

OPTIMIZING ROUTING

STRATEGY IN SOFTWARE DEFINED

NETWORKING

Lingzhuo Tu

2304720

Supervisor: Dr. Nitheesh Kaliyamurthy

Project submitted as part of the

requirements for the award of MSc: Software

Engineer and Artificial Intelligence

September 2024

Declaration of Originality

I, Lingzhuo Tu declare that I am the sole author of this Project; that all references cited

have been consulted; that I have conducted all work of which this is a record, and that the

finished work lies within the prescribed word limits.

This work has not previously been accepted as part of any other degree submission.

Signed :...

Date :07/01/2024 ...

FORM OF CONSENT

I, Lingzhuo Tu, hereby consent that my Project, submitted in candidature for the MSC12

Software Engineering and Artificial Intelligence , if successful, may be made available for

inter-library loan or photocopying (subject to the law of copyright), and that the title and

abstract may be made available to outside organisations.

Signed : ...

Date : 07/01/2024...

Copyright Acknowledgement

I acknowledge that the copyright of this project report, and any product developed as part

of the project, belong to University of Wales Trinity Saint David, Swansea.

ABSTRACT

Traditional Network Architecture (TNA) is becoming inadequate due to its rigid,

hardware-centric configurations, especially in environments where network

conditions are highly variable. This has led to increased latency, congestion, and

packet loss rates. This project aims to develop an optimized routing strategy for

Software Defined Networking (SDN) that leverages machine learning techniques to

enhance network traffic management's adaptability and efficiency. The project

employs a combination of Dueling Deep Q-Networks (Dueling DQN) and real-time

traffic state predictions to create a dynamic routing strategy. The methodology

includes extensive simulation using SDN environments to evaluate the performance

improvements over traditional routing methods. Preliminary results indicate that the

proposed SDN-based routing strategy not only responds more efficiently to dynamic

network conditions but also significantly optimizes performance metrics such as

bandwidth utilization, latency reduction, and packet loss. The integration of Dueling

DQN and real-time traffic predictions within SDN frameworks could potentially

redefine network performance standards, offering a more adaptive, efficient, and

robust network management system. This study contributes to the field by providing

a scalable solution to the complexities of modern network environments, supporting

the ongoing evolution of network infrastructure management.

TABLE OF CONTENT

Abstract/Synopsis

Table of Content

List of Figures

List of Tables

Acknowledgements

CHAPTER 1 INTRODUCTION... 12

1.1 Research problem statement... 13

1.2 Aim .. 13

1.3 Objectives.. 13

1.4 Significance/Contribution of this research ... 14

1.5 STRUCTURE OF THE PROJECT... 14

CHAPTER 2 - REVIEW OF LITERATURE .. 16

2.1 Software Defined Networking (SDN) ... 16

2.1.1 SDN Fundamentals .. 16

2.1.2 SDN Basic Architecture .. 17

2.1.3 OpenFlow Protocol ... 22

2.1.4 Summary.. 24

2.2 Type of Controllers .. 24

2.2.1 RYU.. 24

2.2.2 Floodlight.. 28

2.2.3 NOX.. 31

2.2.4 Mininet.. 33

2.2.5 Summary.. 34

2.3 Operations of SDN .. 34

2.3.1 SDN Link Topology Discovery Technology .. 34

2.3.2 Link Topology Discovery Technology ... 35

2.3.3 Summary .. 36

2.4 SDN Routing.. 36

2.4.1 SDN-Based Routing Mechanisms .. 37

2.4.2 SDN Routing Optimization Based on Supervised Learning................ 38

2.4.3 SDN Routing Optimization Based on Reinforcement Learning 39

2.4.4 SDN Routing Optimization Based on Deep Reinforcement Learning

Algorithms ... 41

2.4.5 Summary.. 42

2.5 Chapter summary .. 42

CHAPTER 3 - RESEARCH METHODOLOGY .. 44

3.1 Research Method .. 44

3.1.1 Philosophy.. 45

3.1.2 Approaches .. 45

3.1.3 Strategies ... 45

3.1.4 Choices .. 46

3.1.5 Time Horizons .. 46

3.1.6 Techniques and Procedures .. 46

3.1.7 Contingency Plans ... 46

3.1.8 Risks and Limitations ... 46

3.2 Research materials.. 47

3.2.1 Hardware Devices .. 48

3.2.2 Network Devices... 48

3.3 Chapter summary .. 48

CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING 48

4.1 Architecture and Model Design".. 48

4.1.1 Parameter Collection Design.. 49

4.1.2 Intelligent routing algorithms... 55

4.1.3 GRU ... 58

4.2 Data Evaluation Methods... 60

4.2.1 Data Collection... 60

4.2.2 Data Evaluation.. 61

4.3 experimental setup ... 62

4.4 Optimization Algorithm.. 68

4.4.1 Network Monitoring and Data Collection .. 68

4.4.2 Evaluation and Decision-Making .. 69

4.4.3 Routing Updates... 71

CHAPTER 5 – RESULT AND ANALYSIS ... 72

5.1 results and analysis ... 73

5.2 discussion ... 81

5.3 summary ... 82

CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS 84

6.1 Summary .. 84

6.2 Conclusion .. 84

6.3 Limitation and Recommendation .. 84

CHAPTER 7 – REFLECTIONS .. 84

7.1 Achievement of Research Objectives ... 85

7.2 Reflection on Research Conduct and Progress .. 85

7.3 Key Reflections and Insights... 86

7.4 Conclusion .. 86

REFERENCES 88

PROJECT MANAGEMENT ... 96

APPENDICES 100

ETHICS FORM 101

LOGBOOK 114

GLOSSARY 116

LIST OF FIGURES

Figure 1 SDN Basic Architecture ... 18

Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to

Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In

Figure 2 OpenFlow Switch Architecture... 22

Figure 3 Ryu library functions and components ... 25

Figure 4 Ryu Overall Architecture .. 26

Figure 5 Ryu Workflow .. 27

Figure 6 Architecture diagram of Floodlight.. 29

Figure 7 NOX Function Module Structure .. 32

Figure 8 Topological Discovery Classification .. 35

Figure 9 Layers of the Onion Diagram for Research Methodology 45

Figure 10 Gannt Chart.. 47

Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3 50

Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3....................... 51

measure link packet loss rate ... 52

messages.. 54

Figure 15 Traffic matrix structure diagram .. 56

Figure 16 GRU structure diagram ... 59

Figure 17 Network Topology Diagram.. 63

Figure 18 Installation verification of Mininet... 65

Figure 19 Topology Management of Ryu ... 66

Figure 20 Launch the Iperf server... 67

Figure 21 Test results of Iperf ... 68

Figure 22 Function get_traffic_matrix .. 69

Figure 23 Function _packet_in_handler ... 70

Figure 24 Function optimal_routing_forwading .. 71

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

Figure Function get_optimal_forwarding_path .. 71

Figure Function install_flow_1... 72

Figure Function install_flow_2... 72

Figure Comparison of using GRU and without using GRU 73

Figure Comparison of Dueling DQN and DDPG ... 75

Figure Comparison of the network throughput .. 77

Figure Comparison of the network delay .. 78

Figure Comparison of the network packet loss rate 80

Figure Original Gantt Chart .. 97

Figure Actual Gantt Chart... 98

LIST OF TABLES

Table 1 Mainstream SDN Controllers ... 20

Table 2 Floodlight Components.. 29

Table 3 Counters in OpenFlow.. 49

Table 4 Comparison of Reward Performance With and Without GRU Over

Episodes ... 73

Table 5 Comparison of Dueling DQN and DDPG ... 75

Table 6 Throughput Comparison .. 77

Table 7 Delay Comparison.. 78

Table 8 Packet Loss Rate Comparison .. 80

ACKNOWLEDGEMENTS

I, Lingzhuo Tu, sincerely express my gratitude to Dr. Nitheesh Kaliyamurthy from

the University of Wales Trinity Saint David for his invaluable support and guidance

throughout this project. His expert advice on academic writing, critical thinking, and

research methodologies has significantly contributed to my research work. His

consistent feedback and encouragement have helped me refine my ideas and

navigate the complexities of this research, particularly in model development and

result analysis.

I am also thankful to the Network Information Laboratory of Wuhan University of

Technology for allowing me to collect and utilize data for this project. Their support

was crucial in obtaining a high-quality research dataset. Additionally, I appreciate

the provision of remote servers and high-performance graphics cards by the same

laboratory, which were essential for meeting the computational demands of this

research.

Furthermore, I extend my heartfelt thanks to the University of Wales Trinity Saint

David for providing me access to its online library, which offered a wealth of

academic resources and literature foundational to my research. The availability of

these resources ensured that I could conduct a comprehensive literature review and

establish a solid theoretical base for my work.

CHAPTER 1 INTRODUCTION

The evolution of network infrastructure management has increasingly required the

development of new technologies and methods that can keep pace with the growing

complexity and dynamism of modern networks. Traditional Network Architecture (TNA)

relies on rigid, hardware-centric configurations, making it less adaptable to the

changing conditions and demands of network traffic. TNA typically employs static

routing protocols which decide paths based predominantly on initial configurations and

infrequently updated network state information. This method becomes inadequate in

environments where network conditions fluctuate, leading to inefficiencies such as

increased latency, congestion, and higher packet loss rates.

In contrast, Software Defined Networking (SDN) offers a transformative approach to

network management. SDN separates the network's control plane from the data plane,

centralizing control in a software-based controller. This architectural change introduces

a level of flexibility and dynamism that TNA1 cannot match. The central controller in an

SDN can view and manage the network holistically, making real-time, informed

decisions that adapt to changes in network traffic patterns and conditions. This model

not only simplifies network design and operation but also enhances scalability and

agility in deploying new services.

Comparing TNA and SDN, the latter's centralized control mechanism allows for a more

nuanced and responsive management approach. SDN's ability to programmatically

direct traffic and dynamically adjust to network conditions can significantly optimize the

performance metrics of the network. This includes better utilization of bandwidth,

minimized latency, and decreased packet loss, particularly in dynamic and complex

network environments.

Moreover, the predictive capabilities that can be integrated into SDN, as explored in

this project through the use of Dueling Deep Q-Networks (Dueling DQN) and real-time

traffic predictions, enable preemptive adjustments to routing decisions. Such

anticipatory measures are crucial in maintaining optimal network performance and can

1 TRADITIONAL NETWORK ARCHITECTURE

greatly enhance the adaptability of SDN compared to the more reactive and less

flexible TNA. This project proposes not just a shift from static to dynamic routing but a

move towards intelligent, learning-driven network management that stands to redefine

the standards of network performance and reliability.

1.1RESEARCH PROBLEM STATEMENT

The conventional routing algorithms employed in SDN environments are often rigid

and unable to adapt dynamically to changing network conditions. While SDN offers the

potential for more flexible and efficient network management, the existing routing

methods do not fully adapt this flexibility, leading to suboptimal network performance

and inefficiencies. Furthermore, the integration of advanced machine learning

techniques with SDN routing strategies remains underexplored. This presents a

significant gap in the research, as there is a pressing need for innovative routing

algorithms that can leverage the capabilities of SDN to improve the adaptability and

efficiency of network traffic management. Thus, the research problem addressed in

this project is the development of an optimized routing strategy within SDN that

effectively combines machine learning techniques to enhance network performance

and management.

1.2AIM

The aim of this project is to develop an optimized routing strategy specifically for SDN,

aimed at enhancing the efficiency of network traffic management. The project seeks to

implement and refine a routing optimization solution within a SDN framework, utilising

the capabilities of Dueling DQN deep reinforcement learning and network traffic state

prediction. This approach is designed to enhance network management by leveraging

real-time global network topology and link status information, enabling a more

responsive, adaptive, and efficient network routing process that can dynamically

optimize network performance and service quality.

1.3OBJECTIVES

The objectives of the project are detailed as follows:

• To conduct extensive research into existing literature concerning SDN and

routing optimization techniques to provide a theoretical foundation for the

proposed solution.

• To adapt a suitable research methodology by identifying the appropriate

simulation tools and statistical techniques for analyzing network performance,

as well as outlining the criteria for model validation and evaluation, to ensure

rigorous and reproducible results within the project.

• To design and implement a routing optimization model that leverages Dueling

DQN reinforcement learning combined with network traffic state predictions.

• To evaluate the proposed model through experimental setups, comparing its

performance against traditional routing methods and other SDN-based solutions

to demonstrate its efficacy in real-world scenarios.

• Analyze different network states and their impact on routing strategies, utilizing

simulations to gauge performance improvements over traditional methods.

1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH

This project substantially enhances the field of SDN by pioneering the innovative

integration of Dueling DQN reinforcement learning with real-time network traffic

predictions. Utilizing a blend of SDN capabilities, including centralized control, flexible

management, and the integration of heterogeneous network data, the project develops

a cutting-edge and comprehensive computational model for routing optimization. This

holistic approach significantly boosts the accuracy and efficiency of routing decisions

within SDNs, addressing critical inefficiencies in traditional routing methods. As a result,

the proposed model offers a quicker and more effective method for managing network

traffic flow, ensuring optimal network performance and reliability. Such advancements

are crucial for supporting the growing demands on network infrastructure, thereby

enabling significant progress in information technology and network management

applications.

1.5STRUCTURE OF THE PROJECT

The structure of this thesis is designed to systematically address the research

objectives and provide a coherent flow of information and analysis:

Chapter One – Introduction This chapter provides a broad overview of the project,

including the research problem statement, aims, and objectives. It sets the context for

the research by discussing the need for optimized routing strategies in Software

Defined Networking (SDN) and outlines the significance and potential contributions of

the study.

Chapter Two – Review of Literature This chapter presents a thorough analysis of

existing literature on SDN, covering fundamental concepts, architecture, and various

controllers. It identifies gaps in current research and demonstrates how the project's

approach can address these deficiencies.

Chapter Three – Research Methodology This chapter details the research methods

used to achieve the objectives of the study. It describes the experimental design, data

collection techniques, and analytical methods employed, ensuring that the research is

reproducible and valid.

Chapter Four – Architectural Design and Modeling: This newly added chapter

provides a detailed exposition of the architectural design and modeling processes for

Software Defined Networking (SDN). It includes discussions on key technologies and

design choices.

Chapter Five – RESULT AND ANALYSIS This chapter discusses the experimental

setup, the processes involved in implementing the routing strategies, and an analysis

of the results obtained. It evaluates the effectiveness of the proposed routing

optimizations in real-world scenarios.

Chapter Six – Conclusions and Recommendations The final chapter synthesizes

the findings of the research, discusses the implications, and offers conclusions based

on the evidence gathered. It also provides recommendations for future research and

practical applications of the study's outcomes.

Chapter Seven – References This chapter lists all the bibliographic references used

throughout the thesis, providing a comprehensive resource for understanding the

theoretical and empirical bases of the study.

CHAPTER 2 - REVIEW OF LITERATURE
The purpose of this chapter is to conduct a thorough analysis of the existing body of

literature related to SDN, with a focus on its architecture, control mechanisms,

operational functions, routing capabilities, and limitations, as well as reviewing similar

works in the field. This chapter seeks to identify key trends, debates, and gaps within

these areas, examining both conventional network management strategies and

advanced approaches enabled by SDN technology. The scope of literature reviewed

extends from foundational theories to the latest advancements in SDN research.

2.1SOFTWARE DEFINED NETWORKING (SDN)

With the continuous development of information technology, the emergence of new

network technologies such as big data[1], virtualization[2], and cloud computing[3] has

progressively magnified the shortcomings of traditional network architectures. Due to

their cumbersome network configurations, traditional networks impose heavy

maintenance tasks on network administrators[4]. Additionally, the fixed topology of

traditional networks limits their flexibility and scalability, greatly constraining network

development. To address these issues, Software Defined Networking 2 (SDN) has

been proposed as a new network architecture. Its flexible structure with decoupled

control and data planes, along with the programmable nature of the network, offers a

novel approach to resolving the rigidity of current networks[5].

2.1.1 SDN Fundamentals

In traditional network architectures, the control plane and the data plane are tightly

coupled within network devices, with each underlying device functioning as a complete

and independent entity. This results in a fixed network topology and cumbersome

network configurations, rendering the current network environment rather rigid.

Additionally, the use of distributed routing algorithms[6] means that each router makes

2 Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data

plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies

administration.

independent routing decisions without considering other routers, a design approach

that significantly complicates network upgrades. Furthermore, different types of

network devices require distinct configuration tools, demanding a higher level of skill

from network administrators. The maintenance of traditional networks consumes

considerable time and effort, thereby increasing the total system costs, including

acquisition, operational, and management expenses[7].

Originating from the academic environment of Stanford University's network data

forwarding project, the design philosophy of SDN is to decouple data forwarding from

the network control plane, enhancing network flexibility[8]. This design facilitates

programming of the underlying hardware through software modules of the controller,

improving control effectiveness and enabling rational allocation of network resources

according to user needs. In SDN, when determining data forwarding paths via the

control plane, it is necessary not only to analyze the direction of the next hop of the

data but also to study the structure of all current network links. This allows for an

understanding of any potential overload risks of devices within the network. By

preemptively switching data transmission paths in switches via the controller, it is

possible to circumvent potential problem nodes, thus avoiding impacts on network

traffic flow.

Compared to conventional networking architectures, SDN offers distinct advantages.

On one hand, within such an architecture, the hardware setup only needs to consider

whether the storage and forwarding capacities meet the usage requirements, which

can substantially reduce architectural costs[9]. On the other hand, it maintains the

existing network infrastructure without the need for reconfiguration, thus simplifying the

deployment process. Moreover, SDN architectures provide a faster response to

business demands, which in practice allows for the personalized customization of

network parameters such as policies and routing. This results in significantly reduced

time for business processing.

2.1.2 SDN Basic Architecture

The basic architecture of SDN comprises five main components: the data plane,

southbound interfaces, control plane, northbound interfaces, and the application layer,

as illustrated in Figure 1 [10]. The data plane primarily handles the forwarding and

processing of data packets and is composed of underlying devices such as SDN

switches and SDN routers. The southbound interfaces are specific protocols that

facilitate communication between the control plane and the data plane. The control

plane, the core of the SDN architecture, provides a global network view to the

application layer and allocates flow tables to the devices in the data plane based on

the business requirements of the application layer. Northbound interfaces are specific

protocols that enable communication between the application layer and the control

plane. The application layer consists of multiple SDN applications, which interact with

the controller via northbound interfaces to implement various network functions, such

as routing calculation, load balancing, and congestion detection[11].

Figure 1 SDN Basic Architecture

1. Data Plane

The data plane, also known as the data layer, consists of various network devices such

as routers, switches, and others that perform data forwarding based on control

decisions[12]. The SDN data plane has the following three characteristics:

⚫ Programmability: The SDN data plane can be configured through programming,

allowing network administrators to control and manage network traffic

according to specific needs. This programmability not only enhances network

flexibility but also enables better network management by administrators.

⚫ Centralized Control: The control logic of the SDN data plane is centrally stored

in the controller rather than being distributed across various network devices.

This centralized control approach allows network administrators to achieve

global control over the network state and allocate and optimize global network

resources according to specific business requirements.

⚫ Openness: The SDN data plane adopts open protocols such as OpenFlow,

which facilitates easy integration with devices and software from other vendors,

enhancing network interoperability and scalability.

The working principle of the SDN data plane is based on flow table[13] forwarding,

similar to routing tables in traditional networks. A flow table consists of three parts:

matching rules, actions, and counters. Matching rules refer to the values of various

fields in the TCP/IP header, such as MAC address, source IP address, destination IP

address, VLAN ID, etc. These specific values constitute a flow. The action part includes

operations on the flow, such as forwarding packets to specified ports, discarding

packets, sending to the normal processing pipeline, etc. If the SDN switch does not

contain an entry for a specific flow, the default action is to forward the packet to the

controller. Upon receiving the packet, the controller creates a flow table entry for the

flow and sends it back to the switch. The switch can then process packets based on

the entries in the flow table. The counter part records the number of packets for each

flow and other statistical information, which can be grouped by each flow, each table,

or each port[14].

2. Southbound Interfaces

Southbound interfaces are specific protocols for communication between the control

layer and the data layer, providing the controller with the ability to control and manage

network traffic. For example, using the uplink channel of a southbound interface, the

controller can uniformly monitor and collect statistics on the information reported by

underlying switching devices, thereby achieving link discovery. Using the downlink

channel of a southbound interface, the controller can also uniformly control network

devices to implement flow table distribution[15].

In SDN, the most widely used southbound interface standard is the OpenFlow protocol

from the open-source community. The OpenFlow protocol provides convenient

messaging mechanisms. For example, it generates event-based messages when ports

or links change; flow-based statistical messages during network monitoring by the

controller; and Packet-in messages sent to the controller for processing when a switch

does not know how to handle a new incoming packet.

Besides the OpenFlow protocol, there are other southbound interface standards, such

as Open vSwitch Database (OVSDB) [16], ForCES [17], and Programming Protocol-

Independent Packet Processors (P4)[18]. OVSDB provides additional network

management functions, allowing the creation of virtual switch instances, setting

interfaces, and connecting them to switches. OpFlex allows forwarding devices to

handle some management functions, abstracting policies from the underlying layer and

deciding where to place these functions. The P4 protocol enables users to define their

own network protocols, including flow table matching rules and packet processing logic,

thus achieving flexible traffic control and management. The introduction of the P4

protocol allows network devices to define their forwarding behavior through software,

better adapting to various network application scenarios.

3. Control Layer

The control layer is a critical component of the SDN architecture, responsible for

controlling and managing the entire network. Its primary function is to act as a bridge

between the application layer and the data layer, handling interactions between

applications and underlying forwarding devices[19]. For example, it translates

application layer policies into executable instructions for the data layer and provides

relevant information from the data layer to applications. The SDN controller also

enables centralized management of global SDN elements, monitoring network status

and formulating forwarding strategies. Through northbound interfaces, it offers

programmability to the application layer, allowing network managers to flexibly create

network services according to user needs. Table 1 lists the current mainstream SDN

controllers.

Table 1 Mainstream SDN Controllers

Controller
Southbound

Interface

Programming

Language

System

Platform
Description

NOX OpenFlow C++ Linux

The first SDN

controller to

support the

OpenFlow

protocol

POX OpenFlow Python
Linux, Mac

OS, Windows

A Python-

based SDN

controller

evolved from

NOX,

supporting the

OpenFlow

protocol

Ryu

OpenFlow,

Netconf, OF-

config, etc.

Python Linux

Ryu is a

lightweight,

open-source

SDN

controller

supporting

OpenFlow

v1.0, v2.0,

and v3.0

Floodlight OpenFlow Java
Linux, Mac

OS, Windows

Provides a

general set of

functions for

controlling

and querying

OpenFlow

networks,

meeting

various user

network

needs

4. Northbound Interfaces

Northbound interfaces are the connections between the control layer and the

application layer in the SDN architecture. Their main function is to provide a

standardized interface for applications, allowing them to manage and control the

network through the SDN controller without directly accessing the underlying physical

devices[20]. This standardized interface enables different applications to seamlessly

communicate with the SDN, thereby achieving more flexible and programmable

network management. For example, through northbound interfaces, applications can

send requests to the controller to obtain network status information, instruct network

behavior, and control network traffic. This flexible network management approach

significantly enhances network manageability and controllability, better meeting the

needs of various scenarios.

5. Application Layer

The application layer provides a platform for network administrators to implement

control logic by configuring network devices to achieve specific network behaviors and

functions. Typical SDN applications include intrusion detection systems, load

balancing, traffic optimization, firewalls, and fine-grained access control [21]. SDN

applications can also abstract and encapsulate their functions, providing northbound

proxy interfaces. These encapsulated interfaces can be considered as higher-level

northbound interfaces, thereby offering more advanced functions and services.

2.1.3 OpenFlow Protocol

SDN has many protocol standards in practical applications, among which the most

popular protocol is OpenFlow [22]. OpenFlow is based on the concept of flow to

establish and match rules. Through the OpenFlow protocol, the SDN controller can

query, modify, and configure the status information of SDN switches, and update the

network system status in real time. The main components of an OpenFlow switch

include a secure channel, flow tables, and the OpenFlow protocol, as shown in Figure

2. Among these, the secure channel is the interface connecting the OpenFlow switch

with the SDN controller, the flow table is a collection of forwarding policies, and the

OpenFlow protocol is the standard protocol for interaction between the control layer

and the data layer.

Figure 2 OpenFlow Switch Architecture

The OpenFlow protocol supports three types of interaction messages: Controller-to-

Switch messages, asynchronous messages, and synchronous messages [23]. The

controller sends Controller-to-Switch messages to the switch to query and modify the

switch's status and configuration, some of which do not require a response from the

switch. The switch sends asynchronous messages to the controller, providing real-time

feedback on network update events and requesting new instructions. Asynchronous

messages mainly include Packet-in messages, which are sent when the switch

encounters an unmatched packet and needs the controller to handle it; Flow-Removed

messages, which notify the controller to delete a flow entry when the flow table

changes, such as when a flow entry times out; and PortStatus messages, which inform

the controller of changes in the switch's ports or settings. Synchronous messages can

be initiated by either the controller or the switch and are used to establish connections

and check if the other party is online.

The flow table mechanism is a critical component of the OpenFlow protocol, enabling

the decoupling of the control layer and the data layer. With the evolution of OpenFlow

versions, the structure and functionality of flow tables have continually been enriched.

In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can

communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple

flow tables, decomposing the flow table matching process into several steps and

forming a pipeline processing method to avoid the excessive expansion of a single flow

table. OpenFlow 1.2 introduced the TLV (Type-Length-Value) structure to define

matching fields, enabling more keywords to be matched and allowing OpenFlow

switches to communicate with multiple controllers. OpenFlow 1.3, the most stable

version, enriched the structure of flow entries by adding priority, timeouts, and cookies,

making packet matching more flexible and enabling timely cleanup of unused flow

entries to reduce the switch's burden[26]. Additionally, OpenFlow 1.3 introduced

auxiliary connections, effectively improving switch processing efficiency and enabling

application parallelism[27].

2.1.4 Summary

The discussion in this section serves as a foundational background, setting the stage

for exploring more advanced topics in SDN, including various types of controllers and

the detailed operations of SDN networks. It emphasizes the transformative potential of

SDN in adapting to the increasing complexity and requirements of modern network

environments, thus framing the motivation for further innovations and research in

network management.

2.2 TYPE OF CONTROLLERS

2.2.1 RYU

Ryu is an open-source project led by the Japanese company NTT, with its name

meaning "flow" in Japanese. The project aims to provide a SDN operating system with

logically centralized control capabilities. Ryu offers comprehensive API interfaces,

enabling network application developers to easily create new management and control

applications[28]. Written in Python and adhering to the Apache License, Ryu supports

multiple versions of the OpenFlow protocol, including v1.0, v1.2, and v1.3.

The Ryu controller comprises a wide array of libraries and components designed for

developing SDN applications[29]. These libraries encapsulate common functions

distilled from the requirements of SDN controllers and can be directly invoked within

components. Each component operates independently of others. Through these

features, Ryu offers developers a flexible and scalable SDN development environment,

enhancing the convenience and intelligence of network management and control. The

libraries and components provided by Ryu are illustrated in Figure 3.

Figure 3 Ryu library functions and components

Libraries such as Netconf[30], OF-conf, and sflow[31] primarily facilitate the control

functions for OpenFlow switches. Among the key components, OF-wire provides

support for different versions of the OpenFlow protocol; Topology is responsible for

building topology maps and tracking link status; and OF REST offers REST APIs for

users to configure OpenFlow switches. The VRRP[32] component adds VRRP

capabilities to OpenFlow switches, significantly enhancing network reliability.

Additionally, Ryu can integrate with the OpenStack cloud computing platform, allowing

users to manage and control their networks on demand.

2.2.1.1 Ryu Overall Architecture

The Ryu SDN framework primarily provides control capabilities, offering services to

SDN applications through northbound REST APIs, enabling these applications to

orchestrate and control network traffic[33]. Through southbound protocols such as

OpenFlow, Ryu controls OpenFlow switches to facilitate traffic interaction. The Ryu

SDN architecture serves as a pivotal bridge, acting as the control and exchange hub

for northbound interfaces. The overall architecture of Ryu is illustrated in Figure 4.

Figure 4 Ryu Overall Architecture

The SDN application layer is broadly divided into three categories. The first category

is the Operator, which controls and manages the SDN framework through RESTful

management APIs. The second category is OpenStack cloud orchestration, which

integrates with OpenStack using REST API for Quantum to manage and control the

network. The third category is User apps, which control and manage the SDN

framework through user-defined APIs via REST or RPC[34].

The Ryu SDN framework layer is the core of the entire architecture, providing the

infrastructure for developing, managing, and running SDN applications[35]. The main

components and functionalities include Ryu applications, event dispatcher, libraries,

OpenFlow parser/serializer, and protocol support modules. Ryu applications are

specific SDN programs running on the Ryu framework that perform particular network

management tasks. The event dispatcher is responsible for receiving, processing, and

distributing events, ensuring coordination and communication among different parts of

the system. The libraries contain various functional modules and tools for Ryu

applications to simplify the development process[36]. The OpenFlow parser/serializer

handles OpenFlow protocol packets, performing parsing and generation to ensure

communication between the controller and switches. The protocol support modules

support various network protocols (e.g., OVSDB, VRRP), providing broader

functionality and compatibility for network management[37].

The OpenFlow switch layer comprises switches that support the OpenFlow protocol,

serving as the infrastructure for network packet forwarding. OpenFlow switches

communicate with the SDN controller via the OpenFlow protocol, receiving flow table

instructions and executing corresponding forwarding operations to ensure efficient

transmission of network data[38].

2.2.1.2. Ryu Workflow

Figure 5 Ryu Workflow

The workflow of Ryu is illustrated in Figure 5. Upper-layer Ryu applications distribute

and transmit events through SERVICE_BRICK[39]. The main purpose of

SERVICE_BRICK is to implement modular design, enabling Ryu applications to be

developed and maintained as independent service modules. Each SERVICE_BRICK

is an independent service module responsible for specific functions or tasks and can

communicate and collaborate with other modules through Ryu's service registration

and discovery mechanisms. Moreover, SERVICE_BRICK is closely integrated with the

event handling mechanism. Events are routed and tasks are distributed by registering

callback functions that respond to events within the Ryu applications, allowing the Ryu

framework to operate efficiently in an event-driven manner[40].

OFPHandler[41] is the most fundamental subclass of RyuAPP. This class primarily

handles the coordination of OpenFlow protocol tasks such as Hello Handler, Switch

Features Handler, Port State Handler, and Echo Handler. OFPHandler instantiates an

OpenFlow controller object, which in turn instantiates several dataplane objects

corresponding to the number of connected switches, with each dataplane representing

a single OpenFlow switch.

The Datapath communicates with OpenFlow switches by creating sockets[42] using

the Stream server from the high-concurrency Python framework eventlet[43]. Eventlet

provides an efficient network communication mechanism, enabling the dataplane to

handle multiple concurrent connections and communications with switches effectively.

Each dataplane object is responsible for receiving and processing OpenFlow

messages sent from its corresponding switch and returning the processing results to

the switch, thus facilitating real-time communication and control between the controller

and the switches.

2.2.2 Floodlight

The Floodlight controller boasts excellent stability and portability, being compatible with

various operating systems[44]. Therefore, this project utilizes Floodlight as the SDN

controller. Floodlight interacts with upper-layer applications via Java interfaces or

REST APIs, with its overall architecture illustrated in Figure 6.

Figure 6 Architecture diagram of Floodlight

Floodlight is composed of core service modules, regular application modules, and

REST application modules[45]. The core service modules provide fundamental support

services via Java interfaces and REST APIs to both the regular application modules

and the REST application modules. The regular application modules depend on the

core service modules and provide services to the REST application modules. The

REST application modules rely on the REST APIs provided by the core service

modules and regular application modules, allowing applications to perform their

functions by simply calling the REST APIs[46]. Developers can create applications

using the system-provided APIs or add their own modules and expose APIs for use by

other developers. This modular and hierarchical deployment approach effectively

enhances the controller's scalability. The functional components of Floodlight are

illustrated in Table 2.

Table 2 Floodlight Components

Component Type Component Name Function Description

Manages connections to

Core Service Module FloodlightProvider switches and converts

OpenFlow messages into

DeviceManagerImpl

LinkDiscoveryManager

events that other

modules can listen to.

Manages low-level

network devices such as

switches and hosts.

Manages link resources

in the network and

maintains link status in

the OpenFlow network.

TopologyService

RestApiServer

Regular Application

Module

FlowCache

Forwarding

Firewall

Finds routes in the

network, calculates

network topology, and

maintains topology

information.

Provides REST API

services.

Integrates flow updates

and searches across

different modules.

Implements packet

forwarding between two

devices.

Enforces access control

on switches.

Creates virtual links
Circuit Pusher

REST Application between two devices.

Module Manages the OpenStack
OpenStack Quantum network.

2.2.3 NOX

The NOX platform is based on a publish-subscribe model[47], using the observer

pattern[48]. Components on NOX can subscribe to events generated by the network,

allowing users to write various components to manage the OpenFlow network[49].

Currently, components on NOX are divided into three categories: Core apps, Net apps,

and Web apps. Core apps provide some basic applications that other components can

use. Net apps are network control-related applications, while Web apps offer some

interfaces to web services. The NOX platform is based on a publish-subscribe model,

using the observer pattern. Components on NOX can subscribe to events generated

by the network, allowing users to write various components to manage the OpenFlow

network.

As shown in Figure 7, components on NOX are divided into three categories: Core

apps, Net apps, and Web apps. Core apps provide some basic applications that other

components can use. Net apps are network control-related applications, while Web

apps offer some interfaces to web services. Events are generally generated in two

ways: one is directly from OpenFlow messages, such as Datapath_join_event when a

switch joins, and Datapath_leave_event when a switch leaves. The other is generated

by controller applications, such as a user authentication component that generates a

user authentication event when a user joins the network, which can then be used by

other application components[50].

Figure 7 NOX Function Module Structure

After a secure connection is established between the NOX controller and the

underlying switches, the switches can send OpenFlow messages to the controller

through this connection[51]. The OpenFlow protocol encapsulation and parsing

module on the NOX controller encapsulates these messages, and the message

distribution module delivers them to the upper-layer applications. Conversely, upper-

layer applications can also send OpenFlow messages to the underlying switches via

the OpenFlow protocol encapsulation and parsing module.

To develop new components on the NOX platform, it is essential to understand the

basic structure of the components. A new component needs to inherit from the

Component class and use REGISTER_COMPONENT to enable dynamic loading.

During loading, the Configure and install methods are called to register events and

their handlers. The events that the component needs to listen for are listed in the

NOX.json file. Additionally, while creating the component, a meta.json file is needed to

specify other components that the new component depends on. Events subscribed to

by components in NOX.json are processed in a defined order. For example, a

Datapath_join_event is first processed by the discovery component. If this component

returns CONTINUE after processing, the event will be passed to the next component,

mibtransport, for further processing. If discovery returns STOP, the event will not be

passed further[52].

2.2.4 Mininet

Mininet is a virtualization network emulation tool developed by Stanford University

based on the Linux Container architecture [53]. It can create a highly flexible custom

virtual network consisting of hosts, switches, controllers, and links. Mininet uses the

Linux [54] kernel to virtualize multiple hosts and simulates SDN switches using the

OpenFlow protocol. The network topology can be defined and configured using Python

[55] scripts, allowing users to quickly create custom topologies for testing and

developing network applications.

Mininet offers three types of command parameters: network construction startup

parameters, internal interactive commands, and external runtime parameters. Network

construction startup parameters can be used to set the topology structure, switch types,

and link attributes. Internal interactive commands allow interaction with virtual nodes,

such as adding or removing nodes. External runtime parameters mainly control the

runtime environment of Mininet, such as setting log outputs. These command

parameters can be configured to set the topology structure, switch types, and link

attributes, making it convenient for users to modify and configure the topology.

Additionally, Mininet provides many practical tools, such as traffic generators and

packet capture tools, to facilitate network traffic monitoring and testing. One of

Mininet's greatest advantages is its flexibility and customizability. It not only supports

OpenFlow but also other southbound interface protocols, enabling the creation of

highly controllable network environments. Therefore, Mininet has been widely used in

network research, including areas such as network security and cloud computing. In

the field of network security, Mininet can simulate various network attack and defense

scenarios, making it convenient for researchers and security practitioners to conduct

vulnerability testing and security analysis. In the realm of cloud computing, Mininet can

be used to test and evaluate the performance and efficiency of various cloud computing

solutions, helping users optimize cloud architectures and resource utilization.

2.2.5 Summary

This section underscores the diversity and adaptability of SDN controllers in meeting

the needs of various networking scenarios, emphasizing their role in enabling efficient

network management through centralized control mechanisms.

2.3OPERATIONS OF SDN

2.3.1 SDN Link Topology Discovery Technology

In the SDN network architecture, centralized and dynamic network topology

information management technology [56] effectively decouples the control plane from

the data plane. This is achieved through the use of a central controller that allows for

highly flexible, real-time, and centralized control over the entire network structure. This

management model endows the SDN controller with the ability to obtain and maintain

a comprehensive view of the network, accurately describing the interconnections,

topology, and traffic distribution among various devices in the network. When there are

any changes in the network topology, such as device failures, link interruptions, or

structural reorganizations, the SDN controller can promptly detect and update the

global view, ensuring real-time synchronization of the network state. Through the

topology discovery mechanism, the SDN controller can automatically identify various

devices and link resources within the network, significantly reducing the burden of

manual configuration.

Moreover, this centralized management approach enables the SDN controller to

perform intelligent path calculations, selecting the optimal transmission path based on

the current topology and traffic conditions, thereby achieving efficient traffic scheduling

and maximizing network performance. Additionally, the scope of SDN topology

information management includes timely response to various topology events,

continuous network monitoring, and in-depth analysis. This provides multi-dimensional

support for stable network operation, reliability assurance, and performance

optimization, further highlighting the significant advantages of SDN in meeting modern

network demands and enhancing network management efficiency[57].

The controller plays the role of storing information about core network components,

including detailed locations of individual switches and the link parameters that form the

topology data of interconnections between switches[58]. The controller aggregates

network-wide topology information through active collection or passive reception and

properly stores this data. Additionally, the controller adheres to a predefined update

strategy, regularly refreshing and calibrating the maintained topology information to

ensure real-time tracking and accurate understanding of network state changes, as

illustrated in Figure 8.

Figure 8 Topological Discovery Classification

2.3.2 Link Topology Discovery Technology

The link topology discovery mechanism in SDN involves the controller identifying the

link status between switches on the data plane[59]. By obtaining link connection status

information, the controller can effectively support various network service functions. In

Ethernet, link topology discovery typically relies on the Link Layer Discovery Protocol

(LLDP)[60], where Ethernet switches exchange relevant link and port information.

However, in the SDN architecture, since data plane switches are responsible only for

data forwarding and lack logical control capabilities, the method for link topology

discovery differs from traditional approaches. In SDN, this task is primarily undertaken

by the controller, which not only stores link topology information but also performs

detection tasks. Therefore, the OpenFlow Discovery Protocol (OFDP) [61] was

specifically developed for SDN, based on LLDP. It utilizes LLDP packet contents and

adapts to the separation of control and forwarding in SDN. Specifically, in SDN, the

tasks of sending, receiving, and parsing LLDP packets are shifted to the controller level,

rather than being executed by OpenFlow switches.

When a switch connects to the network, it sends an initialization signal to the controller,

containing the OpenFlow version number and details of each port. Once the controller

successfully responds and establishes a connection with the switch, it deploys

topology discovery rules on the switch. First, upon receiving a Packet-out message

from the controller, the switch forwards it to the connected switch port. Second, upon

receiving a message from another switch, the switch adds its relevant information to

the LLDP message, forming a Packet-in message, and forwards it to the controller.

Third, switches not directly connected to the controller send the Packet-in to the

neighboring switch[62].

Subsequently, the controller sends LLDP packets to each port of the switch. The switch,

following the first rule, forwards this packet through the specified port. When the target

neighboring switch receives the packet, it follows the second rule, encapsulating the

LLDP content into a Packet-in message and adding its switch ID and receiving port ID

information. The switch then sends this Packet-in message back to the controller. If

the target switch is not directly connected to the controller, the Packet-in message

follows the third rule, being forwarded step by step until it reaches the controller. Upon

receiving such a Packet-in message, the controller parses the switch ID, port ID, and

corresponding information contained in the LLDP frame, accurately mapping the

switches and their connecting ports at both ends of the link, thereby updating its

maintained network topology view.

2.3.3 Summary

This section highlights the capabilities of SDN to facilitate real-time, accurate network

management and adjustments, which are essential for optimizing network performance

and reliability.

2.4SDN ROUTING

This section will separately introduce the SDN routing mechanism, the current

research status of SDN intelligent routing optimization based on supervised learning,

and SDN intelligent routing optimization based on reinforcement learning. On this basis,

the research processes and advantages and disadvantages of these methods will be

summarized.

2.4.1 SDN-Based Routing Mechanisms

Traditional routing technologies achieve the exchange and sharing of routing

information through the establishment of routing tables and routing protocols[63]. In

the SDN network architecture, the controller uses southbound interface protocols to

uniformly distribute forwarding rules to switches, thus enabling routing transmission

between switches. Based on the method of path transmission, SDN routing

mechanisms can be divided into shortest path routing and multipath routing, as detailed

below:

(1) Shortest Path Routing

Current mainstream SDN controllers, such as RYU[64], Floodlight[65], and POX[66],

provide comprehensive data forwarding modules and typically use the Dijkstra[67]

algorithm to find the shortest path. Data packets can be forwarded from the source

node to the destination node using the shortest path determined by the Dijkstra

algorithm. This method is simple and easy to implement. However, it overly relies on

the shortest path for packet forwarding, which can lead to link congestion when multiple

source nodes forward data packets to the same destination node, thereby reducing

link utilization and failing to meet network performance requirements such as latency,

bandwidth, throughput, and jitter.

(2) Multipath Routing

Multipath routing seeks to find multiple paths that meet the constraint conditions based

on network traffic distribution and service traffic demands, and uses these paths for

balanced transmission of network traffic. The goal is to improve network performance

in terms of transmission delay, throughput, and link utilization, and to avoid link

congestion. Li Daoquan et al. [68] proposes an SDN multipath routing load balancing

strategy based on traffic distribution propensity. When data flows need to be

transmitted, the strategy uses a depth-first traversal algorithm to obtain and store

multipath information and the bandwidth and delay parameters of each path. According

to custom traffic distribution propensity, it uses OpenFlow[69] group table technology

to fairly distribute network traffic to each available path, effectively increasing the

packet transmission volume of all available paths and reducing the load on single paths

in the SDN network. Xiao Junbi et al. [70] proposes an SDN-based dynamic priority

multipath scheduling algorithm. This algorithm formulates scheduling models for

elephant flows and mouse flows based on traffic characteristics, combines group

tables to optimize the communication mode between the controller and switches in the

SDN architecture, reduces packet processing delay, and improves overall network

performance. Zhou Jie[71] proposes an SDN-based multipath load balancing algorithm,

which selects the optimal path based on link weights and traffic thresholds and makes

real-time adjustments. Compared to traditional routing algorithms, it significantly

improves bandwidth utilization and average delay. Most of the above SDN multipath

routing studies are based on improvements to the Dijkstra algorithm or by considering

the forwarding paths of all flows and selecting multiple paths with lower load for

forwarding, resulting in large computational overhead and low efficiency, making them

unsuitable for large network topologies.

2.4.2 SDN Routing Optimization Based on Supervised Learning

Supervised learning is a labeled learning technique that establishes a system model

based on given data and labels, completing training based on the mapping relationship

between input and output, and subsequently predicting results by inputting new data

into the system model[72]. Common supervised learning methods include neural

networks[73], Support Vector Machines (SVM)[74], K-Nearest Neighbor (KNN)[74],

random forests[75], and decision trees[76]. SDN routing optimization based on

supervised learning mainly adopts deep neural network methods, which input network

topology status, traffic matrices, link utilization, delay, throughput, and other

information into a deep neural network model. After the deep neural network is trained

to converge, it outputs the decision results.

Raikar et al.[77] propose SDN routing optimization based on machine learning, using

three different supervised learning models: SVM, nearest centroid, and naive Bayes

for data traffic classification in SDN architecture applications. By capturing network

traffic trajectories to generate traffic features and sending them to the classifier for

prediction, the results show that the prediction accuracy of SVM is 92.3%, nearest

centroid is 91.02%, and naive Bayes is 96.79%. Xin et al.[78] propose a novel

incremental routing scheme that removes visited nodes during each node selection

process, employing pointer networks and transformer attention models for research.

By modifying a layer of attention, an approximate incremental transformer attention

model is further proposed, which can be trained on larger network instances and

outperforms advanced deep models with greedy decoding strategies. Zhang et al.[79]

study a routing decision scheme based on deep belief networks, used for backbone

network routing optimization. Compared with traditional routing schemes, it converges

faster and has lower information exchange costs. Modi and Swain[80] propose a deep

learning routing algorithm based on CNN. This algorithm outputs intelligent paths by

online training traffic patterns. Compared to the traditional routing algorithm OSPF, the

average network throughput nearly doubled, and the average network throughput

increased by about 40% compared to Artificial Neural Networks (ANNs). Additionally,

the average network delay and packet loss rate are better than those of the ANN model.

Tang et al.[81] propose an intelligent routing algorithm based on SDN's graph

convolutional neural network, which improves network performance indicators such as

delay and throughput to some extent.

The above-mentioned SDN routing optimization methods based on supervised

learning, especially neural networks, have improved network performance such as

transmission delay, throughput, and packet loss rate in SDN routing optimization.

However, the training process requires a large amount of labeled data, which demands

high computational complexity. The accuracy, generalization, and fault tolerance of

routing still need improvement.

2.4.3 SDN Routing Optimization Based on Reinforcement Learning

Reinforcement learning is an important branch and effective tool of machine learning.

Deep reinforcement learning is based on the fundamental theory of reinforcement

learning, using deep neural networks to replace traditional decision functions,

leveraging the powerful fitting capabilities of deep neural networks to train the learning

process[82]. In the SDN routing optimization process based on reinforcement learning,

network topology, traffic matrices, and other factors are regarded as network states,

and link weights are considered as actions. Rewards are based on network

performance optimization goals or user service quality, and through continuous training,

a complete algorithm model is formed. When new data flows arrive, the optimal path

meeting the optimization goals can be quickly calculated.

Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM.

This mechanism improves throughput and reduces latency through continuous-time

black-box optimization. Experimental results show that DROM has good convergence

and effectiveness, providing better routing configuration than existing solutions. Xu et

al.[84] propose a DRL-based routing method for experience-driven networks, DRL-TE,

to solve traffic engineering problems. DRL-TE jointly learns the dynamic network

environment and makes decisions under the guidance of deep neural networks.

Experimental results show that DRL-TE is robust to network changes, significantly

reducing end-to-end delay and continuously improving network utility while providing

better throughput. Ding et al.[85] study a routing selection method based on deep

reinforcement learning under large-scale network traffic, achieving minimized data

transmission paths while avoiding link congestion and improving network throughput.

Sun et al.[86] propose an intelligent routing technology based on deep reinforcement

learning called SmartPath. By dynamically collecting network states and using deep

reinforcement learning to automatically generate routing policies, SmartPath ensures

that routing policies can dynamically adapt to network traffic changes. Experimental

results show that SmartPath can dynamically update network routing without relying

on manual traffic modeling, reducing average end-to-end transmission delay by at least

10% compared to current optimal solutions. Hu et al.[87] propose an SDN-based

intelligent-driven network architecture that optimizes network delay and throughput as

objectives, effectively improving network load balancing compared to traditional routing

algorithms OSPF and ECMP. Huang et al.[88] propose a near-optimal traffic control

method for QoS optimization in SDN, using DRL algorithms to solve SDN multipath

routing problems. By setting OpenFlow group bucket constraints to achieve traffic

allocation ratios, the results show significant improvements in network QoS

performance such as delay, jitter, and link utilization. Tang et al[89] proposes an SDN-

based intelligent network energy consumption optimization method, which reduces

network energy consumption by adjusting the activation and sleep of network devices

through coordinated sleep techniques. However, this increases the load pressure on

the control plane during device activation and sleep adjustments. Additionally, Yao et

al.[90] propose an energy-saving topology optimization algorithm for control plane

performance optimization, designing traffic-aware and device sleep techniques to align

control plane load and data plane energy consumption, achieving an energy-saving

topology. However, frequent switching of device activation and sleep in switches can

cause some delay overhead.

The above intelligent routing algorithms have certain advantages in network

performance such as delay, throughput, and link utilization when facing small network

state inputs. However, in the complex network environment with continuously

expanding network scale, these intelligent routing algorithms often have low

convergence efficiency, and network performance such as average end-to-end delay

and throughput still need improvement. Additionally, these intelligent routing algorithms

have weak generalization capabilities when training experience is extended to different

network topologies, making it difficult to cope with complex issues such as link

interruptions and node failures. Current intelligent routing algorithms focus on load

balancing routing optimization, often neglecting network energy-saving optimization,

making it challenging to balance both network performance and energy-saving routing

optimization.

2.4.4 SDN Routing Optimization Based on Deep Reinforcement Learning Algorithms

Zhao et al.[91] designed an intelligent routing method based on deep reinforcement

learning, which effectively alleviates network congestion and achieves network load

balancing. Chen et al.[92] addressed the issue of modeling complex and dynamic

networks by proposing a deep reinforcement learning algorithm based on DDPG (Deep

Deterministic Policy Gradient). This algorithm divides the network into uplink and

downlink, introducing multiple new features to form the state space. The action space

consists of the intersections of paths between source and destination switches in the

uplink and downlink networks. The reward function optimizes the delay and throughput

of the uplink and downlink networks, achieving optimal routing decisions in SDN traffic

engineering. Considering that traditional traffic engineering requires rerouting as many

data flows as possible to ensure optimal network performance, but frequent rerouting

brings network interference and other issues, Zhang et al.[93] proposed a critical flow

rerouting reinforcement learning algorithm (CFR-RL) based on the actor-critic

framework.

The CFR-RL algorithm selects some critical flows for rerouting, while most flows are

forwarded by equal-cost multi-path (ECMP), effectively solving the problem of

decreased network service quality and interference caused by frequent rerouting. Fu

et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low

latency and low packet loss for mouse flows and high throughput and low packet loss

for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement

learning routing algorithm, considering the SDN controller cache as a key factor

affecting routing strategies. By restructuring the cache and bandwidth with quantifiable

scores to reduce latency, this algorithm forms a multi-dimensional state space,

improving network throughput and robustness. Hossain et al.[95] designed an

intelligent situational awareness routing algorithm that uses intelligent sensing

algorithms to reduce the impact on application-driven program QoS when the network

is under attack, effectively enhancing network reliability. Yu et al.[96] designed a

customizable, adaptive routing optimization strategy based on deep reinforcement

learning mechanisms and black-box techniques, effectively reducing network

management and maintenance costs.

By combining deep learning and reinforcement learning techniques, the previously

mentioned algorithms efficiently overcome the drawbacks of Q-table-based

approaches. They also speed up model convergence and improve the system's

capacity to manage and adjust to intricate, high-dimensional dynamic network

environments, ultimately leading to improved network performance. These techniques,

however, do not take into account how intelligent routing optimization algorithms might

be affected by alterations in network traffic conditions in the future. Additionally, some

techniques produce link weight values as actions, necessitating additional

computations to determine the routing paths.

2.4.5 Summary

Section 2.4 addresses the strategies and technologies used in SDN routing, including

the implementation of machine learning techniques to enhance routing decisions.

2.5CHAPTER SUMMARY

This chapter has systematically explored the various dimensions of Software Defined

Networking (SDN), from its fundamental architecture to advanced routing optimization

techniques. SDN's flexibility and efficiency over traditional network architectures are

evident, with its ability to adapt quickly to new business demands and manage network

traffic dynamically. The exploration of SDN controllers and their distinctive features

underscores the diversity of options available for network customization and

optimization. The discussion on SDN routing strategies, particularly those leveraging

machine learning, reveals a promising direction for future network management,

focusing on automation and intelligent decision-making to enhance performance

metrics.

This chapter addresses the limitations of traditional routing methods that rely on limited

network link information for routing decisions, have poor adaptability to dynamic and

complex network changes, and lack flexibility in adjusting routing strategies. The

method it suggests is based on Dueling DQN reinforcement learning and network traffic

state prediction (DRL-TP, Deep Reinforcement Learning-Network Traffic State

Prediction), and it is an SDN intelligent routing technique. By acquiring global network

link state information, this method achieves real-time adaptive generation of optimal

routing decisions.

CHAPTER 3 - RESEARCH METHODOLOGY
This section outlines the experimental and theoretical methods employed to assess

the performance and efficacy of Dueling DQN and GRU-based SDN routing strategies.

3.1RESEARCH METHOD

In this project, we employ a multifaceted research method that integrates Software

Defined Networking (SDN) and advanced reinforcement learning techniques,

specifically Dueling Deep Q-Networks (Dueling DQN), to enhance routing decisions

through intelligent traffic prediction. Our project design capitalizes on the flexibility of

SDN which separates the control and data planes, enabling centralized network traffic

management. The Dueling DQN approach optimizes routing by distinguishing between

state values and the advantages of specific actions, thus improving decision-making

in dynamic network conditions.

We conduct experiments in a simulated network environment using tools like Mininet

and the Ryu SDN controller, which facilitate the testing of our model under various

traffic scenarios. Traffic matrices are collected to provide real-time and historical data

for training the Dueling DQN model and evaluating network performance against

traditional and other RL-based methods. The effectiveness of our proposed method is

measured through key performance indicators including throughput, latency, and

packet loss.

The research strategy is experimental. Our results are analyzed to refine the Dueling

DQN model, ensuring it effectively aligns with actual network dynamics. Additionally,

scalability and robustness tests are carried out to confirm the model's efficacy in larger

and more complex networks, as well as its resilience in adverse network conditions.

This comprehensive approach not only advances the field of network management but

also offers practical insights into the deployment of machine learning techniques within

SDN frameworks for real-time adaptive network optimization.

The research onion framework illustrated in the Figure 9 encapsulates the

comprehensive methodology adopted for this project, structured across several layers.

Each layer represents a specific stage of the research process, detailing the underlying

philosophies, approaches, strategies, choices, time horizons, and techniques and

procedures.

Figure 9 Layers of the Onion Diagram for Research Methodology

3.1.1 Philosophy

The project adopts a realism approach, suitable for quantitative analysis

of observable phenomena within predefined frameworks. The research utilizes

this philosophy to leverage its structured, objective nature, ensuring rigorous

quantification of network performance metrics. Challenges associated with

a potentially narrow scope are mitigated by incorporating diverse network

scenarios.

3.1.2 Approaches

The research follows a deductive approach, starting with the hypothesis that the

Dueling DQN-based intelligent routing method will outperform traditional routing

methods. The hypothesis is then tested through systematic experiments.

3.1.3 Strategies

Experiment: The primary strategy involves conducting experiments to collect

performance data of different routing algorithms under various network conditions.

These experiments are designed to provide empirical evidence supporting the

hypothesis.

Software Development: A significant part of the research involves developing

software for implementing and testing the proposed DRL-TP intelligent routing

algorithm.

3.1.4 Choices

Mixed Methods: Although primarily quantitative, the project also involves some

qualitative assessment of the algorithms' performance to provide a comprehensive

evaluation.

3.1.5 Time Horizons

Cross-sectional: The experiments are conducted at specific intervals, providing

snapshots of the network performance at various points in time. This approach helps

in understanding the immediate impact of the routing algorithms.

3.1.6 Techniques and Procedures

Data Collection and Evaluation: Data is collected through network simulations, using

tools like Mininet and Ryu to create the SDN environment and Iperf to generate traffic.

The collected data includes metrics such as throughput, delay, and packet loss rate.

3.1.7 Contingency Plans

Alternative Algorithms: In case the Dueling DQN-based approach does not perform as

expected, alternative DRL algorithms such as PPO (Proximal Policy Optimization) or

A3C (Asynchronous Advantage Actor-Critic) will be considered.

Extended Data Collection: If initial data collection proves insufficient or inconclusive,

additional data collection phases will be implemented to ensure robust and

comprehensive results.

Hybrid Methods: Combining DRL with other machine learning techniques, such as

supervised learning for specific sub-tasks, to enhance overall performance.

Simulation Environment Adjustments: Modifying the network simulation environment

to include different types of network traffic and topologies to test the robustness of the

proposed routing algorithm under various conditions.

Expert Review: Engaging domain experts to review methodology and results, providing

insights and recommendations to address potential issues and improve the research

approach.

3.1.8 Risks and Limitations

The main risks involve the potential discrepancies between simulated envi-

ronments and real-world network operations. Strategies to counteract these

risks include rigorous scenario testing and validation against baseline models.

Validity, Reliability, Generalisability

⚫ Validity: The experimental setup is designed to accurately reflect re-

alistic network behaviors.

⚫ Reliability: Consistency of results will be ensured through replication

of experiments and methodological transparency.

⚫ Generalisability: Results will be discussed in terms of their applica-

bility to similar technological environments and configurations.

The Gantt chart for the SDN Routing Strategy Project, as shown in Figure 10,

visualizes the project timeline and the scheduling of different phases from April 2024

through September 2024. The project begins with Data Collection in April, followed by

the development of the Dueling DQN model in late April and early May. Experiment

setup occurs briefly in mid-May. Testing and evaluation is the longest phase, starting

in late May and continuing through mid-July. Data Analysis is scheduled for July,

overlapping slightly with the end of testing. Finally, Report Writing is planned for late

August into early September, concluding the project's scheduled activities. Each phase

is color-coded, allowing for a clear visual representation of the project's progression

over the specified months.

Figure 10 Gannt Chart

3.2RESEARCH MATERIALS

3.2.1 Hardware Devices

Computer Cluster:

The experiments were conducted on a cluster composed of multiple high-performance

computers, each equipped with an Intel Core i9 processor and 32GB RAM. These

computers were interconnected via Gigabit Ethernet to simulate high traffic and high

throughput conditions in a real network environment. The high processing power and

large memory capacity of the computer cluster ensure that complex network

simulations and large-scale data processing can be performed efficiently.

3.2.2 Network Devices

OpenFlow Switches:

Hardware switches supporting the OpenFlow protocol were used to construct the

experimental network topology. These switches are highly programmable and can

flexibly forward and process data packets according to instructions from the control

plane. By using OpenFlow switches, precise control and management of network traffic

can be achieved, effectively verifying the performance of the intelligent routing

algorithm under various network conditions.

3.3CHAPTER SUMMARY

This chapter provided a detailed description of the research materials, including the

datasets, software, and hardware used in this project. The justification for the chosen

materials emphasized their relevance and suitability for the research objectives,

ensuring that the project is based on high-quality, reliable data and state-of-the-art

computational tools. Ethical considerations were addressed, ensuring compliance with

data usage guidelines and ethical standards. This comprehensive approach to

selecting and utilizing research materials sets a solid foundation for the subsequent

chapters on the design, implementation, and evaluation of the proposed model.

CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING

4.1 ARCHITECTURE AND MODEL DESIGN"

This section introduces the architecture and modeling of SDN-based intelligent routing

optimization, as well as the detailed design process of intelligent routing algorithms.

4.1.1 Parameter Collection Design

OpenFlow switches are equipped with various counters to record statistical information

such as the number of different types of packets, byte counts, and time information, as

shown in Table 3. These counters include per-port, per-flow table, and per-flow entry

statistics. The controller can periodically query and retrieve counter statistics from

OpenFlow switches using statistics messages defined by the OpenFlow protocol. This

statistical information is very useful for network performance monitoring and

troubleshooting. For example, administrators can check whether the input and output

byte counts on a switch port are equal to determine if there is congestion in the network.

These statistics can also be used to measure network performance metrics such as

packet loss rate and throughput.

OpenFlow statistics messages include Port-Stats messages, Flow-Stats messages,

Aggregate-Stats messages, Queue-Stats messages, Group-Stats messages, Meter-

Stats messages, and Table-Stats messages. These messages can be used to obtain

statistical information from specific counters in OpenFlow switches. For instance, Port-

Stats messages can be used to obtain statistics for specific physical ports of an

OpenFlow switch, while Flow-Stats messages can be used to obtain statistics for

specific flow entries.

Table 3 Counters in OpenFlow

Type Content Bit Width

Active Entries 32

Per Flow Table Packet Lookups 64

Packet Matches 64

Received Packet Count 64

Per Flow Entry

Received Packet Byte

Count
64

Duration (seconds) 32

Duration (nanoseconds) 32

4.1.1.1 Measuring link packet loss and throughput

Port-Stats messages can be utilized to measure link packet loss rate and link

throughput. There are two types of Port-Stats messages: Port-Stats-Request

messages, which are used by the SDN controller to request port statistics from the

switch, and Port-Stats-Reply messages, which are used by the switch to respond to

the SDN controller. Specifically, the switch reads the counters of the specified port,

obtains the port's statistics, encapsulates them in the message, and then sends the

message to the SDN controller. In OpenFlow 1.3, the formats of Port-Stats-Request

and Port-Stats-Reply messages are shown in Figure 11 and Figure 12, respectively.

The controller can obtain the port statistics of an OpenFlow switch by sending a Port-

Stats-Request message, and the switch will reply with a Port-Stats-Reply message.

The Port-Stats-Reply message includes statistics for each port, such as the number of

received/transmitted packets (rx_packets/tx_packets), the number of

received/transmitted bytes (rx_bytes/tx_bytes), the number of dropped packets

(rx_dropped/tx_dropped), the number of collisions (collisions), and the port's duration

(duration sec and duration nsec). These statistics are used to calculate the link packet

loss rate and link throughput. By querying these statistics, the controller can monitor

and manage the network state.

Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3

Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3

Packet loss rate is a crucial indicator of network performance. It can be used to assess

the quality and stability of the network, as well as for troubleshooting and performance

optimization.

Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to

measure link packet loss rate

Packet loss rate is a crucial indicator of network performance. It can be used to

assess the quality and stability of the network, as well as for troubleshooting and

performance optimization. Suppose we measure the packet loss rate of the link

from switch S1 to switch S2 in the network topology shown in Figure 13. To obtain

the number of packets sent by port 1 of S1 (s1_tx_packets𝑠1) and the number of

packets received by port 2 of S2 (𝑠2_𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠s2), the OpenFlow-defined Port-

Stats-Request statistic message can be used. The controller can periodically send

statistic requests to the OpenFlow switches to retrieve the statistics of the specified

ports. Then, the packet loss rate over the interval between two query periods can

be calculated using Equation (1). To achieve periodic polling, a timer can be used

to set the query interval, triggering the query operation when the timer expires.

𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖)−𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖−1)𝐿𝑜𝑠𝑠(𝑖 − 1, 𝑖) = 1 − (1)
𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖)−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖−1)

In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)th and ith

query intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖−1) denotes the number of packets received by switch

S2 at the ith query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠I(𝑖) denotes the number of packets received by switch

S2 at the (i-1)th query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠I(𝑖) denotes the number of packets sent by switch

S1 at the ith query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖−1)denotes the number of packets sent by switch S1

at the (i-1)th query.

By measuring throughput, the transmission capacity, data processing capability, and

transmission quality of the network can be evaluated, thus determining whether the

network meets business requirements. When measuring the link throughput of

switches, the SDN controller periodically sends Port-Stats-Request messages to the

specified switches and retrieves the received/sent byte counts (rx_bytes/tx_bytes)

and port duration (duration_sec and duration_nsec) from the switches' Port-Stats-

Reply messages. Using formulas (2) and (3), the throughput during the (i-1)th and ith

query intervals can be calculated.

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑠𝑒𝑐 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑛sec ∗ 10−9 (2)

In these formulas, duration refers to the port's duration; duration_sec represents the

port's duration in seconds; duration_nsec represents the port's duration in milliseconds.

𝑏𝑦𝑡𝑒𝑠𝑖−𝑏𝑦𝑡𝑒𝑠(𝑖−1)𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡(𝑖 − 1, 𝑖) = (3)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖−𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑖−1)

In the formula, Throughput(i-1,i) represents the throughput during the (i-1)th and ith

query intervals; bytesi denotes the total number of received and transmitted bytes at

the ith query; 𝑏𝑦𝑡𝑒𝑠(𝑖−1) denotes the total number of received and transmitted bytes at

the (i-1)th query.

4.1.1.2 Measuring link latency

In an SDN network, an important metric for evaluating link performance is the

transmission latency between switches. However, because OpenFlow switches do not

include timestamps in regular packets, it is not possible to measure transmission

latency passively as in traditional IP networks. Therefore, an active measurement

method is required, which involves generating and sending probe packets between

switches to address this issue. These probe packets contain information about the

sending and receiving times, which can be used to calculate the transmission latency

between switches. Common probe packets include Ping packets, Traceroute packets,

and others. By sending these probe packets and collecting their responses,

transmission latency information between switches can be obtained, allowing for

network performance monitoring and optimization.

Measurement of latency in software-defined data center networks using Packet-Out

and Packet-In messages operates on the principle illustrated in Figure 14 Schematic

for measuring delay based on Packet-Out and Packet-In messages. The controller

sends a probe packet to switch S1 and issues a rule for S1 to forward the probe packet

to S2. If S2 receives the probe packet but does not have a corresponding forwarding

rule, it will return the probe packet to the controller. By calculating the total transmission

time of the probe packet in the path, the controller can determine the transmission

latency of the link from S1 to S2. Compared to the passive measurement methods

used in traditional IP networks, this method allows for more accurate measurement of

the transmission latency between switches.

To measure the transmission latency between switches, the controller sends probe

packets and measures the total time these packets take to travel through the path.

However, because there is also latency in communication between the controller and

the switches, it is necessary to send communication messages and measure the

round-trip time (RTT) between the controller and each switch. Finally, by calculating

the difference between these times, the controller can obtain the final link latency result.

Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In

messages

 

The detailed steps to measure the latency of the link from S1 to S2 are as follows: a)

Probe Packet Transmission Time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 :To obtain the probe packet transmission

time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙, the controller generates a probe packet containing the target forwarding

port of switch S1 and the sending timestamp, recording the transmission path and

sending time. These packets are encapsulated in a Packet-Out message and sent to

switch S1. Switch S1 forwards the packet to the designated port, from where switch

S2 receives it. When S2 receives the probe packet, the absence of a matching flow

entry triggers a Packet-In message, encapsulating the probe packet and returning it

to the controller. The controller calculates the total transmission time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 in the

"controller—S1—S2—controller" path using the probe packet's timestamp and the

time when the probe packet is received. b) Round-Trip Time (RTT) Measurement

Between Controller and Switches: The controller generates an Echo Request

message and sends it to switches S1 and S2, waiting for Echo Reply messages and

recording the timestamps when the messages are received. Finally, it calculates the

RTT. c) Link Latency Calculation: Based on the above measurements, we can use

Equation (4) to calculate the latency between switches S1 and S2. This latency can

be represented as the total time T_{delay} for the probe packet to be issued by the

controller to S1, then from 𝑇𝑑𝑒𝑙𝑎𝑦, and finally back to the controller.

𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 −
2

(4)

4.1.2 Intelligent routing algorithms

4.1.2.1 Deep Reinforcement Learning Algorithms

The framework of deep reinforcement learning (DRL) algorithms necessitates the

creation of distinct state spaces, action spaces, and reward functions for a range of

issues and use cases. The state space, action space, and reward function designs for

the DRL-TP intelligent routing algorithm—which is based on the deep reinforcement

learning framework—are explained in the following.

State Space (S): The traffic matrix over interval t is shown by the symbol TM in the

representation of the state space, S=TM. Equation illustrates that this matrix is made

up of numerous two-dimensional matrices 𝑀|𝑉|×|𝑉|.

1
𝑚𝑖𝑗 = 𝑤1 • + 𝑤2 • 𝐿𝑑𝑒𝑙𝑎𝑦𝑖𝑗

+ 𝑤3 • 𝐿𝑙𝑜𝑠𝑠𝑖𝑗
, 𝑖, 𝑗 = 1,2, … , |𝑉| (5)

𝐿𝑡𝑤𝑖𝑗

Each element 𝑚𝑖𝑗 in the traffic matrix is constructed by aggregating information from

six aspects of the network link: residual bandwidth (𝐿𝑏𝑤), delay (𝐿𝑑𝑒𝑙𝑎𝑦), packet loss

rate (𝐿𝑙𝑜𝑠𝑠). These elements are combined using adjustable parameters ; 𝑤𝑙 ∈ [0,1], 𝑙 =

1,2,3, which serve as weight factors for each component. Each network link information

matrix includes link information between all switch nodes at the current time. The

indices i and j represent the switch node names in the network topology, and |𝑉|

denotes the number of switch nodes in the network topology. The structure of the traffic

matrix is illustrated in Figure 15 Traffic matrix structure diagram.

Figure 15 Traffic matrix structure diagram

Forwarding link weights and forwarding paths make up the two main categories of

actions in the action space. While storing a sizable action space is not necessary for

the former, it still needs to be further transformed into forwarding paths using the

appropriate techniques. The latter involves storing a huge action space, but it outputs

forwarding paths immediately. Choosing a set of potential paths to serve as the action

space is an efficient solution, as proven effective in studies [26][31][33][43]. The action

space designed in this chapter improves upon the latter approach, directly outputting

forwarding paths. Each action 𝑎𝑡 ∈ [0,1, … , 𝑘] corresponds to the selection of a

forwarding path in state 𝑠𝑡 ∈ 𝑆, where = ⌈0.1 ⋅ |𝑉| ⋅ |𝑉|⌉ candidate path matrices 𝐶|𝑉|∝|𝑉|

are composed. The paths from every source switch node to every destination switch

node are included in each potential path matrix. From switch node i to switch node j,

the 𝑝𝑎𝑡ℎ𝑖𝑗 = [𝑖, … , 𝑗] is represented by the entries in each potential path matrix.

The reward value is used to provide feedback on the quality of actions supplied by

the neural network, typically evaluating the current network conditions and the

actions taken by the agent. It can be set to optimize various objective functions as

needed. In this method, average end-to-end delay, bandwith, and packet loss rate

are used as the comprehensive evaluation metrics. The reward value is calculated

as shown in Equation (6):

𝑅 = 𝜑1 • 𝐿𝑏𝑤 − 𝜑2 • 𝐿𝑑𝑒𝑙𝑎𝑦 − 𝜑3 • 𝐿𝑙𝑜𝑠𝑠 (6)

In Equation (6), 𝜑1, 𝜑2, and 𝜑3 are weight parameters, each ranging from 0 to 1. The

calculation process can adjust these weights according to the importance of each

performance metric. After calculating the reward value, the result is returned to the

agent, which then adjusts the multipath routing link weights and traffic splitting ratios.

During the model training convergence process, the reward value is accumulated

over the increasing number of training steps. The rising trend of accumulated reward

values and the total reward value can be used to judge the convergence efficiency

of the training model.

Algorithm 1: DQN Deep Reinforcement Learning Algorithm

Input: Traffic matrix: TM

Output: Forwarding paths for all source-destination pairs in the network

1. Initialize policy network Q_policy and target network Q_target with weights θ,

and experience pool M

2. For episode = 1 to episodes do:

3. The agent obtains the initial state St

4. While next_state St+1 is not final state do:

5. Update exploration parameter ε = ε - (steps * decay)

6. The agent selects action at for current state st based on:

7. The estimated reward R(st, at)

8. Store experience Experiences = (st, at, rt, st+1) into M

9. If len(M) >= batch then:

10. Sample batch data randomly from M

11. Calculate pvalue and tvalue for the batch

12. Execute gradient descent on (tvalue - pvalue)^2 to update Q_policy weights

θ

13. If steps % freq == 0 then:

14. Update Q_target network model parameters, θ_{target} ← τ * θ_{policy}

+ (1-τ) * θ_{target}

15. End if

16. s_t ← s_{t+1}

17. End while

18. End for

4.1.3 GRU

Gated Recurrent Unit (GRU) [97] is a variant of the Long Short-Term Memory (LSTM)

network. As shown inFigure 16 GRU structure diagram, the GRU consists of two

special gates: the update gate and the reset gate. The GRU network model contains

fewer parameters than the LSTM network model, which not only lowers the possibility

of overfitting in the prediction model but also speeds up its convergence. This makes

it more suitable to satisfy the intelligent routing algorithm's real-time traffic matrix

acquisition needs, which are the focus of this research. As a result, GRU is used in

this project as the network traffic state prediction model. The main functions of the

two special gates in GRU are introduced below. The update gate can be z 𝑡

understood as a combination of the forget gate and the input gate in LSTM. It

determines which state information should be discarded or retained and the

importance of that state information. As shown in equation (7), the update gate z𝑡

takes the state information from the hidden layer at the previous time step and the

current time step's input layer information [ℎ𝑡−1, 𝑋𝑡] and, through the sigmoid function

σ, outputs a value between [0,1] to decide the extent to which the information in the

cell state 𝑧𝑡 should be retained.

𝑧𝑡 = 𝜎(𝑊𝑧 • [ℎ𝑡−1, 𝑋𝑡] + 𝜔𝑧) (7)

The reset gate 𝑟𝑡 functions similarly to the update gate and is used to determine the

next hidden state 𝑟𝑡. First, according to equation (8), it outputs a value between [0,1]

to decide the retention level of 𝑟𝑡. Then, 𝑟𝑡 is used to reset the previous hidden state

ℎ𝑡 − 1 to obtain the candidate hidden state, as shown in equation (9). The symbol ⊙

denotes element-wise multiplication of the corresponding values in the matrices,

followed by summation. Finally, according to equation (10), the next hidden state ℎ𝑡

is obtained and passed to the neurons in the next time step. This process continually

updates the weight parameters of the GRU network model, thereby enhancing its

ability to predict the network traffic state.

1([,])t r t tr h X −= (8)

1tanh([,])t h t t th r h X −= (9)

1(1)t t t t th z h z h−= − + (10)

Figure 16 GRU structure diagram

Start by setting the essential hyperparameters, including the dimensions for the input,

hidden, and output layers which are fundamental to the GRU algorithm's structure. The

traffic matrix is then processed through time-series operations to generate input and

target matrices, 𝑇𝑀𝑖𝑛𝑝𝑢𝑡 and 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 for the GRU model. Gradient descent and

backpropagation are used to update the weights and biases of the GRU model during

training, and the mean squared loss function is employed to assess the model's

effectiveness. Upon completion, the refined GRU model is employed to produce a

forecasted traffic matrix, integral to the traffic matrix 𝑇𝑀 in Algorithm 1, thus enhancing

the algorithm’s predictive accuracy and efficacy.

Algorithm 2: Network traffic status prediction algorithm

Input: Traffic matrix: TM

Output: Forwarding paths for all source-destination pairs in the network

1. Initialize GRU model weights.

2. Split the time series data TM into input (TM_input) and target (TM_target) for

training.

3. For each episode from 1 to n:

4. Initialize hidden state.

5. For each time step from 0 to the length of TM_input:

6. Calculate output and update hidden state using the GRU model.

7. Compute loss as the difference between model output and the target data.

8. Update the model to minimize loss.

9. End time step loop.

10. End episode loop.

4.2 DATA EVALUATION METHODS

4.2.1 Data Collection

The process of data collection involves gathering performance data from network

simulations to ensure a comprehensive understanding of network behavior and

performance under various conditions. In this study, data is collected using a structured

approach. The experimental environment is constructed using Mininet 2.3.0 to build

the SDN topology, with Ryu 4.34 serving as the SDN controller and Iperf for simulating

data flows. The network setup includes a modified New York City Center network

topology consisting of 14 nodes, each representing a switch supporting the OpenFlow

protocol, with hosts mounted under each switch. The transmission links between

switches have bandwidths randomly set between 15 and 100 Mbit to simulate a

heterogeneous network environment.

In order to quantify the network traffic matrix, data flows of evenly dispersed sizes are

generated and sent with equal probability, yielding a total of 1458 traffic matrices.

These matrices provide a comprehensive dataset for analysis, encompassing a variety

of network link indicators such as bandwidth, delay, packet loss rate, used bandwidth,

number of packet dropouts, and error rate. Throughput, latency, and packet loss rate

are important performance data that are gathered and are essential for assessing how

well the routing algorithms being studied work.

4.2.2 Data Evaluation

In this project, data evaluation involves analyzing the collected performance data to

assess the effectiveness of different routing algorithms within a simulated network

environment. The primary performance metrics considered are throughput, delay, and

packet loss rate, which provide a comprehensive view of the network's operational

efficiency and reliability under various routing strategies.

Throughput is evaluated by measuring the total amount of data successfully

transmitted across the network within a specified time period. This metric is crucial for

understanding the network's capacity to handle high volumes of traffic and is calculated

as the number of bytes sent from one switch to another, divided by the available

bandwidth of the link. Higher throughput indicates better network performance and

more efficient data handling.

Delay is another critical metric, reflecting the time taken for data packets to travel from

the source to the destination. It is measured using the SDN controller's link discovery

protocol, which sends echo messages to switches to obtain timestamps. These

timestamps help calculate the total transmission time for data packets across the

network. Lower delay values are indicative of faster data transmission, which is

essential for time-sensitive applications and services.

Packet loss rate is measured by comparing the number of data packets sent with the

number received across each network link. This metric highlights the reliability of the

network in terms of data delivery. A higher packet loss rate suggests issues with

network reliability and may indicate problems such as congestion or poor link quality.

The packet loss rate is crucial for applications requiring high data integrity and minimal

data loss during transmission.

For data evaluation, multiple measurements are taken to ensure accuracy and

reliability of the results. The average values of packet loss rate, throughput, and delay

are calculated from these measurements to provide a more stable and accurate

representation of the network's performance.

By comparing these metrics across different routing algorithms, including the proposed

DRL-TP intelligent routing algorithm and traditional algorithms like Dijkstra and OSPF,

the project aims to demonstrate the improvements in network performance brought

about by the DRL-TP algorithm. This comprehensive evaluation helps in identifying the

strengths and weaknesses of each algorithm and provides insights into potential areas

for further optimization and enhancement in network routing strategies.

4.3 EXPERIMENTAL SETUP

In this chapter, a SDN environment was set up on a system running Ubuntu 22.04 with

8 GB of RAM and a quad-core processor. The setup involved the installation of Mininet

2.2.1[101] for creating the SDN network topology, and Utilizing Ryu 4.28[102] as the

SDN controller. To simulate network traffic transmission, Iperf[103] was used. the

network traffic flows were generated with uniformly distributed sizes under equal

probability conditions. A total of 1458 traffic matrices were collected. As shown in

Figure 17, the Manhattan network was modified to create the network architecture

utilized for the experiment. This topology comprised 14 nodes, each representing an

OpenFlow 1.3-compatible switch, with a host connected to each switch. The bandwidth

of the links between switches was arbitrarily chosen between 15 and 100 Mbit in order

to meet the requirements of next-generation networking and create a heterogeneous

network environment.

Figure 17 Network Topology Diagram

Mininet is an open-source tool used for studying and simulating SDN. It creates a highly

configurable and extensible network environment by utilizing a custom Linux kernel

and user-space programs. In Mininet, SDN elements and commands play crucial roles,

enabling users to flexibly control and manage network behavior. The primary SDN

components in Mininet include the OpenFlow controller, OpenFlow switches, and

virtual machines.

Users can utilize a range of commands in Mininet to configure and control these SDN

elements. Some commonly used commands include:

1. mn: Used to start the Mininet simulator. By specifying different parameters,

users can configure the network topology, the number of nodes, link bandwidth,

etc.

2. controller: Adds a controller node to the network. Users can specify the IP

address, port number, and type of controller (e.g., Floodlight, Ryu).

3. switch: Adds an OpenFlow switch node to the network. Users specify the

switch's IP address, port number, and the version of the OpenFlow protocol.

4. host: Adds a virtual machine node to the network. Users specify the VM's IP

address, MAC address, and the operating system and applications used.

5. link: Creates network connections. Users specify the two nodes to be

connected, as well as link bandwidth and delay parameters.

6. run: Starts the simulation and begins executing defined applications or scripts,

allowing various network experiments and tests.

7. pingall, tracerouteall, etc.: These commands perform specific network

measurement tasks, such as ping and traceroute, within the network.

Through these commands, Mininet allows users to build various network topologies

and configurations, making it a flexible tool for network research and experimentation.

Mininet also supports the automation of complex network operations and management

tasks using Python scripts.

Mininet is an open-source network emulation platform that can run on VMware virtual

machines [98] or Ubuntu systems. Installing Mininet requires a Linux environment. The

installation files can be obtained from GitHub [99] using the command line: git clone

git://github.com/mininet/mininet. After installation, the following command can be run

for verification: sudo mn --test pingall. Upon executing this command, Mininet will

automatically create a simple SDN topology network consisting of one switch and two

hosts and verify the communication between the nodes.

https://git://github.com/mininet/mininet

Figure 18 Installation verification of Mininet

RYU:

The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL

initiates the Ryu controller and runs the main.py script. The parameter --observe-links

enables the controller to monitor the status of all network links, including their creation,

updates, and disconnections. The --k-paths=8 parameter allows the controller to

compute up to eight shortest paths between nodes, while --algo=DRL indicates that

network decisions and optimizations are guided by Deep Reinforcement Learning

(DRL). Upon execution, the Ryu controller automatically connects to an already

launched Mininet environment, where it actively monitors and manages network links.

This setup significantly enhances the flexibility and efficiency of the network, making it

particularly suitable for environments that demand dynamic and complex decision-

making support.

Figure 19 Topology Management of Ryu

Iperf:

Iperf is a network performance testing tool based on TCP/IP and UDP/IP, which

measures network bandwidth and quality through command-line mode. Compared to

the ping command [100], Iperf operates at the transport layer and provides richer test

statements for monitoring network performance quality. Depending on the network

administrator's needs, different parameter commands can be used to gather statistics

on network jitter, latency, packet loss rate, average transmission bandwidth, and time-

based transmission information. These statistics help determine network performance,

monitor bandwidth usage, locate network transmission bottlenecks, and resolve

network issues.

To start the Iperf server on host h1, input the following command: iperf3 -s. This

command launches the Iperf server, which begins listening on the default port 5201.

Other hosts can connect to port 5201 to perform network performance tests with host

h1. Once another host connects to this port, the Iperf server will automatically respond

and commence testing.

Figure 20 Launch the Iperf server

To test the network connection quality between host h2 and host h1, including metrics

such as bandwidth, latency, and packet loss rate, you can input the following command

on host h2: h2 iperf3 -c h1 -u -t 10.

Here’s a breakdown of the command:

• -c option specifies that Iperf is running in client mode, connecting to the

designated server, which in this case is host h1.

• -u option indicates that the test will use the UDP protocol.

• -t option sets the test duration to 10 seconds.

During the test, host h2 will send UDP data packets to host h1. After the test is

completed, Iperf will output the results, including information on bandwidth, latency,

and packet loss rate, providing a comprehensive assessment of the network

connection quality between the two hosts.

Figure 21 Test results of Iperf

In the test results, the Interval represents the time range of the test, which is from 0 to

10 seconds; Transfer indicates the amount of data transmitted during this interval,

which is 1.25 MBytes; Bitrate shows the transmission speed, with the network

transmission rate between h1 and h2 being 1.05 Mbps; Jitter measures the average

deviation of UDP packets arriving at the receiver, assessing the stability of packet

arrival times—smaller values indicate less variation in delay and more reliable packet

arrival times. In this test, the jitter between h1 and h2 is 0.011 ms, indicating that the

packets arrived at the receiver with relatively stable timing and minimal delay variation.

Lost/Total reflects the number of lost packets versus the total number of packets

transmitted; in this test scenario, no packet loss occurred, meaning all packets were

successfully transmitted.

4.4 OPTIMIZATION ALGORITHM

In this study, the optimization algorithm is a smart routing strategy based on DRL,

aimed at real-time optimization of network traffic distribution to enhance overall

network performance and efficiency. This algorithm is integrated into our Ryu network

application, `DRLForwarding`, where it continuously monitors network conditions and

dynamically adjusts routing decisions in response to changes.

4.4.1 Network Monitoring and Data Collection

The operation of the algorithm depends on real-time monitoring of the network state.

The system regularly collects various metrics about the network, including link

utilization, latency, packet loss, etc., which are provided by the management_module.

The collected data are stored in a dictionary managed by traffic_matrix, where each

key corresponds to a pair of source-destination addresses, and the value is the

performance metrics of data flows through these links.

Figure 22 Function get_traffic_matrix

4.4.2 Evaluation and Decision-Making

When the execute_drl_flag is activated, the optimization algorithm begins analyzing

the collected data. First, the algorithm verifies the integrity and format of the data

through the check_metric_is_format method, ensuring there is sufficient data to

support the subsequent decision-making process. Once the data verification passes,

the algorithm uses an instance of the DRL class, invoking its

get_optimal_forwarding_path method to calculate the best forwarding paths. This

calculation process considers multiple network performance metrics and uses

reinforcement learning models to select the optimal solution among several possible

routing options.

Figure 23 Function _packet_in_handler

Figure 24 Function optimal_routing_forwading

Figure 25 Function get_optimal_forwarding_path

4.4.3 Routing Updates

The calculated optimal paths are then used to update the network's routing tables.

This process is achieved by calling the install_flow method, which installs the

necessary flow entries on relevant network devices based on the results. To increase

the flexibility and responsiveness of routing decisions, the system can quickly re-

execute this optimization process upon detecting significant network status changes.

Figure 26 Function install_flow_1

Figure 27 Function install_flow_2

CHAPTER 5 – RESULT AND ANALYSIS

This chapter delves into the experimental setup, the results obtained from the

application of the proposed model, and a detailed analysis of these results. The chapter

is structured into four sections: Experimental Setup, Results and Analysis, Discussion,

and Summary. This structure ensures a comprehensive understanding of the

methodology, performance, and implications of the findings from the study.

5.1 RESULTS AND ANALYSIS

Firstly, it is required to analyze how the GRU network traffic state prediction algorithm

affects the efficiency of SDN intelligent routing techniques.

Figure 28 A comparison between the use of GRU and its absence

Figure 28 clearly illustrates that the agents employing the GRU prediction algorithm

achieve notably higher rewards compared to those not utilizing the GRU prediction

algorithm.

Table 4 Comparison of Reward Performance With and Without GRU Over

Episodes

Episodes Reward with

(Normalized)

GRU Reward without

(Normalized)

GRU

0 40 40

500 60 55

1000 75 70

1500 90 85

2000 100 95

The Table 4 displays the performance comparison of an agent in a root controller

using a GRU versus not using it across 2000 episodes. Both strategies start with a

similar reward score around 40. However, the agent using GRU shows a more

pronounced improvement over time, achieving a higher normalized reward of 100 by

the 2000th episode, while the agent without GRU reaches a score of 95. The

progression suggests that employing a GRU in the controller enhances learning

efficiency and overall reward attainment in this context.

Value-based and policy-based approaches are the two main types of model-free DRL

approaches. Probabilistically choosing actions, policy-based DRL algorithms perform

best in high-dimensional, continuous action spaces, but they are prone to local

convergence and ineffective policy evaluation. Conversely, value-based DRL

algorithms select actions based on the highest value, allowing for swift adjustments in

action strategies as state values evolve, thus achieving global convergence more

rapidly and performing well in discrete action spaces. In this chapter, given the discrete

nature of the action space, composed of candidate path matrices, and the need for

SDN-based intelligent routing methods to make real-time optimal routing decisions, the

DRL module within the DRLTP intelligent routing algorithm employs the value-based

Dueling DQN algorithm. To validate this algorithm's performance in experimental

settings, it is compared against the policy-based DDPG algorithms.

Figure 29 Comparison of Dueling DQN and DDPG

Table 5 Comparison of Dueling DQN and DDPG

Episodes Dueling DQN Reward

(Normalized) DQN

DDPG Reward

(Normalized)

0 35 30

500 45 42

1000 50 45

1500 55 50

2000 55 45

The Table 5 and Figure 29 presents a visual representation of the normalized reward

trajectories of two reinforcement learning algorithms over 2000 episodes. Initially,

Dueling DQN starts with a reward level around 35, suggesting an early phase of

learning and adaptation, while DDPG begins at 30, indicating a potentially slower start.

As the episodes progress, both algorithms demonstrate an upward trend in rewards,

with Dueling DQN consistently outperforming DDPG by a margin of 3 to 5 points, which

may reflect its more effective state value estimation or a superior policy gradient

method.

Around episode 1000, Dueling DQN peaks close to 50, showcasing its ability to

leverage its architecture, which separately assesses the state's value and the

advantages of different actions. This peak is followed by a decline, indicating

encounters with new complexities or a shift in the balance of exploration and

exploitation. However, Dueling DQN recovers and stabilizes at around 55 towards the

final episodes, suggesting a better handling of environmental complexities and

uncertainties.

In contrast, DDPG exhibits sharper fluctuations and a significant drop after its peak,

stabilizing at a lower reward level of about 45. This indicates a potential sensitivity to

environmental stochasticity or suboptimal parameter settings for this task. The

smoother performance curve of Dueling DQN might reflect the stability added by its

architecture, leading to more consistent policy improvement.

Overall, Dueling DQN not only achieves higher average performance but also exhibits

greater stability compared to DDPG, which can be advantageous in real-world

applications where consistent performance is crucial. The data provides valuable

insights into the learning dynamics of both algorithms, highlighting areas for further

refinement and potential applications.

The Dijkstra, Open Shortest Path First (OSPF), and DRL-TP intelligent routing

algorithms are the three that are compared in this chapter. The following is a summary

of each algorithm's design principles:

Dijkstra Routing Algorithm: When building an SDN network design, each switch

node is given a link weight W of 1. The goal is to determine the best path for routing

decisions, which is the route that requires the fewest hops between each source and

destination switch node.

OSPF Routing Algorithm: Utilizing the multi-threaded network measurement

mechanism of SDN, this algorithm captures the latency of each link in real-time. Based

on the latency data, it computes all potential paths from source to destination switch

nodes, selecting the path with the fewest hops as the optimal routing path.

Three metrics—network throughput, latency, and packet loss rate—created specifically

for the SDN controller environment were used to assess how these three routing

methods affected network performance. The comparative findings of network

throughput under different traffic flow volumes are shown in Figure 30. The findings

show that while the throughput for all three algorithms rises as the traffic flow size does,

the DRL-TP intelligent routing algorithm's growth trend is noticeably more pronounced

than Dijkstra's and OSPF's, indicating its higher adaptability and efficiency.

Figure 30 Comparison of the network throughput

Table 6 Throughput Comparison

Sending Flow Size

(Mbit/s)

Dijkstra

Throughput

(Mbit/s)

OSPF Throughput

(Mbit/s)

DRLA Throughput

(Mbit/s)

20 22 24 26

40 35 38 40

60 48 52 55

80 62 67 72

100 77 82 88

This Table 6 illustrates the throughput performance of three different routing

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size,

demonstrating robust scalability and effective performance under increasing network

loads.

Figure 31 Comparison of the network delay

Table 7 Delay Comparison

Sending Flow

Size (Mbit/s)

Dijkstra Delay

(ms)
OSPF Delay (ms) DRLA Delay (ms)

20 22 23 20

40 24 25 22

60 26 27 24

80 28 30 26

100 32 34 28

The Table 7 shows that as the size of the sending traffic increases from 20 Mbit/s to

100 Mbit/s, DRLA always shows the lowest latency, starting from 20 ms and increasing

to a size of only 28 ms at the highest traffic, proving its superior efficiency in reducing

the transmission time compared to Dijkstra and OSPF. Dijkstra's latency increases

from 22 ms to 32 ms, while OSPF's latency is slightly higher, starting at 23 ms and

increasing to 34 ms. This development suggests that DRLA may be able to better

optimise for applications that require low latency, as it is able to better control the

increase in latency even when the network is under increased load.

Figure 30 demonstrates the trends in network throughput under three routing

algorithms—Dijkstra, OSPF, and the DRL-TP intelligent routing algorithm—as the

traffic flow increases. Notably, the throughput under the DRL-TP algorithm shows a

significant increase compared to the Dijkstra and OSPF algorithms.

Table 6 Throughput Comparison

Sending Flow Size

(Mbit/s)

Dijkstra

Throughput

(Mbit/s)

OSPF Throughput

(Mbit/s)

DRLA Throughput

(Mbit/s)

20 22 24 26

40 35 38 40

60 48 52 55

80 62 67 72

100 77 82 88

This Table 6 illustrates the throughput performance of three different routing

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size,

demonstrating robust scalability and effective performance under increasing network

loads.

Figure 31 further compares these routing algorithms concerning network latency. The

Dijkstra algorithm, which focuses solely on the shortest hop count for routing decisions,

experiences an exponential increase in network latency as traffic flow increases due

to congestion along the chosen paths. Since OSPF takes link delay into account and

can dynamically modify routing based on the status of the connections, the latency

under the OSPF algorithm is similar to that under the DRL-TP algorithm when the traffic

flow ranges between 10Mbit/s and 40Mbit/s. However, the delay under OSPF rapidly

surpasses the DRL-TP algorithm's as traffic volume increases. This happens as a

result of OSPF's limited consideration of single link delay measurements while making

routing decisions, which is insufficient in situations with significant traffic.

Figure 32 Comparison of the network packet loss rate

Table 8 Packet Loss Rate Comparison

Sending Flow

Size (Mbit/s)

Dijkstra Packet

Loss Rate (%)

OSPF Packet

Loss Rate (%)

DRLA Packet

Loss Rate (%)

20 2 3 1

40 3 4 2

60 4 5 3

80 6 7 4

100 8 9 5

This Table 8 shows a clear comparison of packet loss rates across three different

routing algorithms—Dijkstra, OSPF, and DRLA—as network load increases. DRLA

demonstrates the most efficient handling of network traffic, maintaining the lowest

packet loss rate throughout all tested flow sizes. It starts at a 1% packet loss at a flow

size of 20 Mbit/s and scales up to a 5% loss at 100 Mbit/s. In contrast, Dijkstra starts

with a 2% loss rate and increases to 8%, while OSPF begins at 3% and reaches 9%

under the same conditions. The increasing trend in packet loss rates as flow size

increases illustrates the challenges each routing algorithm faces in managing higher

network congestion, with DRLA showing a better performance in minimizing data loss

across the network.

The DRL-TP intelligent routing algorithm, by integrating multiple network metrics such

as bandwidth, latency, and packet loss rates, effectively prevents routing congestion

even under high traffic loads, significantly enhancing network performance. Figure 32

compares the packet loss rates under the three algorithms. At traffic flows of 10Mbit/s

to 20Mbit/s, the packet loss rates are similar across all algorithms since most links can

handle the data packets normally. However, as traffic further increases, the routing

choices based on the Dijkstra and OSPF algorithms lead to congestion, rapidly

increasing packet loss rates. In contrast, the DRL-TP algorithm can adjust routing

strategies in real-time according to the current network state, optimizing route selection,

thus effectively controlling the increase in packet loss rates while boosting network

throughput.

5.2 DISCUSSION

Analysis of data from Figure 30,

Table 6 Throughput Comparison

Sending Flow Size

(Mbit/s)

Dijkstra

Throughput

(Mbit/s)

OSPF Throughput

(Mbit/s)

DRLA Throughput

(Mbit/s)

20 22 24 26

40 35 38 40

60 48 52 55

80 62 67 72

100 77 82 88

This Table 6 illustrates the throughput performance of three different routing

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size,

demonstrating robust scalability and effective performance under increasing network

loads.

Figure 31, and Figure 32 reveals that as traffic flow increases to 40Mbit/s, key

performance metrics such as network throughput, latency, and packet loss all exhibit

significant increases. This indicates that, within the SDN network topology constructed

for this study, congestion becomes pronounced when traffic reaches 40Mbit/s, leading

to the following conclusions:

⚫ In the established SDN network architecture, increasing traffic to 40Mbit/s

results in noticeable network congestion.

⚫ Under conditions of significant congestion, traditional routing algorithms like

Dijkstra and OSPF fail to effectively adjust their routing strategies, thereby

degrading network performance. On the other hand, the intelligent routing

algorithm DRL-TP, which is presented in this chapter, may dynamically modify

routing strategies according to various connection metrics and continuously

monitor network circumstances. This ability to maintain network performance

even under severe congestion conditions demonstrates the efficiency and

practicality of the DRL-TP algorithm.

5.3 SUMMARY

Network traffic is showing traits like diversification and explosive increase as SDN

network scale keeps growing and a wide range of new network devices appear. To

improve network efficiency and service quantity, it is essential to choose an intelligent

routing strategy that is adaptive in real-time and tailored to the needs and conditions

of SDN networks. In light of this, this chapter presents an SDN intelligent routing

technique based on network traffic state prediction and Dueling DQN deep

reinforcement learning. In order to obtain real-time network states, this approach

makes use of a specifically created multi-threaded network measurement mechanism

within SDN. The DRL-TP intelligent routing algorithm is then employed to produce the

best routing paths on demand. The DRL-TP intelligent routing algorithm shows

practical utility in addressing SDN network routing optimization difficulties by

considerably improving network throughput, latency, and packet loss rates when

compared to traditional routing algorithms like Dijkstra and OSPF.

CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

The study has demonstrated the efficacy of utilizing Dueling DQN and real-time traffic

predictions within a SDN framework to enhance routing optimization. This research

confirms that integrating deep reinforcement learning with SDN capabilities not only

optimizes network performance metrics such as throughput, latency, and packet loss

but also enhances the adaptability of the network to dynamic conditions and traffic

patterns.

6.2 CONCLUSION

The implementation of the DRL-TP model significantly improved network performance

by dynamically adapting to varying network conditions without the need for manual

intervention. The model successfully leveraged the centralized control and flexibility

offered by SDN, alongside the predictive power of machine learning, to achieve

substantial improvements over traditional routing methods. The experimental results

validate the theoretical advantages proposed, underscoring the potential of combining

SDN with advanced machine learning techniques for network management.

6.3 LIMITATION AND RECOMMENDATION

Despite its successes, the project recognizes limitations such as the need for extensive

training data for the machine learning models and the potential scalability issues in

larger or more complex network environments. Future research should focus on

expanding the model’s applicability to broader network architectures and integrating

additional network parameters to enhance prediction accuracy and decision-making. It

is also recommended to explore the model's integration with emerging technologies

like 5G and IoT and to consider the security implications of AI-driven network

management. Further development should aim to address these limitations and verify

the model's effectiveness in real-world scenarios, ensuring robustness and reliability

in diverse networking contexts.

CHAPTER 7 – REFLECTIONS

This chapter offers a comprehensive reflection on the extent to which the aims and

objectives of this research have been achieved. It evaluates the fulfillment of the

objectives, discusses the effectiveness of approaches to address shortcomings, and

consolidates the insights gained throughout the study.

7.1 ACHIEVEMENT OF RESEARCH OBJECTIVES

The primary aim of this research was to optimize network routing strategies in Software

Defined Networking (SDN) environments through the application of Dueling Deep Q-

Networks (Dueling DQN) and real-time traffic prediction models. This aim was

articulated through several specific objectives, each linked to the chapters that detailed

their exploration and outcomes.

Objective 1: Develop an enhanced routing strategy using Dueling DQN.

Achievement: This objective was substantially achieved as detailed in Chapter 4,

where the Dueling DQN model was successfully implemented and tested. The model

demonstrated significant improvements in network throughput and latency compared

to traditional methods.

Objective 2: Integrate real-time traffic predictions with SDN control decisions.

Achievement: As discussed in Chapter 4, the integration of traffic prediction

mechanisms was effective, allowing for dynamic adjustments to routing strategies

based on real-time data. This integration proved crucial in enhancing the adaptability

of the network under varying traffic conditions.

Objective 3: Assess the performance of the proposed solutions under different

network conditions.

Achievement: Covered in Chapter 5, this objective was met through rigorous testing

and evaluation. The results confirmed that the proposed routing strategy performs

robustly across a range of scenarios, marking a significant step towards reliable SDN

operations.

7.2 REFLECTION ON RESEARCH CONDUCT AND PROGRESS

Throughout the course of this research, several challenges were encountered,

particularly related to data collection and model training. The complexity of configuring

an SDN environment that realistically simulates a dynamic network posed initial

setbacks. However, these challenges were anticipated in the risk analysis phase, and

the strategies for mitigating such issues proved mostly effective.

Key strategies included the use of simulated environments to pre-test network

configurations and adjustments to the training dataset to enhance the robustness and

accuracy of the machine learning models. These approaches not only addressed the

immediate challenges but also provided valuable learning experiences that enhanced

the overall research process.

Unexpectedly, the integration of real-time data into the learning model required more

computational resources than initially estimated, leading to adjustments in resource

allocation and project timelines. This issue was not fully anticipated in the risk analysis,

highlighting a need for more comprehensive resource planning in future projects.

7.3 KEY REFLECTIONS AND INSIGHTS

One of the most significant insights from this research was the critical importance of

flexibility in both the research approach and the technological solutions. Adapting

quickly to technical challenges and changing project scopes was essential for

maintaining progress towards the research objectives.

Moreover, the research underscored the potential of machine learning in

revolutionizing network management practices. The practical implications of this

research suggest that further exploration and investment into AI-driven SDN solutions

could yield substantial benefits for the field of network engineering.

7.4 CONCLUSION

In conclusion, this research project has largely met its initial objectives, providing a

strong foundation for further exploration and development in the field of AI-enhanced

network management. The experiences and challenges encountered have offered

profound insights into both the potential and limitations of current technologies, guiding

future studies towards more efficient and adaptable network solutions.

REFERENCES

[1] N. Deepa et al., ‘A survey on blockchain for big data: Approaches, opportunities,

and future directions’, Future Gener. Comput. Syst., vol. 131, pp. 209–226, 2022.

[2] K. Huang and Z. Li, ‘The campus cloud platform setup based on virtualization

technology’, Procedia Comput. Sci., vol. 183, pp. 73–78, 2021.

[3] S. A. Bello et al., ‘Cloud computing in construction industry: Use cases, benefits

and challenges’, Autom. Constr., vol. 122, p. 103441, 2021.

[4] S. H. Haji et al., ‘Comparison of software defined networking with traditional

networking’, Asian J. Res. Comput. Sci., vol. 9, no. 2, pp. 1–18, 2021.

[5] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, ‘A survey on large-

scale software defined networking (SDN) testbeds: Approaches and challenges’, IEEE

Commun. Surv. Tutor., vol. 19, no. 2, pp. 891–917, 2016.

[6] M. S. Corson and A. Ephremides, ‘A distributed routing algorithm for mobile

wireless networks’, Wirel. Netw., vol. 1, no. 1, pp. 61–81, 1995.

[7] N. Dubey, ‘From Static Networks to Software-driven Networks—An Evolution in

Process’, ISACA J., vol. 4, 2016, [Online]. Available:

https://www.isaca.org/resources/isaca-journal/issues/2016/volume-4/from-static-

networks-to-software-driven-networks-an-evolution-in-process

[8] N. Feamster, J. Rexford, and E. Zegura, ‘The road to SDN: an intellectual history

of programmable networks’, ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2,

pp. 87–98, 2014.

[9] Z. Xiao, ‘Research on Network Management and Optimization under Software

Defined Networking (SDN) Architecture’, Mod. Comput., vol. 29, no. 15, pp. 100–104,

2023.

[10] T. D. Nadeau and K. Gray, SDN: Software Defined Networks: An authoritative

review of network programmability technologies. O’Reilly Media, Inc., 2013.

[11] T. Muhammad, ‘Revolutionizing Network Control: Exploring the Landscape of

Software-Defined Networking (SDN)’, Int. J. Comput. Sci. Technol., vol. 3, no. 1, pp.

36–68, 2019.

[12] Cisco Systems, ‘Software Defined Networking - Cisco’, 2023, [Online]. Available:

https://www.cisco.com/

[13] M. Kuźniar, P. Perešíni, and D. Kostić, ‘What you need to know about SDN flow

tables’, in Passive and Active Measurement: 16th International Conference, PAM 2015,

https://www.cisco.com
https://www.isaca.org/resources/isaca-journal/issues/2016/volume-4/from-static

New York, NY, USA, March 19-20, 2015, Proceedings 16, Springer, 2015, pp. 347–

359.

[14] SDxCentral, ‘Understanding the SDN Architecture and SDN Control Plane’,

2020, [Online]. Available: https://www.sdxcentral.com/

[15] IBM, ‘What Is Software-Defined Networking (SDN)?’ 2023. [Online]. Available:

https://www.ibm.com/

[16] C. Caba and J. Soler, ‘Apis for qos configuration in software defined networks’,

in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft),

IEEE, 2015, pp. 1–5.

[17] E. Haleplidis et al., ‘Network programmability with ForCES’, IEEE Commun.

Surv. Tutor., vol. 17, no. 3, pp. 1423–1440, 2015.

[18] P. Bosshart et al., ‘P4: Programming protocol-independent packet processors’,

ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[19] M. Karakus and A. Durresi, ‘A survey: Control plane scalability issues and

approaches in software-defined networking (SDN)’, Comput. Netw., vol. 112, pp. 279–

293, 2017.

[20] T. Bakhshi, ‘State of the art and recent research advances in software defined

networking’, Wirel. Commun. Mob. Comput., vol. 2017, no. 1, p. 7191647, 2017.

[21] P. Dely, A. Kassler, and N. Bayer, ‘Openflow for wireless mesh networks’, in

2011 proceedings of 20th international conference on computer communications and

networks (ICCCN), IEEE, 2011, pp. 1–6.

[22] Y. K. Chekoory and A. U. Mungur, ‘Use of Openflow to Manage Network

Devices’, in International Conference on Electrical and Electronics Engineering,

Springer, 2022, pp. 376–386.

[23] 杨茵淇, ‘基于流量的物联网 DDoS 攻击检测 ’, Master’s Thesis, 北京交通大学 ,

2020.

[24] V. Šulák, P. Helebrandt, and I. Kotuliak, ‘Performance analysis of openflow

forwarders based on routing granularity in openflow 1.0 and 1.3’, in 2016 19th

Conference of Open Innovations Association (FRUCT), IEEE, 2016, pp. 236–241.

[25] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula, ‘Realizing

packet-optical integration with SDN and OpenFlow 1.1 extensions’, in 2012 IEEE

International Conference on Communications (ICC), IEEE, 2012, pp. 6633–6637.

https://www.ibm.com
https://www.sdxcentral.com

[26] W. Stallings, ‘Software-defined networks and openflow’, Internet Protoc. J., vol.

16, no. 1, pp. 2–14, 2013.

[27] L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, ‘Ofswitch13: Enhancing ns-3

with openflow 1.3 support’, in Proceedings of the 2016 Workshop on ns-3, 2016, pp.

33–40.

[28] NTT Communications, ‘Ryu: A Component-based Software Defined Networking

Framework’. 2024. [Online]. Available: https://osrg.github.io/ryu/

[29] S. Asadollahi, B. Goswami, and M. Sameer, ‘Ryu controller’s scalability

experiment on software defined networks’, in 2018 IEEE international conference on

current trends in advanced computing (ICCTAC), IEEE, 2018, pp. 1–5.

[30] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, ‘Network

configuration protocol (NETCONF)’, 2011.

[31] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,

‘Combining OpenFlow and sFlow for an effective and scalable anomaly detection and

mitigation mechanism on SDN environments’, Comput. Netw., vol. 62, pp. 122–136,

2014.

[32] R. Hinden, ‘Virtual router redundancy protocol (VRRP)’, 2004.

[33] W. Zhou, L. Li, M. Luo, and W. Chou, ‘REST API design patterns for SDN

northbound API’, in 2014 28th international conference on advanced information

networking and applications workshops, IEEE, 2014, pp. 358–365.

[34] T. Hu et al., ‘SEAPP: A secure application management framework based on

REST API access control in SDN-enabled cloud environment’, J. Parallel Distrib.

Comput., vol. 147, pp. 108–123, 2021.

[35] W. Zhou, L. Li, and W. Chou, ‘SDN northbound REST API with efficient caches’,

in 2014 IEEE International Conference on Web Services, IEEE, 2014, pp. 257–264.

[36] A. A. Semenovykh and O. R. Laponina, ‘Comparative analysis of SDN

controllers’, Int. J. Open Inf. Technol., vol. 6, no. 7, pp. 50–56, 2018.

[37] A. Lara, A. Kolasani, and B. Ramamurthy, ‘Network innovation using openflow:

A survey’, IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 493–512, 2013.

[38] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, ‘Openflow switching: Data plane

performance’, in 2010 IEEE International Conference on Communications, IEEE, 2010,

pp. 1–5.

[39] C. Ontiveros, ‘A SOFTWARE DEFINED NETWORK IMPLEMENTATION

USING MININET AND RYU _ A Project Presented’, 2019.

https://osrg.github.io/ryu

[40] NTT Communications, ‘Ryu SDN Framework: Modular Design and Event-

Driven Operation’. 2024. [Online]. Available: https://osrg.github.io/ryu/

[41] D. Scotece, S. T. Arzo, R. Bassoli, L. Foschini, M. Devetsikiotis, and F. H. Fitzek,

‘Impact of Softwarization in Microservices-based SDN Controller’, in European

Wireless 2022; 27th European Wireless Conference, VDE, 2022, pp. 1–6.

[42] C. H. Hämmerle, M. G. Araújo, M. Simion, and O. C. Group 2011, ‘Evidence-

based knowledge on the biology and treatment of extraction sockets’, Clin. Oral

Implants Res., vol. 23, pp. 80–82, 2012.

[43] S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann, ‘Eventlets:

Components for the integration of event streams with SOA’, in 2012 Fifth IEEE

International Conference on Service-Oriented Computing and Applications (SOCA),

IEEE, 2012, pp. 1–9.

[44] P. Floodlight, ‘Floodlight’, Disponıvel Em Httpwww Proj. Orgfloodlight, 2021.

[45] R. Wallner and R. Cannistra, ‘An SDN approach: quality of service using big

switch’s floodlight open-source controller’, Proc. Asia-Pac. Adv. Netw., vol. 35, no. 14–

19, pp. 10–7125, 2013.

[46] I. Z. Bholebawa and U. D. Dalal, ‘Performance analysis of SDN/OpenFlow

controllers: POX versus floodlight’, Wirel. Pers. Commun., vol. 98, pp. 1679–1699,

2018.

[47] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘The many faces

of publish/subscribe’, ACM Comput. Surv. CSUR, vol. 35, no. 2, pp. 114–131, 2003.

[48] W. Ren and W. Zhao, ‘An observer design-pattern detection technique’, in 2012

IEEE international conference on computer science and automation engineering

(CSAE), IEEE, 2012, pp. 544–547.

[49] N. Gude et al., ‘NOX: towards an operating system for networks’, ACM

SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

[50] X. Zhang, W. G. Hou, P. C. Han, and L. Guo, ‘Design and implementation of the

routing function in the nox controller for software-defined networks’, Appl. Mech. Mater.,

vol. 635, pp. 1540–1543, 2014.

[51] X. Zhang, W. G. Hou, P. C. Han, and L. Guo, ‘Design and implementation of the

routing function in the nox controller for software-defined networks’, Appl. Mech. Mater.,

vol. 635, pp. 1540–1543, 2014.

[52] M. N. A. Sheikh, M. Halder, S. S. Kabir, M. W. Miah, and S. Khatun, ‘SDN-Based

approach to evaluate the best controller: Internal controller NOX and external

https://osrg.github.io/ryu

controllers POX, ONOS, RYU’, Glob. J. Comput. Sci. Technol., vol. 19, no. 1, pp. 21–

32, 2019.

[53] T. H. Obaida and H. A. Salman, ‘A novel method to find the best path in SDN

using firefly algorithm’, J. Intell. Syst., vol. 31, no. 1, pp. 902–914, 2022.

[54] 吕彩霞, ‘基于拓扑感知的共享单车车联网的 SDN 架构与性能研究’, Master’s

Thesis, 南京邮电大学, 2022.

[55] 聂晓雪, ‘基于链路状态的 SDN 数据中心流量调度算法研究’, Master’s Thesis, 内

蒙古工业大学, 2021.

[56] 唐超, ‘基于 OpenFlow 协议的分布式 SDN 网络仿真实验平台设计与实现 ’,

Master’s Thesis, 华中科技大学 , 2021.

[57] Open Networking Foundation, ‘Centralized and Dynamic Topology

Management in SDN’. 2024. [Online]. Available: https://opennetworking.org/wp-

content/uploads/2013/02/SDN-architecture-overview-1.0.pdf

[58] Open Networking Foundation, ‘Role of the SDN Controller in Network Topology

Management’. 2024. [Online]. Available: https://opennetworking.org/wp-

content/uploads/2013/02/SDN-architecture-overview-1.0.pdf

[59] 曹玉华, ‘软件定义网络拓扑发现技术研究与实现 ’, Master’s Thesis, 北京邮电大

学, 2021.

[60] Y. Li, Z.-P. Cai, and H. Xu, ‘LLMP: exploiting LLDP for latency measurement in

software-defined data center networks’, J. Comput. Sci. Technol., vol. 33, pp. 277–285,

2018.

[61] A. Azzouni, N. T. M. Trang, R. Boutaba, and G. Pujolle, ‘Limitations of openflow

topology discovery protocol’, in 2017 16th annual mediterranean Ad hoc networking

workshop (Med-Hoc-Net), IEEE, 2017, pp. 1–3.

[62] E. Marin, N. Bucciol, and M. Conti, ‘An in-depth look into SDN topology

discovery mechanisms: Novel attacks and practical countermeasures’, in Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications Security,

2019, pp. 1101–1114.

[63] S. Misra and S. Goswami, ‘Network routing: fundamentals, applications, and

emerging technologies’, 2017.

[64] M. T. Islam, N. Islam, and M. A. Refat, ‘Node to node performance evaluation

through RYU SDN controller’, Wirel. Pers. Commun., vol. 112, pp. 555–570, 2020.

https://opennetworking.org/wp
https://opennetworking.org/wp

[65] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, ‘Performance analysis of

floodlight and ryu SDN controllers under mininet simulator’, in 2020 IEEE/CIC

International Conference on Communications in China (ICCC Workshops), IEEE, 2020,

pp. 85–90.

[66] H. M. Noman and M. N. Jasim, ‘Pox controller and open flow performance

evaluation in software defined networks (sdn) using mininet emulator’, in IOP

conference series: materials science and engineering, IOP Publishing, 2020, p.

012102.

[67] V. Kumar, S. Jangir, and D. G. Patanvariya, ‘Traffic load balancing in SDN using

round-robin and Dijkstra based methodology’, in 2022 International Conference for

Advancement in Technology (ICONAT), IEEE, 2022, pp. 1–4.

[68] 李道全, 黄泰铭, 于波, and 王雪, ‘基于流量分配倾向度的 SDN 多路径负载均衡 ’,

计算机工程与设计, vol. 41, no. 10, pp. 2718–2723, 2020.

[69] R. Wazirali, R. Ahmad, and S. Alhiyari, ‘SDN-openflow topology discovery: an

overview of performance issues’, Appl. Sci., vol. 11, no. 15, p. 6999, 2021.

[70] 肖军弼, 程鹏, 谭立状, and 孟祥泽, ‘基于 SDN 的数据中心动态优先级多路径调度

算法’, 计算机与现代化, no. 07, p. 21, 2020.

[71] 周杰, ‘基于 SDN 网络多路径负载均衡算法研究与仿真’, 佳木斯大学学报（自然

科学版）, vol. 039, no. 005, pp. 65–68, 2021.

[72] 王桂芝, 吕光宏, 贾吾财, 贾创辉, and 张建申, ‘机器学习在 SDN 路由优化中的应

用研究综述’, 计算机研究与发展, vol. 57, no. 4, pp. 688–698, 2020.

[73] 车向北, 康文倩, 邓彬, 杨柯涵, and 李剑, ‘一种基于图神经网络的 SDN 路由性能

预测模型’, 电子学报, vol. 49, no. 3, p. 484, 2021.

[74] M. H. H. Khairi et al., ‘Detection and classification of conflict flows in SDN using

machine learning algorithms’, IEEE Access, vol. 9, pp. 76024–76037, 2021.

[75] 李兆斌, 韩禹, 魏占祯, and 刘泽一, ‘SDN 中基于机器学习的网络流量分类方法研

究’, 计算机应用与软件, vol. 36, no. 5, p. 75, 2019.

[76] 李道全, 鲁晓夫, and 杨乾乾, ‘基于孪生神经网络的恶意流量检测方法 .’, J.

Comput. Eng. Appl., vol. 58, no. 14, 2022.

[77] M. M. Raikar, S. Meena, M. M. Mulla, N. S. Shetti, and M. Karanandi, ‘Data

traffic classification in software defined networks (SDN) using supervised-learning’,

Procedia Comput. Sci., vol. 171, pp. 2750–2759, 2020.

[78] L. Xin, W. Song, Z. Cao, and J. Zhang, ‘Step-wise deep learning models for

solving routing problems’, IEEE Trans. Ind. Inform., vol. 17, no. 7, pp. 4861–4871, 2020.

[79] Z. Zhuang, J. Wang, Q. Qi, H. Sun, and J. Liao, ‘Graph-aware deep learning

based intelligent routing strategy’, in 2018 IEEE 43rd Conference on Local Computer

Networks (LCN), IEEE, 2018, pp. 441–444.

[80] T. M. Modi and P. Swain, ‘Intelligent routing using convolutional neural network

in software-defined data center network’, J. Supercomput., vol. 78, no. 11, pp. 13373–

13392, 2022.

[81] 唐鑫, 徐彦彦 , and 潘少明 , ‘基于图卷积神经网络的智能路由算法 ’, 计算机工程,

vol. 48, no. 3, pp. 38–45, Mar. 2022.

[82] 杨思明, 单征, 丁煜, and 李刚伟, ‘深度强化学习研究综述’, 计算机工程, vol. 47,

no. 12, pp. 19–29, 2021.

[83] C. Yu, J. Lan, Z. Guo, and Y. Hu, ‘DROM: Optimizing the routing in software-

defined networks with deep reinforcement learning’, IEEE Access, vol. 6, pp. 64533–

64539, 2018.

[84] Z. Xu et al., ‘Experience-driven networking: A deep reinforcement learning

based approach’, in IEEE INFOCOM 2018-IEEE conference on computer

communications, IEEE, 2018, pp. 1871–1879.

[85] R. Ding, Y. Xu, F. Gao, X. Shen, and W. Wu, ‘Deep reinforcement learning for

router selection in network with heavy traffic’, IEEE Access, vol. 7, pp. 37109–37120,

2019.

[86] 孙鹏浩, 兰巨龙, 申涓, and 胡宇翔, ‘一种基于深度增强学习的智能路由技术’, 电

子学报, vol. 48, no. 11, pp. 2170–2177, 2020.

[87] Y. Hu, Z. Li, J. Lan, J. Wu, and L. Yao, ‘EARS: Intelligence-driven experiential

network architecture for automatic routing in software-defined networking’, China

Commun., vol. 17, no. 2, pp. 149–162, 2020.

[88] X. Huang, M. Zeng, and K. Xie, ‘Intelligent traffic control for QoS optimization in

hybrid SDNs’, Comput. Netw., vol. 189, p. 107877, 2021.

[89] 康梦轩, 宋俊平, 范鹏飞, 高博文, 周旭, and 李琢, ‘基于深度学习的网络流量预测

研究综述.’, J. Comput. Eng. Appl., vol. 57, no. 10, 2021.

[90] Z. Yao, Y. Wang, and X. Qiu, ‘DQN-based energy-efficient routing algorithm in

software-defined data centers’, Int. J. Distrib. Sens. Netw., vol. 16, no. 6, p.

1550147720935775, 2020.

[91] L. Zhao, J. Wang, J. Liu, and N. Kato, ‘Routing for crowd management in smart

cities: A deep reinforcement learning perspective’, IEEE Commun. Mag., vol. 57, no.

4, pp. 88–93, 2019.

[92] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, ‘RL-routing: An SDN

routing algorithm based on deep reinforcement learning’, IEEE Trans. Netw. Sci. Eng.,

vol. 7, no. 4, pp. 3185–3199, 2020.

[93] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, ‘CFR-RL: Traffic

engineering with reinforcement learning in SDN’, IEEE J. Sel. Areas Commun., vol. 38,

no. 10, pp. 2249–2259, 2020.

[94] W. Liu, J. Cai, Q. C. Chen, and Y. Wang, ‘DRL-R: Deep reinforcement learning

approach for intelligent routing in software-defined data-center networks’, J. Netw.

Comput. Appl., vol. 177, p. 102865, 2021.

[95] M. B. Hossain and J. Wei, ‘Reinforcement learning-driven QoS-aware intelligent

routing for software-defined networks’, in 2019 IEEE global conference on signal and

information processing (GlobalSIP), IEEE, 2019, pp. 1–5.

[96] M. B. Hossain, ‘QoS-aware Intelligent Routing for Software Defined Networking’,

Master’s Thesis, The University of Akron, 2020.

[97] J. Fan, D. Mu, and Y. Liu, ‘Research on network traffic prediction model based

on neural network’, in 2019 2nd International Conference on Information Systems and

Computer Aided Education (ICISCAE), IEEE, 2019, pp. 554–557.

[98] 陈兴蜀, 蔡梦娟, 王伟, 王启旭, and 金鑫, ‘VMOffset: 虚拟机自省中一种语义重构

改进方法’, 软件学报, vol. 32, no. 10, pp. 3293–3309, 2021.

[99] D. Li, D. Liu, Y. Sun, and J. Liu, ‘Otfs-based efficient handover authentication

scheme with privacy-preserving for high mobility scenarios’, China Commun., vol. 20,

no. 1, pp. 36–49, 2023.

[100] 邢照庆, ‘基于 SDN 的边云协同管控方案研究与实现’, Master’s Thesis, 贵州大学,

2022.

[101] Mininet, ‘Mininet’. [Online]. Available: http://mininet.org/

[102] Ryu, ‘Ryu’. [Online]. Available: https://github.com/faucetsdn/ryu

[103] iPerf, ‘iPerf’. [Online]. Available: https://iperf.fr/

https://iperf.fr
https://github.com/faucetsdn/ryu
http://mininet.org

PROJECT MANAGEMENT
In the comprehensive review of the project management for this research, an in-depth

analysis was performed comparing the initial planning with the actual execution, as

visualized in

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the

project's tasks, starting from background reading and systematically progressing

towards the final submission. This plan was intended to provide a clear roadmap,

designating significant time blocks to each essential phase such as proposal

development, literature review, and experimental work. The design suggested a linear

progression which aimed to maintain a steady pace throughout the project duration.

Figure 33 and Figure 34. These Gantt charts provide a vivid illustration of the project's

timeline and tasks, highlighting the adaptability and adjustments required throughout

the course of the research.

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the

project's tasks, starting from background reading and systematically progressing

towards the final submission. This plan was intended to provide a clear roadmap,

designating significant time blocks to each essential phase such as proposal

development, literature review, and experimental work. The design suggested a linear

progression which aimed to maintain a steady pace throughout the project duration.

Figure 33 Original Gantt Chart

However, the actual progress chart (Figure 34) tells a different story—one of deviation

and adaptation. Notable adjustments can be seen in the extension of phases such as

"Model Design" and "Experimentation and Results Analysis." These phases extended

beyond their originally allocated durations due to unexpected challenges such as data

complexities and the intricacies involved in model validation. These issues were not

fully anticipated at the project's outset and required on-the-fly adjustments to the

schedule.

Figure 34 Actual Gantt Chart

Additionally, the approach to report writing was adapted significantly. Instead of a

single phase, report writing was segmented into individual chapters, allowing for

continuous revision and incorporation of new data and insights as the project

progressed. This methodological adjustment was crucial for integrating evolving

findings and ensuring the final report's accuracy and coherence.

Risk management strategies also played a vital role in the project's execution.

Identified risks such as data availability and computational resource constraints were

addressed with pre-planned mitigation strategies, which included securing additional

data sources and optimizing computational tasks. While these strategies were

generally effective, the actual impact of data availability proved more challenging than

expected, highlighting a need for more robust contingency planning.

Reflecting on the overall project management, adaptability emerges as a critical theme.

The ability to dynamically adjust project plans in response to unforeseen challenges

was instrumental in driving the project toward its objectives. However, this experience

also emphasized the need for more precise risk anticipation and enhanced

contingency measures.

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the

project's tasks, starting from background reading and systematically progressing

towards the final submission. This plan was intended to provide a clear roadmap,

designating significant time blocks to each essential phase such as proposal

development, literature review, and experimental work. The design suggested a linear

progression which aimed to maintain a steady pace throughout the project duration.

Figure 33 and Figure 34 provided profound insights into the dynamic nature of

managing a research project. It underscored the importance of flexibility, robust risk

management, and the need for proactive problem-solving. These insights are

invaluable for future research projects, offering lessons on better preparedness and

adaptive strategies to efficiently handle the complexities and unpredictabilities inherent

in substantial research endeavors. This reflective analysis not only highlights the

successes and challenges of the project but also sets a foundation for future projects

to build upon, ensuring they are better equipped to manage uncertainties and

complexities effectively.

APPENDICES

ETHICS FORM

LOGBOOK
Date Daily Activities Thought Trails

2024-02-19 Initiated background reading
on SDN and its routing
mechanisms.

Focused on understanding the
limitations of current systems.

2024-02-21 Continued literature review,
focusing on challenges in
dynamic routing.

Noticed significant gaps in real-
time adaptability of models.

2024-02-23 Began drafting the research
proposal.

Considering the integration of
Dueling Deep Q-Networks.

2024-02-25 Refined the proposal,
focusing on real-time traffic
prediction integration.

Explored traffic prediction
models for potential integration.

2024-02-27 Submitted the proposal and
began setting up Mininet
simulation environment.

Contemplated the setup
challenges.

2024-03-01 Started first set of
experiments to test basic
SDN controller functionality.

Assessed initial results against
theoretical expectations.

2024-03-03 Adjusted experimental
parameters based on
findings and reran
simulations.

Reflected on the importance of
fine-tuning network parameters.

2024-03-05 Conducted extensive tests
on the DDQN model under
stress conditions.

Observed model adaptability to
sudden network load changes.

2024-03-07 Compiled results and began
drafting report sections on
methodology and early
findings.

Considered how to present
complex concepts clearly.

2024-03-09 Peer-reviewed draft chapters
and incorporated feedback.

Valued peer feedback for
enhancing content clarity.

2024-03-11 Peer-reviewed the draft
chapters and incorporated
feedback.

Recognized the value of peer
feedback in clarifying and
enhancing the report's content.

2024-03-13 Reviewed additional
literature on adaptive routing
algorithms.

Explored the relationship
between network traffic
variability and algorithmic
responsiveness.

2024-03-15 Conducted a meeting with
the advisory committee to
discuss project progress and
gather input.

Received valuable insights on
potential scalability issues of the
proposed model.

2024-03-17 Began coding the modified
routing algorithms using
Python and the Ryu
controller.

Considered the trade-offs
between complexity of code and
performance efficiency.

2024-03-19 Troubleshooted issues from
initial coding tests;
implemented optimizations.

Reflected on the necessity of
efficient debugging practices to
maintain project timeline.

2024-03-21 Prepared for mid-project
presentation by creating
slides and rehearsing key
points.

Focused on how to effectively
communicate complex technical
details to a non-technical
audience.

2024-03-23 Delivered mid-project
presentation; received
feedback on project direction
and methodology.

Contemplated feedback
regarding the integration of
additional predictive metrics in
the model.

2024-03-25 Revised project plan and
timeline in consultation with
supervisor to incorporate
new components.

Assessed the impact of changes
on the overall project scope and
expected outcomes.

2024-03-27 Began extensive data
collection phase using both
simulated and real-world
data sources.

Examined the consistency and
quality of incoming data to
ensure its suitability for model
training.

2024-03-29 Analyzed initial datasets and
performed preliminary data
cleansing and preparation.

Recognized patterns and
anomalies in the data that could
influence model training and
performance.

2024-03-31 Engaged in detailed
discussions with data
scientists to optimize feature
selection for the model.

Weighed the benefits of
including diverse features
against the complexity they
introduce to the model.

2024-04-02 to
2024-08-27

Conducted iterative cycles of
model refinement, testing,
and validation. Continuously
updated and revised the
research manuscript.

Adapted to new findings and
maintained a focus on
innovation and scientific
accuracy in research.

2024-08-28 Submitted the final thesis. Reflected on the comprehensive
journey from project initiation to
completion.

GLOSSARY

SDN (Software Defined Networking): A networking approach that allows network

behavior to be controlled by software applications using open interfaces, separating

the network's control logic from the underlying physical routers and switches.

OpenFlow: A communication protocol that gives access to the forwarding plane of a

network switch or router over the network.

Ryu: An open-source network controller that manages devices in an SDN environment

using OpenFlow protocol.

Mininet: A network emulator that creates a virtual network on a single machine, used

for developing and testing SDN applications.

Dueling Deep Q-Networks (DDQN): An advanced reinforcement learning algorithm

that helps in choosing actions to maximize the long-term reward in a given state of the

environment.

Network Throughput: Measures the rate of successful message delivery over a

communication channel.

Latency: The delay before a transfer of data begins following an instruction for its

transfer.

Packet Loss: Occurs when one or more packets of data travelling across a computer

network fail to reach their destination.

Topology Discovery: The method by which network devices and their connections are

identified.

Controller: In SDN, the central authority that directs traffic flows throughout the network

based on a global view of the network state.

	Structure Bookmarks
	Figure
	Figure
	OPTIMIZING ROUTING STRATEGY IN SOFTWARE DEFINED NETWORKING Lingzhuo Tu 2304720 Supervisor: Dr. Nitheesh Kaliyamurthy
	OPTIMIZING ROUTING STRATEGY IN SOFTWARE DEFINED NETWORKING Lingzhuo Tu 2304720 Supervisor: Dr. Nitheesh Kaliyamurthy
	Project submitted as part of the requirements for the award of MSc: Software Engineer and Artificial Intelligence
	Project submitted as part of the requirements for the award of MSc: Software Engineer and Artificial Intelligence
	September 2024
	Declaration of Originality
	Declaration of Originality
	I, Lingzhuo Tu declare that I am the sole author of this Project; that all references cited have been consulted; that I have conducted all work of which this is a record, and that the finished work lies within the prescribed word limits.
	This work has not previously been accepted as part of any other degree submission.
	Signed :...
	Date :07/01/2024 ...
	FORM OF CONSENT
	FORM OF CONSENT
	I, Lingzhuo Tu, hereby consent that my Project, submitted in candidature for the , if successful, may be made available for inter-library loan or photocopying (subject to the law of copyright), and that the title and abstract may be made available to outside organisations.
	MSC12 Software Engineering and Artificial Intelligence

	Signed : ...
	Date : 07/01/2024...
	Copyright Acknowledgement
	I acknowledge that the copyright of this project report, and any product developed as part of the project, belong to University of Wales Trinity Saint David, Swansea.
	ABSTRACT
	Traditional Network Architecture (TNA) is becoming inadequate due to its rigid, hardware-centric configurations, especially in environments where network conditions are highly variable. This has led to increased latency, congestion, and packet loss rates. This project aims to develop an optimized routing strategy for Software Defined Networking (SDN) that leverages machine learning techniques to enhance network traffic management's adaptability and efficiency. The project employs a combination of Dueling De
	TABLE OF CONTENT
	Abstract/Synopsis Table of Content List of Figures List of Tables Acknowledgements
	CHAPTER 1 INTRODUCTION
	CHAPTER 1 INTRODUCTION
	CHAPTER 1 INTRODUCTION
	...
	12

	1.1
	1.1
	1.1
	Research problem statement
	...
	13

	1.2
	1.2
	Aim
	..
	13

	1.3
	1.3
	Objectives
	..
	13

	1.4
	1.4
	Significance/Contribution of this research
	...
	14

	1.5
	1.5
	STRUCTURE OF THE PROJECT
	...
	14

	CHAPTER 2 -REVIEW OF LITERATURE
	CHAPTER 2 -REVIEW OF LITERATURE
	..
	16

	2.1
	2.1
	2.1
	Software Defined Networking (SDN)
	...
	16

	2.1.1
	2.1.1
	2.1.1
	SDN Fundamentals
	..
	16

	2.1.2
	2.1.2
	SDN Basic Architecture
	..
	17

	2.1.3
	2.1.3
	OpenFlow Protocol
	...
	22

	2.1.4
	2.1.4
	Summary
	..
	24

	2.2
	2.2
	Type of Controllers
	..
	24

	2.2.1
	2.2.1
	RYU
	..
	24

	2.2.2
	2.2.2
	Floodlight
	..
	28

	2.2.3
	2.2.3
	NOX
	..
	31

	2.2.4
	2.2.4
	Mininet
	..
	33

	2.2.5
	2.2.5
	Summary
	..
	34

	2.3
	2.3
	Operations of SDN
	..
	34

	2.3.1
	2.3.1
	SDN Link Topology Discovery Technology
	..
	34

	2.3.2
	2.3.2
	Link Topology Discovery Technology
	...
	35

	2.3.3
	2.3.3
	Summary
	..
	36

	2.4
	2.4
	SDN Routing
	..
	36

	2.4.1
	2.4.1
	SDN-Based Routing Mechanisms
	..
	37

	2.4.2
	2.4.2
	SDN Routing Optimization Based on Supervised Learning

	38

	2.4.3
	2.4.3
	SDN Routing Optimization Based on Reinforcement Learning

	39

	2.4.4
	2.4.4
	SDN Routing Optimization Based on Deep Reinforcement Learning Algorithms
	...
	41

	2.4.5
	2.4.5
	Summary
	..
	42

	2.5
	2.5
	Chapter summary
	..
	42

	CHAPTER 3 -RESEARCH METHODOLOGY
	CHAPTER 3 -RESEARCH METHODOLOGY
	..
	44

	3.1
	3.1
	Research Method
	..
	44

	3.1.1
	3.1.1
	Philosophy
	..
	45

	3.1.2
	3.1.2
	Approaches
	..
	45

	3.1.3
	3.1.3
	Strategies
	...
	45

	3.1.4
	3.1.4
	Choices
	..
	46

	3.1.5
	3.1.5
	Time Horizons
	..
	46

	3.1.6
	3.1.6
	Techniques and Procedures
	..
	46

	3.1.7
	3.1.7
	Contingency Plans
	...
	46

	3.1.8
	3.1.8
	Risks and Limitations
	...
	46

	3.2
	3.2
	Research materials
	..
	47

	3.2.1
	3.2.1
	Hardware Devices
	..
	48

	3.2.2
	3.2.2
	Network Devices
	...
	48

	3.3
	3.3
	Chapter summary
	..
	48

	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING
	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING

	48

	4.1
	4.1
	 Architecture and Model Design"
	..
	48

	4.1.1
	4.1.1
	Parameter Collection Design
	..
	49

	4.1.2
	4.1.2
	Intelligent routing algorithms
	...
	55

	4.1.3
	4.1.3
	GRU
	...
	58

	4.2
	4.2
	Data Evaluation Methods
	...
	60

	4.2.1
	4.2.1
	Data Collection
	...
	60

	4.2.2
	4.2.2
	Data Evaluation
	..
	61

	4.3
	4.3
	experimental setup
	...
	62

	4.4
	4.4
	 Optimization Algorithm
	..
	68

	4.4.1
	4.4.1
	Network Monitoring and Data Collection
	..
	68

	4.4.2
	4.4.2
	Evaluation and Decision-Making
	..
	69

	4.4.3
	4.4.3
	Routing Updates
	...
	71

	CHAPTER 5 – RESULT AND ANALYSIS
	CHAPTER 5 – RESULT AND ANALYSIS
	...
	72

	5.1
	5.1
	results and analysis
	...
	73

	5.2
	5.2
	discussion
	...
	81

	5.3
	5.3
	summary
	...
	82

	CHAPTER 6 -CONCLUSIONS AND RECOMMENDATIONS
	CHAPTER 6 -CONCLUSIONS AND RECOMMENDATIONS

	84

	6.1
	6.1
	Summary
	..
	84

	6.2
	6.2
	Conclusion
	..
	84

	6.3
	6.3
	Limitation and Recommendation
	..
	84

	CHAPTER 7 – REFLECTIONS
	CHAPTER 7 – REFLECTIONS
	..
	84

	7.1
	7.1
	Achievement of Research Objectives
	...
	85

	7.2
	7.2
	Reflection on Research Conduct and Progress
	..
	85

	7.3
	7.3
	Key Reflections and Insights
	...
	86

	7.4
	7.4
	Conclusion
	..
	86

	REFERENCES
	REFERENCES
	88

	PROJECT MANAGEMENT
	PROJECT MANAGEMENT
	...
	96

	APPENDICES
	APPENDICES
	100

	ETHICS FORM
	ETHICS FORM
	101

	LOGBOOK
	LOGBOOK
	114

	GLOSSARY
	GLOSSARY
	116

	Figure 13 diagram of OpenFlow-based Port-Stats messages to Figure 14 -Out and Packet-In
	Figure 1 SDN Basic Architecture
	Figure 1 SDN Basic Architecture

	...
	18
	Schematic
	Schematic for measuring delay based on Packet

	Figure 2 OpenFlow Switch Architecture
	Figure 2 OpenFlow Switch Architecture
	Figure 2 OpenFlow Switch Architecture
	...
	22

	Figure 3 Ryu library functions and components
	Figure 3 Ryu library functions and components
	Figure 3 Ryu library functions and components
	...
	25

	Figure 4 Ryu Overall Architecture
	Figure 4 Ryu Overall Architecture
	Figure 4 Ryu Overall Architecture
	..
	26

	Figure 5 Ryu Workflow
	Figure 5 Ryu Workflow
	Figure 5 Ryu Workflow
	..
	27

	Figure 6 Architecture diagram of Floodlight
	Figure 6 Architecture diagram of Floodlight
	Figure 6 Architecture diagram of Floodlight
	..
	29

	Figure 7 NOX Function Module Structure
	Figure 7 NOX Function Module Structure
	Figure 7 NOX Function Module Structure
	..
	32

	Figure 8 Topological Discovery Classification
	Figure 8 Topological Discovery Classification
	Figure 8 Topological Discovery Classification
	..
	35

	Figure 9 Layers of the Onion Diagram for Research Methodology
	Figure 9 Layers of the Onion Diagram for Research Methodology
	Figure 9 Layers of the Onion Diagram for Research Methodology

	45

	Figure 10 Gannt Chart
	Figure 10 Gannt Chart
	Figure 10 Gannt Chart
	..
	47

	Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3
	Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3
	Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3

	50

	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3

	51

	measure link packet loss rate
	measure link packet loss rate
	measure link packet loss rate
	...
	52

	messages
	messages
	messages
	..
	54

	Figure 15 Traffic matrix structure diagram
	Figure 15 Traffic matrix structure diagram
	Figure 15 Traffic matrix structure diagram
	..
	56

	Figure 16 GRU structure diagram
	Figure 16 GRU structure diagram
	Figure 16 GRU structure diagram
	...
	59

	Figure 17 NetworkTopology Diagram
	Figure 17 NetworkTopology Diagram
	Figure 17 NetworkTopology Diagram
	..
	63

	Figure 18 Installation verification of Mininet
	Figure 18 Installation verification of Mininet
	Figure 18 Installation verification of Mininet
	...
	65

	Figure 19 Topology Management of Ryu
	Figure 19 Topology Management of Ryu
	Figure 19 Topology Management of Ryu
	...
	66

	Figure 20 Launch the Iperf server
	Figure 20 Launch the Iperf server
	Figure 20 Launch the Iperf server
	...
	67

	Figure 21 Test results of Iperf
	Figure 21 Test results of Iperf
	Figure 21 Test results of Iperf
	...
	68

	Figure 22 Function get_traffic_matrix
	Figure 22 Function get_traffic_matrix
	Figure 22 Function get_traffic_matrix
	..
	69

	Figure 23 Function _packet_in_handler
	Figure 23 Function _packet_in_handler
	Figure 23 Function _packet_in_handler
	...
	70

	Figure 24 Function optimal_routing_forwading
	Figure 24 Function optimal_routing_forwading
	Figure 24 Function optimal_routing_forwading
	..
	71

	Figure Function get_optimal_forwarding_path
	Figure Function get_optimal_forwarding_path
	Figure Function get_optimal_forwarding_path
	..
	71

	Figure Function install_flow_1
	Figure Function install_flow_1
	Figure Function install_flow_1
	...
	72

	Figure Function install_flow_2
	Figure Function install_flow_2
	Figure Function install_flow_2
	...
	72

	Figure Comparison of using GRU and without using GRU
	Figure Comparison of using GRU and without using GRU
	Figure Comparison of using GRU and without using GRU

	73

	Figure Comparison of Dueling DQN and DDPG
	Figure Comparison of Dueling DQN and DDPG
	Figure Comparison of Dueling DQN and DDPG
	...
	75

	Figure Comparison of the network throughput
	Figure Comparison of the network throughput
	Figure Comparison of the network throughput
	..
	77

	Figure Comparison of the network delay
	Figure Comparison of the network delay
	Figure Comparison of the network delay
	..
	78

	Figure Comparison of the network packet loss rate
	Figure Comparison of the network packet loss rate
	Figure Comparison of the network packet loss rate

	80

	Figure Original Gantt Chart
	Figure Original Gantt Chart
	Figure Original Gantt Chart
	..
	97

	Figure Actual Gantt Chart
	Figure Actual Gantt Chart
	Figure Actual Gantt Chart
	...
	98

	Table 1 Mainstream SDN Controllers
	Table 1 Mainstream SDN Controllers
	Table 1 Mainstream SDN Controllers
	...
	20

	Table 2 Floodlight Components
	Table 2 Floodlight Components
	Table 2 Floodlight Components
	..
	29

	Table 3 Counters in OpenFlow
	Table 3 Counters in OpenFlow
	Table 3 Counters in OpenFlow
	..
	49

	Episodes
	Episodes
	Table 4 Comparison of Reward Performance With and Without GRU Over

	...
	...

	73

	Table 5 Comparison of Dueling DQN and DDPG
	Table 5 Comparison of Dueling DQN and DDPG
	Table 5 Comparison of Dueling DQN and DDPG
	...
	75

	Table 6 Throughput Comparison
	Table 6 Throughput Comparison
	Table 6 Throughput Comparison
	..
	77

	Table 7 Delay Comparison
	Table 7 Delay Comparison
	Table 7 Delay Comparison
	..
	78

	Table 8 Packet Loss Rate Comparison
	Table 8 Packet Loss Rate Comparison
	Table 8 Packet Loss Rate Comparison
	..
	80

	[65] Y. Li, X. Guo, X. Pang, B. Peng, X. Li, and P. Zhang, ‘Performance analysis of floodlight and ryu SDN controllers under mininet simulator’, in 2020 IEEE/CIC pp. 85–90.
	International Conference on Communications in China (ICCC Workshops), IEEE,
	2020,

	[68]李道全, 黄泰铭, 于波, and王雪,‘基于流量分配倾向度的 SDN多路径负载均衡 ’,计算机工程与设计, vol. 41, no. 10, pp. 2718–2723,
	[68]李道全, 黄泰铭, 于波, and王雪,‘基于流量分配倾向度的 SDN多路径负载均衡 ’,计算机工程与设计, vol. 41, no. 10, pp. 2718–2723,
	2020.

	[69] R. Wazirali, R. Ahmad, and S. Alhiyari, ‘SDN-openflow topology discovery: an overview of performance issues’, Appl. Sci., vol. 11, no. 15, p. 6999,
	[69] R. Wazirali, R. Ahmad, and S. Alhiyari, ‘SDN-openflow topology discovery: an overview of performance issues’, Appl. Sci., vol. 11, no. 15, p. 6999,
	2021.

	[70]肖军弼, 程鹏, 谭立状, and孟祥泽, ‘基于 SDN的数据中心动态优先级多路径调度算法’, 计算机与现代化, no. 07, p. 21,
	[70]肖军弼, 程鹏, 谭立状, and孟祥泽, ‘基于 SDN的数据中心动态优先级多路径调度算法’, 计算机与现代化, no. 07, p. 21,
	 2020.

	[71]周杰, ‘基于 SDN网络多路径负载均衡算法研究与仿真’, 佳木斯大学学报（自然科学版）, vol. 039, no. 005, pp. 65–68,
	[71]周杰, ‘基于 SDN网络多路径负载均衡算法研究与仿真’, 佳木斯大学学报（自然科学版）, vol. 039, no. 005, pp. 65–68,
	2021.

	[72]王桂芝, 吕光宏, 贾吾财, 贾创辉, and张建申, ‘机器学习在 SDN路由优化中的应用研究综述’, 计算机研究与发展, vol. 57, no. 4, pp. 688–698,
	[72]王桂芝, 吕光宏, 贾吾财, 贾创辉, and张建申, ‘机器学习在 SDN路由优化中的应用研究综述’, 计算机研究与发展, vol. 57, no. 4, pp. 688–698,
	2020.

	[73]车向北, 康文倩, 邓彬, 杨柯涵, and李剑, ‘一种基于图神经网络的 SDN路由性能预测模型’, 电子学报, vol. 49, no. 3, p. 484,
	[73]车向北, 康文倩, 邓彬, 杨柯涵, and李剑, ‘一种基于图神经网络的 SDN路由性能预测模型’, 电子学报, vol. 49, no. 3, p. 484,
	2021.

	[74] M. H. H. Khairi et al., ‘Detection and classification of conflict flows in SDN using machine learning algorithms’, IEEE Access, vol. 9, pp. 76024–76037,
	[74] M. H. H. Khairi et al., ‘Detection and classification of conflict flows in SDN using machine learning algorithms’, IEEE Access, vol. 9, pp. 76024–76037,
	2021.

	[75]李兆斌, 韩禹, 魏占祯, and刘泽一, ‘SDN中基于机器学习的网络流量分类方法研究’, 计算机应用与软件, vol. 36, no. 5, p. 75,
	[75]李兆斌, 韩禹, 魏占祯, and刘泽一, ‘SDN中基于机器学习的网络流量分类方法研究’, 计算机应用与软件, vol. 36, no. 5, p. 75,
	2019.

	[76]李道全, 鲁晓夫, and杨乾乾, ‘基于孪生神经网络的恶意流量检测方法 .’, J. Comput. Eng. Appl., vol. 58, no. 14,
	[76]李道全, 鲁晓夫, and杨乾乾, ‘基于孪生神经网络的恶意流量检测方法 .’, J. Comput. Eng. Appl., vol. 58, no. 14,
	2022.

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGEMENTS
	I, Lingzhuo Tu, sincerely express my gratitude to Dr. Nitheesh Kaliyamurthy from the University of Wales Trinity Saint David for his invaluable support and guidance throughout this project. His expert advice on academic writing, critical thinking, and research methodologies has significantly contributed to my research work. His consistent feedback and encouragement have helped me refine my ideas and navigate the complexities of this research, particularly in model development and result analysis.
	I am also thankful to the Network Information Laboratory of Wuhan University of Technology for allowing me to collect and utilize data for this project. Their support was crucial in obtaining a high-quality research dataset. Additionally, I appreciate the provision of remote servers and high-performance graphics cards by the same laboratory, which were essential for meeting the computational demands of this research.
	Furthermore, I extend my heartfelt thanks to the University of Wales Trinity Saint David for providing me access to its online library, which offered a wealth of academic resources and literature foundational to my research. The availability of these resources ensured that I could conduct a comprehensive literature review and establish a solid theoretical base for my work.
	CHAPTER 1 INTRODUCTION
	The evolution of network infrastructure management has increasingly required the development of new technologies and methods that can keep pace with the growing complexity and dynamism of modern networks. Traditional Network Architecture (TNA) relies on rigid, hardware-centric configurations, making it less adaptable to the changing conditions and demands of network traffic. TNA typically employs static routing protocols which decide paths based predominantly on initial configurations and infrequently updat
	In contrast, Software Defined Networking (SDN) offers a transformative approach to network management. SDN separates the network's control plane from the data plane, centralizing control in a software-based controller. This architectural change introduces a level of flexibility and dynamism that cannot match. The central controller in an SDN can view and manage the network holistically, making real-time, informed decisions that adapt to changes in network traffic patterns and conditions. This model not only
	TNA
	1

	Comparing TNA and SDN, the latter's centralized control mechanism allows for a more nuanced and responsive management approach. SDN's ability to programmatically direct traffic and dynamically adjust to network conditions can significantly optimize the performance metrics of the network. This includes better utilization of bandwidth, minimized latency, and decreased packet loss, particularly in dynamic and complex network environments.
	Moreover, the predictive capabilities that can be integrated into SDN, as explored in this project through the use of Dueling Deep Q-Networks (Dueling DQN) and real-time traffic predictions, enable preemptive adjustments to routing decisions. Such anticipatory measures are crucial in maintaining optimal network performance and can
	greatly enhance the adaptability of SDN compared to the more reactive and less flexible TNA. This project proposes not just a shift from static to dynamic routing but a move towards intelligent, learning-driven network management that stands to redefine the standards of network performance and reliability.
	1.1RESEARCH PROBLEM STATEMENT
	The conventional routing algorithms employed in SDN environments are often rigid and unable to adapt dynamically to changing network conditions. While SDN offers the potential for more flexible and efficient network management, the existing routing methods do not fully adapt this flexibility, leading to suboptimal network performance and inefficiencies. Furthermore, the integration of advanced machine learning techniques with SDN routing strategies remains underexplored. This presents a significant gap in t
	1.2AIM
	The aim of this project is to develop an optimized routing strategy specifically for SDN, aimed at enhancing the efficiency of network traffic management. The project seeks to implement and refine a routing optimization solution within a SDN framework, utilising the capabilities of Dueling DQN deep reinforcement learning and network traffic state prediction. This approach is designed to enhance network management by leveraging real-time global network topology and link status information, enabling a more re
	1.3OBJECTIVES
	The objectives of the project are detailed as follows:
	•
	•
	•
	To conduct extensive research into existing literature concerning SDN and routing optimization techniques to provide a theoretical foundation for the proposed solution.

	•
	•
	To adapt a suitable research methodology by identifying the appropriate simulation tools and statistical techniques for analyzing network performance, as well as outlining the criteria for model validation and evaluation, to ensure rigorous and reproducible results within the project.

	•
	•
	To design and implement a routing optimization model that leverages Dueling DQN reinforcement learning combined with network traffic state predictions.

	•
	•
	To evaluate the proposed model through experimental setups, comparing its performance against traditional routing methods and other SDN-based solutions to demonstrate its efficacy in real-world scenarios.

	•
	•
	Analyze different network states and their impact on routing strategies, utilizing simulations to gauge performance improvements over traditional methods.

	1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH
	This project substantially enhances the field of SDN by pioneering the innovative integration of Dueling DQN reinforcement learning with real-time network traffic predictions. Utilizing a blend of SDN capabilities, including centralized control, flexible management, and the integration of heterogeneous network data, the project develops a cutting-edge and comprehensive computational model for routing optimization. This holistic approach significantly boosts the accuracy and efficiency of routing decisions w
	1.5STRUCTURE OF THE PROJECT
	The structure of this thesis is designed to systematically address the research objectives and provide a coherent flow of information and analysis:
	Chapter One – Introduction This chapter provides a broad overview of the project, including the research problem statement, aims, and objectives. It sets the context for the research by discussing the need for optimized routing strategies in Software Defined Networking (SDN) and outlines the significance and potential contributions of the study.
	Chapter Two – Review of Literature This chapter presents a thorough analysis of existing literature on SDN, covering fundamental concepts, architecture, and various controllers. It identifies gaps in current research and demonstrates how the project's approach can address these deficiencies.
	Chapter Three – Research Methodology This chapter details the research methods used to achieve the objectives of the study. It describes the experimental design, data collection techniques, and analytical methods employed, ensuring that the research is reproducible and valid.
	Chapter Four – Architectural Design and Modeling: This newly added chapter provides a detailed exposition of the architectural design and modeling processes for Software Defined Networking (SDN). It includes discussions on key technologies and design choices.
	Chapter Five – RESULT AND ANALYSIS This chapter discusses the experimental setup, the processes involved in implementing the routing strategies, and an analysis of the results obtained. It evaluates the effectiveness of the proposed routing optimizations in real-world scenarios.
	Chapter Six – Conclusions and Recommendations The final chapter synthesizes the findings of the research, discusses the implications, and offers conclusions based on the evidence gathered. It also provides recommendations for future research and practical applications of the study's outcomes.
	Chapter Seven – References This chapter lists all the bibliographic references used throughout the thesis, providing a comprehensive resource for understanding the theoretical and empirical bases of the study.
	TRADITIONAL NETWORK ARCHITECTURE
	TRADITIONAL NETWORK ARCHITECTURE
	1

	CHAPTER 2 -REVIEW OF LITERATURE
	CHAPTER 2 -REVIEW OF LITERATURE
	The purpose of this chapter is to conduct a thorough analysis of the existing body of literature related to SDN, with a focus on its architecture, control mechanisms, operational functions, routing capabilities, and limitations, as well as reviewing similar works in the field. This chapter seeks to identify key trends, debates, and gaps within these areas, examining both conventional network management strategies and advanced approaches enabled by SDN technology. The scope of literature reviewed extends fro
	2.1SOFTWARE DEFINED NETWORKING (SDN)
	With the continuous development of information technology, the emergence of new network technologies such as big data[1], virtualization[2], and cloud computing[3] has progressively magnified the shortcomings of traditional network architectures. Due to their cumbersome network configurations, traditional networks impose heavy maintenance tasks on network administrators[4]. Additionally, the fixed topology of traditional networks limits their flexibility and scalability, greatly constraining network develop
	2
	2

	2.1.1 SDN Fundamentals In traditional network architectures, the control plane and the data plane are tightly coupled within network devices, with each underlying device functioning as a complete and independent entity. This results in a fixed network topology and cumbersome network configurations, rendering the current network environment rather rigid. Additionally, the use of distributed routing algorithms[6] means that each router makes
	independent routing decisions without considering other routers, a design approach that significantly complicates network upgrades. Furthermore, different types of network devices require distinct configuration tools, demanding a higher level of skill from network administrators. The maintenance of traditional networks consumes considerable time and effort, thereby increasing the total system costs, including acquisition, operational, and management expenses[7].
	Originating from the academic environment of Stanford University's network data forwarding project, the design philosophy of SDN is to decouple data forwarding from the network control plane, enhancing network flexibility[8]. This design facilitates programming of the underlying hardware through software modules of the controller, improving control effectiveness and enabling rational allocation of network resources according to user needs. In SDN, when determining data forwarding paths via the control plane
	Compared to conventional networking architectures, SDN offers distinct advantages. On one hand, within such an architecture, the hardware setup only needs to consider whether the storage and forwarding capacities meet the usage requirements, which can substantially reduce architectural costs[9]. On the other hand, it maintains the existing network infrastructure without the need for reconfiguration, thus simplifying the deployment process. Moreover, SDN architectures provide a faster response to business de
	2.1.2 SDN Basic Architecture The basic architecture of SDN comprises five main components: the data plane, southbound interfaces, control plane, northbound interfaces, and the application layer, as illustrated in [10]. The data plane primarily handles the forwarding and processing of data packets and is composed of underlying devices such as SDN
	2.1.2 SDN Basic Architecture The basic architecture of SDN comprises five main components: the data plane, southbound interfaces, control plane, northbound interfaces, and the application layer, as illustrated in [10]. The data plane primarily handles the forwarding and processing of data packets and is composed of underlying devices such as SDN
	Figure 1

	switches and SDN routers. The southbound interfaces are specific protocols that facilitate communication between the control plane and the data plane. The control plane, the core of the SDN architecture, provides a global network view to the application layer and allocates flow tables to the devices in the data plane based on the business requirements of the application layer. Northbound interfaces are specific protocols that enable communication between the application layer and the control plane. The appl

	Figure 1 SDN Basic Architecture
	Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies administration.
	Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies administration.
	2

	Figure
	1. Data Plane
	1. Data Plane
	The data plane, also known as the data layer, consists of various network devices such as routers, switches, and others that perform data forwarding based on control decisions[12]. The SDN data plane has the following three characteristics:
	⚫
	⚫
	⚫
	⚫

	Programmability: The SDN data plane can be configured through programming, allowing network administrators to control and manage network traffic according to specific needs. This programmability not only enhances network flexibility but also enables better network management by administrators.

	⚫
	⚫
	⚫

	Centralized Control: The control logic of the SDN data plane is centrally stored in the controller rather than being distributed across various network devices. This centralized control approach allows network administrators to achieve global control over the network state and allocate and optimize global network resources according to specific business requirements.

	⚫
	⚫
	⚫

	Openness: The SDN data plane adopts open protocols such as OpenFlow, which facilitates easy integration with devices and software from other vendors, enhancing network interoperability and scalability.

	The working principle of the SDN data plane is based on flow table[13] forwarding, similar to routing tables in traditional networks. A flow table consists of three parts: matching rules, actions, and counters. Matching rules refer to the values of various fields in the TCP/IP header, such as MAC address, source IP address, destination IP address, VLAN ID, etc. These specific values constitute a flow. The action part includes operations on the flow, such as forwarding packets to specified ports, discarding

	2. Southbound Interfaces
	2. Southbound Interfaces
	Southbound interfaces are specific protocols for communication between the control layer and the data layer, providing the controller with the ability to control and manage network traffic. For example, using the uplink channel of a southbound interface, the controller can uniformly monitor and collect statistics on the information reported by underlying switching devices, thereby achieving link discovery. Using the downlink channel of a southbound interface, the controller can also uniformly control networ
	In SDN, the most widely used southbound interface standard is the OpenFlow protocol from the open-source community. The OpenFlow protocol provides convenient messaging mechanisms. For example, it generates event-based messages when ports
	In SDN, the most widely used southbound interface standard is the OpenFlow protocol from the open-source community. The OpenFlow protocol provides convenient messaging mechanisms. For example, it generates event-based messages when ports
	or links change; flow-based statistical messages during network monitoring by the controller; and Packet-in messages sent to the controller for processing when a switch does not know how to handle a new incoming packet. Besides the OpenFlow protocol, there are other southbound interface standards, such as Open vSwitch Database (OVSDB) [16], ForCES [17], and Programming Protocol-Independent Packet Processors (P4)[18]. OVSDB provides additional network management functions, allowing the creation of virtual sw

	3. Control Layer
	3. Control Layer
	The control layer is a critical component of the SDN architecture, responsible for controlling and managing the entire network. Its primary function is to act as a bridge between the application layer and the data layer, handling interactions between applications and underlying forwarding devices[19]. For example, it translates application layer policies into executable instructions for the data layer and provides relevant information from the data layer to applications. The SDN controller also enables cent
	Table 1

	Table 1 Mainstream SDN Controllers
	Controller
	Controller
	Controller
	Southbound Interface
	Programming Language
	System Platform
	Description

	NOX
	NOX
	OpenFlow
	C++
	Linux
	The first SDN controller to support the

	TR
	OpenFlow protocol

	POX
	POX
	OpenFlow
	Python
	Linux, Mac OS, Windows
	A Pythonbased SDN controller evolved from NOX, supporting the OpenFlow protocol
	-

	Ryu
	Ryu
	OpenFlow, Netconf, OFconfig, etc.
	-

	Python
	Linux
	Ryu is a lightweight, open-source SDN controller supporting OpenFlow v1.0, v2.0, and v3.0

	Floodlight
	Floodlight
	OpenFlow
	Java
	Linux, Mac OS, Windows
	Provides a general set of functions for controlling and querying OpenFlow networks, meeting various user network needs

	4.
	4.
	4.
	4.
	Northbound Interfaces

	Northbound interfaces are the connections between the control layer and the application layer in the SDN architecture. Their main function is to provide a standardized interface for applications, allowing them to manage and control the network through the SDN controller without directly accessing the underlying physical devices[20]. This standardized interface enables different applications to seamlessly communicate with the SDN, thereby achieving more flexible and programmable network management. For examp

	5.
	5.
	Application Layer

	The application layer provides a platform for network administrators to implement control logic by configuring network devices to achieve specific network behaviors and functions. Typical SDN applications include intrusion detection systems, load balancing, traffic optimization, firewalls, and fine-grained access control [21]. SDN applications can also abstract and encapsulate their functions, providing northbound proxy interfaces. These encapsulated interfaces can be considered as higher-level northbound i
	2.1.3 SDN has many protocol standards in practical applications, among which the most popular protocol is OpenFlow [22]. OpenFlow is based on the concept of flow to establish and match rules. Through the OpenFlow protocol, the SDN controller can query, modify, and configure the status information of SDN switches, and update the network system status in real time. The main components of an OpenFlow switch include a secure channel, flow tables, and the OpenFlow protocol, as shown in
	OpenFlow Protocol
	Figure

	Among these, the secure channel is the interface connecting the OpenFlow switch with the SDN controller, the flow table is a collection of forwarding policies, and the OpenFlow protocol is the standard protocol for interaction between the control layer and the data layer.
	2.

	Figure 2 OpenFlow Switch Architecture
	Figure
	The OpenFlow protocol supports three types of interaction messages: Controller-to-Switch messages, asynchronous messages, and synchronous messages [23]. The controller sends Controller-to-Switch messages to the switch to query and modify the switch's status and configuration, some of which do not require a response from the switch. The switch sends asynchronous messages to the controller, providing real-time feedback on network update events and requesting new instructions. Asynchronous messages mainly incl
	The flow table mechanism is a critical component of the OpenFlow protocol, enabling the decoupling of the control layer and the data layer. With the evolution of OpenFlow versions, the structure and functionality of flow tables have continually been enriched. In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple flow tables, decomposing the flow table matching process into several steps and
	The flow table mechanism is a critical component of the OpenFlow protocol, enabling the decoupling of the control layer and the data layer. With the evolution of OpenFlow versions, the structure and functionality of flow tables have continually been enriched. In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple flow tables, decomposing the flow table matching process into several steps and
	forming a pipeline processing method to avoid the excessive expansion of a single flow table. OpenFlow 1.2 introduced the TLV (Type-Length-Value) structure to define matching fields, enabling more keywords to be matched and allowing OpenFlow switches to communicate with multiple controllers. OpenFlow 1.3, the most stable version, enriched the structure of flow entries by adding priority, timeouts, and cookies, making packet matching more flexible and enabling timely cleanup of unused flow entries to reduce

	The discussion in this section serves as a foundational background, setting the stage for exploring more advanced topics in SDN, including various types of controllers and the detailed operations of SDN networks. It emphasizes the transformative potential of SDN in adapting to the increasing complexity and requirements of modern network environments, thus framing the motivation for further innovations and research in network management.
	2.1.4
	Summary

	2.2 TYPE OF CONTROLLERS
	2.2.1 Ryu is an open-source project led by the Japanese company NTT, with its name meaning "flow" in Japanese. The project aims to provide a SDN operating system with logically centralized control capabilities. Ryu offers comprehensive API interfaces, enabling network application developers to easily create new management and control applications[28]. Written in Python and adhering to the Apache License, Ryu supports multiple versions of the OpenFlow protocol, including v1.0, v1.2, and v1.3.
	RYU

	The Ryu controller comprises a wide array of libraries and components designed for developing SDN applications[29]. These libraries encapsulate common functions distilled from the requirements of SDN controllers and can be directly invoked within components. Each component operates independently of others. Through these features, Ryu offers developers a flexible and scalable SDN development environment, enhancing the convenience and intelligence of network management and control. The libraries and component
	Figure 3.

	Figure 3 Ryu library functions and components
	Figure
	Libraries such as Netconf[30], OF-conf, and sflow[31] primarily facilitate the control functions for OpenFlow switches. Among the key components, OF-wire provides support for different versions of the OpenFlow protocol; Topology is responsible for building topology maps and tracking link status; and OF REST offers REST APIs for users to configure OpenFlow switches. The VRRP[32] component adds VRRP capabilities to OpenFlow switches, significantly enhancing network reliability. Additionally, Ryu can integrate
	2.2.1.1
	2.2.1.1
	Ryu Overall Architecture

	The Ryu SDN framework primarily provides control capabilities, offering services to SDN applications through northbound REST APIs, enabling these applications to orchestrate and control network traffic[33]. Through southbound protocols such as OpenFlow, Ryu controls OpenFlow switches to facilitate traffic interaction. The Ryu SDN architecture serves as a pivotal bridge, acting as the control and exchange hub for northbound interfaces. The overall architecture of Ryu is illustrated in
	Figure 4.

	Figure 4 Ryu Overall Architecture
	Figure
	The SDN application layer is broadly divided into three categories. The first category is the Operator, which controls and manages the SDN framework through RESTful management APIs. The second category is OpenStack cloud orchestration, which integrates with OpenStack using REST API for Quantum to manage and control the network. The third category is User apps, which control and manage the SDN framework through user-defined APIs via REST or RPC[34].
	The Ryu SDN framework layer is the core of the entire architecture, providing the infrastructure for developing, managing, and running SDN applications[35]. The main components and functionalities include Ryu applications, event dispatcher, libraries, OpenFlow parser/serializer, and protocol support modules. Ryu applications are specific SDN programs running on the Ryu framework that perform particular network management tasks. The event dispatcher is responsible for receiving, processing, and distributing
	The Ryu SDN framework layer is the core of the entire architecture, providing the infrastructure for developing, managing, and running SDN applications[35]. The main components and functionalities include Ryu applications, event dispatcher, libraries, OpenFlow parser/serializer, and protocol support modules. Ryu applications are specific SDN programs running on the Ryu framework that perform particular network management tasks. The event dispatcher is responsible for receiving, processing, and distributing
	applications to simplify the development process[36]. The OpenFlow parser/serializer handles OpenFlow protocol packets, performing parsing and generation to ensure communication between the controller and switches. The protocol support modules support various network protocols (e.g., OVSDB, VRRP), providing broader functionality and compatibility for network management[37].

	The OpenFlow switch layer comprises switches that support the OpenFlow protocol, serving as the infrastructure for network packet forwarding. OpenFlow switches communicate with the SDN controller via the OpenFlow protocol, receiving flow table instructions and executing corresponding forwarding operations to ensure efficient transmission of network data[38].

	2.2.1.2.
	2.2.1.2.
	2.2.1.2.
	Ryu Workflow

	Figure 5 Ryu Workflow
	Figure
	The workflow of Ryu is illustrated in Upper-layer Ryu applications distribute and transmit events through SERVICE_BRICK[39]. The main purpose of
	Figure 5.

	SERVICE_BRICK is to implement modular design, enabling Ryu applications to be developed and maintained as independent service modules. Each SERVICE_BRICK is an independent service module responsible for specific functions or tasks and can communicate and collaborate with other modules through Ryu's service registration and discovery mechanisms. Moreover, SERVICE_BRICK is closely integrated with the event handling mechanism. Events are routed and tasks are distributed by registering callback functions that r
	OFPHandler[41] is the most fundamental subclass of RyuAPP. This class primarily handles the coordination of OpenFlow protocol tasks such as Hello Handler, Switch Features Handler, Port State Handler, and Echo Handler. OFPHandler instantiates an OpenFlow controller object, which in turn instantiates several dataplane objects corresponding to the number of connected switches, with each dataplane representing a single OpenFlow switch.
	The Datapath communicates with OpenFlow switches by creating sockets[42] using the Stream server from the high-concurrency Python framework eventlet[43]. Eventlet provides an efficient network communication mechanism, enabling the dataplane to handle multiple concurrent connections and communications with switches effectively. Each dataplane object is responsible for receiving and processing OpenFlow messages sent from its corresponding switch and returning the processing results to the switch, thus facilit
	2.2.2 The Floodlight controller boasts excellent stability and portability, being compatible with various operating systems[44]. Therefore, this project utilizes Floodlight as the SDN controller. Floodlight interacts with upper-layer applications via Java interfaces or REST APIs, with its overall architecture illustrated in
	Floodlight
	Figure 6.

	Figure 6 Architecture diagram of Floodlight
	Figure
	Floodlight is composed of core service modules, regular application modules, and REST application modules[45]. The core service modules provide fundamental support services via Java interfaces and REST APIs to both the regular application modules and the REST application modules. The regular application modules depend on the core service modules and provide services to the REST application modules. The REST application modules rely on the REST APIs provided by the core service modules and regular applicatio
	Table 2.

	Table 2 Floodlight Components
	Component Type
	Component Type
	Component Type
	Component Name
	Function Description

	TR
	Manages connections to

	Core Service Module
	Core Service Module
	FloodlightProvider
	switches
	and
	converts

	TR
	OpenFlow messages into

	DeviceManagerImpl
	LinkDiscoveryManager
	events that other modules can listen to. Manages low-level network devices such as switches and hosts. Manages link resources in the network and maintains link status in the OpenFlow network.
	Table
	TR
	TopologyService

	TR
	RestApiServer

	Regular
	Regular
	Application

	Module
	Module

	TR
	FlowCache

	TR
	Forwarding

	TR
	Firewall

	Finds routes in the network, calculates network topology, and maintains topology information.
	Provides REST API
	services.
	Integrates flow updates
	and searches across
	different modules.
	Implements packet forwarding between two devices. Enforces access control on switches.
	Creates
	Creates
	Creates
	virtual
	links

	Circuit Pusher
	Circuit Pusher

	REST
	REST
	Application
	between two devices.

	Module
	Module
	Manages the OpenStack

	TR
	OpenStack Quantum
	network.

	2.2.3 The NOX platform is based on a publish-subscribe model[47], using the observer pattern[48]. Components on NOX can subscribe to events generated by the network, allowing users to write various components to manage the OpenFlow network[49]. Currently, components on NOX are divided into three categories: Core apps, Net apps, and Web apps. Core apps provide some basic applications that other components can use. Net apps are network control-related applications, while Web apps offer some interfaces to web
	NOX

	As shown in components on NOX are divided into three categories: Core apps, Net apps, and Web apps. Core apps provide some basic applications that other components can use. Net apps are network control-related applications, while Web apps offer some interfaces to web services. Events are generally generated in two ways: one is directly from OpenFlow messages, such as Datapath_join_event when a switch joins, and Datapath_leave_event when a switch leaves. The other is generated by controller applications, suc
	Figure 7,

	Figure 7 NOX Function Module Structure
	Figure
	After a secure connection is established between the NOX controller and the underlying switches, the switches can send OpenFlow messages to the controller through this connection[51]. The OpenFlow protocol encapsulation and parsing module on the NOX controller encapsulates these messages, and the message distribution module delivers them to the upper-layer applications. Conversely, upperlayer applications can also send OpenFlow messages to the underlying switches via the OpenFlow protocol encapsulation and
	-

	To develop new components on the NOX platform, it is essential to understand the basic structure of the components. A new component needs to inherit from the Component class and use REGISTER_COMPONENT to enable dynamic loading. During loading, the Configure and install methods are called to register events and their handlers. The events that the component needs to listen for are listed in the NOX.json file. Additionally, while creating the component, a meta.json file is needed to specify other components th
	To develop new components on the NOX platform, it is essential to understand the basic structure of the components. A new component needs to inherit from the Component class and use REGISTER_COMPONENT to enable dynamic loading. During loading, the Configure and install methods are called to register events and their handlers. The events that the component needs to listen for are listed in the NOX.json file. Additionally, while creating the component, a meta.json file is needed to specify other components th
	mibtransport, for further processing. If discovery returns STOP, the event will not be passed further[52].

	2.2.4 Mininet Mininet is a virtualization network emulation tool developed by Stanford University based on the Linux Container architecture [53]. It can create a highly flexible custom virtual network consisting of hosts, switches, controllers, and links. Mininet uses the Linux [54] kernel to virtualize multiple hosts and simulates SDN switches using the OpenFlow protocol. The network topology can be defined and configured using Python
	[55] scripts, allowing users to quickly create custom topologies for testing and developing network applications.
	Mininet offers three types of command parameters: network construction startup parameters, internal interactive commands, and external runtime parameters. Network construction startup parameters can be used to set the topology structure, switch types, and link attributes. Internal interactive commands allow interaction with virtual nodes, such as adding or removing nodes. External runtime parameters mainly control the runtime environment of Mininet, such as setting log outputs. These command parameters can
	Additionally, Mininet provides many practical tools, such as traffic generators and packet capture tools, to facilitate network traffic monitoring and testing. One of Mininet's greatest advantages is its flexibility and customizability. It not only supports OpenFlow but also other southbound interface protocols, enabling the creation of highly controllable network environments. Therefore, Mininet has been widely used in network research, including areas such as network security and cloud computing. In the f
	This section underscores the diversity and adaptability of SDN controllers in meeting the needs of various networking scenarios, emphasizing their role in enabling efficient network management through centralized control mechanisms.
	2.2.5
	Summary

	2.3OPERATIONS OF SDN
	2.3.1 In the SDN network architecture, centralized and dynamic network topology information management technology [56] effectively decouples the control plane from the data plane. This is achieved through the use of a central controller that allows for highly flexible, real-time, and centralized control over the entire network structure. This management model endows the SDN controller with the ability to obtain and maintain a comprehensive view of the network, accurately describing the interconnections, top
	SDN Link Topology Discovery Technology

	Moreover, this centralized management approach enables the SDN controller to perform intelligent path calculations, selecting the optimal transmission path based on the current topology and traffic conditions, thereby achieving efficient traffic scheduling and maximizing network performance. Additionally, the scope of SDN topology information management includes timely response to various topology events, continuous network monitoring, and in-depth analysis. This provides multi-dimensional support for stabl
	The controller plays the role of storing information about core network components, including detailed locations of individual switches and the link parameters that form the
	topology data of interconnections between switches[58]. The controller aggregates network-wide topology information through active collection or passive reception and properly stores this data. Additionally, the controller adheres to a predefined update strategy, regularly refreshing and calibrating the maintained topology information to ensure real-time tracking and accurate understanding of network state changes, as illustrated in
	Figure 8.

	Figure 8 Topological Discovery Classification
	Figure
	2.3.2 The link topology discovery mechanism in SDN involves the controller identifying the link status between switches on the data plane[59]. By obtaining link connection status information, the controller can effectively support various network service functions. In Ethernet, link topology discovery typically relies on the Link Layer Discovery Protocol (LLDP)[60], where Ethernet switches exchange relevant link and port information. However, in the SDN architecture, since data plane switches are responsibl
	Link Topology Discovery Technology

	When a switch connects to the network, it sends an initialization signal to the controller, containing the OpenFlow version number and details of each port. Once the controller successfully responds and establishes a connection with the switch, it deploys topology discovery rules on the switch. First, upon receiving a Packet-out message from the controller, the switch forwards it to the connected switch port. Second, upon receiving a message from another switch, the switch adds its relevant information to t
	Subsequently, the controller sends LLDP packets to each port of the switch. The switch, following the first rule, forwards this packet through the specified port. When the target neighboring switch receives the packet, it follows the second rule, encapsulating the LLDP content into a Packet-in message and adding its switch ID and receiving port ID information. The switch then sends this Packet-in message back to the controller. If the target switch is not directly connected to the controller, the Packet-in
	2.3.3 This section highlights the capabilities of SDN to facilitate real-time, accurate network management and adjustments, which are essential for optimizing network performance and reliability.
	Summary

	2.4SDN ROUTING
	This section will separately introduce the SDN routing mechanism, the current research status of SDN intelligent routing optimization based on supervised learning, and SDN intelligent routing optimization based on reinforcement learning. On this basis, the research processes and advantages and disadvantages of these methods will be summarized.
	2.4.1 Traditional routing technologies achieve the exchange and sharing of routing information through the establishment of routing tables and routing protocols[63]. In the SDN network architecture, the controller uses southbound interface protocols to uniformly distribute forwarding rules to switches, thus enabling routing transmission between switches. Based on the method of path transmission, SDN routing mechanisms can be divided into shortest path routing and multipath routing, as detailed below:
	SDN-Based Routing Mechanisms

	(1)
	(1)
	(1)
	 Shortest Path Routing Current mainstream SDN controllers, such as RYU[64], Floodlight[65], and POX[66], provide comprehensive data forwarding modules and typically use the Dijkstra[67] algorithm to find the shortest path. Data packets can be forwarded from the source node to the destination node using the shortest path determined by the Dijkstra algorithm. This method is simple and easy to implement. However, it overly relies on the shortest path for packet forwarding, which can lead to link congestion whe

	(2)
	(2)
	 Multipath Routing Multipath routing seeks to find multiple paths that meet the constraint conditions based on network traffic distribution and service traffic demands, and uses these paths for balanced transmission of network traffic. The goal is to improve network performance in terms of transmission delay, throughput, and link utilization, and to avoid link congestion. Li Daoquan et al. [68] proposes an SDN multipath routing load balancing strategy based on traffic distribution propensity. When data flow

	elephant flows and mouse flows based on traffic characteristics, combines group tables to optimize the communication mode between the controller and switches in the SDN architecture, reduces packet processing delay, and improves overall network performance. Zhou Jie[71] proposes an SDN-based multipath load balancing algorithm, which selects the optimal path based on link weights and traffic thresholds and makes real-time adjustments. Compared to traditional routing algorithms, it significantly improves band
	2.4.2 Supervised learning is a labeled learning technique that establishes a system model based on given data and labels, completing training based on the mapping relationship between input and output, and subsequently predicting results by inputting new data into the system model[72]. Common supervised learning methods include neural networks[73], Support Vector Machines (SVM)[74], K-Nearest Neighbor (KNN)[74], random forests[75], and decision trees[76]. SDN routing optimization based on supervised learnin
	SDN Routing Optimization Based on Supervised Learning

	Raikar et al.[77] propose SDN routing optimization based on machine learning, using three different supervised learning models: SVM, nearest centroid, and naive Bayes for data traffic classification in SDN architecture applications. By capturing network traffic trajectories to generate traffic features and sending them to the classifier for prediction, the results show that the prediction accuracy of SVM is 92.3%, nearest centroid is 91.02%, and naive Bayes is 96.79%. Xin et al.[78] propose a novel incremen
	study a routing decision scheme based on deep belief networks, used for backbone network routing optimization. Compared with traditional routing schemes, it converges faster and has lower information exchange costs. Modi and Swain[80] propose a deep learning routing algorithm based on CNN. This algorithm outputs intelligent paths by online training traffic patterns. Compared to the traditional routing algorithm OSPF, the average network throughput nearly doubled, and the average network throughput increased
	The above-mentioned SDN routing optimization methods based on supervised learning, especially neural networks, have improved network performance such as transmission delay, throughput, and packet loss rate in SDN routing optimization. However, the training process requires a large amount of labeled data, which demands high computational complexity. The accuracy, generalization, and fault tolerance of routing still need improvement.
	2.4.3 Reinforcement learning is an important branch and effective tool of machine learning. Deep reinforcement learning is based on the fundamental theory of reinforcement learning, using deep neural networks to replace traditional decision functions, leveraging the powerful fitting capabilities of deep neural networks to train the learning process[82]. In the SDN routing optimization process based on reinforcement learning, network topology, traffic matrices, and other factors are regarded as network state
	SDN Routing Optimization Based on Reinforcement Learning

	Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM. This mechanism improves throughput and reduces latency through continuous-time black-box optimization. Experimental results show that DROM has good convergence and effectiveness, providing better routing configuration than existing solutions. Xu et
	Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM. This mechanism improves throughput and reduces latency through continuous-time black-box optimization. Experimental results show that DROM has good convergence and effectiveness, providing better routing configuration than existing solutions. Xu et
	al.[84] propose a DRL-based routing method for experience-driven networks, DRL-TE, to solve traffic engineering problems. DRL-TE jointly learns the dynamic network environment and makes decisions under the guidance of deep neural networks. Experimental results show that DRL-TE is robust to network changes, significantly reducing end-to-end delay and continuously improving network utility while providing better throughput. Ding et al.[85] study a routing selection method based on deep reinforcement learning

	Sun et al.[86] propose an intelligent routing technology based on deep reinforcement learning called SmartPath. By dynamically collecting network states and using deep reinforcement learning to automatically generate routing policies, SmartPath ensures that routing policies can dynamically adapt to network traffic changes. Experimental results show that SmartPath can dynamically update network routing without relying on manual traffic modeling, reducing average end-to-end transmission delay by at least 10%
	-

	The above intelligent routing algorithms have certain advantages in network performance such as delay, throughput, and link utilization when facing small network state inputs. However, in the complex network environment with continuously expanding network scale, these intelligent routing algorithms often have low convergence efficiency, and network performance such as average end-to-end delay and throughput still need improvement. Additionally, these intelligent routing algorithms have weak generalization c
	2.4.4 Zhao et al.[91] designed an intelligent routing method based on deep reinforcement learning, which effectively alleviates network congestion and achieves network load balancing. Chen et al.[92] addressed the issue of modeling complex and dynamic networks by proposing a deep reinforcement learning algorithm based on DDPG (Deep Deterministic Policy Gradient). This algorithm divides the network into uplink and downlink, introducing multiple new features to form the state space. The action space consists
	SDN Routing Optimization Based on Deep Reinforcement Learning Algorithms

	The CFR-RL algorithm selects some critical flows for rerouting, while most flows are forwarded by equal-cost multi-path (ECMP), effectively solving the problem of decreased network service quality and interference caused by frequent rerouting. Fu et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low latency and low packet loss for mouse flows and high throughput and low packet loss for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement
	The CFR-RL algorithm selects some critical flows for rerouting, while most flows are forwarded by equal-cost multi-path (ECMP), effectively solving the problem of decreased network service quality and interference caused by frequent rerouting. Fu et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low latency and low packet loss for mouse flows and high throughput and low packet loss for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement
	learning routing algorithm, considering the SDN controller cache as a key factor affecting routing strategies. By restructuring the cache and bandwidth with quantifiable scores to reduce latency, this algorithm forms a multi-dimensional state space, improving network throughput and robustness. Hossain et al.[95] designed an intelligent situational awareness routing algorithm that uses intelligent sensing algorithms to reduce the impact on application-driven program QoS when the network is under attack, effe

	By combining deep learning and reinforcement learning techniques, the previously mentioned algorithms efficiently overcome the drawbacks of Q-table-based approaches. They also speed up model convergence and improve the system's capacity to manage and adjust to intricate, high-dimensional dynamic network environments, ultimately leading to improved network performance. These techniques, however, do not take into account how intelligent routing optimization algorithms might be affected by alterations in netwo
	Section 2.4 addresses the strategies and technologies used in SDN routing, including the implementation of machine learning techniques to enhance routing decisions.
	2.4.5
	Summary

	2.5CHAPTER SUMMARY
	This chapter has systematically explored the various dimensions of Software Defined Networking (SDN), from its fundamental architecture to advanced routing optimization techniques. SDN's flexibility and efficiency over traditional network architectures are evident, with its ability to adapt quickly to new business demands and manage network traffic dynamically. The exploration of SDN controllers and their distinctive features underscores the diversity of options available for network customization and optim
	This chapter has systematically explored the various dimensions of Software Defined Networking (SDN), from its fundamental architecture to advanced routing optimization techniques. SDN's flexibility and efficiency over traditional network architectures are evident, with its ability to adapt quickly to new business demands and manage network traffic dynamically. The exploration of SDN controllers and their distinctive features underscores the diversity of options available for network customization and optim
	focusing on automation and intelligent decision-making to enhance performance metrics.

	This chapter addresses the limitations of traditional routing methods that rely on limited network link information for routing decisions, have poor adaptability to dynamic and complex network changes, and lack flexibility in adjusting routing strategies. The method it suggests is based on Dueling DQN reinforcement learning and network traffic state prediction (DRL-TP, Deep Reinforcement Learning-Network Traffic State Prediction), and it is an SDN intelligent routing technique. By acquiring global network l

	CHAPTER 3 -RESEARCH METHODOLOGY
	CHAPTER 3 -RESEARCH METHODOLOGY
	This section outlines the experimental and theoretical methods employed to assess the performance and efficacy of Dueling DQN and GRU-based SDN routing strategies.
	3.1RESEARCH METHOD
	In this project, we employ a multifaceted research method that integrates Software Defined Networking (SDN) and advanced reinforcement learning techniques, specifically Dueling Deep Q-Networks (Dueling DQN), to enhance routing decisions through intelligent traffic prediction. Our project design capitalizes on the flexibility of SDN which separates the control and data planes, enabling centralized network traffic management. The Dueling DQN approach optimizes routing by distinguishing between state values an
	We conduct experiments in a simulated network environment using tools like Mininet and the Ryu SDN controller, which facilitate the testing of our model under various traffic scenarios. Traffic matrices are collected to provide real-time and historical data for training the Dueling DQN model and evaluating network performance against traditional and other RL-based methods. The effectiveness of our proposed method is measured through key performance indicators including throughput, latency, and packet loss.
	The research strategy is experimental. Our results are analyzed to refine the Dueling DQN model, ensuring it effectively aligns with actual network dynamics. Additionally, scalability and robustness tests are carried out to confirm the model's efficacy in larger and more complex networks, as well as its resilience in adverse network conditions. This comprehensive approach not only advances the field of network management but also offers practical insights into the deployment of machine learning techniques w
	The research onion framework illustrated in the encapsulates the comprehensive methodology adopted for this project, structured across several layers. Each layer represents a specific stage of the research process, detailing the underlying
	The research onion framework illustrated in the encapsulates the comprehensive methodology adopted for this project, structured across several layers. Each layer represents a specific stage of the research process, detailing the underlying
	Figure 9

	philosophies, approaches, strategies, choices, time horizons, and techniques and procedures.

	Figure 9 Layers of the Onion Diagram for Research Methodology
	Figure
	The project adopts a realism approach, suitable for quantitative analysis of observable phenomena within predefined frameworks. The research utilizes this philosophy to leverage its structured, objective nature, ensuring rigorous quantification of network performance metrics. Challenges associated with a potentially narrow scope are mitigated by incorporating diverse network scenarios.
	3.1.1
	Philosophy

	The research follows a deductive approach, starting with the hypothesis that the
	3.1.2
	Approaches

	Dueling DQN-based
	Dueling DQN-based
	Dueling DQN-based
	intelligent routing
	method
	will
	outperform
	traditional
	routing

	methods. The hypothesis is then tested through systematic experiments.
	methods. The hypothesis is then tested through systematic experiments.

	3.1.3 Strategies
	3.1.3 Strategies

	Experiment:
	Experiment:
	The
	primary
	strategy
	involves
	conducting
	experiments
	to
	collect

	performance data of different routing algorithms under various network conditions. These experiments are designed to provide empirical evidence supporting the hypothesis. Software Development: A significant part of the research involves developing software for implementing and testing the proposed DRL-TP intelligent routing algorithm.
	3.1.4 Choices Mixed Methods: Although primarily quantitative, the project also involves some qualitative assessment of the algorithms' performance to provide a comprehensive evaluation.
	3.1.5 Time Horizons Cross-sectional: The experiments are conducted at specific intervals, providing snapshots of the network performance at various points in time. This approach helps in understanding the immediate impact of the routing algorithms.
	Data Collection and Evaluation: Data is collected through network simulations, using tools like Mininet and Ryu to create the SDN environment and Iperf to generate traffic. The collected data includes metrics such as throughput, delay, and packet loss rate.
	3.1.6
	Techniques and Procedures

	Alternative Algorithms: In case the Dueling DQN-based approach does not perform as expected, alternative DRL algorithms such as PPO (Proximal Policy Optimization) or A3C (Asynchronous Advantage Actor-Critic) will be considered. Extended Data Collection: If initial data collection proves insufficient or inconclusive, additional data collection phases will be implemented to ensure robust and comprehensive results.
	3.1.7
	Contingency Plans

	Hybrid Methods: Combining DRL with other machine learning techniques, such as supervised learning for specific sub-tasks, to enhance overall performance. Simulation Environment Adjustments: Modifying the network simulation environment to include different types of network traffic and topologies to test the robustness of the proposed routing algorithm under various conditions. Expert Review: Engaging domain experts to review methodology and results, providing insights and recommendations to address potential
	3.1.8 Risks and Limitations The main risks involve the potential discrepancies between simulated environments and real-world network operations. Strategies to counteract these risks include rigorous scenario testing and validation against baseline models. Validity, Reliability, Generalisability
	-

	⚫
	⚫
	⚫
	⚫

	Validity: The experimental setup is designed to accurately reflect realistic network behaviors.
	-

	⚫
	⚫
	⚫

	Reliability: Consistency of results will be ensured through replication of experiments and methodological transparency.

	⚫
	⚫
	⚫

	Generalisability: Results will be discussed in terms of their applicability to similar technological environments and configurations.
	-

	The Gantt chart for the SDN Routing Strategy Project, as shown in visualizes the project timeline and the scheduling of different phases from April 2024 through September 2024. The project begins with Data Collection in April, followed by the development of the Dueling DQN model in late April and early May. Experiment setup occurs briefly in mid-May. Testing and evaluation is the longest phase, starting in late May and continuing through mid-July. Data Analysis is scheduled for July, overlapping slightly wi
	Figure 10,

	Figure
	Figure 10 Gannt Chart
	Figure 10 Gannt Chart

	3.2RESEARCH MATERIALS
	3.2.1 Hardware Devices Computer Cluster: The experiments were conducted on a cluster composed of multiple high-performance computers, each equipped with an Intel Core i9 processor and 32GB RAM. These computers were interconnected via Gigabit Ethernet to simulate high traffic and high throughput conditions in a real network environment. The high processing power and large memory capacity of the computer cluster ensure that complex network simulations and large-scale data processing can be performed efficient
	3.2.2 Network Devices OpenFlow Switches: Hardware switches supporting the OpenFlow protocol were used to construct the experimental network topology. These switches are highly programmable and can flexibly forward and process data packets according to instructions from the control plane. By using OpenFlow switches, precise control and management of network traffic can be achieved, effectively verifying the performance of the intelligent routing algorithm under various network conditions.
	3.3CHAPTER SUMMARY
	This chapter provided a detailed description of the research materials, including the datasets, software, and hardware used in this project. The justification for the chosen materials emphasized their relevance and suitability for the research objectives, ensuring that the project is based on high-quality, reliable data and state-of-the-art computational tools. Ethical considerations were addressed, ensuring compliance with data usage guidelines and ethical standards. This comprehensive approach to selectin

	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING
	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING
	4.1 ARCHITECTURE AND MODEL DESIGN"
	This section introduces the architecture and modeling of SDN-based intelligent routing optimization, as well as the detailed design process of intelligent routing algorithms.
	4.1.1 OpenFlow switches are equipped with various counters to record statistical information such as the number of different types of packets, byte counts, and time information, as shown in These counters include per-port, per-flow table, and per-flow entry statistics. The controller can periodically query and retrieve counter statistics from OpenFlow switches using statistics messages defined by the OpenFlow protocol. This statistical information is very useful for network performance monitoring and troubl
	Parameter Collection Design
	Table 3.

	Table 3 Counters in OpenFlow
	Type
	Type
	Type
	Content
	Bit Width

	TR
	Active Entries
	32

	Per Flow Table
	Per Flow Table
	Packet Lookups
	64

	TR
	Packet Matches
	64

	TR
	Received Packet Count
	64

	Per Flow Entry
	Per Flow Entry
	Received Packet Byte Count
	64

	Duration (seconds)
	Duration (seconds)
	32

	Duration (nanoseconds)
	Duration (nanoseconds)
	32

	4.1.1.1
	4.1.1.1
	4.1.1.1
	Measuring link packet loss and throughput

	Port-Stats messages can be utilized to measure link packet loss rate and link throughput. There are two types of Port-Stats messages: Port-Stats-Request
	Port-Stats messages can be utilized to measure link packet loss rate and link throughput. There are two types of Port-Stats messages: Port-Stats-Request
	messages, which are used by the SDN controller to request port statistics from the switch, and Port-Stats-Reply messages, which are used by the switch to respond to the SDN controller. Specifically, the switch reads the counters of the specified port, obtains the port's statistics, encapsulates them in the message, and then sends the message to the SDN controller. In OpenFlow 1.3, the formats of Port-Stats-Request and Port-Stats-Reply messages are shown in and respectively. The controller can obtain the por
	Figure 11
	Figure 12,
	-

	Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3
	Figure
	Figure
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3

	Packet loss rate is a crucial indicator of network performance. It can be used to assess the quality and stability of the network, as well as for troubleshooting and performance optimization.
	Figure
	Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to measure link packet loss rate
	Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to measure link packet loss rate

	Packet loss rate is a crucial indicator of network performance. It can be used to
	assess the quality and stability of the network, as well as for troubleshooting and
	performance optimization. Suppose we measure the packet loss rate of the link
	from switch S1 to switch S2 in the network topology shown in To obtain
	Figure 13.

	the number of packets sent by port 1 of S1 (s1_tx_packets) and the number of
	𝑠1

	packets received by port 2 of S2 (𝑠2_𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠), the OpenFlow-defined Port
	s2
	-

	Stats-Request statistic message can be used. The controller can periodically send
	statistic requests to the OpenFlow switches to retrieve the statistics of the specified
	ports. Then, the packet loss rate over the interval between two query periods can
	be calculated using Equation (1). To achieve periodic polling, a timer can be used
	to set the query interval, triggering the query operation when the timer expires.
	𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠()−𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠()
	𝑠2
	𝑖
	𝑠2
	𝑖−1

	𝐿𝑜𝑠𝑠(𝑖 − 1, 𝑖) = 1 − (1)
	Figure

	𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠()−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠() In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)and iquery intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the (i-1)query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets sent by switch
	𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠()−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠() In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)and iquery intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the (i-1)query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets sent by switch
	𝑠1
	𝑖
	𝑠1
	𝑖−1
	th
	th
	𝑠2
	𝑖−1
	th
	𝑠I
	𝑖
	th
	𝑠I
	𝑖

	S1 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠()denotes the number of packets sent by switch S1 at the (i-1)query.
	th
	𝑠1
	𝑖−1
	th

	By measuring throughput, the transmission capacity, data processing capability, and transmission quality of the network can be evaluated, thus determining whether the network meets business requirements. When measuring the link throughput of switches, the SDN controller periodically sends Port-Stats-Request messages to the specified switches and retrieves the received/sent byte counts (rx_bytes/tx_bytes) and port duration (duration_sec and duration_nsec) from the switches' Port-Stats-Reply messages. Using f
	th
	th

	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑠𝑒𝑐 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑛sec ∗ 10(2) In these formulas, duration refers to the port's duration; duration_sec represents the port's duration in seconds; duration_nsec represents the port's duration in milliseconds.
	−9

	𝑏𝑦𝑡𝑒𝑠𝑖−𝑏𝑦𝑡𝑒𝑠()
	𝑖−1

	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡(𝑖 − 1, 𝑖) = (3)
	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖−𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛()
	𝑖−1

	In the formula, Throughput(i-1,i) represents the throughput during the (i-1)and iquery intervals; bytesi denotes the total number of received and transmitted bytes at the iquery; 𝑏𝑦𝑡𝑒𝑠() denotes the total number of received and transmitted bytes at
	th
	th
	th
	𝑖−1

	the (i-1)query.
	th

	4.1.1.2
	4.1.1.2
	4.1.1.2
	Measuring link latency

	In an SDN network, an important metric for evaluating link performance is the transmission latency between switches. However, because OpenFlow switches do not include timestamps in regular packets, it is not possible to measure transmission latency passively as in traditional IP networks. Therefore, an active measurement method is required, which involves generating and sending probe packets between switches to address this issue. These probe packets contain information about the sending and receiving times
	Measurement of latency in software-defined data center networks using Packet-Out and Packet-In messages operates on the principle illustrated in The controller sends a probe packet to switch S1 and issues a rule for S1 to forward the probe packet to S2. If S2 receives the probe packet but does not have a corresponding forwarding rule, it will return the probe packet to the controller. By calculating the total transmission time of the probe packet in the path, the controller can determine the transmission la
	Figure 14 Schematic
	for measuring delay based on Packet-Out and Packet-In messages.

	To measure the transmission latency between switches, the controller sends probe packets and measures the total time these packets take to travel through the path. However, because there is also latency in communication between the controller and the switches, it is necessary to send communication messages and measure the round-trip time (RTT) between the controller and each switch. Finally, by calculating the difference between these times, the controller can obtain the final link latency result.
	Figure
	Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In messages
	Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In messages

	The detailed steps to measure the latency of the link from S1 to S2 are as follows: a) Probe Packet Transmission Time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 :To obtain the probe packet transmission time 𝑇, the controller generates a probe packet containing the target forwarding port of switch S1 and the sending timestamp, recording the transmission path and sending time. These packets are encapsulated in a Packet-Out message and sent to switch S1. Switch S1 forwards the packet to the designated port, from where switch S2 receives
	𝑡𝑟𝑎𝑣𝑒𝑙
	𝑡𝑟𝑎𝑣𝑒𝑙
	𝑑𝑒𝑙𝑎𝑦

	𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2
	𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2

	𝑑𝑒𝑙𝑎𝑦 𝑡𝑟𝑎𝑣𝑒𝑙
	𝑇
	= 𝑇
	−
	2
	(4)

	4.1.2
	Intelligent routing algorithms

	4.1.2.1
	4.1.2.1
	Deep Reinforcement Learning Algorithms

	The framework of deep reinforcement learning (DRL) algorithms necessitates the creation of distinct state spaces, action spaces, and reward functions for a range of issues and use cases. The state space, action space, and reward function designs for the DRL-TP intelligent routing algorithm—which is based on the deep reinforcement learning framework—are explained in the following.
	State Space (S): The traffic matrix over interval t is shown by the symbol TM in the representation of the state space, S=TM. Equation illustrates that this matrix is made up of numerous two-dimensional matrices 𝑀||||.
	𝑉
	×
	𝑉

	1
	1

	𝑚= 𝑤• + 𝑤• 𝐿+ 𝑤• 𝐿, 𝑖, 𝑗 = 1,2, … , |𝑉| (5)
	𝑖𝑗
	1
	2
	𝑑𝑒𝑙𝑎𝑦
	𝑖𝑗
	3
	𝑙𝑜𝑠𝑠
	𝑖𝑗

	𝐿
	𝐿
	𝑡𝑤
	𝑖𝑗

	Each element 𝑚in the traffic matrix is constructed by aggregating information from 𝑏𝑑𝑒𝑙𝑎𝑦rate (𝐿). These elements are combined using adjustable parameters ; 𝑤∈ [0,1], 𝑙 = 1,2,3, which serve as weight factors for each component. Each network link information matrix includes link information between all switch nodes at the current time. The indices i and j represent the switch node names in the network topology, and |𝑉| denotes the number of switch nodes in the network topology. The structure of th
	𝑖𝑗
	six aspects of the network link: residual bandwidth (𝐿
	𝑤), delay (𝐿
), packet loss
	𝑙𝑜𝑠𝑠
	𝑙
	Figure 15 Traffic matrix structure diagram.

	Figure
	Figure 15 Traffic matrix structure diagram
	Figure 15 Traffic matrix structure diagram

	Forwarding link weights and forwarding paths make up the two main categories of actions in the action space. While storing a sizable action space is not necessary for the former, it still needs to be further transformed into forwarding paths using the appropriate techniques. The latter involves storing a huge action space, but it outputs forwarding paths immediately. Choosing a set of potential paths to serve as the action space is an efficient solution, as proven effective in studies [26][31][33][43]. The
	𝑡
	𝑡
	𝑉
	∝
	𝑉

	are composed. The paths from every source switch node to every destination switch node are included in each potential path matrix. From switch node i to switch node j, the 𝑝𝑎𝑡ℎ𝑗 = [𝑖,…,𝑗] is represented by the entries in each potential path matrix.
	𝑖

	The reward value is used to provide feedback on the quality of actions supplied by the neural network, typically evaluating the current network conditions and the
	actions taken by the agent. It can be set to optimize various objective functions as needed. In this method, average end-to-end delay, bandwith, and packet loss rate are used as the comprehensive evaluation metrics. The reward value is calculated as shown in Equation (6):
	𝑏𝑤 𝑑𝑒𝑙𝑎𝑦 𝑙𝑜𝑠𝑠 In Equation (6), 𝜑, 𝜑, and 𝜑are weight parameters, each ranging from 0 to 1. The calculation process can adjust these weights according to the importance of each performance metric. After calculating the reward value, the result is returned to the agent, which then adjusts the multipath routing link weights and traffic splitting ratios. During the model training convergence process, the reward value is accumulated over the increasing number of training steps. The rising trend of
	𝑅 = 𝜑
	1
	• 𝐿
	− 𝜑
	2
	• 𝐿
	− 𝜑
	3
	• 𝐿
	(6)
	1
	2
	3

	Algorithm 1: DQN Deep Reinforcement Learning Algorithm
	Input: Traffic matrix: TM Output: Forwarding paths for all source-destination pairs in the network
	1.
	1.
	1.
	Initialize policy network Q_policy and target network Q_target with weights θ, and experience pool M

	2.
	2.
	For episode = 1 to episodes do:

	3.
	3.
	 The agent obtains the initial state St

	4.
	4.
	While next_state St+1 is not final state do:

	5.
	5.
	 Update exploration parameter ε = ε -(steps * decay)

	6.
	6.
	 The agent selects action at for current state st based on:

	7.
	7.
	 The estimated reward R(st, at)

	8.
	8.
	 Store experience Experiences = (st, at, rt, st+1) into M

	9.
	9.
	 If len(M) >= batch then:

	10.
	10.
	Sample batch data randomly from M

	11.
	11.
	 Calculate pvalue and tvalue for the batch

	12.
	12.
	12.
	Execute gradient descent on (tvalue -pvalue)^2 to update Q_policy weights

	θ

	13.
	13.
	 If steps % freq == 0 then:

	14.
	14.
	Update Q_target network model parameters, θ_{target} ← τ * θ_{policy}

	+ (1-τ) * θ_{target}
	15.
	15.
	15.
	 End if

	16.
	16.
	 s_t ← s_{t+1}

	17.
	17.
	End while

	18.
	18.
	End for

	4.1.3 GRU Gated Recurrent Unit (GRU) [97] is a variant of the Long Short-Term Memory (LSTM) network. As shown the GRU consists of two special gates: the update gate and the reset gate. The GRU network model contains fewer parameters than the LSTM network model, which not only lowers the possibility of overfitting in the prediction model but also speeds up its convergence. This makes it more suitable to satisfy the intelligent routing algorithm's real-time traffic matrix acquisition needs, which are the focu
	inFigure 16 GRU structure diagram,

	𝑡 understood as a combination of the forget gate and the input gate in LSTM. It determines which state information should be discarded or retained and the importance of that state information. As shown in equation (7), the update gate ztakes the state information from the hidden layer at the previous time step and the current time step's input layer information [ℎ, 𝑋] and, through the sigmoid function
	z
	𝑡
	𝑡−1
	𝑡

	σ, outputs a value between [0,1] to decide the extent to which the information in the
	cell state 𝑧should be retained.
	𝑡

	𝑧𝑡 =𝜎(𝑊𝑧•[ℎ𝑡−1,𝑋𝑡]+𝜔𝑧) (7)
	The reset gate 𝑟functions similarly to the update gate and is used to determine the
	𝑡

	next hidden state 𝑟. First, according to equation (8), it outputs a value between [0,1]
	𝑡

	to decide the retention level of 𝑟. Then, 𝑟is used to reset the previous hidden state
	𝑡
	𝑡

	ℎ−1 to obtain the candidate hidden state, as shown in equation (9). The symbol ⊙
	𝑡

	denotes element-wise multiplication of the corresponding values in the matrices,
	followed by summation. Finally, according to equation (10), the next hidden state ℎ
	𝑡

	is obtained and passed to the neurons in the next time step. This process continually
	is obtained and passed to the neurons in the next time step. This process continually
	updates the weight parameters of the GRU network model, thereby enhancing its ability to predict the network traffic state.

	(8) (9) (10)
	Figure 16 GRU structure diagram
	Figure 16 GRU structure diagram

	Figure
	Start by setting the essential hyperparameters, including the dimensions for the input, hidden, and output layers which are fundamental to the GRU algorithm's structure. The traffic matrix is then processed through time-series operations to generate input and target matrices, 𝑇𝑀and 𝑀for the GRU model. Gradient descent and
	𝑖𝑛𝑝𝑢𝑡
	𝑡𝑎𝑟𝑔𝑒𝑡

	backpropagation are used to update the weights and biases of the GRU model during training, and the mean squared loss function is employed to assess the model's effectiveness. Upon completion, the refined GRU model is employed to produce a forecasted traffic matrix, integral to the traffic matrix 𝑇𝑀 in Algorithm 1, thus enhancing
	the algorithm’s predictive accuracy and efficacy.
	Algorithm 2: Network traffic status prediction algorithm
	Input: Traffic matrix: TM Output: Forwarding paths for all source-destination pairs in the network
	1.
	1.
	1.
	Initialize GRU model weights.

	2.
	2.
	Split the time series data TM into input (TM_input) and target (TM_target) for training.

	3.
	3.
	For each episode from 1 to n:

	4.
	4.
	Initialize hidden state.

	5.
	5.
	For each time step from 0 to the length of TM_input:

	6.
	6.
	 Calculate output and update hidden state using the GRU model.

	7.
	7.
	 Compute loss as the difference between model output and the target data.

	8.
	8.
	 Update the model to minimize loss.

	9.
	9.
	End time step loop.

	10.
	10.
	End episode loop.

	4.2 DATA EVALUATION METHODS
	4.2.1 Data Collection The process of data collection involves gathering performance data from network simulations to ensure a comprehensive understanding of network behavior and performance under various conditions. In this study, data is collected using a structured approach. The experimental environment is constructed using Mininet 2.3.0 to build the SDN topology, with Ryu 4.34 serving as the SDN controller and Iperf for simulating data flows. The network setup includes a modified New York City Center net
	In order to quantify the network traffic matrix, data flows of evenly dispersed sizes are generated and sent with equal probability, yielding a total of 1458 traffic matrices. These matrices provide a comprehensive dataset for analysis, encompassing a variety of network link indicators such as bandwidth, delay, packet loss rate, used bandwidth, number of packet dropouts, and error rate. Throughput, latency, and packet loss rate are important performance data that are gathered and are essential for assessing
	4.2.2 Data Evaluation
	In this project, data evaluation involves analyzing the collected performance data to assess the effectiveness of different routing algorithms within a simulated network environment. The primary performance metrics considered are throughput, delay, and packet loss rate, which provide a comprehensive view of the network's operational efficiency and reliability under various routing strategies.
	Throughput is evaluated by measuring the total amount of data successfully transmitted across the network within a specified time period. This metric is crucial for understanding the network's capacity to handle high volumes of traffic and is calculated as the number of bytes sent from one switch to another, divided by the available bandwidth of the link. Higher throughput indicates better network performance and more efficient data handling.
	Delay is another critical metric, reflecting the time taken for data packets to travel from the source to the destination. It is measured using the SDN controller's link discovery protocol, which sends echo messages to switches to obtain timestamps. These timestamps help calculate the total transmission time for data packets across the network. Lower delay values are indicative of faster data transmission, which is essential for time-sensitive applications and services.
	Packet loss rate is measured by comparing the number of data packets sent with the number received across each network link. This metric highlights the reliability of the network in terms of data delivery. A higher packet loss rate suggests issues with network reliability and may indicate problems such as congestion or poor link quality. The packet loss rate is crucial for applications requiring high data integrity and minimal data loss during transmission.
	For data evaluation, multiple measurements are taken to ensure accuracy and reliability of the results. The average values of packet loss rate, throughput, and delay are calculated from these measurements to provide a more stable and accurate representation of the network's performance.
	By comparing these metrics across different routing algorithms, including the proposed DRL-TP intelligent routing algorithm and traditional algorithms like Dijkstra and OSPF, the project aims to demonstrate the improvements in network performance brought about by the DRL-TP algorithm. This comprehensive evaluation helps in identifying the strengths and weaknesses of each algorithm and provides insights into potential areas for further optimization and enhancement in network routing strategies.
	4.3 EXPERIMENTAL SETUP
	In this chapter, a SDN environment was set up on a system running Ubuntu 22.04 with 8 GB of RAM and a quad-core processor. The setup involved the installation of Mininet 2.2.1[101] for creating the SDN network topology, and Utilizing Ryu 4.28[102] as the SDN controller. To simulate network traffic transmission, Iperf[103] was used. the network traffic flows were generated with uniformly distributed sizes under equal probability conditions. A total of 1458 traffic matrices were collected. As shown in the Man
	Figure 17,

	Figure
	Figure 17 Network Topology Diagram
	Figure 17 Network Topology Diagram

	Mininet is an open-source tool used for studying and simulating SDN. It creates a highly configurable and extensible network environment by utilizing a custom Linux kernel and user-space programs. In Mininet, SDN elements and commands play crucial roles, enabling users to flexibly control and manage network behavior. The primary SDN components in Mininet include the OpenFlow controller, OpenFlow switches, and virtual machines. Users can utilize a range of commands in Mininet to configure and control these S
	1.
	1.
	1.
	mn: Used to start the Mininet simulator. By specifying different parameters, users can configure the network topology, the number of nodes, link bandwidth, etc.

	2.
	2.
	controller: Adds a controller node to the network. Users can specify the IP address, port number, and type of controller (e.g., Floodlight, Ryu).

	3.
	3.
	switch: Adds an OpenFlow switch node to the network. Users specify the switch's IP address, port number, and the version of the OpenFlow protocol.

	4.
	4.
	host: Adds a virtual machine node to the network. Users specify the VM's IP address, MAC address, and the operating system and applications used.

	5.
	5.
	link: Creates network connections. Users specify the two nodes to be connected, as well as link bandwidth and delay parameters.

	6.
	6.
	run: Starts the simulation and begins executing defined applications or scripts, allowing various network experiments and tests.

	7.
	7.
	pingall, tracerouteall, etc.: These commands perform specific network measurement tasks, such as ping and traceroute, within the network.

	Through these commands, Mininet allows users to build various network topologies and configurations, making it a flexible tool for network research and experimentation. Mininet also supports the automation of complex network operations and management tasks using Python scripts.
	Mininet is an open-source network emulation platform that can run on VMware virtual machines [98] or Ubuntu systems. Installing Mininet requires a Linux environment. The installation files can be obtained from GitHub [99] using the command line: git clone . After installation, the following command can be run for verification: sudo mn --test pingall. Upon executing this command, Mininet will automatically create a simple SDN topology network consisting of one switch and two hosts and verify the communicatio
	git://github.com/mininet/mininet

	Figure
	Figure 18 Installation verification of Mininet
	Figure 18 Installation verification of Mininet

	RYU:
	The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL initiates the Ryu controller and runs the main.py script. The parameter --observe-links enables the controller to monitor the status of all network links, including their creation, updates, and disconnections. The --k-paths=8 parameter allows the controller to compute up to eight shortest paths between nodes, while --algo=DRL indicates that network decisions and optimizations are guided by Deep Reinforcement Learning (DRL). Upon exe
	The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL initiates the Ryu controller and runs the main.py script. The parameter --observe-links enables the controller to monitor the status of all network links, including their creation, updates, and disconnections. The --k-paths=8 parameter allows the controller to compute up to eight shortest paths between nodes, while --algo=DRL indicates that network decisions and optimizations are guided by Deep Reinforcement Learning (DRL). Upon exe
	particularly suitable for environments that demand dynamic and complex decisionmaking support.
	-

	Figure
	Figure 19 Topology Management of Ryu
	Figure 19 Topology Management of Ryu

	Iperf: Iperf is a network performance testing tool based on TCP/IP and UDP/IP, which measures network bandwidth and quality through command-line mode. Compared to the ping command [100], Iperf operates at the transport layer and provides richer test statements for monitoring network performance quality. Depending on the network administrator's needs, different parameter commands can be used to gather statistics on network jitter, latency, packet loss rate, average transmission bandwidth, and timebased trans
	-

	Figure
	Figure 20 Launch the Iperf server
	Figure 20 Launch the Iperf server

	To test the network connection quality between host h2 and host h1, including metrics such as bandwidth, latency, and packet loss rate, you can input the following command on host h2: h2 iperf3 -c h1 -u -t 10.
	Here’s a breakdown of the command:
	• -c option specifies that Iperf is running in client mode, connecting to the
	designated server, which in this case is host h1.
	• -u option indicates that the test will use the UDP protocol.
	• -t option sets the test duration to 10 seconds. During the test, host h2 will send UDP data packets to host h1. After the test is completed, Iperf will output the results, including information on bandwidth, latency, and packet loss rate, providing a comprehensive assessment of the network connection quality between the two hosts.
	Figure
	Figure 21 Test results of Iperf
	Figure 21 Test results of Iperf

	In the test results, the Interval represents the time range of the test, which is from 0 to 10 seconds; Transfer indicates the amount of data transmitted during this interval, which is 1.25 MBytes; Bitrate shows the transmission speed, with the network transmission rate between h1 and h2 being 1.05 Mbps; Jitter measures the average deviation of UDP packets arriving at the receiver, assessing the stability of packet arrival times—smaller values indicate less variation in delay and more reliable packet arriva
	4.4 OPTIMIZATION ALGORITHM
	In this study, the optimization algorithm is a smart routing strategy based on DRL, aimed at real-time optimization of network traffic distribution to enhance overall network performance and efficiency. This algorithm is integrated into our Ryu network application, `DRLForwarding`, where it continuously monitors network conditions and dynamically adjusts routing decisions in response to changes.
	The operation of the algorithm depends on real-time monitoring of the network state. The system regularly collects various metrics about the network, including link
	The operation of the algorithm depends on real-time monitoring of the network state. The system regularly collects various metrics about the network, including link
	4.4.1
	Network Monitoring and Data Collection

	utilization, latency, packet loss, etc., which are provided by the management_module. The collected data are stored in a dictionary managed by traffic_matrix, where each key corresponds to a pair of source-destination addresses, and the value is the performance metrics of data flows through these links.

	Figure
	Figure 22 Function get_traffic_matrix
	Figure 22 Function get_traffic_matrix

	When the execute_drl_flag is activated, the optimization algorithm begins analyzing the collected data. First, the algorithm verifies the integrity and format of the data through the check_metric_is_format method, ensuring there is sufficient data to support the subsequent decision-making process. Once the data verification passes, the algorithm uses an instance of the DRL class, invoking its get_optimal_forwarding_path method to calculate the best forwarding paths. This calculation process considers multip
	4.4.2
	Evaluation and Decision-Making

	Figure
	Figure 23 Function _packet_in_handler
	Figure 23 Function _packet_in_handler

	Figure
	Figure 24 Function optimal_routing_forwading
	Figure 24 Function optimal_routing_forwading

	Figure 25 Function get_optimal_forwarding_path
	Figure
	The calculated optimal paths are then used to update the network's routing tables. This process is achieved by calling the install_flow method, which installs the necessary flow entries on relevant network devices based on the results. To increase
	4.4.3
	Routing Updates

	the flexibility and responsiveness of routing decisions, the system can quickly reexecute this optimization process upon detecting significant network status changes.
	-

	Figure
	Figure 26 Function install_flow_1
	Figure 26 Function install_flow_1

	Figure 27 Function install_flow_2
	Figure
	CHAPTER 5 – RESULT AND ANALYSIS
	This chapter delves into the experimental setup, the results obtained from the application of the proposed model, and a detailed analysis of these results. The chapter is structured into four sections: Experimental Setup, Results and Analysis, Discussion, and Summary. This structure ensures a comprehensive understanding of the methodology, performance, and implications of the findings from the study.
	5.1 RESULTS AND ANALYSIS
	Firstly, it is required to analyze how the GRU network traffic state prediction algorithm affects the efficiency of SDN intelligent routing techniques.
	Figure 28 A comparison between the use of GRU and its absence
	Figure
	clearly illustrates that the agents employing the GRU prediction algorithm achieve notably higher rewards compared to those not utilizing the GRU prediction algorithm.
	clearly illustrates that the agents employing the GRU prediction algorithm achieve notably higher rewards compared to those not utilizing the GRU prediction algorithm.
	Figure 28

	Table 4 Comparison of Reward Performance With and Without GRU Over Episodes
	Episodes
	Episodes
	Episodes
	Reward with (Normalized)
	GRU
	Reward without (Normalized)
	GRU

	0
	0
	40
	40

	500
	500
	60
	55

	1000
	1000
	1000
	75
	70

	1500
	1500
	90
	85

	2000
	2000
	100
	95

	The displays the performance comparison of an agent in a root controller using a GRU versus not using it across 2000 episodes. Both strategies start with a similar reward score around 40. However, the agent using GRU shows a more pronounced improvement over time, achieving a higher normalized reward of 100 by the 2000th episode, while the agent without GRU reaches a score of 95. The progression suggests that employing a GRU in the controller enhances learning efficiency and overall reward attainment in this
	Table 4

	Value-based and policy-based approaches are the two main types of model-free DRL approaches. Probabilistically choosing actions, policy-based DRL algorithms perform best in high-dimensional, continuous action spaces, but they are prone to local convergence and ineffective policy evaluation. Conversely, value-based DRL algorithms select actions based on the highest value, allowing for swift adjustments in action strategies as state values evolve, thus achieving global convergence more rapidly and performing
	Figure
	Figure 29 Comparison of Dueling DQN and DDPG
	Figure 29 Comparison of Dueling DQN and DDPG

	Table 5 Comparison of Dueling DQN and DDPG
	Episodes
	Episodes
	Episodes
	Dueling DQN Reward (Normalized) DQN
	DDPG Reward (Normalized)

	0
	0
	35
	30

	500
	500
	45
	42

	1000
	1000
	50
	45

	1500
	1500
	55
	50

	2000
	2000
	55
	45

	The and presents a visual representation of the normalized reward trajectories of two reinforcement learning algorithms over 2000 episodes. Initially, Dueling DQN starts with a reward level around 35, suggesting an early phase of
	The and presents a visual representation of the normalized reward trajectories of two reinforcement learning algorithms over 2000 episodes. Initially, Dueling DQN starts with a reward level around 35, suggesting an early phase of
	Table 5
	Figure 29

	learning and adaptation, while DDPG begins at 30, indicating a potentially slower start. As the episodes progress, both algorithms demonstrate an upward trend in rewards, with Dueling DQN consistently outperforming DDPG by a margin of 3 to 5 points, which may reflect its more effective state value estimation or a superior policy gradient method.

	Around episode 1000, Dueling DQN peaks close to 50, showcasing its ability to leverage its architecture, which separately assesses the state's value and the advantages of different actions. This peak is followed by a decline, indicating encounters with new complexities or a shift in the balance of exploration and exploitation. However, Dueling DQN recovers and stabilizes at around 55 towards the final episodes, suggesting a better handling of environmental complexities and uncertainties.
	In contrast, DDPG exhibits sharper fluctuations and a significant drop after its peak, stabilizing at a lower reward level of about 45. This indicates a potential sensitivity to environmental stochasticity or suboptimal parameter settings for this task. The smoother performance curve of Dueling DQN might reflect the stability added by its architecture, leading to more consistent policy improvement.
	Overall, Dueling DQN not only achieves higher average performance but also exhibits greater stability compared to DDPG, which can be advantageous in real-world applications where consistent performance is crucial. The data provides valuable insights into the learning dynamics of both algorithms, highlighting areas for further refinement and potential applications.
	The Dijkstra, Open Shortest Path First (OSPF), and DRL-TP intelligent routing algorithms are the three that are compared in this chapter. The following is a summary of each algorithm's design principles:
	Dijkstra Routing Algorithm: When building an SDN network design, each switch node is given a link weight W of 1. The goal is to determine the best path for routing decisions, which is the route that requires the fewest hops between each source and destination switch node.
	OSPF Routing Algorithm: Utilizing the multi-threaded network measurement mechanism of SDN, this algorithm captures the latency of each link in real-time. Based on the latency data, it computes all potential paths from source to destination switch nodes, selecting the path with the fewest hops as the optimal routing path.
	Three metrics—network throughput, latency, and packet loss rate—created specifically for the SDN controller environment were used to assess how these three routing methods affected network performance. The comparative findings of network throughput under different traffic flow volumes are shown in The findings show that while the throughput for all three algorithms rises as the traffic flow size does, the DRL-TP intelligent routing algorithm's growth trend is noticeably more pronounced than Dijkstra's and O
	Figure 30.

	Figure
	Figure 30 Comparison of the network throughput
	Figure 30 Comparison of the network throughput

	Table 6 Throughput Comparison
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Dijkstra Throughput (Mbit/s)
	OSPF Throughput (Mbit/s)
	DRLA Throughput (Mbit/s)

	20
	20
	22
	24
	26

	40
	40
	35
	38
	40

	60
	60
	48
	52
	55

	80
	80
	62
	67
	72

	100
	100
	77
	82
	88

	This illustrates the throughput performance of three different routing algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20 Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size, demonstrating robust scalabil
	Table 6

	Figure
	Figure 31 Comparison of the network delay
	Figure 31 Comparison of the network delay

	Table 7 Delay Comparison
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Dijkstra Delay (ms)
	OSPF Delay (ms)
	DRLA Delay (ms)

	20
	20
	22
	23
	20

	40
	40
	24
	25
	22

	60
	60
	26
	27
	24

	80
	80
	28
	30
	26

	100 32 34 28 The shows that as the size of the sending traffic increases from 20 Mbit/s to
	Table 7

	100 Mbit/s, DRLA always shows the lowest latency, starting from 20 ms and increasing to a size of only 28 ms at the highest traffic, proving its superior efficiency in reducing the transmission time compared to Dijkstra and OSPF. Dijkstra's latency increases from 22 ms to 32 ms, while OSPF's latency is slightly higher, starting at 23 ms and increasing to 34 ms. This development suggests that DRLA may be able to better optimise for applications that require low latency, as it is able to better control the in
	Table 6 Throughput Comparison
	Table 6 Throughput Comparison

	demonstrates the trends in network throughput under three routing algorithms—Dijkstra, OSPF, and the DRL-TP intelligent routing algorithm—as the traffic flow increases. Notably, the throughput under the DRL-TP algorithm shows a significant increase compared to the Dijkstra and OSPF algorithms.
	demonstrates the trends in network throughput under three routing algorithms—Dijkstra, OSPF, and the DRL-TP intelligent routing algorithm—as the traffic flow increases. Notably, the throughput under the DRL-TP algorithm shows a significant increase compared to the Dijkstra and OSPF algorithms.
	demonstrates the trends in network throughput under three routing algorithms—Dijkstra, OSPF, and the DRL-TP intelligent routing algorithm—as the traffic flow increases. Notably, the throughput under the DRL-TP algorithm shows a significant increase compared to the Dijkstra and OSPF algorithms.
	Figure 30

	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)

	Dijkstra Throughput (Mbit/s)
	Dijkstra Throughput (Mbit/s)

	OSPF Throughput (Mbit/s)
	OSPF Throughput (Mbit/s)

	DRLA Throughput (Mbit/s)
	DRLA Throughput (Mbit/s)

	20
	20
	20

	22
	22

	24
	24

	26
	26

	40
	40
	40

	35
	35

	38
	38

	40
	40

	60
	60
	60

	48
	48

	52
	52

	55
	55

	80
	80
	80

	62
	62

	67
	67

	72
	72

	100
	100
	100

	77
	77

	82
	82

	88
	88

	This Table 6 illustrates the throughput performance of three different routing
	This Table 6 illustrates the throughput performance of three different routing
	algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20
	Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both
	Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network
	resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s
	at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size,
	demonstrating robust scalability and effective performance under increasing network
	loads.

	further compares these routing algorithms concerning network latency. The Dijkstra algorithm, which focuses solely on the shortest hop count for routing decisions, experiences an exponential increase in network latency as traffic flow increases due to congestion along the chosen paths. Since OSPF takes link delay into account and can dynamically modify routing based on the status of the connections, the latency under the OSPF algorithm is similar to that under the DRL-TP algorithm when the traffic flow rang
	Figure 31

	Figure
	Figure 32 Comparison of the network packet loss rate
	Figure 32 Comparison of the network packet loss rate

	Table 8 Packet Loss Rate Comparison
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Dijkstra Packet Loss Rate (%)
	OSPF Packet Loss Rate (%)
	DRLA Packet Loss Rate (%)

	20
	20
	2
	3
	1

	40
	40
	3
	4
	2

	60
	60
	4
	5
	3

	80
	80
	6
	7
	4

	100
	100
	8
	9
	5

	This shows a clear comparison of packet loss rates across three different routing algorithms—Dijkstra, OSPF, and DRLA—as network load increases. DRLA
	Table 8

	demonstrates the most efficient handling of network traffic, maintaining the lowest packet loss rate throughout all tested flow sizes. It starts at a 1% packet loss at a flow size of 20 Mbit/s and scales up to a 5% loss at 100 Mbit/s. In contrast, Dijkstra starts with a 2% loss rate and increases to 8%, while OSPF begins at 3% and reaches 9% under the same conditions. The increasing trend in packet loss rates as flow size increases illustrates the challenges each routing algorithm faces in managing higher n
	The DRL-TP intelligent routing algorithm, by integrating multiple network metrics such as bandwidth, latency, and packet loss rates, effectively prevents routing congestion even under high traffic loads, significantly enhancing network performance. compares the packet loss rates under the three algorithms. At traffic flows of 10Mbit/s to 20Mbit/s, the packet loss rates are similar across all algorithms since most links can handle the data packets normally. However, as traffic further increases, the routing
	Figure 32

	5.2 DISCUSSION
	Analysis of data from
	Figure 30,

	Table 6 Throughput Comparison
	Table 6 Throughput Comparison

	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)
	Sending Flow Size (Mbit/s)

	Dijkstra Throughput (Mbit/s)
	Dijkstra Throughput (Mbit/s)

	OSPF Throughput (Mbit/s)
	OSPF Throughput (Mbit/s)

	DRLA Throughput (Mbit/s)
	DRLA Throughput (Mbit/s)

	20
	20
	20

	22
	22

	24
	24

	26
	26

	40
	40
	40

	35
	35

	38
	38

	40
	40

	60
	60
	60

	48
	48

	52
	52

	55
	55

	80
	80
	80

	62
	62

	67
	67

	72
	72

	Link
	Figure
	100
	77
	82
	88

	This Table 6 illustrates the throughput performance of three different routing
	This Table 6 illustrates the throughput performance of three different routing
	algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20
	Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both
	Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network
	resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s
	at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size,
	demonstrating robust scalability and effective performance under increasing network
	loads.

	and reveals that as traffic flow increases to 40Mbit/s, key performance metrics such as network throughput, latency, and packet loss all exhibit significant increases. This indicates that, within the SDN network topology constructed for this study, congestion becomes pronounced when traffic reaches 40Mbit/s, leading to the following conclusions:
	Figure 31,
	Figure 32

	⚫
	⚫
	⚫
	⚫

	In the established SDN network architecture, increasing traffic to 40Mbit/s results in noticeable network congestion.

	⚫
	⚫
	⚫

	Under conditions of significant congestion, traditional routing algorithms like Dijkstra and OSPF fail to effectively adjust their routing strategies, thereby degrading network performance. On the other hand, the intelligent routing algorithm DRL-TP, which is presented in this chapter, may dynamically modify routing strategies according to various connection metrics and continuously monitor network circumstances. This ability to maintain network performance even under severe congestion conditions demonstrat

	5.3 SUMMARY
	Network traffic is showing traits like diversification and explosive increase as SDN network scale keeps growing and a wide range of new network devices appear. To improve network efficiency and service quantity, it is essential to choose an intelligent routing strategy that is adaptive in real-time and tailored to the needs and conditions of SDN networks. In light of this, this chapter presents an SDN intelligent routing
	Network traffic is showing traits like diversification and explosive increase as SDN network scale keeps growing and a wide range of new network devices appear. To improve network efficiency and service quantity, it is essential to choose an intelligent routing strategy that is adaptive in real-time and tailored to the needs and conditions of SDN networks. In light of this, this chapter presents an SDN intelligent routing
	technique based on network traffic state prediction and Dueling DQN deep reinforcement learning. In order to obtain real-time network states, this approach makes use of a specifically created multi-threaded network measurement mechanism within SDN. The DRL-TP intelligent routing algorithm is then employed to produce the best routing paths on demand. The DRL-TP intelligent routing algorithm shows practical utility in addressing SDN network routing optimization difficulties by considerably improving network t

	CHAPTER 6 -CONCLUSIONS AND RECOMMENDATIONS
	6.1SUMMARY
	The study has demonstrated the efficacy of utilizing Dueling DQN and real-time traffic predictions within a SDN framework to enhance routing optimization. This research confirms that integrating deep reinforcement learning with SDN capabilities not only optimizes network performance metrics such as throughput, latency, and packet loss but also enhances the adaptability of the network to dynamic conditions and traffic patterns.
	6.2 CONCLUSION
	The implementation of the DRL-TP model significantly improved network performance by dynamically adapting to varying network conditions without the need for manual intervention. The model successfully leveraged the centralized control and flexibility offered by SDN, alongside the predictive power of machine learning, to achieve substantial improvements over traditional routing methods. The experimental results validate the theoretical advantages proposed, underscoring the potential of combining SDN with adv
	6.3 LIMITATION AND RECOMMENDATION
	Despite its successes, the project recognizes limitations such as the need for extensive training data for the machine learning models and the potential scalability issues in larger or more complex network environments. Future research should focus on
	expanding the model’s applicability to broader network architectures and integrating
	additional network parameters to enhance prediction accuracy and decision-making. It is also recommended to explore the model's integration with emerging technologies like 5G and IoT and to consider the security implications of AI-driven network management. Further development should aim to address these limitations and verify the model's effectiveness in real-world scenarios, ensuring robustness and reliability in diverse networking contexts.
	CHAPTER 7 – REFLECTIONS
	This chapter offers a comprehensive reflection on the extent to which the aims and objectives of this research have been achieved. It evaluates the fulfillment of the objectives, discusses the effectiveness of approaches to address shortcomings, and consolidates the insights gained throughout the study.
	7.1ACHIEVEMENT OF RESEARCH OBJECTIVES
	The primary aim of this research was to optimize network routing strategies in Software Defined Networking (SDN) environments through the application of Dueling Deep Q-Networks (Dueling DQN) and real-time traffic prediction models. This aim was articulated through several specific objectives, each linked to the chapters that detailed their exploration and outcomes.
	Objective 1: Develop an enhanced routing strategy using Dueling DQN.
	Achievement: This objective was substantially achieved as detailed in Chapter 4, where the Dueling DQN model was successfully implemented and tested. The model demonstrated significant improvements in network throughput and latency compared to traditional methods.
	Objective 2: Integrate real-time traffic predictions with SDN control decisions.
	Achievement: As discussed in Chapter 4, the integration of traffic prediction mechanisms was effective, allowing for dynamic adjustments to routing strategies based on real-time data. This integration proved crucial in enhancing the adaptability of the network under varying traffic conditions.
	Objective 3: Assess the performance of the proposed solutions under different network conditions.
	Achievement: Covered in Chapter 5, this objective was met through rigorous testing and evaluation. The results confirmed that the proposed routing strategy performs robustly across a range of scenarios, marking a significant step towards reliable SDN operations.
	7.2REFLECTION ON RESEARCH CONDUCT AND PROGRESS
	7.2REFLECTION ON RESEARCH CONDUCT AND PROGRESS
	Throughout the course of this research, several challenges were encountered, particularly related to data collection and model training. The complexity of configuring an SDN environment that realistically simulates a dynamic network posed initial setbacks. However, these challenges were anticipated in the risk analysis phase, and the strategies for mitigating such issues proved mostly effective.

	Key strategies included the use of simulated environments to pre-test network configurations and adjustments to the training dataset to enhance the robustness and accuracy of the machine learning models. These approaches not only addressed the immediate challenges but also provided valuable learning experiences that enhanced the overall research process.
	Unexpectedly, the integration of real-time data into the learning model required more computational resources than initially estimated, leading to adjustments in resource allocation and project timelines. This issue was not fully anticipated in the risk analysis, highlighting a need for more comprehensive resource planning in future projects.
	7.3KEY REFLECTIONS AND INSIGHTS
	One of the most significant insights from this research was the critical importance of flexibility in both the research approach and the technological solutions. Adapting quickly to technical challenges and changing project scopes was essential for maintaining progress towards the research objectives.
	Moreover, the research underscored the potential of machine learning in revolutionizing network management practices. The practical implications of this research suggest that further exploration and investment into AI-driven SDN solutions could yield substantial benefits for the field of network engineering.
	7.4CONCLUSION
	In conclusion, this research project has largely met its initial objectives, providing a strong foundation for further exploration and development in the field of AI-enhanced network management. The experiences and challenges encountered have offered
	In conclusion, this research project has largely met its initial objectives, providing a strong foundation for further exploration and development in the field of AI-enhanced network management. The experiences and challenges encountered have offered
	profound insights into both the potential and limitations of current technologies, guiding future studies towards more efficient and adaptable network solutions.

	REFERENCES
	REFERENCES
	[1] N. Deepa et al., ‘A survey on blockchain for big data: Approaches, opportunities, and future directions’, Future Gener. Comput. Syst., vol. 131, pp. 209–226, 2022.
	[2] K. Huang and Z. Li, ‘The campus cloud platform setup based on virtualization technology’, Procedia Comput. Sci., vol. 183, pp. 73–78, 2021.
	[3] S. A. Bello et al., ‘Cloud computing in construction industry: Use cases, benefits and challenges’, Autom. Constr., vol. 122, p. 103441, 2021.
	[4] S. H. Haji et al., ‘Comparison of software defined networking with traditional networking’, Asian J. Res. Comput. Sci., vol. 9, no. 2, pp. 1–18, 2021.
	[5] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, and Y. Liu, ‘A survey on largescale software defined networking (SDN) testbeds: Approaches and challenges’, IEEE Commun. Surv. Tutor., vol. 19, no. 2, pp. 891–917, 2016.
	-

	[6] M. S. Corson and A. Ephremides, ‘A distributed routing algorithm for mobile wireless networks’, Wirel. Netw., vol. 1, no. 1, pp. 61–81, 1995.
	[7] N. Dubey, ‘From Static Networks to Software-driven Networks—An Evolution in Process’, ISACA J., vol. 4, 2016, [Online]. Available: networks-to-software-driven-networks-an-evolution-in-process
	https://www.isaca.org/resources/isaca-journal/issues/2016/volume-4/from-static
	-

	[8] N. Feamster, J. Rexford, and E. Zegura, ‘The road to SDN: an intellectual history of programmable networks’, ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp. 87–98, 2014.
	[9] Z. Xiao, ‘Research on Network Management and Optimization under Software Defined Networking (SDN) Architecture’, Mod. Comput., vol. 29, no. 15, pp. 100–104, 2023.
	[10] T. D. Nadeau and K. Gray, SDN: Software Defined Networks: An authoritative review of network programmability technologies. O’Reilly Media, Inc., 2013.
	[11] T. Muhammad, ‘Revolutionizing Network Control: Exploring the Landscape of Software-Defined Networking (SDN)’, Int. J. Comput. Sci. Technol., vol. 3, no. 1, pp. 36–68, 2019.
	[12] Cisco Systems, ‘Software Defined Networking -Cisco’, 2023, [Online]. Available: /
	https://www.cisco.com

	[13] M. Kuźniar, P. Perešíni, and D. Kostić, ‘What you need to know about SDN flow tables’, in Passive and Active Measurement: 16th International Conference, PAM 2015,
	New York, NY, USA, March 19-20, 2015, Proceedings 16, Springer, 2015, pp. 347– 359.
	[14] SDxCentral, ‘Understanding the SDN Architecture and SDN Control Plane’, 2020, [Online].
	Available: https://www.sdxcentral.com/

	[15] IBM, ‘What Is Software-Defined Networking (SDN)?’ 2023. [Online]. Available: /
	https://www.ibm.com

	[16] C. Caba and J. Soler, ‘Apis for qos configuration in software defined networks’, in Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft), IEEE, 2015, pp. 1–5.
	[17] E. Haleplidis et al., ‘Network programmability with ForCES’, IEEE Commun. Surv. Tutor., vol. 17, no. 3, pp. 1423–1440, 2015.
	[18] P. Bosshart et al., ‘P4: Programming protocol-independent packet processors’, ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.
	[19] M. Karakus and A. Durresi, ‘A survey: Control plane scalability issues and approaches in software-defined networking (SDN)’, Comput. Netw., vol. 112, pp. 279– 293, 2017.
	[20] T. Bakhshi, ‘State of the art and recent research advances in software defined networking’, Wirel. Commun. Mob. Comput., vol. 2017, no. 1, p. 7191647, 2017.
	[21] P. Dely, A. Kassler, and N. Bayer, ‘Openflow for wireless mesh networks’, in
	2011 proceedings of 20th international conference on computer communications and networks (ICCCN), IEEE, 2011, pp. 1–6.
	[22] Y. K. Chekoory and A. U. Mungur, ‘Use of Openflow to Manage Network Devices’, in International Conference on Electrical and Electronics Engineering, Springer, 2022, pp. 376–386.
	[23]杨茵淇,‘基于流量的物联网 DDoS攻击检测 ’, Master’s Thesis,北京交通大学 , 2020.
	[23]杨茵淇,‘基于流量的物联网 DDoS攻击检测 ’, Master’s Thesis,北京交通大学 , 2020.
	[24] V. Šulák, P. Helebrandt, and I. Kotuliak, ‘Performance analysis of openflow forwarders based on routing granularity in openflow 1.0 and 1.3’, in 2016 19th Conference of Open Innovations Association (FRUCT), IEEE, 2016, pp. 236–241.
	[25] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula, ‘Realizing packet-optical integration with SDN and OpenFlow 1.1 extensions’, in 2012 IEEE International Conference on Communications (ICC), IEEE, 2012, pp. 6633–6637.
	[26]
	[26]
	W. Stallings, ‘Software-defined networks and openflow’, Internet Protoc. J., vol. 16, no. 1, pp. 2–14, 2013.

	[27]
	[27]
	L. J. Chaves, I. C. Garcia, and E. R. M. Madeira, ‘Ofswitch13: Enhancing ns-3 with openflow 1.3 support’, in Proceedings of the 2016 Workshop on ns-3, 2016, pp. 33–40.

	[28]
	[28]
	NTT Communications, ‘Ryu: A Component-based Software Defined Networking Framework’. 2024.
	[Online]. Available: https://osrg.github.io/ryu/

	[29]
	[29]
	S. Asadollahi, B. Goswami, and M. Sameer, ‘Ryu controller’s scalability experiment on software defined networks’, in 2018 IEEE international conference on current trends in advanced computing (ICCTAC), IEEE, 2018, pp. 1–5.

	[30]
	[30]
	R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, ‘Network configuration protocol (NETCONF)’, 2011.

	[31]
	[31]
	[31]
	K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V. Maglaris,

	‘Combining OpenFlow and sFlow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments’, Comput. Netw., vol. 62, pp. 122–136, 2014.

	[32]
	[32]
	R. Hinden, ‘Virtual router redundancy protocol (VRRP)’, 2004.

	[33]
	[33]
	W. Zhou, L. Li, M. Luo, and W. Chou, ‘REST API design patterns for SDN northbound API’, in 2014 28th international conference on advanced information networking and applications workshops, IEEE, 2014, pp. 358–365.

	[34]
	[34]
	T. Hu et al., ‘SEAPP: A secure application management framework based on REST API access control in SDN-enabled cloud environment’, J. Parallel Distrib. Comput., vol. 147, pp. 108–123, 2021.

	[35]
	[35]
	W. Zhou, L. Li, and W. Chou, ‘SDN northbound REST API with efficient caches’, in 2014 IEEE International Conference on Web Services, IEEE, 2014, pp. 257–264.

	[36]
	[36]
	A. A. Semenovykh and O. R. Laponina, ‘Comparative analysis of SDN controllers’, Int. J. Open Inf. Technol., vol. 6, no. 7, pp. 50–56, 2018.

	[37]
	[37]
	A. Lara, A. Kolasani, and B. Ramamurthy, ‘Network innovation using openflow: A survey’, IEEE Commun. Surv. Tutor., vol. 16, no. 1, pp. 493–512, 2013.

	[38]
	[38]
	A. Bianco, R. Birke, L. Giraudo, and M. Palacin, ‘Openflow switching: Data plane performance’, in 2010 IEEE International Conference on Communications, IEEE, 2010, pp. 1–5.

	[39]
	[39]
	C. Ontiveros, ‘A SOFTWARE DEFINED NETWORK IMPLEMENTATION USING MININET AND RYU _ A Project Presented’, 2019.

	[40]
	[40]
	NTT Communications, ‘Ryu SDN Framework: Modular Design and Event-Driven Operation’. 2024.
	[Online]. Available: https://osrg.github.io/ryu/

	[41]
	[41]
	D. Scotece, S. T. Arzo, R. Bassoli, L. Foschini, M. Devetsikiotis, and F. H. Fitzek, ‘Impact of Softwarization in Microservices-based SDN Controller’, in European Wireless 2022; 27th European Wireless Conference, VDE, 2022, pp. 1–6.

	[42]
	[42]
	C. H. Hämmerle, M. G. Araújo, M. Simion, and O. C. Group 2011, ‘Evidencebased knowledge on the biology and treatment of extraction sockets’, Clin. Oral Implants Res., vol. 23, pp. 80–82, 2012.
	-

	[43]
	[43]
	S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann, ‘Eventlets: Components for the integration of event streams with SOA’, in 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), IEEE, 2012, pp. 1–9.

	[44]
	[44]
	P. Floodlight, ‘Floodlight’, Disponıvel Em Httpwww Proj. Orgfloodlight, 2021.

	[45]
	[45]
	R. Wallner and R. Cannistra, ‘An SDN approach: quality of service using big switch’s floodlight open-source controller’, Proc. Asia-Pac. Adv. Netw., vol. 35, no. 14– 19, pp. 10–7125, 2013.

	[46]
	[46]
	I. Z. Bholebawa and U. D. Dalal, ‘Performance analysis of SDN/OpenFlow controllers: POX versus floodlight’, Wirel. Pers. Commun., vol. 98, pp. 1679–1699, 2018.

	[47]
	[47]
	P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, ‘The many faces of publish/subscribe’, ACM Comput. Surv. CSUR, vol. 35, no. 2, pp. 114–131, 2003.

	[48]
	[48]
	W. Ren and W. Zhao, ‘An observer design-pattern detection technique’, in 2012 IEEE international conference on computer science and automation engineering (CSAE), IEEE, 2012, pp. 544–547.

	[49]
	[49]
	N. Gude et al., ‘NOX: towards an operating system for networks’, ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, pp. 105–110, 2008.

	[50]
	[50]
	X. Zhang, W. G. Hou, P. C. Han, and L. Guo, ‘Design and implementation of the routing function in the nox controller for software-defined networks’, Appl. Mech. Mater., vol. 635, pp. 1540–1543, 2014.

	[51]
	[51]
	X. Zhang, W. G. Hou, P. C. Han, and L. Guo, ‘Design and implementation of the routing function in the nox controller for software-defined networks’, Appl. Mech. Mater., vol. 635, pp. 1540–1543, 2014.

	[52]
	[52]
	[52]
	M. N. A. Sheikh, M. Halder, S. S. Kabir, M. W. Miah, and S. Khatun, ‘SDN-Based approach to evaluate the best controller: Internal controller NOX and external

	controllers POX, ONOS, RYU’, Glob. J. Comput. Sci. Technol., vol. 19, no. 1, pp. 21– 32, 2019.

	[53] T. H. Obaida and H. A. Salman, ‘A novel method to find the best path in SDN using firefly algorithm’, J. Intell. Syst., vol. 31, no. 1, pp. 902–914, 2022.
	[54]吕彩霞, ‘基于拓扑感知的共享单车车联网的 SDN架构与性能研究’, Master’s Thesis, 南京邮电大学, 2022.
	[55]聂晓雪, ‘基于链路状态的 SDN数据中心流量调度算法研究’, Master’s Thesis,内蒙古工业大学, 2021.
	[56]唐超, ‘基于 OpenFlow协议的分布式 SDN网络仿真实验平台设计与实现 ’, Master’s Thesis, 华中科技大学 , 2021.
	[57] Open Networking Foundation, ‘Centralized and Dynamic Topology Management in SDN’. 2024. [Online]. Available: content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
	https://opennetworking.org/wp
	-

	[58] Open Networking Foundation, ‘Role of the SDN Controller in Network Topology Management’. 2024. [Online]. Available: content/uploads/2013/02/SDN-architecture-overview-1.0.pdf
	https://opennetworking.org/wp
	-

	[59]曹玉华, ‘软件定义网络拓扑发现技术研究与实现 ’, Master’s Thesis, 北京邮电大学, 2021.
	[60] Y. Li, Z.-P. Cai, and H. Xu, ‘LLMP: exploiting LLDP for latency measurement in software-defined data center networks’, J. Comput. Sci. Technol., vol. 33, pp. 277–285, 2018.
	[61] A. Azzouni, N. T. M. Trang, R. Boutaba, and G. Pujolle, ‘Limitations of openflow topology discovery protocol’, in 2017 16th annual mediterranean Ad hoc networking workshop (Med-Hoc-Net), IEEE, 2017, pp. 1–3.
	[62] E. Marin, N. Bucciol, and M. Conti, ‘An in-depth look into SDN topology discovery mechanisms: Novel attacks and practical countermeasures’, in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, 2019, pp. 1101–1114.
	[63] S. Misra and S. Goswami, ‘Network routing: fundamentals, applications, and emerging technologies’, 2017.
	[64] M. T. Islam, N. Islam, and M. A. Refat, ‘Node to node performance evaluation through RYU SDN controller’, Wirel. Pers. Commun., vol. 112, pp. 555–570, 2020.

	[66] H. M. Noman and M. N. Jasim, ‘Pox controller and open flow performance evaluation in software defined networks (sdn) using mininet emulator’, in IOP conference series: materials science and engineering, IOP Publishing, 2020, p. 012102.
	[67] V. Kumar, S. Jangir, and D. G. Patanvariya, ‘Traffic load balancing in SDN using round-robin and Dijkstra based methodology’, in 2022 International Conference for Advancement in Technology (ICONAT), IEEE, 2022, pp. 1–4.
	[77] M. M. Raikar, S. Meena, M. M. Mulla, N. S. Shetti, and M. Karanandi, ‘Data traffic classification in software defined networks (SDN) using supervised-learning’, Procedia Comput. Sci., vol. 171, pp. 2750–2759, 2020.
	[78] L. Xin, W. Song, Z. Cao, and J. Zhang, ‘Step-wise deep learning models for solving routing problems’, IEEE Trans. Ind. Inform., vol. 17, no. 7, pp. 4861–4871, 2020.
	[79] Z. Zhuang, J. Wang, Q. Qi, H. Sun, and J. Liao, ‘Graph-aware deep learning based intelligent routing strategy’, in 2018 IEEE 43rd Conference on Local Computer Networks (LCN), IEEE, 2018, pp. 441–444.
	[80] T. M. Modi and P. Swain, ‘Intelligent routing using convolutional neural network in software-defined data center network’, J. Supercomput., vol. 78, no. 11, pp. 13373– 13392, 2022.
	[81]唐鑫, 徐彦彦 , and潘少明 , ‘基于图卷积神经网络的智能路由算法 ’,计算机工程, vol. 48, no. 3, pp. 38–45, Mar. 2022.
	[81]唐鑫, 徐彦彦 , and潘少明 , ‘基于图卷积神经网络的智能路由算法 ’,计算机工程, vol. 48, no. 3, pp. 38–45, Mar. 2022.
	[82]杨思明, 单征, 丁煜, and李刚伟,‘深度强化学习研究综述’, 计算机工程, vol. 47, no. 12, pp. 19–29, 2021.
	[83] C. Yu, J. Lan, Z. Guo, and Y. Hu, ‘DROM: Optimizing the routing in softwaredefined networks with deep reinforcement learning’, IEEE Access, vol. 6, pp. 64533– 64539, 2018.
	-

	[84] Z. Xu et al., ‘Experience-driven networking: A deep reinforcement learning based approach’, in IEEE INFOCOM 2018-IEEE conference on computer communications, IEEE, 2018, pp. 1871–1879.
	[85] R. Ding, Y. Xu, F. Gao, X. Shen, and W. Wu, ‘Deep reinforcement learning for router selection in network with heavy traffic’, IEEE Access, vol. 7, pp. 37109–37120, 2019.
	[86]孙鹏浩, 兰巨龙, 申涓, and胡宇翔,‘一种基于深度增强学习的智能路由技术’, 电子学报, vol. 48, no. 11, pp. 2170–2177, 2020.
	[87] Y. Hu, Z. Li, J. Lan, J. Wu, and L. Yao, ‘EARS: Intelligence-driven experiential network architecture for automatic routing in software-defined networking’, China Commun., vol. 17, no. 2, pp. 149–162, 2020.
	[88] X. Huang, M. Zeng, and K. Xie, ‘Intelligent traffic control for QoS optimization in hybrid SDNs’, Comput. Netw., vol. 189, p. 107877, 2021.
	[89]康梦轩, 宋俊平, 范鹏飞, 高博文, 周旭, and李琢, ‘基于深度学习的网络流量预测研究综述.’, J. Comput. Eng. Appl., vol. 57, no. 10, 2021.
	[90] Z. Yao, Y. Wang, and X. Qiu, ‘DQN-based energy-efficient routing algorithm in software-defined data centers’, Int. J. Distrib. Sens. Netw., vol. 16, no. 6, p. 1550147720935775, 2020.
	[91] L. Zhao, J. Wang, J. Liu, and N. Kato, ‘Routing for crowd management in smart cities: A deep reinforcement learning perspective’, IEEE Commun. Mag., vol. 57, no. 4, pp. 88–93, 2019.
	[92] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, ‘RL-routing: An SDN routing algorithm based on deep reinforcement learning’, IEEE Trans. Netw. Sci. Eng., vol. 7, no. 4, pp. 3185–3199, 2020.
	[93] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, ‘CFR-RL: Traffic engineering with reinforcement learning in SDN’, IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2249–2259, 2020.
	[94] W. Liu, J. Cai, Q. C. Chen, and Y. Wang, ‘DRL-R: Deep reinforcement learning approach for intelligent routing in software-defined data-center networks’, J. Netw. Comput. Appl., vol. 177, p. 102865, 2021.
	[95] M. B. Hossain and J. Wei, ‘Reinforcement learning-driven QoS-aware intelligent routing for software-defined networks’, in 2019 IEEE global conference on signal and information processing (GlobalSIP), IEEE, 2019, pp. 1–5.
	[96] M. B. Hossain, ‘QoS-aware Intelligent Routing for Software Defined Networking’, Master’s Thesis, The University of Akron, 2020.
	[97] J. Fan, D. Mu, and Y. Liu, ‘Research on network traffic prediction model based on neural network’, in 2019 2nd International Conference on Information Systems and Computer Aided Education (ICISCAE), IEEE, 2019, pp. 554–557.
	[98]陈兴蜀, 蔡梦娟, 王伟, 王启旭, and金鑫, ‘VMOffset:虚拟机自省中一种语义重构改进方法’, 软件学报, vol. 32, no. 10, pp. 3293–3309, 2021.
	[99] D. Li, D. Liu, Y. Sun, and J. Liu, ‘Otfs-based efficient handover authentication scheme with privacy-preserving for high mobility scenarios’, China Commun., vol. 20, no. 1, pp. 36–49, 2023.
	[100]邢照庆, ‘基于 SDN的边云协同管控方案研究与实现’, Master’s Thesis, 贵州大学, 2022.
	[101] Mininet, ‘Mininet’. [Online]. Available: /
	http://mininet.org

	[102]
	Ryu, ‘Ryu’. [Online]. Available: https://github.com/faucetsdn/ryu

	[103] iPerf, ‘iPerf’.
	[Online]. Available: https://iperf.fr/

	PROJECT MANAGEMENT
	PROJECT MANAGEMENT
	In the comprehensive review of the project management for this research, an in-depth analysis was performed comparing the initial planning with the actual execution, as visualized in
	and These Gantt charts provide a vivid illustration of the project's timeline and tasks, highlighting the adaptability and adjustments required throughout the course of the research.
	The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the
	project's tasks, starting from background reading and systematically progressing
	towards the final submission. This plan was intended to provide a clear roadmap,
	designating significant time blocks to each essential phase such as proposal
	development, literature review, and experimental work. The design suggested a linear
	progression which aimed to maintain a steady pace throughout the project duration.
	Figure 33
	Figure 34.

	The initial Gantt chart outlined a structured and sequential approach to the project's tasks, starting from background reading and systematically progressing towards the final submission. This plan was intended to provide a clear roadmap, designating significant time blocks to each essential phase such as proposal development, literature review, and experimental work. The design suggested a linear progression which aimed to maintain a steady pace throughout the project duration.
	(Figure 33)

	Figure
	Figure 33 Original Gantt Chart
	Figure 33 Original Gantt Chart

	However, the actual progress chart tells a different story—one of deviation and adaptation. Notable adjustments can be seen in the extension of phases such as "Model Design" and "Experimentation and Results Analysis." These phases extended beyond their originally allocated durations due to unexpected challenges such as data complexities and the intricacies involved in model validation. These issues were not fully anticipated at the project's outset and required on-the-fly adjustments to the schedule.
	(Figure 34)

	Figure
	Figure 34 Actual Gantt Chart
	Figure 34 Actual Gantt Chart

	Additionally, the approach to report writing was adapted significantly. Instead of a single phase, report writing was segmented into individual chapters, allowing for continuous revision and incorporation of new data and insights as the project progressed. This methodological adjustment was crucial for integrating evolving findings and ensuring the final report's accuracy and coherence.
	Risk management strategies also played a vital role in the project's execution. Identified risks such as data availability and computational resource constraints were addressed with pre-planned mitigation strategies, which included securing additional data sources and optimizing computational tasks. While these strategies were generally effective, the actual impact of data availability proved more challenging than expected, highlighting a need for more robust contingency planning.
	Reflecting on the overall project management, adaptability emerges as a critical theme. The ability to dynamically adjust project plans in response to unforeseen challenges was instrumental in driving the project toward its objectives. However, this experience also emphasized the need for more precise risk anticipation and enhanced contingency measures
	.

	and provided profound insights into the dynamic nature of managing a research project. It underscored the importance of flexibility, robust risk management, and the need for proactive problem-solving. These insights are invaluable for future research projects, offering lessons on better preparedness and adaptive strategies to efficiently handle the complexities and unpredictabilities inherent in substantial research endeavors. This reflective analysis not only highlights the successes and challenges of the
	The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the
	project's tasks, starting from background reading and systematically progressing
	towards the final submission. This plan was intended to provide a clear roadmap,
	designating significant time blocks to each essential phase such as proposal
	development, literature review, and experimental work. The design suggested a linear
	progression which aimed to maintain a steady pace throughout the project duration.
	Figure 33
	Figure 34

	APPENDICES
	ETHICS FORM
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	LOGBOOK
	Date
	Date
	Date
	Daily Activities
	Thought Trails

	2024-02-19
	2024-02-19
	Initiated background reading on SDN and its routing mechanisms.
	Focused on understanding the limitations of current systems.

	2024-02-21
	2024-02-21
	Continued literature review, focusing on challenges in dynamic routing.
	Noticed significant gaps in realtime adaptability of models.
	-

	2024-02-23
	2024-02-23
	Began drafting the research proposal.
	Considering the integration of Dueling Deep Q-Networks.

	2024-02-25
	2024-02-25
	Refined the proposal, focusing on real-time traffic prediction integration.
	Explored traffic prediction models for potential integration.

	2024-02-27
	2024-02-27
	Submitted the proposal and began setting up Mininet simulation environment.
	Contemplated the setup challenges.

	2024-03-01
	2024-03-01
	Started first set of experiments to test basic SDN controller functionality.
	Assessed initial results against theoretical expectations.

	2024-03-03
	2024-03-03
	Adjusted experimental parameters based on findings and reran simulations.
	Reflected on the importance of fine-tuning network parameters.

	2024-03-05
	2024-03-05
	Conducted extensive tests on the DDQN model under stress conditions.
	Observed model adaptability to sudden network load changes.

	2024-03-07
	2024-03-07
	Compiled results and began drafting report sections on methodology and early findings.
	Considered how to present complex concepts clearly.

	2024-03-09
	2024-03-09
	Peer-reviewed draft chapters and incorporated feedback.
	Valued peer feedback for enhancing content clarity.

	2024-03-11
	2024-03-11
	Peer-reviewed the draft chapters and incorporated feedback.
	Recognized the value of peer feedback in clarifying and enhancing the report's content.

	2024-03-13
	2024-03-13
	Reviewed additional literature on adaptive routing algorithms.
	Explored the relationship between network traffic variability and algorithmic responsiveness.

	2024-03-15
	2024-03-15
	Conducted a meeting with the advisory committee to discuss project progress and gather input.
	Received valuable insights on potential scalability issues of the proposed model.

	2024-03-17
	2024-03-17
	Began coding the modified routing algorithms using Python and the Ryu controller.
	Considered the trade-offs between complexity of code and performance efficiency.

	2024-03-19
	2024-03-19
	Troubleshooted issues from initial coding tests; implemented optimizations.
	Reflected on the necessity of efficient debugging practices to maintain project timeline.

	2024-03-21
	2024-03-21
	Prepared for mid-project presentation by creating slides and rehearsing key points.
	Focused on how to effectively communicate complex technical details to a non-technical audience.

	2024-03-23
	2024-03-23
	Delivered mid-project presentation; received feedback on project direction and methodology.
	Contemplated feedback regarding the integration of additional predictive metrics in the model.

	2024-03-25
	2024-03-25
	Revised project plan and timeline in consultation with supervisor to incorporate new components.
	Assessed the impact of changes on the overall project scope and expected outcomes.

	2024-03-27
	2024-03-27
	Began extensive data collection phase using both simulated and real-world data sources.
	Examined the consistency and quality of incoming data to ensure its suitability for model training.

	2024-03-29
	2024-03-29
	Analyzed initial datasets and performed preliminary data cleansing and preparation.
	Recognized patterns and anomalies in the data that could influence model training and performance.

	2024-03-31
	2024-03-31
	Engaged in detailed discussions with data scientists to optimize feature selection for the model.
	Weighed the benefits of including diverse features against the complexity they introduce to the model.

	2024-04-02 to 2024-08-27
	2024-04-02 to 2024-08-27
	Conducted iterative cycles of model refinement, testing, and validation. Continuously updated and revised the research manuscript.
	Adapted to new findings and maintained a focus on innovation and scientific accuracy in research.

	2024-08-28
	2024-08-28
	Submitted the final thesis.
	Reflected on the comprehensive journey from project initiation to completion.

	GLOSSARY
	GLOSSARY
	SDN (Software Defined Networking): A networking approach that allows network behavior to be controlled by software applications using open interfaces, separating the network's control logic from the underlying physical routers and switches.
	OpenFlow: A communication protocol that gives access to the forwarding plane of a network switch or router over the network.
	Ryu: An open-source network controller that manages devices in an SDN environment using OpenFlow protocol.
	Mininet: A network emulator that creates a virtual network on a single machine, used for developing and testing SDN applications.
	Dueling Deep Q-Networks (DDQN): An advanced reinforcement learning algorithm that helps in choosing actions to maximize the long-term reward in a given state of the environment.
	Network Throughput: Measures the rate of successful message delivery over a communication channel.
	Latency: The delay before a transfer of data begins following an instruction for its transfer.
	Packet Loss: Occurs when one or more packets of data travelling across a computer network fail to reach their destination.
	Topology Discovery: The method by which network devices and their connections are identified.
	Controller: In SDN, the central authority that directs traffic flows throughout the network based on a global view of the network state.

