion methods based 

on concatenation, multilayer deep network, and cross-attention. The experimental 

results on the Microsoft Malware Classification Challenge dataset showed that our 

method achieved the best performance across all metrics, with an accuracy of 0.9949, 

a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. These results 

indicate that our method enables the model to more deeply learn the correlations 

between the two types of features, highlighting critical knowledge through information 

interaction. 

⚫ Can a robust and generalizable malware classification algorithm be developed? 
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To validate the accuracy of the proposed method for malware classification across 

different datasets, this study trained and evaluated the model using the CCF BDCI 

Malware Classification Dataset. The experimental results demonstrate that the 

proposed method achieves an accuracy of 99.40%, a precision of 99.41%, a recall of 

99.40%, and an F1 score of 99.40% on this dataset. These results indicate that the 

proposed method is effective on other type of malwares. 

7.2 Comparison with Existing Literature 

Ahmed et al.[12] proposed a method for malware classification based on transfer 

learning using Inception V3, where the byte data of malware is converted into image 

features. On the Microsoft malware dataset, they achieved an accuracy of 98.76% and 

a recall of 94.8%. However, our approach achieved even better metrics, with an 

accuracy of 99.49% and a recall of 99.54%. This indicates that our method, which 

integrates malware image features with malware opcode features, can identify a 

broader range of malware category information. In comparison, the superior 

performance of our model can be attributed to the additional semantic information 

provided by the opcode features, enabling the classifier to capture deeper behavioral 

patterns of the malware. 

Mallik et al.[13] proposed a method for classifying malware grayscale images using a 

convolutional recurrent network. Experimental results on the Microsoft Malware 

Classification Challenge dataset show that their method achieved an accuracy of 

0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast, 

our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, 

and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms 
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theirs across all metrics. While the difference in precision between the two methods is 

minimal, our approach surpasses theirs by more than one percentage point in the 

other metrics. This indicates that when relying solely on malware grayscale images for 

classification, the model captures less informative content compared to when the 

features from malware images are combined with opcode features for classification. 

Deng et al.[14] proposed a novel approach for generating malware images using 

assembly instructions and Markov transition matrices. Based on this, they designed a 

convolutional neural network (CNN) for malware classification. Their method achieved 

a test accuracy of 99.44% on the Microsoft malware dataset. In comparison, our 

feature fusion method achieved an accuracy of 99.49%, slightly surpassing their result, 

indicating a certain advantage in accuracy. Furthermore, their precision was 99.44%, 

while our precision reached 99.50%, suggesting that a higher proportion of files 

predicted as a certain type of malware indeed belonged to that category in our 

approach. Additionally, their recall rate was 99.13%, whereas ours was 99.54%, 

implying that our method was more effective in identifying various types of malware. 

Finally, the F1-score of Deng et al.'s method was 99.29%, while our method achieved 

99.52%, demonstrating that our approach better handles minority classes in the 

imbalanced Microsoft malware dataset. 

Zhao et al.[16] proposed a visualization-based method for malware family 

classification utilizing deep learning. They convert binary files into images and cluster 

the malware based on texture features within these images. The researchers 

employed a deep convolutional neural network to fuse and classify features from 

Markov images generated from both bytecode and opcode. Experimental results on 

the Microsoft Malware Classification Challenge dataset demonstrated that their model 

achieved an accuracy of 0.9976, precision of 0.9901, recall of 0.9881, and an F1 score 
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of 0.9891. In comparison, our method achieved an accuracy of 0.9949, precision of 

0.9950, recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Although 

our method slightly underperformed Zhao et al.'s method in terms of precision, our 

model excelled in other metrics. It is noteworthy that while both methods utilized 

Markov images generated from opcode for malware classification, Zhao et al. further 

incorporated Markov images generated from bytecode. Our method, on the other hand, 

is based on an image-based malware representation generated directly from binary 

files. Theoretically, this image-based malware representation should encompass more 

malware information than Markov images generated from bytecode, but our 

experimental results did not outperform their method. This could be attributed to the 

fact that ResNet18 may have inferior feature extraction capabilities compared to the 

convolutional neural network used in their approach. In future research, we will 

consider optimizing the convolutional neural network architecture to further improve 

classification performance. 

Yang et al.[24] proposed a hybrid attention network based on multi-feature alignment 

and fusion for malware detection. This method first utilizes a 1D convolutional neural 

network to extract time series features of binary files and applies a triangular attention 

algorithm to extract opcode features from assembly code. Then, a cross-attention 

module is used to align and fuse the binary file features with the assembly code 

features, and finally, a deep neural network is employed to detect malware. 

Experimental results on the Microsoft Malware dataset demonstrate that this method 

achieves outstanding performance in terms of accuracy, precision, recall, and F1-

score, reaching 99.54%, 99.40%, 99.41%, and 99.40%, respectively. In our study, 

although both methods employ cross-attention-based feature fusion strategies, our 

model exhibits better balance across performance metrics, achieving 99.49% 
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accuracy, 99.50% precision, 99.49% recall, and 99.49% F1-score. Specifically, while 

Yang et al.'s method slightly outperforms in accuracy, our model shows superior 

performance in precision, recall, and F1-score. This may indicate that the introduction 

of low-level feature fusion components in our approach further enhances the overall 

performance of the model. 

Snow et al.[25] proposed an end-to-end multi-model deep learning framework for 

addressing the problem of malware classification. Their approach utilizes a fully 

connected network to process metadata, a convolutional neural network (CNN) to 

handle grayscale images derived from malware bytecode, and an LSTM network to 

process opcode sequences within malware files. On the Microsoft malware dataset, 

their method achieved an accuracy of 98.35%. In comparison, our approach reached 

an accuracy of 99.49%, significantly outperforming theirs. This indicates that, although 

their method also employs a multi-feature fusion mechanism, our method 

demonstrates more pronounced advantages in the comprehensiveness of feature 

selection and the effectiveness of the fusion mechanism. 
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8. Conclusion 

8.1 Conclusion 

Nowadays, malware has become a significant threat to information security, making 

the study of malware classification highly urgent. Traditional methods typically rely on 

single-feature approaches for malware classification, but these methods often struggle 

to cope with obfuscation techniques employed by malware to evade detection. 

Therefore, research on malware classification based on feature fusion is both 

necessary and promising. 

We propose a malware classification method based on the fusion of malware images 

and malware opcode features, effectively classifying malware by fusing features from 

both image-based malware representation and opcode sources. Specifically, our 

model employs two feature fusion modules: a cross-attention-based feature fusion 

module and a low-level feature fusion module based on multiplication. These modules 

enable deep feature fusion, thereby classifying malware more effectively. 

To determine the most suitable model for extracting image-based malware 

representation features and malware opcode Markov image features and accurately 

classifying malware, we conducted comparative experiments. We selected three 

common convolutional neural networks to extract the corresponding opcode 

information. Experimental results indicate that the best model combination is to use 

ResNet18 for extracting malware image features and EfficientNetB0 for extracting 

malware opcode Markov image features. 

To further validate the effectiveness of our method, we compared the classification 

performance of traditional feature fusion methods with our approach. The results show 

that our method outperforms traditional methods in metrics such as accuracy and 
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recall. Moreover, to evaluate the classification effectiveness of our method on different 

types of malware, we tested it using the CCF BDCI 21 dataset. The experimental 

results demonstrate that our method can effectively classify malware on this dataset. 

In conclusion, our research provides a reliable and effective new approach for malware 

classification and lays a solid foundation for future research on malware classification 

based on multi-feature fusion. Moving forward, research on malware classification 

methods based on multi-feature fusion will continue to address the increasingly 

complex malware threats. 

8.2 Future Work 

In future work, we will continue to delve deeper into malware classification methods 

based on multi-level feature fusion. Although we have already implemented a feature 

fusion method based on mutual attention, there remains significant room for further 

exploration in this area. Additionally, we plan to incorporate other deep learning 

models for feature extraction and investigate the potential application of additional 

features in malware classification. 
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9. Reflection 

Throughout the research process, I encountered several challenges related to both 

technical aspects and time management. Initially, file operations and string processing 

posed significant difficulties for me. Due to the frequent need to handle files and 

accurately process strings during data processing, I spent a considerable amount of 

time on these tasks, which slowed down the progress of my research. However, 

through continuous practice and repeated trials, I gradually became proficient in these 

technical areas, leading to a significant improvement in processing efficiency. 

In terms of time management, I noticed that my efficiency was relatively low at the 

beginning of the project, primarily because I did not plan the allocation of time between 

experiments and writing effectively. To address this issue, I decided to start writing the 

dissertation while conducting experiments. This approach of simultaneously 

conducting experiments and writing not only improved my work efficiency but also 

helped me maintain a consistent train of thought when documenting the research 

process. Additionally, communication with my supervisor played a crucial role. 

Through multiple discussions with my supervisor, I received valuable advice that 

helped me better plan the research timeline and overcome the challenges I faced 

during the project. 

By overcoming these challenges, I not only enhanced my technical skills but also 

learned to manage my time more effectively. These experiences will have a profound 

impact on my future research and learning endeavors. 
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	1. Introduction 
	1.1 Introduction 
	In recent years, with the rapid development of the internet industry, an increasing number of devices have connected to the internet, significantly transforming people's lifestyles and work habits. However, alongside the broad application of new technologies, information security issues have become increasingly prominent. Cybercriminals employ various methods to carry out attacks, causing severe damage to both individuals and businesses. Among these, malware attacks are one of the primary threats to current
	Malware is not only increasing rapidly in quantity, but its complexity and diversity are also continuously evolving. As cyber defense mechanisms advance, attackers have adopted more sophisticated techniques to bypass security measures. By continuously improving and updating malware code, they make it more stealthy, destructive, and harder to detect and defend against. This rapid evolution poses significant challenges to the cybersecurity field. According to the SonicWall 2024 Mid-Year Threat Report[1], the 
	VirusTotal Malware Trends Report[2], malware is increasingly utilizing newer and more covert distribution methods. The use of traditional file formats such as Excel, RTF, CAB, and compressed files in malware distribution is gradually decreasing, being replaced by emerging file types and distribution methods. In 2023, OneNote files and JavaScript distributed through HTML quickly became mainstream distribution mediums. 
	In recent years, deep learning technology has made significant advancements across various fields, demonstrating its powerful capabilities in handling complex data and tasks. Particularly in the domain of malware classification, deep learning has emerged as a highly regarded and widely applied approach. 
	The image-based representation of malware has become a significant approach in the field of deep learning-based malware classification. This method involves converting malware bytecode into images, enabling deep learning models to automatically learn and extract useful features, thereby enhancing the accuracy and efficiency of malware detection. The image-based representation of malware refers to the process of converting malware bytecode data into grayscale or color images. This approach offers several adv
	-

	The Markov image of malware opcodes is another commonly used feature for malware classification based on deep learning methods. The use of the Markov image of malware opcodes is justified because opcodes represent the sequence of instructions that an application executes during its runtime, reflecting the application's low-level operations. By analyzing these opcode sequences, it is possible to capture the behavioral characteristics of the application, which is crucial for distinguishing different types of 
	Traditional classification methods typically rely on the analysis of a single feature, such as image-based malware representation or opcode Markov image analysis. However, as malware technology continues to evolve, these single-feature analysis methods face certain limitations when dealing with complex and diverse malware. Therefore, it is particularly necessary and promising to propose a joint analysis method that combines malware's image-based presentation with opcode Markov images. The image-based presen
	approaches in feature extraction and representation. Additionally, capturing and representing the connections between image-based features and opcode Markov features to improve the classifier's ability to recognize malware is also a major difficulty. 
	In response to these challenges, this research will explore different fusion strategies with the aim of proposing a malware classification method that fully utilizes the advantages of both features. 
	1.2 Research Aim and Objectives 
	1.2 Research Aim and Objectives 
	The purpose of this study is to propose a malware classification method based on a multi-level feature fusion of image-based presentations and opcode Markov images of malware. The specific objectives of this research include: conducting a comprehensive literature review to understand the current malware detection techniques using imagebased presentations and opcode Markov images, as well as their developments; designing a malware classification method that incorporates multilayer feature fusion; testing the
	-


	1.3 Research Questions 
	1.3 Research Questions 
	Which deep learning model is optimal for extracting image representations of malware and opcode Markov image features? 
	⚫

	In the study of malware classification models, selecting an appropriate model to extract image representations of malware and opcode Markov image features is a crucial question. Therefore, this study will investigate and validate the performance of 
	commonly used models in extracting malware image representations and opcode Markov image features. 
	⚫
	⚫
	⚫
	⚫
	⚫

	Can an effective technique for malware feature fusion be developed? 

	Feature fusion techniques have been widely applied in the field of malware classification. However, existing research primarily focuses on simple feature fusion methods, which often overlook the complex relationships and potential complementarity between features, leading to limited improvements in classification performance. Thus, the critical question of this research is: How can a more effective feature fusion method be designed to deeply explore and utilize the relationships between features, thereby si

	⚫
	⚫
	⚫

	Can a robust and generalizable malware classification algorithm be developed? 


	In the field of malware classification, robustness and generalizability are key criteria for evaluating the quality of classification algorithms. Malware comes in many forms, and attack methods are constantly evolving. Therefore, an effective classification algorithm should maintain efficient and accurate classification capabilities even when faced with diverse datasets. This study will validate the proposed method's classification performance across different malware datasets to assess its adaptability and

	1.4 Structure of The Project 
	1.4 Structure of The Project 
	In the first chapter, Introduction, the research content is introduced, providing an overview of the study and its objectives. The second chapter, Literature Review, presents a review of related literature, discussing the background and context of the research. The third chapter, Methodology, details the methods employed in this study. The fourth chapter, Design, describes the design of a classification method based on the multi-layer feature fusion of malware image representations and opcode Markov images.
	2. Literature Review 
	2.1 Image-based Malware Representation 
	In the field of malware analysis, traditional approaches are increasingly facing complex challenges. To more effectively identify and classify malware, researchers have proposed an innovative method: representing malware by converting its binary data into image form. This image-based malware representation approach not only reveals the unique patterns of malware but also opens up new possibilities for utilizing computer vision and deep learning techniques in malware detection. In the following, we will revi
	The research by Nataraj et al.[4] was the first to visualize malware into images. The core idea of the study is to visualize the binary files of malware as grayscale images, noting that images belonging to the same malware family often exhibit similar layouts and textures. Based on this visual similarity, the research introduces a method for classification using standard image features, without the need for code disassembly or execution. The main experimental results show that this method achieved a classif
	Tekerek et al.'s research[5] proposes an algorithm called B2IMG, which is designed to convert byte files into image format for the purpose of malware classification. The specific steps of this algorithm include reading the byte files, data processing, image generation, and image conversion. By directly converting byte data into image data, 
	the B2IMG algorithm avoids the information loss often encountered in traditional analysis methods, thereby improving the accuracy of malware classification. To address the issue of data imbalance, the study also introduces CycleGAN (Cycle-Consistent Generative Adversarial Network) for data augmentation. Finally, the study employs DenseNet to classify the image-based malware representations. Experimental results demonstrate that using the image data converted by the B2IMG algorithm, combined with data augmen
	The study by Shaukat et al.[6] proposes an innovative malware detection method based on deep learning. The proposed method first visualizes executable files (PE files) as color images, then uses a fine-tuned model to extract deep features from these images. Finally, it employs a Support Vector Machine (SVM) to detect malware based on these deep features. Experimental results show that this method outperforms existing methods on multiple benchmark datasets, achieving an accuracy of 99.06% on the Malimg datas
	Chaganti et al.[7] explored a malware classification method based on image representation. The study proposed using the EfficientNetB1 model for classifying malware families, leveraging byte-level image representation techniques of malware. After comparing the performance of various CNN pre-trained models, the authors found that EfficientNetB1 achieved a classification accuracy of 99% while requiring significantly fewer network parameters than other pre-trained models. Additionally, various visualization te
	performance of different CNN models. The research demonstrated that EfficientNetB1 not only effectively improves accuracy in malware classification but also reduces the consumption of computational resources. 
	The study by Acharya et al.[8] proposes a malware classification framework based on the EfficientNet-B1 model. The malware samples in the study are represented as byte code grayscale images and classified using the EfficientNet-B1 model. The experimental results demonstrate that the model achieved a classification accuracy of 98.57% on a dataset comprising 10,868 samples from 9 different malware families, significantly outperforming other pretrained deep learning models. 
	The research by Yadav et al.[9] proposes using deep learning methods for automated malware detection. The research compares the performance of 26 convolutional neural network models in Android malware detection and proposes a detection method based on the EfficientNet-B4 model. This method involves converting Android's DEX files into images, extracting features from these images using the EfficientNet-B4 model, and finally performing binary classification to distinguish between malware and benign software t
	In the study conducted by Lojain et al.[10], the core components of APK files, such as classes.dex, resources, manifest, and certificates, were utilized. These binary data were converted into 8-bit vectors and then transformed into grayscale images. These grayscale images were subsequently used to train and test the model. The study employed the ResNet-50 model, replacing its softmax classification layer with an SVM model (using a Gaussian kernel) to enhance detection performance. After conducting 
	experiments on the DREBIN dataset, the research results showed that the grayscale image model, which combined Certificates (CR) and Android Manifest (AM), achieved a classification accuracy of 97%. Additionally, the model performed exceptionally well on other metrics such as precision, recall, and F1-score, all exceeding 95%. 
	The work by Asam et al.[11] involves detecting and classifying malware variants using deep learning and machine learning techniques. The research introduces two novel malware classification frameworks: Malware Classification based on Deep Feature Space (DFS-MC) and Malware Classification based on Deep Boosted Feature Space (DBFS-MC). In the DFS-MC framework, a custom Convolutional Neural Network (CNN) architecture is employed to generate deep features, which are then input into a Support Vector Machine (SVM
	The study by Ahmed et al.[12] proposed the use of a transfer learning approach with the Inception V3 model to classify malware samples from the BIG15 dataset. The research also compared the performance of several other machine learning and deep learning models, including Logistic Regression (LR), Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), and Long Short-Term Memory networks (LSTM). In the experiments, the transfer learning approach using the Inception V3 model achieved a classifi
	The research by Mallik et al.[13] proposes a convolutional recurrent-based malware classification technique that leverages visual recurrent features in grayscale malware images for classification. Initially, the malware samples are converted into grayscale images, and convolutional neural networks (CNNs) are used to extract structural similarity features. To balance the dataset and reduce class bias, data augmentation is applied. Subsequently, visual features are extracted using the VGG16 feature extractor,
	Currently, classification methods based on image-based representation of malware have become a common and effective technical approach. These methods typically incorporate convolutional neural networks (CNNs) such as VGG, ResNet, EfficientNet, and other models, demonstrating outstanding classification performance. However, selecting the appropriate convolutional neural network model remains a topic that requires further research. Additionally, solely relying on image-based representation techniques may some
	2.2 Opcode 
	Opcode, short for operation code, is a portion of a machine language instruction that specifies the operation to be performed. While obtained from a decompiled .asm file, opcodes provide a detailed view of the low-level instructions executed by a program. Using opcodes for malware classification offers several benefits. They reveal the specific behaviors and operational details of the malware, allowing for precise identification of its functions and intents. This granularity aids in distinguishing between d
	The research by Singh et al.[3] develops and evaluates a multimodal deep learning framework called SHIELD, designed for detecting malware within Android systems. The framework integrates opcode Markov images and dynamic API calls, utilizing a Multimodal Autoencoder (MAE) to minimize the reliance on feature engineering and to autonomously discover relevant features for malware detection. SHIELD demonstrated strong performance on two benchmark datasets, CICandMal2020 and AMD, achieving detection rates of 94% 
	The study by Deng et al.[14] aims to enhance the effectiveness of malware detection through a novel three-channel visualization approach. The deep learning model employed in this research includes a Convolutional Neural Network (CNN) for feature extraction and classification. The study utilizes a publicly available malware dataset from Microsoft, which contains multiple malware families, to evaluate the effectiveness of the proposed method. The feature extraction techniques involve generating images from as
	The study by Deng et al.[14] aims to enhance the effectiveness of malware detection through a novel three-channel visualization approach. The deep learning model employed in this research includes a Convolutional Neural Network (CNN) for feature extraction and classification. The study utilizes a publicly available malware dataset from Microsoft, which contains multiple malware families, to evaluate the effectiveness of the proposed method. The feature extraction techniques involve generating images from as
	MCTVD exhibits an extremely high accuracy rate (99.44%) in malware classification, along with significant precision, recall, and F1 scores, demonstrating the effective integration of multi-channel data. 

	The study by Gao et al.[15] proposes an anti-obfuscation Android malware analysis method named CorDroid. The authors propose a method that combines various features to counteract code obfuscation, and they develop CorDroid based on two new features: the Enhanced Sensitive Function Call Graph (E-SFCG) and the Opcodebased Markov Transition Matrix (OMM). E-SFCG describes the relationships between sensitive function calls, while OMM reflects the transition probabilities between opcodes. The authors validate the
	-

	The study by Zhao et al.[16] proposes a deep learning-based method for classifying malware families through visualization techniques. By converting binary files into images and utilizing the texture features within these images for clustering, the researchers employed a deep convolutional neural network (CNN) to perform feature fusion and classification on Markov images generated from bytecode and opcode. Specifically, the bytes and opcodes in malware binary files were transformed into Markov images based o
	-

	The research by Mai et al.[17] proposes a malware detection method based on Markov images and the MobileNet model, emphasizing the generation of Markov images from opcode sequences and the subsequent classification of these images using the lightweight MobileNet model. This method achieves good detection performance while maintaining low computational resource consumption. Experimental results indicate that classifying the generated Markov images with the MobileNet model can effectively detect malware in Io
	The opcode Markov images have been widely applied in the field of malware classification, demonstrating exceptional performance in handling complex malware detection tasks, particularly when dealing with obfuscation techniques and unknown malware, thereby overcoming the limitations of traditional detection methods. Various convolutional neural networks, as commonly used feature extractors, have enhanced detection accuracy. However, research on combining opcode Markov images with image-based representations 
	2.3 Feature Fusion in Malware Classification 
	Feature fusion has been widely applied in the field of malware classification. By integrating different features, it effectively enhances the classification performance of models. 
	The paper by Chen et al.[18] proposes an innovative approach to Android malware detection by utilizing Graph Attention Networks (GAT) and the deep fusion of multimodal features. This paper introduces a novel type of call graph, named the Class-Set Call Graph (CSCG), designed to effectively extract both structural and semantic features of Android applications. Furthermore, the paper presents a feature fusion network that integrates CSCG features with permission features to enhance malware detection. In this 
	-

	The paper by Xuan et al.[19] proposes a malware classification method combining Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet. This method enhances classification accuracy by fusing multiple features, utilizing malware assembly data and API sequences as features, and introducing a bidirectional temporal convolutional network to capture bidirectional temporal features. Additionally, the paper
	The paper by Xuan et al.[19] proposes a malware classification method combining Bidirectional Temporal Convolutional Network (BiTCN) and Transfer Learning Atrous Spatial Pyramid Pooling EfficientNet (TAEfficientNet), named BiTCN-TAEfficientNet. This method enhances classification accuracy by fusing multiple features, utilizing malware assembly data and API sequences as features, and introducing a bidirectional temporal convolutional network to capture bidirectional temporal features. Additionally, the paper
	accuracies of 99.461% and 97.92% on the Kaggle and DataCon datasets, respectively, representing improvements of 0.38% and 0.87% compared to other methods. 

	The study by Li et al.[20] proposes a method for classifying malware families based on multimodal fusion and weight self-learning. Firstly, the study extracts multidimensional features of malware through static analysis, including byte, format, statistical, and semantic features, which are then fused during the feature engineering phase through concatenation. In the model construction phase, a weight self-learning mechanism is introduced to automatically learn the weights of different features within each f
	The study by Kumar et al.[21] proposes a novel architecture for malware classification based on image visualization. This approach utilizes a VGG16 model as a feature extractor, combined with three convolutional neural network models to obtain varied feature maps. The extracted features are concatenated to form a feature map, which is then trained using six classifiers. The experiments were conducted using the MalImg dataset, which contains 9,339 images from 25 families, as well as real-world packed malware
	The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning framework aimed at enhancing cybersecurity by analyzing the classification of Internet of Things (IoT) malware. The research focuses on utilizing strings extracted from malware executables and image-based features. In the "feature fusion and classification" step, these features learned from different data representations are 
	The research of Dib et al.[22] proposes an innovative multi-dimensional deep learning framework aimed at enhancing cybersecurity by analyzing the classification of Internet of Things (IoT) malware. The research focuses on utilizing strings extracted from malware executables and image-based features. In the "feature fusion and classification" step, these features learned from different data representations are 
	concatenated to form a shared multimodal representation. This concatenated multimodal representation is then input into a neural network with fully connected layers for final, efficient classification. The study analyzed over 70,000 recently detected IoT malware samples, using Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM) to process image and string data, respectively. Experimental results indicate that this multi-layered deep learning framework significantly outperforms tra

	The research of Chen et al.[23] proposes a novel method for detecting Android malware by integrating various features of Android applications. First, the paper introduces a new Class Set Call Graph (CSCG), which uses Java class sets as nodes and designs a CSCG construction method that can determine node size based on the application's scale. Then, a topic model is used to mine semantic features from the source code. Next, a Graph Attention Network (GAT) is employed to extract CSCG features. Finally, the stu
	Yang et al.[24] introduced a hybrid attention network model for malware detection that enhances accuracy by aligning and integrating multiple features, specifically combining binary file and opcode features. The model initially extracts temporal sequences and jump characteristics from binary files using stacked convolutional networks while employing a triangular attention algorithm to extract opcode features 
	Yang et al.[24] introduced a hybrid attention network model for malware detection that enhances accuracy by aligning and integrating multiple features, specifically combining binary file and opcode features. The model initially extracts temporal sequences and jump characteristics from binary files using stacked convolutional networks while employing a triangular attention algorithm to extract opcode features 
	from assembly code. Subsequently, a cross-attention mechanism is used to align and fuse these two distinct sources of features, resulting in more stable and representative feature representations. The literature emphasizes the crucial role of the crossattention mechanism in this process, as it establishes deep connections between different modal features, enabling the model to better understand and learn the relationships between binary files and assembly code, thereby significantly improving malware detect
	-
	-


	The work by Snow et al.[25] proposes an end-to-end multi-model deep learning framework aimed at directly extracting features from malware data to enhance classification accuracy and generalization ability. The model integrates three distinct deep neural network architectures to process different attributes of malware data. The model concatenates various features and then classifies them using a Multi-Layer Perceptron (MLP). Experimental results demonstrate that the proposed model excels in both classificati
	Currently, in the field of malware classification research, feature fusion methods have been widely applied. These methods significantly enhance classification accuracy by extracting and integrating structural features, semantic features, permission features, and image-based features. However, the current feature fusion methods still primarily rely on traditional approaches such as concatenation and addition, which to some extent limit the potential of feature fusion technology in malware classification. 
	Moreover, the classification methods that integrate malware image features with opcode Markov image features have not been sufficiently explored, and further research and optimization are required. 

	2.4 Research Gap 
	2.4 Research Gap 
	Although image-based malware classification techniques have shown outstanding performance, many studies still rely on a single feature representation, such as images generated only from bytecode or opcode. These methods perform well on specific datasets; however, they exhibit significant limitations when dealing with data imbalance, adversarial attacks, and unknown malware variants. Therefore, research on combining image representations of malware with Opcode Markov images for classification is not only nec
	Most current feature fusion methods rely on traditional operations like concatenation and addition, failing to fully exploit and utilize the potential of multiple features. Therefore, proposing a more effective feature fusion method is crucial for improving malware classification performance. 
	In research on classification based on malware image representations and Opcode Markov images, convolutional neural networks are commonly used as feature extraction tools. However, the actual performance of different convolutional neural networks in malware classification still requires further in-depth study. 
	Moreover, the robustness of malware classification algorithms across different datasets is equally critical and urgently needs further validation and improvement. 
	3. Research Methodology 
	3.1 Research Philosophy 
	The philosophical foundation of this research is positivism. Positivism emphasizes the validation of hypotheses through objective data, which aligns with the experimental approach of classifying malware based on real-world data in this study. 
	3.2 Research Process 
	Figure 2 illustrates our research process, which comprises five key steps: data collection, data preprocessing, model design, model training, and model evaluation. These steps form the core of our research methodology. 
	Figure
	Figure 2-Research Process 
	Data Collection: In the research of malware classification, collecting a high-quality malware dataset is crucial. Common methods for data collection include honeypots, third-party sharing sites, and open-source datasets. Each of these methods has its own advantages and disadvantages. 
	Data Preprocessing: In deep learning-based malware classification research, data preprocessing is essential, as this step involves extracting features from malware data that can be processed by deep learning algorithms. In our research, we utilized two types of features: image based malware representations and malware opcode Markov images. 
	Model Design: This study employs a fusion of malware images and malware opcode Markov images for malware classification. Therefore, it is necessary to select an appropriate deep learning algorithm to extract features from these two types of images. Additionally, a feature fusion method needs to be designed to effectively combine these features. 
	Model Training: Model training is the process by which the model learns from the data and updates its parameters. This includes forward propagation, loss calculation, and backpropagation. Furthermore, training a deep learning model requires setting a loss function and an optimization algorithm. The loss function measures the accuracy of 
	the model’s predictions, while the optimization algorithm helps the model update its 
	parameters. 
	Model Evaluation: After completing model training, it is necessary to evaluate its performance in the malware classification task. Common evaluation metrics include accuracy, precision, recall, F1-score, and confusion matrix. 
	3.3 Data Collection 
	In malware research, collecting high-quality datasets is a crucial step in the study. Currently, commonly used methods for collecting malware datasets include honeypots, third-party malware sharing websites, and open-source datasets. 
	3.3.1 Honeypot 
	Honeypot technology is a widely used method for collecting malware, designed to deceive attackers to capture malicious behavior[26]. This is achieved by configuring vulnerable network services on certain decoy hosts to attract and capture attack behaviors. Honeypots are categorized into low-interaction[26] and high-interaction honeypots[27]. 
	3.3.2 Third-party malware sample sharing websites 
	Third-party malware sample sharing websites are another commonly used method for collecting malware. Users can upload and download various malware samples for research and analysis purposes. 
	3.3.3 Open-source datasets 
	Open-source datasets are an important resource frequently used in malware research. Open-source malware datasets often contain a large number of labeled malware samples, providing convenience for researchers. 
	3.4 Data Pre-processing 
	3.4.1 Image-based Malware Representations Extraction 
	Nataraj et al.[4]were the first to propose a method for mapping malware into images and utilizing these images for malware classification. In this method, the binary file of the malware is first read into a one-dimensional array of 8-bit unsigned integers. This one-dimensional array is then reshaped into a two-dimensional array, generating the corresponding grayscale image. The width of the image is adaptively adjusted based on the file size: smaller files result in narrower image widths, while larger files
	Figure
	Figure 1 Malware visualization algorithm by Nataraj et al. 
	Tekerek et al.[5] proposed an algorithm for mapping malware into grayscale and color images. Unlike the method introduced by Nataraj et al., this algorithm is capable of 
	generating color images with richer textures and organizing them into square images that are better suited for deep learning processing. 
	The image generation process, whether for grayscale or color images, shares the following common steps: First, the binary file of the malware, represented as hexadecimal characters, is read. Then, based on the predetermined image type, the dimensions of the corresponding image matrix are calculated. Subsequently, the malware's numeric data is populated into the matrix to generate the corresponding image. 
	The key difference lies in the fact that grayscale images use only a single channel to represent pixel intensity, whereas color images utilize multiple channels, thereby capturing more complex textures. Additionally, to enhance the feature representation of the images, the method proposed by Tekerek et al.[5] specifically excludes meaningless zero values, thereby optimizing the image generation process. The processing workflow is illustrated in the accompanying Figure 2. 
	Figure
	Figure 2 Malware visualization algorithm by Tekerak et al. 
	3.4.2 Malware Opcode Markov Image Extraction 
	The Markov image of malware is a method used to represent and analyze malware characteristics by converting the statistical features of malware opcode sequences into images. This approach visualises the transition probability matrix of byte pairs (or opcode pairs) in the malware as an image, thereby capturing its statistical properties. This image format can be used as input for deep learning models for malware detection and classification. 
	The generation of Markov images is based on Markov chain theory[17]. A Markov chain assumes that the future state of a system depends only on its current state, independent of previous states. In the context of malware analysis, this implies that the occurrence probability of an opcode depends solely on the preceding opcode. By calculating the transition frequencies of all adjacent opcode pairs within the entire malware sample, a transition probability matrix can be constructed. Each element of this matrix 
	According to research by Zhao et al.[16], the steps to generate a Markov image from malware opcodes include the following: opcode sequence extraction, opcode pair statistics, transition probability matrix generation and markov image generation. 
	⚫
	⚫
	⚫
	⚫

	Opcode Sequence Extraction: Extracting opcode sequences from malware. 

	⚫
	⚫
	⚫

	Opcode Pair Statistics: Counting the frequency of each opcode pair in malware samples. 

	⚫
	⚫
	⚫

	Transition Probability Matrix Generation: Calculating the transition probabilities based on the statistics of opcode pairs and generating the transition probability matrix. 

	⚫
	⚫
	⚫

	Markov Image Generation: Multiplying the values in the transition probability matrix by 255 to meet pixel requirements and storing the results as grayscale images. 


	3.5 Malware Classification Models Design 
	This study proposes a malware classification method based on multi-level feature fusion, incorporating both image-based malware representation and malware opcode features. To achieve this, we selected deep learning models to extract features from these two types of images. In the current field of malware classification, convolutional neural networks (CNNs) are widely used for image feature extraction, with commonly employed models including ResNet, VGG, and EfficientNet. Therefore, this study will utilize t
	3.5.1 Convolutional Neural Network 
	3.5.1.1 ResNet 
	ResNet (Residual Network)[28] was proposed by Microsoft Research as a convolutional neural network architecture that employs residual connections. These residual connections, which allow the input data to be directly passed to subsequent layers, address the issues of vanishing and exploding gradients in deep convolutional neural networks. This enables deeper networks to effectively learn and significantly improves their performance. 
	3.5.1.2 VGG 
	The VGG model[29] is a classic convolutional neural network originally proposed by the Visual Geometry Group (VGG) at the University of Oxford in 2014. Due to its simple yet effective structure, the VGG model has been widely applied in image recognition and computer vision tasks. The core design principle of the VGG model is to construct a deep network by stacking multiple small 3x3 convolutional kernels, which enables the network to capture more image features. The most common VGG networks are VGG-16 and V
	3.5.1.3 EfficientNet 
	EfficientNet, proposed by Google[30] in 2019, is a convolutional neural network architecture renowned for its higher efficiency and superior performance. The core idea behind EfficientNet is the use of a method called "compound scaling," which simultaneously balances the network's depth, width, and resolution. This approach enables EfficientNet to maintain high accuracy while significantly reducing computational costs. 
	3.5.2 Feature Fusion 
	3.5.2.1 Feature Concatenate 
	The feature fusion method based on Feature Concatenation is a technique that directly concatenates multiple feature vectors column-wise. 
	3.5.2.2 Multilayer Deep Network based Feature Fusion 
	Chen et al.[18] proposed a feature fusion method based on a multilayer deep network. In this approach, two feature sets of different lengths are processed independently through separate network branches. The features are then fused at an intermediate layer to form a new feature representation, which is subsequently passed through the output layer to generate the final result. The multilayer deep network is shown in Figure 3. 
	Figure
	Figure 3 Multilayer deep network 
	3.5.2.3 Cross-Attention Mechanism based Feature Fusion 
	Yang et al.[24] proposed a feature fusion method known as the cross-attention mechanism, which is an improvement based on the self-attention mechanism. This mechanism enhances the fusion and interaction of information by exchanging or sharing keys, queries, or values between different features. 
	The self-attention mechanism is a technique that can establish dynamic weighting relationships between different positions within the same sequence. Specifically, in a self-attention mechanism, each element in the input sequence is treated as a query, key, and value. The attention weights are obtained by calculating the dot product between the queries and keys, which are then applied to the corresponding values to generate a weighted representation of the input sequence. The advantage of the selfattention m
	-

	While the self-attention mechanism performs well when processing a single feature sequence, its limitation is that it operates only within the same feature space. This means it can only compute self-correlations for a single input feature sequence and cannot directly handle interaction information between multiple features. 
	The cross-attention mechanism is an extension and improvement of the self-attention mechanism. Unlike the self-attention mechanism, which performs correlation calculations within a single feature space, the cross-attention mechanism aims to capture complex relationships across different feature spaces. In the cross-attention mechanism, keys, queries, and values between different features are exchanged or shared, enabling the model to capture associative information across feature spaces. 
	The core idea of the cross-attention mechanism is to establish associations between different feature representations. Through this exchange or sharing, the model can capture richer associative information across different feature spaces, thereby enhancing the final representational capability. 
	3.5.2.4 Multiplication based Low-level Feature Fusion Method 
	This research will design a multiplication based low-level feature fusion method to integrate the high-level features of opcode Markov images with the low-level features of image-based malware representations through multiplication. 
	3.6 Model Training 
	In this section, we will introduce the key components involved in the model training process, including the loss function, optimization algorithm, learning rate, batch size, training epochs, data augmentation, and transfer learning. 
	3.6.1 Loss Function 
	A loss function is a mathematical function used to quantify the difference between the predicted values generated by a model and the actual target values; the primary goal in training a model is to minimize the value of this function, thereby reducing prediction errors. 
	3.6.1.1 Cross-entropy Loss 
	Cross-entropy loss is a loss function commonly used in deep learning for classification tasks. It evaluates the performance of a model by measuring the difference between the true class distribution and the predicted probability distribution. 
	𝐶 
	𝐿(𝒚,𝒑) = −∑𝑦log(𝑝) (1) Here, 𝑦represents the true class label, and 𝑝denotes the predicted probability that the sample belongs to class . 
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	3.6.2 Optimization Algorithm 
	An optimization algorithm is a method used to adjust model parameters in order to minimize the loss function value, thereby improving model performance. 
	3.6.2.1 Stochastic Gradient Descent 
	Stochastic Gradient Descent (SGD) is a commonly used optimization algorithm in deep learning model training. This algorithm calculates the gradient of the loss function with respect to a single sample, and then iteratively updates the model parameters. The update rule is defined as follows: 
	𝜃= 𝜃−𝜂∇𝐽(𝜃;𝑥,𝑦) (2) where 𝜃 represents the model parameters, 𝜂 is the learning rate, and ∇𝐽(𝜃; 𝑥, 𝑦) denotes the gradient of the loss function with respect to the sample. Due to its high computational efficiency and low memory requirements, SGD is particularly wellsuited for training on large-scale datasets. However, since the direction of the updates may experience significant fluctuations, it can lead to slower convergence rates and even potential entrapment in local minima, thereby affecting
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	3.6.2.2 Adam Algorithm 
	The Adam algorithm is a widely used optimization method in deep learning training. This algorithm employs an adaptive learning rate mechanism, which can automatically adjust the learning rate based on the variation in gradients. By estimating the first and second moments of the gradients, Adam dynamically scales the learning rate, allowing for more precise parameter updates. This mechanism enables the algorithm to balance the update rates of different parameters during training, thereby improving convergenc
	Adam algorithm process 
	Required inputs: Initial parameter 𝜃, momentum Variable 𝑣, global learning rate 𝛼, momentum factor 𝛽, accumulated squared variable 𝑠, accumulated gradient squared factor 𝛽
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	1. 
	1. 
	1. 
	Randomly select a sample 

	2. 
	2. 
	Calculate the loss function: 


	∇𝐽(θ) 
	θ

	3. Update the momentum term 𝑣 and the squared gradients accumulation 𝑠: 
	𝑣 = β𝑣 + (1 − β)∇𝐽(θ) 2 
	1
	1
	θ

	𝑠 = β𝑠 + (1 − β)(∇𝐽(θ)) 
	2
	2
	θ

	4. Bias correction: 
	𝑡
	)

	𝑣̂ = 𝑣/(1 − 𝛽𝑡
	1 
	)

	𝑠̂ = 𝑠/(1 − 𝛽
	2 

	5. Update the parameters: 
	θ = θ − α𝑣̂/(√+ 𝜖) ϵ = 10
	𝑠̂ 
	−8 

	6. Return the updated parameter θ 
	Table 1 Adam algorithm process 
	3.6.3 Learning Rate 
	Learning rate is a hyperparameter that controls the step size of each update to the model parameters during the optimization process. 
	3.6.4 Batch Size 
	Batch size is the number of training examples processed simultaneously before updating the model's parameters in one iteration. 
	3.6.5 Training Epochs 
	Batch size is the number of training examples processed simultaneously before updating the model's parameters in one iteration. 
	3.6.6 Data Augmentation 
	Data augmentation is a technique that artificially increases the diversity of a training dataset by applying random transformations, such as rotations or flips, to the input data. 
	3.6.6.1 Random Cropping and Horizontal Flip 
	Random cropping and horizontal flip were first employed in the work of Krizhevsky et al.[31] to increase the diversity of training data and thereby enhance the model's generalization ability. 
	3.6.7 Transfer Learning 
	Transfer learning is a machine learning technique that leverages knowledge gained from a pre-trained model on one task and applies it to a new, related task, reducing the need for extensive training data and time on the new task. 
	3.7 Model Evaluation 
	In this section, we will introduce several key metrics for evaluating the performance of the proposed classification model, including accuracy, precision, recall, F1 score, and confusion matrix. 
	3.7.1 Accuracy 
	Accuracy is one of the fundamental metrics used to evaluate the performance of classification models. It represents the proportion of correctly predicted samples out of the total number of samples. 
	The equation for calculating accuracy is as equation3: 
	𝑇𝑃+𝑇𝑁 
	Accuracy = (3)
	𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 
	Where: 
	⚫
	⚫
	⚫
	⚫

	TP (True Positive): The number of positive samples correctly classified as positive. 

	⚫
	⚫
	⚫

	TN (True Negative): The number of negative samples correctly classified as negative. 

	⚫
	⚫
	⚫

	FP (False Positive): The number of negative samples incorrectly classified as positive. 

	⚫
	⚫
	⚫

	FN (False Negative): The number of positive samples incorrectly classified as negative. 


	3.7.2 Precision 
	Precision is one of the key metrics used to evaluate the performance of a classification model. It represents the proportion of actual positive samples among all samples that the model has predicted as positive. 
	The equation for calculating precision is as equation 4: 
	𝑇𝑃 
	Accuracy = (4)
	𝑇𝑃+𝐹𝑃 
	3.7.3 Recall 
	Recall is an important metric for evaluating the performance of classification models. It represents the proportion of actual positive samples that the model correctly identifies as positive. 
	The equation for calculating recall is as equation 5: 
	𝑇𝑃 
	Accuracy = (5)
	𝑇𝑃+𝐹𝑁 
	3.7.4 The F1 Score 
	The F1 Score is a comprehensive metric for evaluating the performance of classification models. It is the harmonic mean of Precision and Recall. The F1 Score aims to balance Precision and Recall, making it particularly useful in scenarios with imbalanced classes. 
	The equation for calculating the F1 Score is as equation 6: 
	Precision×Recall 
	𝐹= 2× (6)
	1 

	Precision+Recall 
	3.7.5 The confusion matrix 
	The confusion matrix is one of the essential tools for evaluating the performance of classification models. It presents the relationship between the model's predictions and the actual labels in a tabular format, thereby aiding in the analysis of the model's performance across various categories. 
	4. Design 
	4.1 Data Collection 
	In malware research, common data collection methods include honeypots, third-party sharing websites, and open-source datasets. We chose to use open-source datasets because, compared to the other two methods, they offer clear classification labels, lower costs, and do not involve complex security and legal issues. 
	The Microsoft Malware Classification Challenge dataset originates from the Microsoft Malware Classification Challenge and contains samples of nine types of malware. The dataset is divided into training and testing sets, with labeled samples in the training set. The number of samples for each type is shown in Table 2. Each malware sample includes two files: a .bytes file, which represents the binary content of the malware in hexadecimal format, and a decompiled .asm file. The reason for selecting this datase
	Malware Family 
	Malware Family 
	Malware Family 
	Number of Samples 

	Ramnit 
	Ramnit 
	1541 

	Lollipop 
	Lollipop 
	2478 

	Kelihos_ver3 
	Kelihos_ver3 
	2942 

	Vundo 
	Vundo 
	475 

	Simda 
	Simda 
	42 

	Tracur 
	Tracur 
	751 

	Kelihos_ver1 
	Kelihos_ver1 
	398 

	Obfuscator.ACY 
	Obfuscator.ACY 
	1228 

	Gatak 
	Gatak 
	1013 


	Table 2 Microsoft Malware Classification Challenge dataset 
	The CCF BDCI 2021 Malware Dataset is sourced from the CCF BDCI 2021 Digital Security Competition—AI-based Malware Family Classification Contest. This dataset provides samples of ten types of malware, similarly divided into training and testing sets, with the types and quantities of training samples shown in Table 3. Each malware sample includes two files: a PE file without the PE header and an .asm file generated using IDA Pro. The reason for selecting this dataset is that it offers a large number of divers
	Malware Family 
	Malware Family 
	Malware Family 
	Number of Samples 

	0 
	0 
	428 

	1 
	1 
	746 

	2 
	2 
	20 

	3 
	3 
	261 

	4 
	4 
	321 

	5 
	5 
	181 

	6 
	6 
	776 

	7 
	7 
	1350 

	8 
	8 
	594 

	9 
	9 
	1164 


	Table 3 CCF BDCI 2021 dataset 
	4.2 Data Pre-processing Design 
	4.2.1 Image-based Malware Representations Extraction 
	Inspired by the study conducted by Tekerek et al.[5], the process of visualizing malware in this research includes the following steps: reading the binary file, adjusting the array length and calculating the image dimensions, and generating the image (as shown in Figure 4). The specific steps are as follows: 
	Figure
	Figure 4 Image-based malware representations extraction 
	⚫
	⚫
	⚫
	⚫

	Reading the Binary File: Extract the binary data of the malware sample, which serves as the foundation for subsequent processing. 

	⚫
	⚫
	⚫

	Adjusting the Array Length and Calculating the Image Dimensions: Based on the size of the read data, determine the appropriate image dimensions. If the data length is insufficient, padding is performed to match the required image dimensions. 

	⚫
	⚫
	⚫

	Generating the Image: The adjusted array is reshaped into a square matrix and saved as an image file for further analysis. 


	4.2.2 Opcode Markov Image Extraction 
	The process of extracting an Opcode Markov Image, inspired by the study of Zhao et al.[16], involves three steps, as illustrated in Figure 5. 
	Figure
	Figure 5 Process of extracting an Opcode Markov Image 
	Figure 5 Process of extracting an Opcode Markov Image 
	Figure 5 Process of extracting an Opcode Markov Image 

	⚫
	⚫
	⚫

	Opcode 
	Sequence 
	Acquisition: 
	Opcode 
	sequences 
	are 
	extracted 
	from 

	TR
	decompiled malware samples. The extraction process is based on a commonly 

	TR
	used set of opcodes from the x86 instruction set, identified and extracted from the 

	TR
	decompiled files through string matching. To enhance data purity, irrelevant 

	TR
	content such as line numbers and comments beginning with a semicolon are 

	TR
	filtered out, ensuring that the extracted opcode sequences remain undisturbed. 

	⚫
	⚫
	⚫

	Construction of the Opcode Pair Occurrence Matrix: The frequency of each 

	TR
	opcode and its subsequent opcode in the extracted sequences is counted. Rarely 

	TR
	occurring opcodes are categorized as one type. The resulting occurrence matrix 

	TR
	is structured in a 224x224 format. 

	⚫
	⚫
	⚫

	Generation of the Opcode Markov Image: Each element in the opcode pair 

	TR
	occurrence matrix is divided by the sum of the elements in its row to calculate the 

	TR
	transition probability, which is then multiplied by 255 to generate pixel values. 

	TR
	Finally, the transition frequency matrix is converted into a grayscale image. 


	4.3 Model Design 
	In this study, a deep learning model based on multilayer feature fusion is proposed to enhance the accuracy and robustness of malware detection. Specifically, the model integrates two different data representations: image-based malware representation and malware opcode Markov images, leveraging a multi-level feature fusion mechanism to fully exploit their complementary information in the malware classification task. 
	The multilayer feature fusion mechanism includes a feature fusion module based on cross-attention and a low-level feature fusion module based on multiplication. In the cross-attention-based feature fusion module, the high-level features of the imagebased malware representation and opcode Markov image are integrated. Meanwhile, in the multiplication-based low-level feature fusion module, the low-level features of the image-based malware representation are combined with the high-level features of the opcode M
	-

	The model primarily consists of five modules: an image-based malware representation feature extraction module, a malware opcode Markov image feature extraction module, a cross-attention based feature fusion module, and a multiplication-based low-level feature fusion module, with the final output of malware categories achieved through a fully connected layer. The architecture of the proposed model is illustrated in Figure 6. 
	Figure
	Figure 6 Model architecture 
	⚫
	⚫
	⚫
	⚫

	Image-based Malware Representation Feature Extraction Module: This module extracts deep features from image-based malware representation using convolutional neural networks (CNNs). In this study, VGG16, ResNet18, and EfficientNetB0 are employed as feature extractors. 

	⚫
	⚫
	⚫

	Malware Opcode Markov Image Feature Extraction Module: Similarly, this module employs another convolutional neural network to extract features from the malware opcode Markov images. Likewise, VGG16, ResNet18, and EfficientNetB0 are used as feature extractors in this study. 

	⚫
	⚫
	⚫

	Cross Attention Feature Fusion Module: This module designs a cross attention mechanism for fusing the features extracted by the first two modules. 

	⚫
	⚫
	⚫

	Multiplication-based Low Level Feature Fusion Module: In this module, the features from the Markov images are first upsampled to match the size of the low level image-based malware representations features extracted by the convolutional neural network, and then the two are fused through a multiplication operation. 

	⚫
	⚫
	⚫

	Fully Connected Layer: The fully connected layer receives the features fused through the mutual attention mechanism and ultimately outputs the prediction of the malware category. 


	4.3.1 Image-based Malware Presentation Feature Extraction Module 
	4.3.1 Image-based Malware Presentation Feature Extraction Module 
	The study employs VGG16, ResNet18, and EfficientNetB0 as the feature extraction modules for Image-based Malware Presentation. The performance of these models will be evaluated in subsequent experiments through comparative analysis. To adapt these models for the malware image feature extraction module, necessary modifications were made, focusing primarily on two aspects: the fully connected layers of the convolutional neural networks (CNNs) and the addition of a Multiplication Layer in the lower convolutiona
	In the original models, the fully connected layers classify the output features extracted by the CNNs. However, in this study, the output size of the fully connected layers was adjusted to 1 × 512 to align with the dimensions of the Image-based Malware Presentation features and Opcode Markov image features, facilitating subsequent processing. 
	Although the structures of these CNNs differ, this study introduced a Multiplication module after the fourth or fifth convolutional layer in the lower layers of these networks. This modification aims to integrate the Opcode Markov image features with the lowlevel features of the Image-based Malware Presentation, thereby enhancing the model's classification performance by combining multi-level feature information. 
	-

	The modified structures of the VGG16, ResNet18, and EfficientNetB0 models are illustrated in Figures 7, Figure 8, and Figure 9, respectively. 
	Figure
	Figure 7 Modified VGG16 
	Figure
	Figure 8 Modified ResNet18 
	Figure
	Figure 9 Modified EfficientNetB0 

	4.3.2 Opcode Markov Image Feature Extraction Module 
	4.3.2 Opcode Markov Image Feature Extraction Module 
	In this study, VGG16, ResNet18, and EfficientNetB0 were selected as the Opcode Markov Image Feature Extraction Modules. Subsequent experiments conducted a detailed evaluation of the extraction performance of these different models through comparative analysis. 
	To effectively apply these models to malware image feature extraction, two key modifications were made. First, the fully connected layer of the convolutional neural networks (CNNs) was adjusted. Second, the features from the last convolutional layer of each model were extracted and utilized as the high level feature output for the Opcode Markov images. 
	In the original models, the output from the fully connected layer is typically used for classification tasks. However, in this study, the output dimension of the fully connected layer was adjusted to 1 ×512 to align with the feature dimensions of the image-based malware representation, thereby simplifying the subsequent feature fusion process. Additionally, the features extracted from the final convolutional layer were used as additional outputs, which were then fused with the low-level features of the imag
	-

	The architectures of the modified VGG16, ResNet18, and EfficientNetB0 models are illustrated in Figures 10, Figure 11, and Figure 12, respectively. 
	Figure
	Figure 10 VGG16 
	Figure 10 VGG16 


	Figure
	Figure 11 ResNet18 
	Figure 11 ResNet18 


	Figure
	Figure 12 EfficientNetB0 
	Figure 12 EfficientNetB0 



	4.3.3 Cross-attention Feature Fusion Module 
	4.3.3 Cross-attention Feature Fusion Module 
	The cross-attention-based feature fusion module demonstrates superior performance in current technologies. Compared to simple concatenation-based feature fusion methods, the cross-attention mechanism allows for interaction between features from different modalities. In contrast to layer-by-layer fusion methods based on multi-layer neural networks, the cross-attention mechanism can dynamically adjust weights based on the relevance of input features. As a result, the model can dynamically capture the most mea
	The cross-attention-based feature fusion model proposed in this study consists of four modules: the feature transformation module, the attention computation module, the residual module, and the concatenation module, as illustrated in Figure 1. In the feature transformation module, the query, key, and value for the image-based malware representation features and the malware opcode image features are calculated using Equations 7 through 12. In the attention computation module, attention weights are first comp
	-

	The cross-attention-based feature fusion module is shown in Figure 13. 
	Figure
	Figure 13 Cross-attention based feature fusion module 
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	4.3.4 Multiplication Based Low Level Feature Fusion Module 
	4.3.4 Multiplication Based Low Level Feature Fusion Module 
	The feature fusion module based on cross-attention integrates the image-based malware representations with the high-level features of the opcode Markov images. However, to better extract the texture features of the image-based malware representations, it is necessary to fuse the high-level features of the opcode Markov images with the low-level features of the image-based malware representations. Since image-based malware representations contain rich texture information, enhancing the extraction of their lo
	-

	In this method, the high-level features are extracted from the last convolutional layer of the opcode Markov image feature extractor, while the low-level features are obtained from the fourth or fifth convolutional layer of the image-based malware 
	In this method, the high-level features are extracted from the last convolutional layer of the opcode Markov image feature extractor, while the low-level features are obtained from the fourth or fifth convolutional layer of the image-based malware 
	representations feature extractor. Since the dimensions of high-level features and lowlevel features are usually different, with high-level features typically having smaller width and height, it is necessary to upsample the high-level features. In this study, upsampling is achieved through a transposed convolutional layer, as the transposed convolutional layer can learn an upsampling method more suitable for specific tasks. The stride, padding, and other parameters of the transposed convolutional layer are 
	-


	The structure of this module is shown in Figure 14. 
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	4.4 Model Training 
	In this study, the cross-entropy loss function, a commonly used loss function, was employed. The Adam optimizer was chosen over Stochastic Gradient Descent (SGD) due to its advantages in avoiding local optima, which can negatively impact the model's classification performance. The training process was conducted with 100 epochs, a batch size of 32, and a fixed learning rate of 0.001. Additionally, data augmentation techniques, including random cropping and horizontal flipping, were applied. Transfer learning
	4.5 Model Evaluation 
	In this study, the performance of the model is evaluated using accuracy, precision, recall, F1-score, and the confusion matrix. 
	5. Implementation 
	5.1 Hardware and Software Resource 
	5.1.1 Hardware Resource 
	This study was primarily conducted on Colab. Colab instances are typically equipped with around 12GB to 25GB of RAM and 50GB of virtual hard disk space. Google Drive was mounted on Colab to extend storage capacity. An A100 GPU was used for deep learning training. 
	5.1.2 Software Resource 
	The primary programming language used in this study is Python. The Pandas library was utilized for reading .csv files, the Numpy library for matrix manipulation, the PIL library for image storage, and the Torch library for creating and training deep learning models. 
	5.2 Data Pre-processing Implementation 
	5.2.1 Opcode Sequences Extraction 
	In this project, I developed a Python script to extract opcode sequences from assembly code files. The script accomplishes the opcode extraction through the following steps: 
	⚫
	⚫
	⚫
	⚫

	Loading the Opcode Set: First, the script loads the opcode set from a CSV file. Each opcode is stored as an element in a set, allowing for quick matching during subsequent processing. 

	⚫
	⚫
	⚫

	Processing the Assembly Code File: The script reads the assembly code file (.asm) line by line. For each line, it uses the .split(';') method to remove any potential comments (i.e., content starting from the semicolon ;). Then, it applies the .split() method to split the remaining code into a sequence of independent strings based on whitespace characters. 

	⚫
	⚫
	⚫

	Opcode Matching: For each split string, the script checks whether it exists in the opcode set. If a match is found, the corresponding opcode is saved into a list. 

	⚫
	⚫
	⚫

	Storing the Results: All matched opcodes are eventually written to a new CSV file, facilitating subsequent analysis and processing. 


	5.2.2 Opcode Markov Image Extraction 
	In this project, I developed a Python script to extract opcode Markov images from sequences of opcodes. The script accomplishes the extraction of opcodes through the following steps: 
	⚫
	⚫
	⚫
	⚫

	Loading Opcode Sequences: First, the script loads the opcode sequences from a CSV file. 

	⚫
	⚫
	⚫

	Obtaining the Opcode Pair Frequency Matrix: The code traverses adjacent pairs in the opcode sequences and counts their occurrences. 

	⚫
	⚫
	⚫

	Generating the Probability Transition Matrix: Each row of the frequency matrix is divided by the sum of the respective row to obtain a probability transition matrix. 

	⚫
	⚫
	⚫

	Converting the Matrix into an Image: The normalized matrix is multiplied by 255 to convert it into a grayscale image. Finally, the matrix is saved as a PNG image using the plt.imsave function. 


	5.2.3 Image-based Malware Representations Extraction 
	In this project, to extract image-based malware representations from malware binary data, I developed a Python script. The script accomplishes the extraction of opcodes through the following steps: 
	Reading the Binary File: We use Python's open function to open the file in binary mode and read its contents into a byte array. 
	Filtering Invalid Data: To enhance the usability of the image, we filter out all byte values of 0 from the array, as these typically represent invalid information. 
	Adjusting Array Length: To convert the byte array into an RGB image, we need to ensure that the array length is a multiple of 3. If the length is insufficient, we pad zeros at the end of the array. 
	Calculating Image Dimensions: We calculate the side length of the square image that the byte array can represent and pad additional zeros if necessary to ensure the array length equals the square of the side length multiplied by 3. 
	Generating the Image: We reshape the adjusted array into a numpy array with the shape (side_length, side_length, 3) and use the PIL library to convert it into an RGB image. 
	To extract the binary data of malware from the .bytes files in the Microsoft Malware Classification Challenge dataset, we have adjusted the script accordingly. The script reads the file content line by line, skips the line numbers, and excludes meaningless symbols such as "00" and "??." It then reads and retains the remaining valid data. 
	5.3 Model Implementation 
	In this study, the model implementation was based on the PyTorch framework. The module provided various neural network components, while torchvision.models offered pre-trained classical models. The image feature extraction module and the opcode-based Markov image feature extraction module utilized these 
	In this study, the model implementation was based on the PyTorch framework. The module provided various neural network components, while torchvision.models offered pre-trained classical models. The image feature extraction module and the opcode-based Markov image feature extraction module utilized these 
	torch.nn 

	pre-trained models with corresponding modifications. The cross-attention-based feature fusion module and the multiplication-based low-level feature fusion module were custom-designed according to specific requirements. Finally, all modules were integrated into the MultilayerFeatureFusionModel class, achieving multilayer feature fusion for malware classification. 

	5.4 Model Training Implementation 
	First, the preprocessed training and test sets are loaded into memory from the specified paths. Then, the training set is split into a training set and a validation set in an 8:2 ratio. 
	In the implementation process, the PyTorch library is used to build and train the model. PyTorch provides the DataLoader class for loading data in batches, and by loading the data onto the GPU, it significantly improves the efficiency of data processing. During model training, PyTorch's automatic differentiation feature is utilized, with the torch.autograd module automatically computing gradients, enabling backpropagation and parameter updates in each epoch. 
	The model training process is divided into several epochs. In each epoch, the model first enters training mode by calling the model.train() method, which performs forward propagation, loss calculation, backpropagation, and parameter updates using an optimizer (e.g., Adam) on the training data. Then, the model enters evaluation mode, where it is evaluated on the validation set. The model.eval() method is used to ensure that gradients are not calculated during inference, saving computational resources and imp
	After training is complete, the model weights that performed best on the validation set are used for final evaluation on the test set. Finally, the torch.save() function is used to save the model weights for use in future research or applications. 
	5.5 Model Evaluation Implementation 
	The study uses the sklearn.metrics library to calculate the accuracy, precision, recall, and F1 score of the model, and the confusion matrix is visualized through sns.heatmap. 
	6. Experiments 
	6.1 Evaluation of Various Convolutional Neural Networks for Malware Classification 
	6.1.1 Experiment Settings 
	This experiment aims to compare the performance of different convolutional neural networks (CNNs) in the task of malware classification. To evaluate the classification effectiveness, multiple malware classification models will be used. These models employ VGG16, ResNet, or EfficientNet as the feature extractors for image-based malware representation and Opcode Markov Image. All models incorporate a multilevel feature fusion mechanism proposed in this study. A total of nine models are evaluated in the experi
	-

	Model Name 
	Model Name 
	Model Name 
	Feature Extractor for Image-based Malware Representations 
	Feature Extractor for Opcode Markov Image 

	Model 1 
	Model 1 
	VGG16 
	VGG16 

	Model 2 
	Model 2 
	VGG16 
	ResNet18 

	Model 3 
	Model 3 
	VGG16 
	EfficientNetB0 

	Model 4 
	Model 4 
	ResNet18 
	VGG16 

	Model 5 
	Model 5 
	ResNet18 
	ResNet18 

	Model 6 
	Model 6 
	ResNet18 
	EfficientNetB0 

	Model 7 
	Model 7 
	EfficientNetB0 
	VGG16 

	Model 8 
	Model 8 
	EfficientNetB0 
	ResNet18 

	Model 9 
	Model 9 
	EfficientNetB0 
	EfficientNetB0 


	Table 4 Model configurations 
	During the experiment, the ResNet18 and EfficientNetB0 models were initialized using PyTorch's pretrained models to accelerate training and improve classification accuracy. To enhance the generalization ability of the models, data augmentation techniques such as random cropping and random flipping were applied to the malware images in the training set. The experimental dataset is sourced from the Microsoft Malware Classification Challenge. During the training phase, cross-entropy loss was used as the loss f
	6.1.2 Experiment Results 
	Model 
	Model 
	Model 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	Model1 
	Model1 
	0.9640 
	0.9649 
	0.9640 
	0.9644 

	Model2 
	Model2 
	0.9668 
	0.9674 
	0.9668 
	0.9671 

	Model3 
	Model3 
	0.9825 
	0.9836 
	0.9825 
	0.9827 

	Model4 
	Model4 
	0.9709 
	0.9713 
	0.9709 
	0.9711 

	Model5 
	Model5 
	0.9732 
	0.9735 
	0.9732 
	0.9734 

	Model6 
	Model6 
	0.9949 
	0.9950 
	0.9949 
	0.9949 

	Model7 
	Model7 
	0.9862 
	0.9863 
	0.9862 
	0.9860 

	Model8 
	Model8 
	0.9843 
	0.9848 
	0.9843 
	0.9843 

	Model9 
	Model9 
	0.9931 
	0.9933 
	0.9931 
	0.9931 


	Table 5 Experiments results 
	The experiment results are show on Table 5. 
	6.1.3 Analysis 
	Based on Table 5, Model 6 demonstrates the best performance across all metrics. The model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%, and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature extractors, indicating that the combination of these two feature extractors is highly 
	Based on Table 5, Model 6 demonstrates the best performance across all metrics. The model achieves an accuracy of 99.49%, a precision of 99.50%, a recall of 99.49%, and an F1 score of 99.49%. Model 6 utilizes ResNet18 and EfficientNetB0 as feature extractors, indicating that the combination of these two feature extractors is highly 
	effective in the task of malware classification. Following closely is Model 9, which achieves 99.31% in all metrics, also performing exceptionally well. Model 9 also employs EfficientNetB0 as a feature extractor, further demonstrating the superiority of EfficientNetB0. 

	The comparison reveals that model performance significantly improves when EfficientNetB0 is used for feature extraction. This improvement could be due to 
	EfficientNetB0’s ability to balance model complexity and accuracy effectively. Notably, 
	even though Model 9 uses dual EfficientNetB0 as feature extractors, Model 6 outperforms it. This could be because the deep residual network of ResNet18 excels at extracting complex texture features in image-based malware representations, while EfficientNetB0 is more effective in extracting opcode Markov image features with fewer texture details. 
	Overall, models using VGG16 as a feature extractor (Model 1, Model 2, Model 3, Model 4) perform relatively poorly, especially compared to models combining EfficientNetB0 and ResNet18. This could be attributed to the relatively older architecture of VGG16, which, despite having a large number of parameters, is less efficient than more recent networks. ResNet18, on the other hand, performs quite well, with its deep residual networks effectively capturing malware features, particularly in the complex patterns 
	Based on the experimental results, Model 6, which uses ResNet18 to extract imagebased malware representation features and EfficientNetB0 to extract opcode Markov image features, is the optimal model. 
	-

	6.2 Comparison of Feature Fusion Techniques for Malware Classification 
	6.2.1 Experiment Settings 
	This experiment will compare the performance of different feature fusion methods in the task of malware classification, utilizing multiple malware classification models to assess their effectiveness. The feature extractors are configured based on the optimal settings identified in previous experiments. In each model, the image features of the malware and the opcode Markov image features will be integrated using various fusion methods, including feature concatenation, a multilayer deep network-based fusion m
	Model Name 
	Model Name 
	Model Name 
	Feature Fusion Method 

	Model 1 
	Model 1 
	Feature Fusion based via Concatenation 

	Model 2 
	Model 2 
	Feature Fusion based via Multilayer Deep Network 

	Model 3 
	Model 3 
	Feature Fusion based via Cross Attention 

	Model 4 
	Model 4 
	Feature Fusion based via Multilayer Feature Fusion 


	Table 6 Model configurations 
	6.2.2 Experiments Results 
	6.2.2.1 Results for Model 1(Feature Fusion based via Concatenation) 
	Figure
	Figure 15 Confusion matrix of model 1 
	Figure 15 Confusion matrix of model 1 


	Accuracy 
	Accuracy 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	0.9825 
	0.9825 
	0.9829 
	0.9825 
	0.9825 


	Table 7 Results of model 1 
	Model 1 employs the concatenate method proposed in this research for feature fusion. The confusion matrix shown in Figure 15 and evaluation metrics in Table 7 present 
	the classification results. According to the confusion matrix, the model correctly classified 2,130 malware samples and misclassified 38 samples. It can be observed that the model performs best on class 0 and class 7, with only two misclassified samples in each of these classes. This could be because the features of class 0 and class 7 are more distinct and have a greater degree of separation from other classes, allowing the model to classify these classes more accurately. The model performs worst on class 
	In terms of evaluation metrics, the model achieved an accuracy of 0.9825, a precision of 0.9829, a recall of 0.9825, and an F1 score of 0.9825. 
	6.2.2.2 Result for Model 2(Feature Fusion based via Multilayer Deep Network) 
	Figure
	Figure 16 Confusion matrix for model 2 
	Figure 16 Confusion matrix for model 2 


	Accuracy 
	Accuracy 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	0.9852 
	0.9852 
	0.9856 
	0.9852 
	0.9852 


	Table 8 Results for model 2 
	Model 2 employs the multilayer deep network method for feature fusion. The confusion matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate the classification results. According to the confusion matrix, the model correctly classified 2,136 malware samples and misclassified 32 samples. It is evident that the 
	Model 2 employs the multilayer deep network method for feature fusion. The confusion matrix shown in Figure 16 and evaluation metrics presented in Table 8 demonstrate the classification results. According to the confusion matrix, the model correctly classified 2,136 malware samples and misclassified 32 samples. It is evident that the 
	model performed best in classifying Category 0, with all Category 0 samples being accurately identified. This could be attributed to the more distinct features of Category 0, which have greater differentiability from other categories, allowing the model to classify these samples more accurately. The model performed worst in classifying Category 4, with 8 Category 4 malware samples being misclassified, of which 7 were incorrectly identified as Category 5. This may be due to the similar internal features betw

	Regarding the evaluation metrics, the model achieved a classification accuracy of 0.9852, a precision of 0.9856, a recall of 0.9852, and an F1 score of 0.9852. 
	6.2.2.3 Result for Model 3(Feature Fusion based via Cross Attention) 
	Figure
	Figure 17 Confusion matrix for model 3 
	Figure 17 Confusion matrix for model 3 


	Accuracy 
	Accuracy 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	0.9912 
	0.9912 
	0.9914 
	0.9912 
	0.9913 


	Table 9 Results for model 3 
	Model 3 employs the cross attention method for feature fusion. The confusion matrix and evaluation metrics presented in Table 9 illustrate the classification results. According to the confusion matrix shown in Figure 17, the model correctly classified 2,149 malware samples and misclassified 19 samples. It is evident that the model 
	Model 3 employs the cross attention method for feature fusion. The confusion matrix and evaluation metrics presented in Table 9 illustrate the classification results. According to the confusion matrix shown in Figure 17, the model correctly classified 2,149 malware samples and misclassified 19 samples. It is evident that the model 
	performs best in classifying categories 0 and 8, with only one sample from category 0 being misclassified, and category 8 being entirely correctly classified. The model performs worst in classifying category 4, where six malware samples from category 4 were misclassified, all of which were incorrectly identified as category 5. This misclassification may be due to the internal similarity between categories 4 and 5. Additionally, 12 samples from other categories were misclassified as category 5. 

	In terms of evaluation metrics, the model achieved an accuracy of 0.9912, a precision of 0.9914, a recall of 0.9912, and an F1 score of 0.9913. 
	6.2.2.4 Result for Model 4(Feature Fusion based via Multilayer Feature Fusion) 
	Figure
	Figure 18 Confusion matrix for model 4 
	Figure 18 Confusion matrix for model 4 


	Accuracy 
	Accuracy 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	0.9949 
	0.9949 
	0.9950 
	0.9949 
	0.9949 

	Table 10 Results for model 4 
	Table 10 Results for model 4 


	Model 4 employs the multilayer feature fusion method proposed in this research for feature fusion. The confusion matrix and evaluation metrics shown in Table 10 illustrate the classification results. According to the confusion matrix shown in Figure 18, the model correctly classified 2,157 malware samples and misclassified 11 malware samples. It can be observed that the model performs best in classifying 
	Model 4 employs the multilayer feature fusion method proposed in this research for feature fusion. The confusion matrix and evaluation metrics shown in Table 10 illustrate the classification results. According to the confusion matrix shown in Figure 18, the model correctly classified 2,157 malware samples and misclassified 11 malware samples. It can be observed that the model performs best in classifying 
	categories 0, 1, 2, 6, and 8, with these categories being completely correctly classified. The model performs worst in classifying category 4, with 6 samples from category 4 being misclassified, all of which were incorrectly identified as category 5. This may be due to the similarity in internal features between categories 4 and 5. Additionally, it is evident that 8 malware samples from other categories were misclassified as category 5. 

	In terms of evaluation metrics, the model achieves an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. 

	6.2.3 Analysis 
	6.2.3 Analysis 
	In this experiment, we compared the performance of several commonly used feature fusion methods in the context of malware classification. The methods evaluated include feature fusion based on concatenation, multilayer deep network based feature fusion, cross-attention based feature fusion, and the novel multilayer feature fusion method proposed in this research. The experimental results demonstrate that the proposed multi-level feature fusion method outperforms the others across all metrics. Specifically, t
	6.3 Performance Analysis of Malware Classification Models Across Different Datasets 

	6.3.1 Experiment Settings 
	6.3.1 Experiment Settings 
	This experiment employed the optimal configuration validated in previous experiments and was trained and evaluated on the CCF BDCI malware classification dataset. 

	6.3.2 Experiment Results 
	6.3.2 Experiment Results 
	The experiment results are shown on Table 11 and Figure 19. 
	Figure
	Figure 19 Confusion matrix 
	Figure 19 Confusion matrix 


	Accuracy 
	Accuracy 
	Accuracy 
	Precision 
	Recall 
	F1 Score 

	0.9940 
	0.9940 
	0.9941 
	0.9940 
	0.9940 

	Table 11 Experiment results 
	Table 11 Experiment results 


	6.3.3 Discuss 
	The experimental results show that the proposed method in this study achieved an accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of 99.40%. This indicates that the method proposed in this research is effective in classifying different types of malware. From the confusion matrix, it can be observed that misclassifications occurred in malware categories 0, 2, 3, 4, and 5. Specifically, categories 3 and 4 each had two misclassifications: two samples of category 3 were incorrectly
	7. Discussion 
	7.1 Discussing Results for each Research Question 
	⚫
	⚫
	⚫
	⚫
	⚫

	Which deep learning model is optimal for extracting image representations of malware features and opcode Markov image features? 

	To address this issue, we conducted an experiment to evaluate the performance of different models in the malware classification method proposed in this study. Three deep learning models, widely used in the field of image processing, were selected for this research: VGG16, ResNet18, and EfficientNetB0. These three convolutional neural networks were tested in combination during the experiment. The results indicated that the model performed best when ResNet18 was used as the feature extractor for image-based m

	⚫
	⚫
	⚫
	⚫

	Can an effective technique for malware feature fusion be developed? 

	To validate that our proposed multilayer feature fusion method outperforms commonly used methods in existing research, we compared it with feature fusion methods based on concatenation, multilayer deep network, and cross-attention. The experimental results on the Microsoft Malware Classification Challenge dataset showed that our method achieved the best performance across all metrics, with an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949. These results indicate tha

	⚫
	⚫
	⚫

	Can a robust and generalizable malware classification algorithm be developed? 


	To validate the accuracy of the proposed method for malware classification across different datasets, this study trained and evaluated the model using the CCF BDCI Malware Classification Dataset. The experimental results demonstrate that the proposed method achieves an accuracy of 99.40%, a precision of 99.41%, a recall of 99.40%, and an F1 score of 99.40% on this dataset. These results indicate that the proposed method is effective on other type of malwares. 
	7.2 Comparison with Existing Literature 
	Ahmed et al.[12] proposed a method for malware classification based on transfer learning using Inception V3, where the byte data of malware is converted into image features. On the Microsoft malware dataset, they achieved an accuracy of 98.76% and a recall of 94.8%. However, our approach achieved even better metrics, with an accuracy of 99.49% and a recall of 99.54%. This indicates that our method, which integrates malware image features with malware opcode features, can identify a broader range of malware 
	Mallik et al.[13] proposed a method for classifying malware grayscale images using a convolutional recurrent network. Experimental results on the Microsoft Malware Classification Challenge dataset show that their method achieved an accuracy of 0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast, our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms 
	Mallik et al.[13] proposed a method for classifying malware grayscale images using a convolutional recurrent network. Experimental results on the Microsoft Malware Classification Challenge dataset show that their method achieved an accuracy of 0.9836, a precision of 0.9940, a recall of 0.9688, and an F1 score of 0.9812. In contrast, our method achieved an accuracy of 0.9949, a precision of 0.9950, a recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Overall, our method outperforms 
	theirs across all metrics. While the difference in precision between the two methods is minimal, our approach surpasses theirs by more than one percentage point in the other metrics. This indicates that when relying solely on malware grayscale images for classification, the model captures less informative content compared to when the features from malware images are combined with opcode features for classification. 

	Deng et al.[14] proposed a novel approach for generating malware images using assembly instructions and Markov transition matrices. Based on this, they designed a convolutional neural network (CNN) for malware classification. Their method achieved a test accuracy of 99.44% on the Microsoft malware dataset. In comparison, our feature fusion method achieved an accuracy of 99.49%, slightly surpassing their result, indicating a certain advantage in accuracy. Furthermore, their precision was 99.44%, while our pr
	Zhao et al.[16] proposed a visualization-based method for malware family classification utilizing deep learning. They convert binary files into images and cluster the malware based on texture features within these images. The researchers employed a deep convolutional neural network to fuse and classify features from Markov images generated from both bytecode and opcode. Experimental results on the Microsoft Malware Classification Challenge dataset demonstrated that their model achieved an accuracy of 0.9976
	Zhao et al.[16] proposed a visualization-based method for malware family classification utilizing deep learning. They convert binary files into images and cluster the malware based on texture features within these images. The researchers employed a deep convolutional neural network to fuse and classify features from Markov images generated from both bytecode and opcode. Experimental results on the Microsoft Malware Classification Challenge dataset demonstrated that their model achieved an accuracy of 0.9976
	of 0.9891. In comparison, our method achieved an accuracy of 0.9949, precision of 0.9950, recall of 0.9949, and an F1 score of 0.9949 on the same dataset. Although our method slightly underperformed Zhao et al.'s method in terms of precision, our model excelled in other metrics. It is noteworthy that while both methods utilized Markov images generated from opcode for malware classification, Zhao et al. further incorporated Markov images generated from bytecode. Our method, on the other hand, is based on an 

	Yang et al.[24] proposed a hybrid attention network based on multi-feature alignment and fusion for malware detection. This method first utilizes a 1D convolutional neural network to extract time series features of binary files and applies a triangular attention algorithm to extract opcode features from assembly code. Then, a cross-attention module is used to align and fuse the binary file features with the assembly code features, and finally, a deep neural network is employed to detect malware. Experimenta
	-

	accuracy, 99.50% precision, 99.49% recall, and 99.49% F1-score. Specifically, while Yang et al.'s method slightly outperforms in accuracy, our model shows superior performance in precision, recall, and F1-score. This may indicate that the introduction of low-level feature fusion components in our approach further enhances the overall performance of the model. 
	Snow et al.[25] proposed an end-to-end multi-model deep learning framework for addressing the problem of malware classification. Their approach utilizes a fully connected network to process metadata, a convolutional neural network (CNN) to handle grayscale images derived from malware bytecode, and an LSTM network to process opcode sequences within malware files. On the Microsoft malware dataset, their method achieved an accuracy of 98.35%. In comparison, our approach reached an accuracy of 99.49%, significa
	8. Conclusion 
	8.1 Conclusion 
	Nowadays, malware has become a significant threat to information security, making the study of malware classification highly urgent. Traditional methods typically rely on single-feature approaches for malware classification, but these methods often struggle to cope with obfuscation techniques employed by malware to evade detection. Therefore, research on malware classification based on feature fusion is both necessary and promising. 
	We propose a malware classification method based on the fusion of malware images and malware opcode features, effectively classifying malware by fusing features from both image-based malware representation and opcode sources. Specifically, our model employs two feature fusion modules: a cross-attention-based feature fusion module and a low-level feature fusion module based on multiplication. These modules enable deep feature fusion, thereby classifying malware more effectively. 
	To determine the most suitable model for extracting image-based malware representation features and malware opcode Markov image features and accurately classifying malware, we conducted comparative experiments. We selected three common convolutional neural networks to extract the corresponding opcode information. Experimental results indicate that the best model combination is to use ResNet18 for extracting malware image features and EfficientNetB0 for extracting malware opcode Markov image features. 
	To further validate the effectiveness of our method, we compared the classification performance of traditional feature fusion methods with our approach. The results show that our method outperforms traditional methods in metrics such as accuracy and 
	To further validate the effectiveness of our method, we compared the classification performance of traditional feature fusion methods with our approach. The results show that our method outperforms traditional methods in metrics such as accuracy and 
	recall. Moreover, to evaluate the classification effectiveness of our method on different types of malware, we tested it using the CCF BDCI 21 dataset. The experimental results demonstrate that our method can effectively classify malware on this dataset. 

	In conclusion, our research provides a reliable and effective new approach for malware classification and lays a solid foundation for future research on malware classification based on multi-feature fusion. Moving forward, research on malware classification methods based on multi-feature fusion will continue to address the increasingly complex malware threats. 
	8.2 Future Work 
	In future work, we will continue to delve deeper into malware classification methods based on multi-level feature fusion. Although we have already implemented a feature fusion method based on mutual attention, there remains significant room for further exploration in this area. Additionally, we plan to incorporate other deep learning models for feature extraction and investigate the potential application of additional features in malware classification. 
	9. Reflection 
	Throughout the research process, I encountered several challenges related to both technical aspects and time management. Initially, file operations and string processing posed significant difficulties for me. Due to the frequent need to handle files and accurately process strings during data processing, I spent a considerable amount of time on these tasks, which slowed down the progress of my research. However, through continuous practice and repeated trials, I gradually became proficient in these technical
	In terms of time management, I noticed that my efficiency was relatively low at the beginning of the project, primarily because I did not plan the allocation of time between experiments and writing effectively. To address this issue, I decided to start writing the dissertation while conducting experiments. This approach of simultaneously conducting experiments and writing not only improved my work efficiency but also helped me maintain a consistent train of thought when documenting the research process. Add
	By overcoming these challenges, I not only enhanced my technical skills but also learned to manage my time more effectively. These experiences will have a profound impact on my future research and learning endeavors. 
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