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ABSTRACT 

Traditional Network Architecture (TNA) is becoming inadequate due to its rigid, 

hardware-centric configurations, especially in environments where network 

conditions are highly variable. This has led to increased latency, congestion, and 

packet loss rates. This project aims to develop an optimized routing strategy for 

Software Defined Networking (SDN) that leverages machine learning techniques to 

enhance network traffic management's adaptability and efficiency. The project 

employs a combination of Dueling Deep Q-Networks (Dueling DQN) and real-time 

traffic state predictions to create a dynamic routing strategy. The methodology 

includes extensive simulation using SDN environments to evaluate the performance 

improvements over traditional routing methods. Preliminary results indicate that the 

proposed SDN-based routing strategy not only responds more efficiently to dynamic 

network conditions but also significantly optimizes performance metrics such as 

bandwidth utilization, latency reduction, and packet loss. The integration of Dueling 

DQN and real-time traffic predictions within SDN frameworks could potentially 

redefine network performance standards, offering a more adaptive, efficient, and 

robust network management system. This study contributes to the field by providing 

a scalable solution to the complexities of modern network environments, supporting 

the ongoing evolution of network infrastructure management. 



 

 

 

 

 

 

 

 

    

    

    

    

    

    

     

    

    

    

    

    

    

    

    

    

    

   

    

    

    

    

    

    

     

    

TABLE OF CONTENT 

Abstract/Synopsis 

Table of Content 

List of Figures 

List of Tables 

Acknowledgements 

CHAPTER 1 INTRODUCTION............................................................................. 12 

1.1 Research problem statement................................................................. 13 

1.2 Aim ........................................................................................................ 13 

1.3 Objectives.............................................................................................. 13 

1.4 Significance/Contribution of this research ............................................. 14 

1.5 STRUCTURE OF THE PROJECT......................................................... 14 

CHAPTER 2 - REVIEW OF LITERATURE .......................................................... 16 

2.1 Software Defined Networking (SDN) ..................................................... 16 

2.1.1 SDN Fundamentals ............................................................................ 16 

2.1.2 SDN Basic Architecture ...................................................................... 17 

2.1.3 OpenFlow Protocol ............................................................................. 22 

2.1.4 Summary.............................................................................................. 24 

2.2 Type of Controllers ................................................................................ 24 

2.2.1 RYU.................................................................................................... 24 

2.2.2 Floodlight............................................................................................ 28 

2.2.3 NOX.................................................................................................... 31 

2.2.4 Mininet.................................................................................................. 33 

2.2.5 Summary.............................................................................................. 34 

2.3 Operations of SDN ................................................................................ 34 

2.3.1 SDN Link Topology Discovery Technology ........................................ 34 

2.3.2 Link Topology Discovery Technology ................................................. 35 

2.3.3 Summary ............................................................................................ 36 

2.4 SDN Routing.......................................................................................... 36 

2.4.1 SDN-Based Routing Mechanisms ...................................................... 37 

2.4.2 SDN Routing Optimization Based on Supervised Learning................ 38 

2.4.3 SDN Routing Optimization Based on Reinforcement Learning .......... 39 



 

  

   

    

    

     

     

    

   

   

   

   

    

    

    

    

    

    

    

     

   

     

    

    

      

    

    

    

   

   

   

  

      

   

2.4.4 SDN Routing Optimization Based on Deep Reinforcement Learning 

Algorithms ..................................................................................................... 41 

2.4.5 Summary.............................................................................................. 42 

2.5 Chapter summary .................................................................................. 42 

CHAPTER 3 - RESEARCH METHODOLOGY .................................................... 44 

3.1 Research Method .................................................................................. 44 

3.1.1 Philosophy............................................................................................ 45 

3.1.2 Approaches .......................................................................................... 45 

3.1.3 Strategies ............................................................................................. 45 

3.1.4 Choices ................................................................................................ 46 

3.1.5 Time Horizons ...................................................................................... 46 

3.1.6 Techniques and Procedures ................................................................ 46 

3.1.7 Contingency Plans ............................................................................... 46 

3.1.8 Risks and Limitations ........................................................................... 46 

3.2 Research materials................................................................................ 47 

3.2.1 Hardware Devices .............................................................................. 48 

3.2.2 Network Devices................................................................................. 48 

3.3 Chapter summary .................................................................................. 48 

CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING ......................... 48 

4.1 Architecture and Model Design".................................................................. 48 

4.1.1 Parameter Collection Design.............................................................. 49 

4.1.2 Intelligent routing algorithms............................................................... 55 

4.1.3 GRU ..................................................................................................... 58 

4.2 Data Evaluation Methods........................................................................... 60 

4.2.1 Data Collection..................................................................................... 60 

4.2.2 Data Evaluation.................................................................................... 61 

4.3 experimental setup ..................................................................................... 62 

4.4 Optimization Algorithm................................................................................ 68 

4.4.1 Network Monitoring and Data Collection .............................................. 68 

4.4.2 Evaluation and Decision-Making .......................................................... 69 

4.4.3 Routing Updates................................................................................... 71 

CHAPTER 5 – RESULT AND ANALYSIS ......................................................... 72 

5.1 results and analysis ................................................................................... 73 



 

    

    

     

   

    

     

     

   

   

   

   

  

   

  

  

  

  

 

  

5.2 discussion ................................................................................................... 81 

5.3 summary ..................................................................................................... 82 

CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS ............................ 84 

6.1 Summary .................................................................................................... 84 

6.2 Conclusion .................................................................................................. 84 

6.3 Limitation and Recommendation ................................................................ 84 

CHAPTER 7 – REFLECTIONS .......................................................................... 84 

7.1 Achievement of Research Objectives ......................................................... 85 

7.2 Reflection on Research Conduct and Progress .......................................... 85 

7.3 Key Reflections and Insights....................................................................... 86 

7.4 Conclusion .................................................................................................. 86 

REFERENCES 88 

PROJECT MANAGEMENT ................................................................................. 96 

APPENDICES 100 

ETHICS FORM 101 

LOGBOOK 114 

GLOSSARY 116 



 

 

      

   

    

     

    

    

    

    

    

    

    

    

       

   

    

   

    

    

     

     

    

    

    

    

    

    

LIST OF FIGURES 

Figure 1 SDN Basic Architecture ..................................................................... 18 

Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to 

Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In 

Figure 2 OpenFlow Switch Architecture........................................................... 22 

Figure 3 Ryu library functions and components ............................................. 25 

Figure 4 Ryu Overall Architecture .................................................................... 26 

Figure 5 Ryu Workflow ...................................................................................... 27 

Figure 6 Architecture diagram of Floodlight.................................................... 29 

Figure 7 NOX Function Module Structure ........................................................ 32 

Figure 8 Topological Discovery Classification ................................................ 35 

Figure 9 Layers of the Onion Diagram for Research Methodology ............... 45 

Figure 10 Gannt Chart........................................................................................ 47 

Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3 .................. 50 

Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3....................... 51 

measure link packet loss rate ..................................................................... 52 

messages...................................................................................................... 54 

Figure 15 Traffic matrix structure diagram ...................................................... 56 

Figure 16 GRU structure diagram ..................................................................... 59 

Figure 17 Network Topology Diagram.............................................................. 63 

Figure 18 Installation verification of Mininet................................................... 65 

Figure 19 Topology Management of Ryu ......................................................... 66 

Figure 20 Launch the Iperf server..................................................................... 67 

Figure 21 Test results of Iperf ........................................................................... 68 

Figure 22 Function get_traffic_matrix .............................................................. 69 

Figure 23 Function _packet_in_handler ........................................................... 70 

Figure 24 Function optimal_routing_forwading .............................................. 71 



 

    

    

    

    

    

    

    

    

    

    

 

  

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

Figure Function get_optimal_forwarding_path .......................................... 71 

Figure Function install_flow_1..................................................................... 72 

Figure Function install_flow_2..................................................................... 72 

Figure Comparison of using GRU and without using GRU ....................... 73 

Figure Comparison of Dueling DQN and DDPG ......................................... 75 

Figure Comparison of the network throughput .......................................... 77 

Figure Comparison of the network delay .................................................... 78 

Figure Comparison of the network packet loss rate .................................. 80 

Figure Original Gantt Chart .......................................................................... 97 

Figure Actual Gantt Chart............................................................................. 98 



 

 

    

    

    

      

   

    

    

     

     

 

 

LIST OF TABLES 

Table 1 Mainstream SDN Controllers ............................................................... 20 

Table 2 Floodlight Components........................................................................ 29 

Table 3 Counters in OpenFlow.......................................................................... 49 

Table 4 Comparison of Reward Performance With and Without GRU Over 

Episodes ....................................................................................................... 73 

Table 5 Comparison of Dueling DQN and DDPG ............................................. 75 

Table 6 Throughput Comparison ...................................................................... 77 

Table 7 Delay Comparison................................................................................ 78 

Table 8 Packet Loss Rate Comparison ............................................................ 80 



 

 

       

     

  

  

      

    

 

 

      

          

     

       

     

 

 

    

          

       

          

 

 

ACKNOWLEDGEMENTS 

I, Lingzhuo Tu, sincerely express my gratitude to Dr. Nitheesh Kaliyamurthy from 

the University of Wales Trinity Saint David for his invaluable support and guidance 

throughout this project. His expert advice on academic writing, critical thinking, and 

research methodologies has significantly contributed to my research work. His 

consistent feedback and encouragement have helped me refine my ideas and 

navigate the complexities of this research, particularly in model development and 

result analysis. 

I am also thankful to the Network Information Laboratory of Wuhan University of 

Technology for allowing me to collect and utilize data for this project. Their support 

was crucial in obtaining a high-quality research dataset. Additionally, I appreciate 

the provision of remote servers and high-performance graphics cards by the same 

laboratory, which were essential for meeting the computational demands of this 

research. 

Furthermore, I extend my heartfelt thanks to the University of Wales Trinity Saint 

David for providing me access to its online library, which offered a wealth of 

academic resources and literature foundational to my research. The availability of 

these resources ensured that I could conduct a comprehensive literature review and 

establish a solid theoretical base for my work. 



 

 
 

     

         

      

      

     

       

     

    

  

 

         

         

     

           

        

      

    

 

 

         

     

     

    

     

 

 

        

         

      

      

 
    

CHAPTER 1 INTRODUCTION 

The evolution of network infrastructure management has increasingly required the 

development of new technologies and methods that can keep pace with the growing 

complexity and dynamism of modern networks. Traditional Network Architecture (TNA) 

relies on rigid, hardware-centric configurations, making it less adaptable to the 

changing conditions and demands of network traffic. TNA typically employs static 

routing protocols which decide paths based predominantly on initial configurations and 

infrequently updated network state information. This method becomes inadequate in 

environments where network conditions fluctuate, leading to inefficiencies such as 

increased latency, congestion, and higher packet loss rates. 

In contrast, Software Defined Networking (SDN) offers a transformative approach to 

network management. SDN separates the network's control plane from the data plane, 

centralizing control in a software-based controller. This architectural change introduces 

a level of flexibility and dynamism that TNA1 cannot match. The central controller in an 

SDN can view and manage the network holistically, making real-time, informed 

decisions that adapt to changes in network traffic patterns and conditions. This model 

not only simplifies network design and operation but also enhances scalability and 

agility in deploying new services. 

Comparing TNA and SDN, the latter's centralized control mechanism allows for a more 

nuanced and responsive management approach. SDN's ability to programmatically 

direct traffic and dynamically adjust to network conditions can significantly optimize the 

performance metrics of the network. This includes better utilization of bandwidth, 

minimized latency, and decreased packet loss, particularly in dynamic and complex 

network environments. 

Moreover, the predictive capabilities that can be integrated into SDN, as explored in 

this project through the use of Dueling Deep Q-Networks (Dueling DQN) and real-time 

traffic predictions, enable preemptive adjustments to routing decisions. Such 

anticipatory measures are crucial in maintaining optimal network performance and can 

1 TRADITIONAL NETWORK ARCHITECTURE 



 

          

   

      

 

 

  

 

      

       

      

         

         

        

        

         

      

      

     

  

 

  

         

       

        

          

     

     

     

 

  

greatly enhance the adaptability of SDN compared to the more reactive and less 

flexible TNA. This project proposes not just a shift from static to dynamic routing but a 

move towards intelligent, learning-driven network management that stands to redefine 

the standards of network performance and reliability. 

1.1RESEARCH PROBLEM STATEMENT 

The conventional routing algorithms employed in SDN environments are often rigid 

and unable to adapt dynamically to changing network conditions. While SDN offers the 

potential for more flexible and efficient network management, the existing routing 

methods do not fully adapt this flexibility, leading to suboptimal network performance 

and inefficiencies. Furthermore, the integration of advanced machine learning 

techniques with SDN routing strategies remains underexplored. This presents a 

significant gap in the research, as there is a pressing need for innovative routing 

algorithms that can leverage the capabilities of SDN to improve the adaptability and 

efficiency of network traffic management. Thus, the research problem addressed in 

this project is the development of an optimized routing strategy within SDN that 

effectively combines machine learning techniques to enhance network performance 

and management. 

1.2AIM 

The aim of this project is to develop an optimized routing strategy specifically for SDN, 

aimed at enhancing the efficiency of network traffic management. The project seeks to 

implement and refine a routing optimization solution within a SDN framework, utilising 

the capabilities of Dueling DQN deep reinforcement learning and network traffic state 

prediction. This approach is designed to enhance network management by leveraging 

real-time global network topology and link status information, enabling a more 

responsive, adaptive, and efficient network routing process that can dynamically 

optimize network performance and service quality. 

1.3OBJECTIVES 



 

   

         

       

  

       

    

        

   

          

  

        

      

  

  

  

 

  

 

       

      

         

          

     

       

      

           

  

      

     

 

 

  

The objectives of the project are detailed as follows: 

• To conduct extensive research into existing literature concerning SDN and 

routing optimization techniques to provide a theoretical foundation for the 

proposed solution. 

• To adapt a suitable research methodology by identifying the appropriate 

simulation tools and statistical techniques for analyzing network performance, 

as well as outlining the criteria for model validation and evaluation, to ensure 

rigorous and reproducible results within the project. 

• To design and implement a routing optimization model that leverages Dueling 

DQN reinforcement learning combined with network traffic state predictions. 

• To evaluate the proposed model through experimental setups, comparing its 

performance against traditional routing methods and other SDN-based solutions 

to demonstrate its efficacy in real-world scenarios. 

• Analyze different network states and their impact on routing strategies, utilizing 

simulations to gauge performance improvements over traditional methods. 

1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH 

This project substantially enhances the field of SDN by pioneering the innovative 

integration of Dueling DQN reinforcement learning with real-time network traffic 

predictions. Utilizing a blend of SDN capabilities, including centralized control, flexible 

management, and the integration of heterogeneous network data, the project develops 

a cutting-edge and comprehensive computational model for routing optimization. This 

holistic approach significantly boosts the accuracy and efficiency of routing decisions 

within SDNs, addressing critical inefficiencies in traditional routing methods. As a result, 

the proposed model offers a quicker and more effective method for managing network 

traffic flow, ensuring optimal network performance and reliability. Such advancements 

are crucial for supporting the growing demands on network infrastructure, thereby 

enabling significant progress in information technology and network management 

applications. 

1.5STRUCTURE OF THE PROJECT 



 

      

   

 

         

    

       

       

 

 

       

     

     

   

 

     

        

      

 

 

     

        

      

 

 

      

         

        

 

 

      

        

         

 

 

The structure of this thesis is designed to systematically address the research 

objectives and provide a coherent flow of information and analysis: 

Chapter One – Introduction This chapter provides a broad overview of the project, 

including the research problem statement, aims, and objectives. It sets the context for 

the research by discussing the need for optimized routing strategies in Software 

Defined Networking (SDN) and outlines the significance and potential contributions of 

the study. 

Chapter Two – Review of Literature This chapter presents a thorough analysis of 

existing literature on SDN, covering fundamental concepts, architecture, and various 

controllers. It identifies gaps in current research and demonstrates how the project's 

approach can address these deficiencies. 

Chapter Three – Research Methodology This chapter details the research methods 

used to achieve the objectives of the study. It describes the experimental design, data 

collection techniques, and analytical methods employed, ensuring that the research is 

reproducible and valid. 

Chapter Four – Architectural Design and Modeling: This newly added chapter 

provides a detailed exposition of the architectural design and modeling processes for 

Software Defined Networking (SDN). It includes discussions on key technologies and 

design choices. 

Chapter Five – RESULT AND ANALYSIS This chapter discusses the experimental 

setup, the processes involved in implementing the routing strategies, and an analysis 

of the results obtained. It evaluates the effectiveness of the proposed routing 

optimizations in real-world scenarios. 

Chapter Six – Conclusions and Recommendations The final chapter synthesizes 

the findings of the research, discusses the implications, and offers conclusions based 

on the evidence gathered. It also provides recommendations for future research and 

practical applications of the study's outcomes. 



 

      

      

  

 

   
        

      

       

      

     

      

 

  

      

      

    

     

     

    

     

       

        

  

  

        

        

     

   

          

 
               

             

 

 

Chapter Seven – References This chapter lists all the bibliographic references used 

throughout the thesis, providing a comprehensive resource for understanding the 

theoretical and empirical bases of the study. 

CHAPTER 2 - REVIEW OF LITERATURE 
The purpose of this chapter is to conduct a thorough analysis of the existing body of 

literature related to SDN, with a focus on its architecture, control mechanisms, 

operational functions, routing capabilities, and limitations, as well as reviewing similar 

works in the field. This chapter seeks to identify key trends, debates, and gaps within 

these areas, examining both conventional network management strategies and 

advanced approaches enabled by SDN technology. The scope of literature reviewed 

extends from foundational theories to the latest advancements in SDN research. 

2.1SOFTWARE DEFINED NETWORKING (SDN) 

With the continuous development of information technology, the emergence of new 

network technologies such as big data[1], virtualization[2], and cloud computing[3] has 

progressively magnified the shortcomings of traditional network architectures. Due to 

their cumbersome network configurations, traditional networks impose heavy 

maintenance tasks on network administrators[4]. Additionally, the fixed topology of 

traditional networks limits their flexibility and scalability, greatly constraining network 

development. To address these issues, Software Defined Networking 2 (SDN) has 

been proposed as a new network architecture. Its flexible structure with decoupled 

control and data planes, along with the programmable nature of the network, offers a 

novel approach to resolving the rigidity of current networks[5]. 

2.1.1 SDN Fundamentals 

In traditional network architectures, the control plane and the data plane are tightly 

coupled within network devices, with each underlying device functioning as a complete 

and independent entity. This results in a fixed network topology and cumbersome 

network configurations, rendering the current network environment rather rigid. 

Additionally, the use of distributed routing algorithms[6] means that each router makes 

2 Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data 

plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies 

administration. 



 

       

 

      

    

       

 

 

     

           

     

         

      

         

      

      

        

        

       

 

 

       

            

        

       

     

     

       

      

 

  

        

        

         

       

independent routing decisions without considering other routers, a design approach 

that significantly complicates network upgrades. Furthermore, different types of 

network devices require distinct configuration tools, demanding a higher level of skill 

from network administrators. The maintenance of traditional networks consumes 

considerable time and effort, thereby increasing the total system costs, including 

acquisition, operational, and management expenses[7]. 

Originating from the academic environment of Stanford University's network data 

forwarding project, the design philosophy of SDN is to decouple data forwarding from 

the network control plane, enhancing network flexibility[8]. This design facilitates 

programming of the underlying hardware through software modules of the controller, 

improving control effectiveness and enabling rational allocation of network resources 

according to user needs. In SDN, when determining data forwarding paths via the 

control plane, it is necessary not only to analyze the direction of the next hop of the 

data but also to study the structure of all current network links. This allows for an 

understanding of any potential overload risks of devices within the network. By 

preemptively switching data transmission paths in switches via the controller, it is 

possible to circumvent potential problem nodes, thus avoiding impacts on network 

traffic flow. 

Compared to conventional networking architectures, SDN offers distinct advantages. 

On one hand, within such an architecture, the hardware setup only needs to consider 

whether the storage and forwarding capacities meet the usage requirements, which 

can substantially reduce architectural costs[9]. On the other hand, it maintains the 

existing network infrastructure without the need for reconfiguration, thus simplifying the 

deployment process. Moreover, SDN architectures provide a faster response to 

business demands, which in practice allows for the personalized customization of 

network parameters such as policies and routing. This results in significantly reduced 

time for business processing. 

2.1.2 SDN Basic Architecture 

The basic architecture of SDN comprises five main components: the data plane, 

southbound interfaces, control plane, northbound interfaces, and the application layer, 

as illustrated in Figure 1 [10]. The data plane primarily handles the forwarding and 

processing of data packets and is composed of underlying devices such as SDN 



 

     

            

       

         

       

        

      

       

  

     

 

 

  

       

         

 

          

     

   

  

switches and SDN routers. The southbound interfaces are specific protocols that 

facilitate communication between the control plane and the data plane. The control 

plane, the core of the SDN architecture, provides a global network view to the 

application layer and allocates flow tables to the devices in the data plane based on 

the business requirements of the application layer. Northbound interfaces are specific 

protocols that enable communication between the application layer and the control 

plane. The application layer consists of multiple SDN applications, which interact with 

the controller via northbound interfaces to implement various network functions, such 

as routing calculation, load balancing, and congestion detection[11]. 

Figure 1 SDN Basic Architecture 

1. Data Plane 

The data plane, also known as the data layer, consists of various network devices such 

as routers, switches, and others that perform data forwarding based on control 

decisions[12]. The SDN data plane has the following three characteristics: 

⚫ Programmability: The SDN data plane can be configured through programming, 

allowing network administrators to control and manage network traffic 

according to specific needs. This programmability not only enhances network 

flexibility but also enables better network management by administrators. 



 

       

      

     

        

 

          

       

 

 

           

       

        

        

          

        

         

          

          

          

      

        

 

  

      

          

      

        

        

       

 

 

       

    

     

⚫ Centralized Control: The control logic of the SDN data plane is centrally stored 

in the controller rather than being distributed across various network devices. 

This centralized control approach allows network administrators to achieve 

global control over the network state and allocate and optimize global network 

resources according to specific business requirements. 

⚫ Openness: The SDN data plane adopts open protocols such as OpenFlow, 

which facilitates easy integration with devices and software from other vendors, 

enhancing network interoperability and scalability. 

The working principle of the SDN data plane is based on flow table[13] forwarding, 

similar to routing tables in traditional networks. A flow table consists of three parts: 

matching rules, actions, and counters. Matching rules refer to the values of various 

fields in the TCP/IP header, such as MAC address, source IP address, destination IP 

address, VLAN ID, etc. These specific values constitute a flow. The action part includes 

operations on the flow, such as forwarding packets to specified ports, discarding 

packets, sending to the normal processing pipeline, etc. If the SDN switch does not 

contain an entry for a specific flow, the default action is to forward the packet to the 

controller. Upon receiving the packet, the controller creates a flow table entry for the 

flow and sends it back to the switch. The switch can then process packets based on 

the entries in the flow table. The counter part records the number of packets for each 

flow and other statistical information, which can be grouped by each flow, each table, 

or each port[14]. 

2. Southbound Interfaces 

Southbound interfaces are specific protocols for communication between the control 

layer and the data layer, providing the controller with the ability to control and manage 

network traffic. For example, using the uplink channel of a southbound interface, the 

controller can uniformly monitor and collect statistics on the information reported by 

underlying switching devices, thereby achieving link discovery. Using the downlink 

channel of a southbound interface, the controller can also uniformly control network 

devices to implement flow table distribution[15]. 

In SDN, the most widely used southbound interface standard is the OpenFlow protocol 

from the open-source community. The OpenFlow protocol provides convenient 

messaging mechanisms. For example, it generates event-based messages when ports 



 

      

          

   

      

      

   

     

      

      

          

       

       

      

  

 

 

       

        

         

     

       

        

      

       

      

        

 

   

 
 

 

 

 

 

 
 

    

 

 

 

or links change; flow-based statistical messages during network monitoring by the 

controller; and Packet-in messages sent to the controller for processing when a switch 

does not know how to handle a new incoming packet. 

Besides the OpenFlow protocol, there are other southbound interface standards, such 

as Open vSwitch Database (OVSDB) [16], ForCES [17], and Programming Protocol-

Independent Packet Processors (P4)[18]. OVSDB provides additional network 

management functions, allowing the creation of virtual switch instances, setting 

interfaces, and connecting them to switches. OpFlex allows forwarding devices to 

handle some management functions, abstracting policies from the underlying layer and 

deciding where to place these functions. The P4 protocol enables users to define their 

own network protocols, including flow table matching rules and packet processing logic, 

thus achieving flexible traffic control and management. The introduction of the P4 

protocol allows network devices to define their forwarding behavior through software, 

better adapting to various network application scenarios. 

3. Control Layer 

The control layer is a critical component of the SDN architecture, responsible for 

controlling and managing the entire network. Its primary function is to act as a bridge 

between the application layer and the data layer, handling interactions between 

applications and underlying forwarding devices[19]. For example, it translates 

application layer policies into executable instructions for the data layer and provides 

relevant information from the data layer to applications. The SDN controller also 

enables centralized management of global SDN elements, monitoring network status 

and formulating forwarding strategies. Through northbound interfaces, it offers 

programmability to the application layer, allowing network managers to flexibly create 

network services according to user needs. Table 1 lists the current mainstream SDN 

controllers. 

Table 1 Mainstream SDN Controllers 

Controller 
Southbound 

Interface 

Programming 

Language 

System 

Platform 
Description 

NOX OpenFlow C++ Linux 

The first SDN 

controller to 

support the 



 

 

   
 

 

 

 

 

 

 

 

  

 

 

 

 

   
 

 

 

 

  

 

 

 

 

OpenFlow 

protocol 

POX OpenFlow Python 
Linux, Mac 

OS, Windows 

A Python-

based SDN 

controller 

evolved from 

NOX, 

supporting the 

OpenFlow 

protocol 

Ryu 

OpenFlow, 

Netconf, OF-

config, etc. 

Python Linux 

Ryu is a 

lightweight, 

open-source 

SDN 

controller 

supporting 

OpenFlow 

v1.0, v2.0, 

and v3.0 

Floodlight OpenFlow Java 
Linux, Mac 

OS, Windows 

Provides a 

general set of 

functions for 

controlling 

and querying 

OpenFlow 

networks, 

meeting 

various user 

network 

needs 

4. Northbound Interfaces 



 

         

           

        

     

     

       

     

       

   

     

 

 

 

      

         

     

       

        

       

    

  

         

     

         

       

        

   

        

          

         

  

   

Northbound interfaces are the connections between the control layer and the 

application layer in the SDN architecture. Their main function is to provide a 

standardized interface for applications, allowing them to manage and control the 

network through the SDN controller without directly accessing the underlying physical 

devices[20]. This standardized interface enables different applications to seamlessly 

communicate with the SDN, thereby achieving more flexible and programmable 

network management. For example, through northbound interfaces, applications can 

send requests to the controller to obtain network status information, instruct network 

behavior, and control network traffic. This flexible network management approach 

significantly enhances network manageability and controllability, better meeting the 

needs of various scenarios. 

5. Application Layer 

The application layer provides a platform for network administrators to implement 

control logic by configuring network devices to achieve specific network behaviors and 

functions. Typical SDN applications include intrusion detection systems, load 

balancing, traffic optimization, firewalls, and fine-grained access control [21]. SDN 

applications can also abstract and encapsulate their functions, providing northbound 

proxy interfaces. These encapsulated interfaces can be considered as higher-level 

northbound interfaces, thereby offering more advanced functions and services. 

2.1.3 OpenFlow Protocol 

SDN has many protocol standards in practical applications, among which the most 

popular protocol is OpenFlow [22]. OpenFlow is based on the concept of flow to 

establish and match rules. Through the OpenFlow protocol, the SDN controller can 

query, modify, and configure the status information of SDN switches, and update the 

network system status in real time. The main components of an OpenFlow switch 

include a secure channel, flow tables, and the OpenFlow protocol, as shown in Figure 

2. Among these, the secure channel is the interface connecting the OpenFlow switch 

with the SDN controller, the flow table is a collection of forwarding policies, and the 

OpenFlow protocol is the standard protocol for interaction between the control layer 

and the data layer. 

Figure 2 OpenFlow Switch Architecture 



 

 

 

   

         

         

           

        

       

          

       

           

           

    

           

 

 

         

  

   

      

   

       

The OpenFlow protocol supports three types of interaction messages: Controller-to-

Switch messages, asynchronous messages, and synchronous messages [23]. The 

controller sends Controller-to-Switch messages to the switch to query and modify the 

switch's status and configuration, some of which do not require a response from the 

switch. The switch sends asynchronous messages to the controller, providing real-time 

feedback on network update events and requesting new instructions. Asynchronous 

messages mainly include Packet-in messages, which are sent when the switch 

encounters an unmatched packet and needs the controller to handle it; Flow-Removed 

messages, which notify the controller to delete a flow entry when the flow table 

changes, such as when a flow entry times out; and PortStatus messages, which inform 

the controller of changes in the switch's ports or settings. Synchronous messages can 

be initiated by either the controller or the switch and are used to establish connections 

and check if the other party is online. 

The flow table mechanism is a critical component of the OpenFlow protocol, enabling 

the decoupling of the control layer and the data layer. With the evolution of OpenFlow 

versions, the structure and functionality of flow tables have continually been enriched. 

In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can 

communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple 

flow tables, decomposing the flow table matching process into several steps and 



 

             

         

        

       

        

        

      

      

 

  

       

   

          

         

       

 

   

  

        

            

      

       

     

 

 

      

      

          

       

     

        

    

forming a pipeline processing method to avoid the excessive expansion of a single flow 

table. OpenFlow 1.2 introduced the TLV (Type-Length-Value) structure to define 

matching fields, enabling more keywords to be matched and allowing OpenFlow 

switches to communicate with multiple controllers. OpenFlow 1.3, the most stable 

version, enriched the structure of flow entries by adding priority, timeouts, and cookies, 

making packet matching more flexible and enabling timely cleanup of unused flow 

entries to reduce the switch's burden[26]. Additionally, OpenFlow 1.3 introduced 

auxiliary connections, effectively improving switch processing efficiency and enabling 

application parallelism[27]. 

2.1.4 Summary 

The discussion in this section serves as a foundational background, setting the stage 

for exploring more advanced topics in SDN, including various types of controllers and 

the detailed operations of SDN networks. It emphasizes the transformative potential of 

SDN in adapting to the increasing complexity and requirements of modern network 

environments, thus framing the motivation for further innovations and research in 

network management. 

2.2 TYPE OF CONTROLLERS 

2.2.1 RYU 

Ryu is an open-source project led by the Japanese company NTT, with its name 

meaning "flow" in Japanese. The project aims to provide a SDN operating system with 

logically centralized control capabilities. Ryu offers comprehensive API interfaces, 

enabling network application developers to easily create new management and control 

applications[28]. Written in Python and adhering to the Apache License, Ryu supports 

multiple versions of the OpenFlow protocol, including v1.0, v1.2, and v1.3. 

The Ryu controller comprises a wide array of libraries and components designed for 

developing SDN applications[29]. These libraries encapsulate common functions 

distilled from the requirements of SDN controllers and can be directly invoked within 

components. Each component operates independently of others. Through these 

features, Ryu offers developers a flexible and scalable SDN development environment, 

enhancing the convenience and intelligence of network management and control. The 

libraries and components provided by Ryu are illustrated in Figure 3. 



 

   

 

 

        

    

      

       

    

   

       

   

 

     

       

      

      

       

  

Figure 3 Ryu library functions and components 

Libraries such as Netconf[30], OF-conf, and sflow[31] primarily facilitate the control 

functions for OpenFlow switches. Among the key components, OF-wire provides 

support for different versions of the OpenFlow protocol; Topology is responsible for 

building topology maps and tracking link status; and OF REST offers REST APIs for 

users to configure OpenFlow switches. The VRRP[32] component adds VRRP 

capabilities to OpenFlow switches, significantly enhancing network reliability. 

Additionally, Ryu can integrate with the OpenStack cloud computing platform, allowing 

users to manage and control their networks on demand. 

2.2.1.1 Ryu Overall Architecture 

The Ryu SDN framework primarily provides control capabilities, offering services to 

SDN applications through northbound REST APIs, enabling these applications to 

orchestrate and control network traffic[33]. Through southbound protocols such as 

OpenFlow, Ryu controls OpenFlow switches to facilitate traffic interaction. The Ryu 

SDN architecture serves as a pivotal bridge, acting as the control and exchange hub 

for northbound interfaces. The overall architecture of Ryu is illustrated in Figure 4. 



 

    

 

 

           

         

     

       

           

  

 

      

     

    

    

      

    

        

    

Figure 4 Ryu Overall Architecture 

The SDN application layer is broadly divided into three categories. The first category 

is the Operator, which controls and manages the SDN framework through RESTful 

management APIs. The second category is OpenStack cloud orchestration, which 

integrates with OpenStack using REST API for Quantum to manage and control the 

network. The third category is User apps, which control and manage the SDN 

framework through user-defined APIs via REST or RPC[34]. 

The Ryu SDN framework layer is the core of the entire architecture, providing the 

infrastructure for developing, managing, and running SDN applications[35]. The main 

components and functionalities include Ryu applications, event dispatcher, libraries, 

OpenFlow parser/serializer, and protocol support modules. Ryu applications are 

specific SDN programs running on the Ryu framework that perform particular network 

management tasks. The event dispatcher is responsible for receiving, processing, and 

distributing events, ensuring coordination and communication among different parts of 

the system. The libraries contain various functional modules and tools for Ryu 



 

     

       

       

   

 

 

    

     

          

        

 

  

   

 

 

          

        

applications to simplify the development process[36]. The OpenFlow parser/serializer 

handles OpenFlow protocol packets, performing parsing and generation to ensure 

communication between the controller and switches. The protocol support modules 

support various network protocols (e.g., OVSDB, VRRP), providing broader 

functionality and compatibility for network management[37]. 

The OpenFlow switch layer comprises switches that support the OpenFlow protocol, 

serving as the infrastructure for network packet forwarding. OpenFlow switches 

communicate with the SDN controller via the OpenFlow protocol, receiving flow table 

instructions and executing corresponding forwarding operations to ensure efficient 

transmission of network data[38]. 

2.2.1.2. Ryu Workflow 

Figure 5 Ryu Workflow 

The workflow of Ryu is illustrated in Figure 5. Upper-layer Ryu applications distribute 

and transmit events through SERVICE_BRICK[39]. The main purpose of 



 

    

       

     

        

      

 

         

   

 

    

       

      

        

        

 

 

      

  

        

     

        

        

          

  

  

    

     

      

   

SERVICE_BRICK is to implement modular design, enabling Ryu applications to be 

developed and maintained as independent service modules. Each SERVICE_BRICK 

is an independent service module responsible for specific functions or tasks and can 

communicate and collaborate with other modules through Ryu's service registration 

and discovery mechanisms. Moreover, SERVICE_BRICK is closely integrated with the 

event handling mechanism. Events are routed and tasks are distributed by registering 

callback functions that respond to events within the Ryu applications, allowing the Ryu 

framework to operate efficiently in an event-driven manner[40]. 

OFPHandler[41] is the most fundamental subclass of RyuAPP. This class primarily 

handles the coordination of OpenFlow protocol tasks such as Hello Handler, Switch 

Features Handler, Port State Handler, and Echo Handler. OFPHandler instantiates an 

OpenFlow controller object, which in turn instantiates several dataplane objects 

corresponding to the number of connected switches, with each dataplane representing 

a single OpenFlow switch. 

The Datapath communicates with OpenFlow switches by creating sockets[42] using 

the Stream server from the high-concurrency Python framework eventlet[43]. Eventlet 

provides an efficient network communication mechanism, enabling the dataplane to 

handle multiple concurrent connections and communications with switches effectively. 

Each dataplane object is responsible for receiving and processing OpenFlow 

messages sent from its corresponding switch and returning the processing results to 

the switch, thus facilitating real-time communication and control between the controller 

and the switches. 

2.2.2 Floodlight 

The Floodlight controller boasts excellent stability and portability, being compatible with 

various operating systems[44]. Therefore, this project utilizes Floodlight as the SDN 

controller. Floodlight interacts with upper-layer applications via Java interfaces or 

REST APIs, with its overall architecture illustrated in Figure 6. 



 

   

 

 

     

     

          

        

       

        

        

      

         

    

    

   

   

   

  

  

 

 

Figure 6 Architecture diagram of Floodlight 

Floodlight is composed of core service modules, regular application modules, and 

REST application modules[45]. The core service modules provide fundamental support 

services via Java interfaces and REST APIs to both the regular application modules 

and the REST application modules. The regular application modules depend on the 

core service modules and provide services to the REST application modules. The 

REST application modules rely on the REST APIs provided by the core service 

modules and regular application modules, allowing applications to perform their 

functions by simply calling the REST APIs[46]. Developers can create applications 

using the system-provided APIs or add their own modules and expose APIs for use by 

other developers. This modular and hierarchical deployment approach effectively 

enhances the controller's scalability. The functional components of Floodlight are 

illustrated in Table 2. 

Table 2 Floodlight Components 

Component Type Component Name Function Description 

Manages connections to 

Core Service Module FloodlightProvider switches and converts 

OpenFlow messages into 



 

 

 

  

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 

 

   

 

 

 

   

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

DeviceManagerImpl 

LinkDiscoveryManager 

events that other 

modules can listen to. 

Manages low-level 

network devices such as 

switches and hosts. 

Manages link resources 

in the network and 

maintains link status in 

the OpenFlow network. 

TopologyService 

RestApiServer 

Regular Application 

Module 

FlowCache 

Forwarding 

Firewall 

Finds routes in the 

network, calculates 

network topology, and 

maintains topology 

information. 

Provides REST API 

services. 

Integrates flow updates 

and searches across 

different modules. 

Implements packet 

forwarding between two 

devices. 

Enforces access control 

on switches. 

Creates virtual links 
Circuit Pusher 

REST Application between two devices. 

Module Manages the OpenStack 
OpenStack Quantum network. 



 

  

          

         

       

         

        

      

          

        

       

 

 

          

   

    

          

  

           

       

          

 

2.2.3 NOX 

The NOX platform is based on a publish-subscribe model[47], using the observer 

pattern[48]. Components on NOX can subscribe to events generated by the network, 

allowing users to write various components to manage the OpenFlow network[49]. 

Currently, components on NOX are divided into three categories: Core apps, Net apps, 

and Web apps. Core apps provide some basic applications that other components can 

use. Net apps are network control-related applications, while Web apps offer some 

interfaces to web services. The NOX platform is based on a publish-subscribe model, 

using the observer pattern. Components on NOX can subscribe to events generated 

by the network, allowing users to write various components to manage the OpenFlow 

network. 

As shown in Figure 7, components on NOX are divided into three categories: Core 

apps, Net apps, and Web apps. Core apps provide some basic applications that other 

components can use. Net apps are network control-related applications, while Web 

apps offer some interfaces to web services. Events are generally generated in two 

ways: one is directly from OpenFlow messages, such as Datapath_join_event when a 

switch joins, and Datapath_leave_event when a switch leaves. The other is generated 

by controller applications, such as a user authentication component that generates a 

user authentication event when a user joins the network, which can then be used by 

other application components[50]. 



 

   

 

        

        

     

       

       

         

  

 

          

       

      

        

              

          

   

      

   

     

Figure 7 NOX Function Module Structure 

After a secure connection is established between the NOX controller and the 

underlying switches, the switches can send OpenFlow messages to the controller 

through this connection[51]. The OpenFlow protocol encapsulation and parsing 

module on the NOX controller encapsulates these messages, and the message 

distribution module delivers them to the upper-layer applications. Conversely, upper-

layer applications can also send OpenFlow messages to the underlying switches via 

the OpenFlow protocol encapsulation and parsing module. 

To develop new components on the NOX platform, it is essential to understand the 

basic structure of the components. A new component needs to inherit from the 

Component class and use REGISTER_COMPONENT to enable dynamic loading. 

During loading, the Configure and install methods are called to register events and 

their handlers. The events that the component needs to listen for are listed in the 

NOX.json file. Additionally, while creating the component, a meta.json file is needed to 

specify other components that the new component depends on. Events subscribed to 

by components in NOX.json are processed in a defined order. For example, a 

Datapath_join_event is first processed by the discovery component. If this component 

returns CONTINUE after processing, the event will be passed to the next component, 



 

      

 

  

       

          

    

         

        

        

  

 

      

   

         

   

      

        

         

  

 

    

        

   

        

    

      

 

        

       

          

   

mibtransport, for further processing. If discovery returns STOP, the event will not be 

passed further[52]. 

2.2.4 Mininet 

Mininet is a virtualization network emulation tool developed by Stanford University 

based on the Linux Container architecture [53]. It can create a highly flexible custom 

virtual network consisting of hosts, switches, controllers, and links. Mininet uses the 

Linux [54] kernel to virtualize multiple hosts and simulates SDN switches using the 

OpenFlow protocol. The network topology can be defined and configured using Python 

[55] scripts, allowing users to quickly create custom topologies for testing and 

developing network applications. 

Mininet offers three types of command parameters: network construction startup 

parameters, internal interactive commands, and external runtime parameters. Network 

construction startup parameters can be used to set the topology structure, switch types, 

and link attributes. Internal interactive commands allow interaction with virtual nodes, 

such as adding or removing nodes. External runtime parameters mainly control the 

runtime environment of Mininet, such as setting log outputs. These command 

parameters can be configured to set the topology structure, switch types, and link 

attributes, making it convenient for users to modify and configure the topology. 

Additionally, Mininet provides many practical tools, such as traffic generators and 

packet capture tools, to facilitate network traffic monitoring and testing. One of 

Mininet's greatest advantages is its flexibility and customizability. It not only supports 

OpenFlow but also other southbound interface protocols, enabling the creation of 

highly controllable network environments. Therefore, Mininet has been widely used in 

network research, including areas such as network security and cloud computing. In 

the field of network security, Mininet can simulate various network attack and defense 

scenarios, making it convenient for researchers and security practitioners to conduct 

vulnerability testing and security analysis. In the realm of cloud computing, Mininet can 

be used to test and evaluate the performance and efficiency of various cloud computing 

solutions, helping users optimize cloud architectures and resource utilization. 



 

  

      

 

 

  

  

      

     

         

    

      

     

        

    

      

      

    

       

  

 

     

        

    

      

    

     

   

     

  

 

          

      

2.2.5 Summary 

This section underscores the diversity and adaptability of SDN controllers in meeting 

the needs of various networking scenarios, emphasizing their role in enabling efficient 

network management through centralized control mechanisms. 

2.3OPERATIONS OF SDN 

2.3.1 SDN Link Topology Discovery Technology 

In the SDN network architecture, centralized and dynamic network topology 

information management technology [56] effectively decouples the control plane from 

the data plane. This is achieved through the use of a central controller that allows for 

highly flexible, real-time, and centralized control over the entire network structure. This 

management model endows the SDN controller with the ability to obtain and maintain 

a comprehensive view of the network, accurately describing the interconnections, 

topology, and traffic distribution among various devices in the network. When there are 

any changes in the network topology, such as device failures, link interruptions, or 

structural reorganizations, the SDN controller can promptly detect and update the 

global view, ensuring real-time synchronization of the network state. Through the 

topology discovery mechanism, the SDN controller can automatically identify various 

devices and link resources within the network, significantly reducing the burden of 

manual configuration. 

Moreover, this centralized management approach enables the SDN controller to 

perform intelligent path calculations, selecting the optimal transmission path based on 

the current topology and traffic conditions, thereby achieving efficient traffic scheduling 

and maximizing network performance. Additionally, the scope of SDN topology 

information management includes timely response to various topology events, 

continuous network monitoring, and in-depth analysis. This provides multi-dimensional 

support for stable network operation, reliability assurance, and performance 

optimization, further highlighting the significant advantages of SDN in meeting modern 

network demands and enhancing network management efficiency[57]. 

The controller plays the role of storing information about core network components, 

including detailed locations of individual switches and the link parameters that form the 



 

     

        

        

       

       

  

   

 

   

        

        

     

     

   

        

       

       

    

       

      

        

      

 

topology data of interconnections between switches[58]. The controller aggregates 

network-wide topology information through active collection or passive reception and 

properly stores this data. Additionally, the controller adheres to a predefined update 

strategy, regularly refreshing and calibrating the maintained topology information to 

ensure real-time tracking and accurate understanding of network state changes, as 

illustrated in Figure 8. 

Figure 8 Topological Discovery Classification 

2.3.2 Link Topology Discovery Technology 

The link topology discovery mechanism in SDN involves the controller identifying the 

link status between switches on the data plane[59]. By obtaining link connection status 

information, the controller can effectively support various network service functions. In 

Ethernet, link topology discovery typically relies on the Link Layer Discovery Protocol 

(LLDP)[60], where Ethernet switches exchange relevant link and port information. 

However, in the SDN architecture, since data plane switches are responsible only for 

data forwarding and lack logical control capabilities, the method for link topology 

discovery differs from traditional approaches. In SDN, this task is primarily undertaken 

by the controller, which not only stores link topology information but also performs 

detection tasks. Therefore, the OpenFlow Discovery Protocol (OFDP) [61] was 

specifically developed for SDN, based on LLDP. It utilizes LLDP packet contents and 

adapts to the separation of control and forwarding in SDN. Specifically, in SDN, the 

tasks of sending, receiving, and parsing LLDP packets are shifted to the controller level, 

rather than being executed by OpenFlow switches. 



 

 

          

        

       

         

         

        

        

         

 

 

      

        

         

         

         

       

         

       

        

         

 

  

         

     

 

   

        

       

        

      

 

When a switch connects to the network, it sends an initialization signal to the controller, 

containing the OpenFlow version number and details of each port. Once the controller 

successfully responds and establishes a connection with the switch, it deploys 

topology discovery rules on the switch. First, upon receiving a Packet-out message 

from the controller, the switch forwards it to the connected switch port. Second, upon 

receiving a message from another switch, the switch adds its relevant information to 

the LLDP message, forming a Packet-in message, and forwards it to the controller. 

Third, switches not directly connected to the controller send the Packet-in to the 

neighboring switch[62]. 

Subsequently, the controller sends LLDP packets to each port of the switch. The switch, 

following the first rule, forwards this packet through the specified port. When the target 

neighboring switch receives the packet, it follows the second rule, encapsulating the 

LLDP content into a Packet-in message and adding its switch ID and receiving port ID 

information. The switch then sends this Packet-in message back to the controller. If 

the target switch is not directly connected to the controller, the Packet-in message 

follows the third rule, being forwarded step by step until it reaches the controller. Upon 

receiving such a Packet-in message, the controller parses the switch ID, port ID, and 

corresponding information contained in the LLDP frame, accurately mapping the 

switches and their connecting ports at both ends of the link, thereby updating its 

maintained network topology view. 

2.3.3 Summary 

This section highlights the capabilities of SDN to facilitate real-time, accurate network 

management and adjustments, which are essential for optimizing network performance 

and reliability. 

2.4SDN ROUTING 

This section will separately introduce the SDN routing mechanism, the current 

research status of SDN intelligent routing optimization based on supervised learning, 

and SDN intelligent routing optimization based on reinforcement learning. On this basis, 

the research processes and advantages and disadvantages of these methods will be 

summarized. 



 

  

       

       

         

        

        

         

 

 

 

      

        

           

           

     

           

       

         

 

 

 

         

         

         

        

           

         

       

        

         

      

           

        

     

2.4.1 SDN-Based Routing Mechanisms 

Traditional routing technologies achieve the exchange and sharing of routing 

information through the establishment of routing tables and routing protocols[63]. In 

the SDN network architecture, the controller uses southbound interface protocols to 

uniformly distribute forwarding rules to switches, thus enabling routing transmission 

between switches. Based on the method of path transmission, SDN routing 

mechanisms can be divided into shortest path routing and multipath routing, as detailed 

below: 

(1) Shortest Path Routing 

Current mainstream SDN controllers, such as RYU[64], Floodlight[65], and POX[66], 

provide comprehensive data forwarding modules and typically use the Dijkstra[67] 

algorithm to find the shortest path. Data packets can be forwarded from the source 

node to the destination node using the shortest path determined by the Dijkstra 

algorithm. This method is simple and easy to implement. However, it overly relies on 

the shortest path for packet forwarding, which can lead to link congestion when multiple 

source nodes forward data packets to the same destination node, thereby reducing 

link utilization and failing to meet network performance requirements such as latency, 

bandwidth, throughput, and jitter. 

(2) Multipath Routing 

Multipath routing seeks to find multiple paths that meet the constraint conditions based 

on network traffic distribution and service traffic demands, and uses these paths for 

balanced transmission of network traffic. The goal is to improve network performance 

in terms of transmission delay, throughput, and link utilization, and to avoid link 

congestion. Li Daoquan et al. [68] proposes an SDN multipath routing load balancing 

strategy based on traffic distribution propensity. When data flows need to be 

transmitted, the strategy uses a depth-first traversal algorithm to obtain and store 

multipath information and the bandwidth and delay parameters of each path. According 

to custom traffic distribution propensity, it uses OpenFlow[69] group table technology 

to fairly distribute network traffic to each available path, effectively increasing the 

packet transmission volume of all available paths and reducing the load on single paths 

in the SDN network. Xiao Junbi et al. [70] proposes an SDN-based dynamic priority 

multipath scheduling algorithm. This algorithm formulates scheduling models for 



 

        

        

      

        

         

      

          

    

          

       

 

  

          

            

         

        

   

         

     

   

        

  

 

         

      

     

        

     

          

       

    

     

        

  

elephant flows and mouse flows based on traffic characteristics, combines group 

tables to optimize the communication mode between the controller and switches in the 

SDN architecture, reduces packet processing delay, and improves overall network 

performance. Zhou Jie[71] proposes an SDN-based multipath load balancing algorithm, 

which selects the optimal path based on link weights and traffic thresholds and makes 

real-time adjustments. Compared to traditional routing algorithms, it significantly 

improves bandwidth utilization and average delay. Most of the above SDN multipath 

routing studies are based on improvements to the Dijkstra algorithm or by considering 

the forwarding paths of all flows and selecting multiple paths with lower load for 

forwarding, resulting in large computational overhead and low efficiency, making them 

unsuitable for large network topologies. 

2.4.2 SDN Routing Optimization Based on Supervised Learning 

Supervised learning is a labeled learning technique that establishes a system model 

based on given data and labels, completing training based on the mapping relationship 

between input and output, and subsequently predicting results by inputting new data 

into the system model[72]. Common supervised learning methods include neural 

networks[73], Support Vector Machines (SVM)[74], K-Nearest Neighbor (KNN)[74], 

random forests[75], and decision trees[76]. SDN routing optimization based on 

supervised learning mainly adopts deep neural network methods, which input network 

topology status, traffic matrices, link utilization, delay, throughput, and other 

information into a deep neural network model. After the deep neural network is trained 

to converge, it outputs the decision results. 

Raikar et al.[77] propose SDN routing optimization based on machine learning, using 

three different supervised learning models: SVM, nearest centroid, and naive Bayes 

for data traffic classification in SDN architecture applications. By capturing network 

traffic trajectories to generate traffic features and sending them to the classifier for 

prediction, the results show that the prediction accuracy of SVM is 92.3%, nearest 

centroid is 91.02%, and naive Bayes is 96.79%. Xin et al.[78] propose a novel 

incremental routing scheme that removes visited nodes during each node selection 

process, employing pointer networks and transformer attention models for research. 

By modifying a layer of attention, an approximate incremental transformer attention 

model is further proposed, which can be trained on larger network instances and 

outperforms advanced deep models with greedy decoding strategies. Zhang et al.[79] 



 

         

       

         

         

         

     

    

         

          

     

   

 

        

     

          

       

      

 

  

         

       

        

       

         

   

        

       

          

  

 

           

    

 

        

study a routing decision scheme based on deep belief networks, used for backbone 

network routing optimization. Compared with traditional routing schemes, it converges 

faster and has lower information exchange costs. Modi and Swain[80] propose a deep 

learning routing algorithm based on CNN. This algorithm outputs intelligent paths by 

online training traffic patterns. Compared to the traditional routing algorithm OSPF, the 

average network throughput nearly doubled, and the average network throughput 

increased by about 40% compared to Artificial Neural Networks (ANNs). Additionally, 

the average network delay and packet loss rate are better than those of the ANN model. 

Tang et al.[81] propose an intelligent routing algorithm based on SDN's graph 

convolutional neural network, which improves network performance indicators such as 

delay and throughput to some extent. 

The above-mentioned SDN routing optimization methods based on supervised 

learning, especially neural networks, have improved network performance such as 

transmission delay, throughput, and packet loss rate in SDN routing optimization. 

However, the training process requires a large amount of labeled data, which demands 

high computational complexity. The accuracy, generalization, and fault tolerance of 

routing still need improvement. 

2.4.3 SDN Routing Optimization Based on Reinforcement Learning 

Reinforcement learning is an important branch and effective tool of machine learning. 

Deep reinforcement learning is based on the fundamental theory of reinforcement 

learning, using deep neural networks to replace traditional decision functions, 

leveraging the powerful fitting capabilities of deep neural networks to train the learning 

process[82]. In the SDN routing optimization process based on reinforcement learning, 

network topology, traffic matrices, and other factors are regarded as network states, 

and link weights are considered as actions. Rewards are based on network 

performance optimization goals or user service quality, and through continuous training, 

a complete algorithm model is formed. When new data flows arrive, the optimal path 

meeting the optimization goals can be quickly calculated. 

Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM. 

This mechanism improves throughput and reduces latency through continuous-time 

black-box optimization. Experimental results show that DROM has good convergence 

and effectiveness, providing better routing configuration than existing solutions. Xu et 



 

        

     

     

       

     

           

       

  

 

           

       

       

         

     

      

       

 

      

      

         

       

     

           

      

      

         

         

       

       

         

     

 

 

al.[84] propose a DRL-based routing method for experience-driven networks, DRL-TE, 

to solve traffic engineering problems. DRL-TE jointly learns the dynamic network 

environment and makes decisions under the guidance of deep neural networks. 

Experimental results show that DRL-TE is robust to network changes, significantly 

reducing end-to-end delay and continuously improving network utility while providing 

better throughput. Ding et al.[85] study a routing selection method based on deep 

reinforcement learning under large-scale network traffic, achieving minimized data 

transmission paths while avoiding link congestion and improving network throughput. 

Sun et al.[86] propose an intelligent routing technology based on deep reinforcement 

learning called SmartPath. By dynamically collecting network states and using deep 

reinforcement learning to automatically generate routing policies, SmartPath ensures 

that routing policies can dynamically adapt to network traffic changes. Experimental 

results show that SmartPath can dynamically update network routing without relying 

on manual traffic modeling, reducing average end-to-end transmission delay by at least 

10% compared to current optimal solutions. Hu et al.[87] propose an SDN-based 

intelligent-driven network architecture that optimizes network delay and throughput as 

objectives, effectively improving network load balancing compared to traditional routing 

algorithms OSPF and ECMP. Huang et al.[88] propose a near-optimal traffic control 

method for QoS optimization in SDN, using DRL algorithms to solve SDN multipath 

routing problems. By setting OpenFlow group bucket constraints to achieve traffic 

allocation ratios, the results show significant improvements in network QoS 

performance such as delay, jitter, and link utilization. Tang et al[89] proposes an SDN-

based intelligent network energy consumption optimization method, which reduces 

network energy consumption by adjusting the activation and sleep of network devices 

through coordinated sleep techniques. However, this increases the load pressure on 

the control plane during device activation and sleep adjustments. Additionally, Yao et 

al.[90] propose an energy-saving topology optimization algorithm for control plane 

performance optimization, designing traffic-aware and device sleep techniques to align 

control plane load and data plane energy consumption, achieving an energy-saving 

topology. However, frequent switching of device activation and sleep in switches can 

cause some delay overhead. 



 

      

 

     

       

         

      

        

       

      

      

         

 

    

            

       

         

        

    

         

      

      

      

    

         

        

       

 

 

     

        

     

          

       

      

The above intelligent routing algorithms have certain advantages in network 

performance such as delay, throughput, and link utilization when facing small network 

state inputs. However, in the complex network environment with continuously 

expanding network scale, these intelligent routing algorithms often have low 

convergence efficiency, and network performance such as average end-to-end delay 

and throughput still need improvement. Additionally, these intelligent routing algorithms 

have weak generalization capabilities when training experience is extended to different 

network topologies, making it difficult to cope with complex issues such as link 

interruptions and node failures. Current intelligent routing algorithms focus on load 

balancing routing optimization, often neglecting network energy-saving optimization, 

making it challenging to balance both network performance and energy-saving routing 

optimization. 

2.4.4 SDN Routing Optimization Based on Deep Reinforcement Learning Algorithms 

Zhao et al.[91] designed an intelligent routing method based on deep reinforcement 

learning, which effectively alleviates network congestion and achieves network load 

balancing. Chen et al.[92] addressed the issue of modeling complex and dynamic 

networks by proposing a deep reinforcement learning algorithm based on DDPG (Deep 

Deterministic Policy Gradient). This algorithm divides the network into uplink and 

downlink, introducing multiple new features to form the state space. The action space 

consists of the intersections of paths between source and destination switches in the 

uplink and downlink networks. The reward function optimizes the delay and throughput 

of the uplink and downlink networks, achieving optimal routing decisions in SDN traffic 

engineering. Considering that traditional traffic engineering requires rerouting as many 

data flows as possible to ensure optimal network performance, but frequent rerouting 

brings network interference and other issues, Zhang et al.[93] proposed a critical flow 

rerouting reinforcement learning algorithm (CFR-RL) based on the actor-critic 

framework. 

The CFR-RL algorithm selects some critical flows for rerouting, while most flows are 

forwarded by equal-cost multi-path (ECMP), effectively solving the problem of 

decreased network service quality and interference caused by frequent rerouting. Fu 

et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low 

latency and low packet loss for mouse flows and high throughput and low packet loss 

for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement 



 

        

          

      

     

   

     

      

        

     

  

 

       

     

         

     

      

       

      

    

   

  

         

   

   

    

      

    

         

        

      

        

     

learning routing algorithm, considering the SDN controller cache as a key factor 

affecting routing strategies. By restructuring the cache and bandwidth with quantifiable 

scores to reduce latency, this algorithm forms a multi-dimensional state space, 

improving network throughput and robustness. Hossain et al.[95] designed an 

intelligent situational awareness routing algorithm that uses intelligent sensing 

algorithms to reduce the impact on application-driven program QoS when the network 

is under attack, effectively enhancing network reliability. Yu et al.[96] designed a 

customizable, adaptive routing optimization strategy based on deep reinforcement 

learning mechanisms and black-box techniques, effectively reducing network 

management and maintenance costs. 

By combining deep learning and reinforcement learning techniques, the previously 

mentioned algorithms efficiently overcome the drawbacks of Q-table-based 

approaches. They also speed up model convergence and improve the system's 

capacity to manage and adjust to intricate, high-dimensional dynamic network 

environments, ultimately leading to improved network performance. These techniques, 

however, do not take into account how intelligent routing optimization algorithms might 

be affected by alterations in network traffic conditions in the future. Additionally, some 

techniques produce link weight values as actions, necessitating additional 

computations to determine the routing paths. 

2.4.5 Summary 

Section 2.4 addresses the strategies and technologies used in SDN routing, including 

the implementation of machine learning techniques to enhance routing decisions. 

2.5CHAPTER SUMMARY 

This chapter has systematically explored the various dimensions of Software Defined 

Networking (SDN), from its fundamental architecture to advanced routing optimization 

techniques. SDN's flexibility and efficiency over traditional network architectures are 

evident, with its ability to adapt quickly to new business demands and manage network 

traffic dynamically. The exploration of SDN controllers and their distinctive features 

underscores the diversity of options available for network customization and 

optimization. The discussion on SDN routing strategies, particularly those leveraging 

machine learning, reveals a promising direction for future network management, 



 

        

 

 

    

     

    

       

     

 

      

  

focusing on automation and intelligent decision-making to enhance performance 

metrics. 

This chapter addresses the limitations of traditional routing methods that rely on limited 

network link information for routing decisions, have poor adaptability to dynamic and 

complex network changes, and lack flexibility in adjusting routing strategies. The 

method it suggests is based on Dueling DQN reinforcement learning and network traffic 

state prediction (DRL-TP, Deep Reinforcement Learning-Network Traffic State 

Prediction), and it is an SDN intelligent routing technique. By acquiring global network 

link state information, this method achieves real-time adaptive generation of optimal 

routing decisions. 



 

  
      

         

   

       

       

       

       

         

       

       

 

 

      

           

     

       

  

      

 

 

      

      

      

    

       

      

   

 

       

     

       

CHAPTER 3 - RESEARCH METHODOLOGY 
This section outlines the experimental and theoretical methods employed to assess 

the performance and efficacy of Dueling DQN and GRU-based SDN routing strategies. 

3.1RESEARCH METHOD 

In this project, we employ a multifaceted research method that integrates Software 

Defined Networking (SDN) and advanced reinforcement learning techniques, 

specifically Dueling Deep Q-Networks (Dueling DQN), to enhance routing decisions 

through intelligent traffic prediction. Our project design capitalizes on the flexibility of 

SDN which separates the control and data planes, enabling centralized network traffic 

management. The Dueling DQN approach optimizes routing by distinguishing between 

state values and the advantages of specific actions, thus improving decision-making 

in dynamic network conditions. 

We conduct experiments in a simulated network environment using tools like Mininet 

and the Ryu SDN controller, which facilitate the testing of our model under various 

traffic scenarios. Traffic matrices are collected to provide real-time and historical data 

for training the Dueling DQN model and evaluating network performance against 

traditional and other RL-based methods. The effectiveness of our proposed method is 

measured through key performance indicators including throughput, latency, and 

packet loss. 

The research strategy is experimental. Our results are analyzed to refine the Dueling 

DQN model, ensuring it effectively aligns with actual network dynamics. Additionally, 

scalability and robustness tests are carried out to confirm the model's efficacy in larger 

and more complex networks, as well as its resilience in adverse network conditions. 

This comprehensive approach not only advances the field of network management but 

also offers practical insights into the deployment of machine learning techniques within 

SDN frameworks for real-time adaptive network optimization. 

The research onion framework illustrated in the Figure 9 encapsulates the 

comprehensive methodology adopted for this project, structured across several layers. 

Each layer represents a specific stage of the research process, detailing the underlying 



 

     

  

   

 

  

     

  

 

 

   

 

  

        

       

  

  

     

    

       

 

      

       

 

philosophies, approaches, strategies, choices, time horizons, and techniques and 

procedures. 

Figure 9 Layers of the Onion Diagram for Research Methodology 

3.1.1 Philosophy 

The project adopts a realism approach, suitable for quantitative analysis 

of observable phenomena within predefined frameworks. The research utilizes 

this philosophy to leverage its structured, objective nature, ensuring rigorous 

quantification of network performance metrics. Challenges associated with 

a potentially narrow scope are mitigated by incorporating diverse network 

scenarios. 

3.1.2 Approaches 

The research follows a deductive approach, starting with the hypothesis that the 

Dueling DQN-based intelligent routing method will outperform traditional routing 

methods. The hypothesis is then tested through systematic experiments. 

3.1.3 Strategies 

Experiment: The primary strategy involves conducting experiments to collect 

performance data of different routing algorithms under various network conditions. 

These experiments are designed to provide empirical evidence supporting the 

hypothesis. 

Software Development: A significant part of the research involves developing 

software for implementing and testing the proposed DRL-TP intelligent routing 

algorithm. 



 

  

      

       

 

  

        

         

 

   

      

           

     

  

          

    

  

      

       

 

 

          

   

      

 

 

      

      

 

 

  

   

 

  

 

3.1.4 Choices 

Mixed Methods: Although primarily quantitative, the project also involves some 

qualitative assessment of the algorithms' performance to provide a comprehensive 

evaluation. 

3.1.5 Time Horizons 

Cross-sectional: The experiments are conducted at specific intervals, providing 

snapshots of the network performance at various points in time. This approach helps 

in understanding the immediate impact of the routing algorithms. 

3.1.6 Techniques and Procedures 

Data Collection and Evaluation: Data is collected through network simulations, using 

tools like Mininet and Ryu to create the SDN environment and Iperf to generate traffic. 

The collected data includes metrics such as throughput, delay, and packet loss rate. 

3.1.7 Contingency Plans 

Alternative Algorithms: In case the Dueling DQN-based approach does not perform as 

expected, alternative DRL algorithms such as PPO (Proximal Policy Optimization) or 

A3C (Asynchronous Advantage Actor-Critic) will be considered. 

Extended Data Collection: If initial data collection proves insufficient or inconclusive, 

additional data collection phases will be implemented to ensure robust and 

comprehensive results. 

Hybrid Methods: Combining DRL with other machine learning techniques, such as 

supervised learning for specific sub-tasks, to enhance overall performance. 

Simulation Environment Adjustments: Modifying the network simulation environment 

to include different types of network traffic and topologies to test the robustness of the 

proposed routing algorithm under various conditions. 

Expert Review: Engaging domain experts to review methodology and results, providing 

insights and recommendations to address potential issues and improve the research 

approach. 

3.1.8 Risks and Limitations 

The main risks involve the potential discrepancies between simulated envi-

ronments and real-world network operations. Strategies to counteract these 

risks include rigorous scenario testing and validation against baseline models. 

Validity, Reliability, Generalisability 



 

  

 

  

 

   

 

 

       

          

    

       

      

          

           

       

     

  

   

 

 

  

⚫ Validity: The experimental setup is designed to accurately reflect re-

alistic network behaviors. 

⚫ Reliability: Consistency of results will be ensured through replication 

of experiments and methodological transparency. 

⚫ Generalisability: Results will be discussed in terms of their applica-

bility to similar technological environments and configurations. 

The Gantt chart for the SDN Routing Strategy Project, as shown in Figure 10, 

visualizes the project timeline and the scheduling of different phases from April 2024 

through September 2024. The project begins with Data Collection in April, followed by 

the development of the Dueling DQN model in late April and early May. Experiment 

setup occurs briefly in mid-May. Testing and evaluation is the longest phase, starting 

in late May and continuing through mid-July. Data Analysis is scheduled for July, 

overlapping slightly with the end of testing. Finally, Report Writing is planned for late 

August into early September, concluding the project's scheduled activities. Each phase 

is color-coded, allowing for a clear visual representation of the project's progression 

over the specified months. 

Figure 10 Gannt Chart 

3.2RESEARCH MATERIALS 



 

  

 

        

         

       

      

    

    

 

  

 

        

     

         

     

       

 

  

       

        

      

           

       

      

        

     

 

   

   

       

    

3.2.1 Hardware Devices 

Computer Cluster: 

The experiments were conducted on a cluster composed of multiple high-performance 

computers, each equipped with an Intel Core i9 processor and 32GB RAM. These 

computers were interconnected via Gigabit Ethernet to simulate high traffic and high 

throughput conditions in a real network environment. The high processing power and 

large memory capacity of the computer cluster ensure that complex network 

simulations and large-scale data processing can be performed efficiently. 

3.2.2 Network Devices 

OpenFlow Switches: 

Hardware switches supporting the OpenFlow protocol were used to construct the 

experimental network topology. These switches are highly programmable and can 

flexibly forward and process data packets according to instructions from the control 

plane. By using OpenFlow switches, precise control and management of network traffic 

can be achieved, effectively verifying the performance of the intelligent routing 

algorithm under various network conditions. 

3.3CHAPTER SUMMARY 

This chapter provided a detailed description of the research materials, including the 

datasets, software, and hardware used in this project. The justification for the chosen 

materials emphasized their relevance and suitability for the research objectives, 

ensuring that the project is based on high-quality, reliable data and state-of-the-art 

computational tools. Ethical considerations were addressed, ensuring compliance with 

data usage guidelines and ethical standards. This comprehensive approach to 

selecting and utilizing research materials sets a solid foundation for the subsequent 

chapters on the design, implementation, and evaluation of the proposed model. 

CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING 

4.1 ARCHITECTURE AND MODEL DESIGN" 

This section introduces the architecture and modeling of SDN-based intelligent routing 

optimization, as well as the detailed design process of intelligent routing algorithms. 



 

   

     

        

     

     

     

     

       

            

         

 

   

       

    

     

      

 

   

   

 

  

  

  

 

   

  

 
 

  

  

 

  

          

     

4.1.1 Parameter Collection Design 

OpenFlow switches are equipped with various counters to record statistical information 

such as the number of different types of packets, byte counts, and time information, as 

shown in Table 3. These counters include per-port, per-flow table, and per-flow entry 

statistics. The controller can periodically query and retrieve counter statistics from 

OpenFlow switches using statistics messages defined by the OpenFlow protocol. This 

statistical information is very useful for network performance monitoring and 

troubleshooting. For example, administrators can check whether the input and output 

byte counts on a switch port are equal to determine if there is congestion in the network. 

These statistics can also be used to measure network performance metrics such as 

packet loss rate and throughput. 

OpenFlow statistics messages include Port-Stats messages, Flow-Stats messages, 

Aggregate-Stats messages, Queue-Stats messages, Group-Stats messages, Meter-

Stats messages, and Table-Stats messages. These messages can be used to obtain 

statistical information from specific counters in OpenFlow switches. For instance, Port-

Stats messages can be used to obtain statistics for specific physical ports of an 

OpenFlow switch, while Flow-Stats messages can be used to obtain statistics for 

specific flow entries. 

Table 3 Counters in OpenFlow 

Type Content Bit Width 

Active Entries 32 

Per Flow Table Packet Lookups 64 

Packet Matches 64 

Received Packet Count 64 

Per Flow Entry 

Received Packet Byte 

Count 
64 

Duration (seconds) 32 

Duration (nanoseconds) 32 

4.1.1.1 Measuring link packet loss and throughput 

Port-Stats messages can be utilized to measure link packet loss rate and link 

throughput. There are two types of Port-Stats messages: Port-Stats-Request 



 

         

        

        

          

         

      

         

        

       

   

     

    

          

        

   

   

 

messages, which are used by the SDN controller to request port statistics from the 

switch, and Port-Stats-Reply messages, which are used by the switch to respond to 

the SDN controller. Specifically, the switch reads the counters of the specified port, 

obtains the port's statistics, encapsulates them in the message, and then sends the 

message to the SDN controller. In OpenFlow 1.3, the formats of Port-Stats-Request 

and Port-Stats-Reply messages are shown in Figure 11 and Figure 12, respectively. 

The controller can obtain the port statistics of an OpenFlow switch by sending a Port-

Stats-Request message, and the switch will reply with a Port-Stats-Reply message. 

The Port-Stats-Reply message includes statistics for each port, such as the number of 

received/transmitted packets (rx_packets/tx_packets), the number of 

received/transmitted bytes (rx_bytes/tx_bytes), the number of dropped packets 

(rx_dropped/tx_dropped), the number of collisions (collisions), and the port's duration 

(duration sec and duration nsec). These statistics are used to calculate the link packet 

loss rate and link throughput. By querying these statistics, the controller can monitor 

and manage the network state. 

Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3 



 

   

 

 

         

      

 

Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3 

Packet loss rate is a crucial indicator of network performance. It can be used to assess 

the quality and stability of the network, as well as for troubleshooting and performance 

optimization. 



 

   

 

 

 

   

   

 

   

    

 

   

 

   

    

  

   

          

     

          

         

Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to 

measure link packet loss rate 

Packet loss rate is a crucial indicator of network performance. It can be used to 

assess the quality and stability of the network, as well as for troubleshooting and 

performance optimization. Suppose we measure the packet loss rate of the link 

from switch S1 to switch S2 in the network topology shown in Figure 13. To obtain 

the number of packets sent by port 1 of S1 (s1_tx_packets𝑠1) and the number of 

packets received by port 2 of S2 (𝑠2_𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠s2), the OpenFlow-defined Port-

Stats-Request statistic message can be used. The controller can periodically send 

statistic requests to the OpenFlow switches to retrieve the statistics of the specified 

ports. Then, the packet loss rate over the interval between two query periods can 

be calculated using Equation (1). To achieve periodic polling, a timer can be used 

to set the query interval, triggering the query operation when the timer expires. 

𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖)−𝑟x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖−1)𝐿𝑜𝑠𝑠(𝑖 − 1, 𝑖) = 1 − (1)
𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖)−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖−1) 

In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)th and ith 

query intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠2(𝑖−1) denotes the number of packets received by switch 

S2 at the ith query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠I(𝑖) denotes the number of packets received by switch 

S2 at the (i-1)th query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠I(𝑖) denotes the number of packets sent by switch 



 

     

  

 

        

       

     

      

       

     

          

  

        

       

        

  

          

      

        

  

  

          

      

       

    

      

         

             

         

        

        

   

 

S1 at the ith query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠𝑠1(𝑖−1)denotes the number of packets sent by switch S1 

at the (i-1)th query. 

By measuring throughput, the transmission capacity, data processing capability, and 

transmission quality of the network can be evaluated, thus determining whether the 

network meets business requirements. When measuring the link throughput of 

switches, the SDN controller periodically sends Port-Stats-Request messages to the 

specified switches and retrieves the received/sent byte counts (rx_bytes/tx_bytes) 

and port duration (duration_sec and duration_nsec) from the switches' Port-Stats-

Reply messages. Using formulas (2) and (3), the throughput during the (i-1)th and ith 

query intervals can be calculated. 

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑠𝑒𝑐 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑛sec ∗ 10−9 (2) 

In these formulas, duration refers to the port's duration; duration_sec represents the 

port's duration in seconds; duration_nsec represents the port's duration in milliseconds. 

𝑏𝑦𝑡𝑒𝑠𝑖−𝑏𝑦𝑡𝑒𝑠(𝑖−1)𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡(𝑖 − 1, 𝑖) = (3)
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖−𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑖−1) 

In the formula, Throughput(i-1,i) represents the throughput during the (i-1)th and ith 

query intervals; bytesi denotes the total number of received and transmitted bytes at 

the ith query; 𝑏𝑦𝑡𝑒𝑠(𝑖−1) denotes the total number of received and transmitted bytes at 

the (i-1)th query. 

4.1.1.2 Measuring link latency 

In an SDN network, an important metric for evaluating link performance is the 

transmission latency between switches. However, because OpenFlow switches do not 

include timestamps in regular packets, it is not possible to measure transmission 

latency passively as in traditional IP networks. Therefore, an active measurement 

method is required, which involves generating and sending probe packets between 

switches to address this issue. These probe packets contain information about the 

sending and receiving times, which can be used to calculate the transmission latency 

between switches. Common probe packets include Ping packets, Traceroute packets, 

and others. By sending these probe packets and collecting their responses, 

transmission latency information between switches can be obtained, allowing for 

network performance monitoring and optimization. 



 

      

         

       

                

            

        

         

           

     

 

 

      

         

       

       

           

           

 

    

 

 

Measurement of latency in software-defined data center networks using Packet-Out 

and Packet-In messages operates on the principle illustrated in Figure 14 Schematic 

for measuring delay based on Packet-Out and Packet-In messages. The controller 

sends a probe packet to switch S1 and issues a rule for S1 to forward the probe packet 

to S2. If S2 receives the probe packet but does not have a corresponding forwarding 

rule, it will return the probe packet to the controller. By calculating the total transmission 

time of the probe packet in the path, the controller can determine the transmission 

latency of the link from S1 to S2. Compared to the passive measurement methods 

used in traditional IP networks, this method allows for more accurate measurement of 

the transmission latency between switches. 

To measure the transmission latency between switches, the controller sends probe 

packets and measures the total time these packets take to travel through the path. 

However, because there is also latency in communication between the controller and 

the switches, it is necessary to send communication messages and measure the 

round-trip time (RTT) between the controller and each switch. Finally, by calculating 

the difference between these times, the controller can obtain the final link latency result. 

Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In 

messages 



 

           

        

           

          

       

           

           

       

         

        

         

      

           

   

        

          

           

   

  

  

   

      

          

          

         

  

 

          

        

  

    

 

The detailed steps to measure the latency of the link from S1 to S2 are as follows: a) 

Probe Packet Transmission Time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 :To obtain the probe packet transmission 

time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙, the controller generates a probe packet containing the target forwarding 

port of switch S1 and the sending timestamp, recording the transmission path and 

sending time. These packets are encapsulated in a Packet-Out message and sent to 

switch S1. Switch S1 forwards the packet to the designated port, from where switch 

S2 receives it. When S2 receives the probe packet, the absence of a matching flow 

entry triggers a Packet-In message, encapsulating the probe packet and returning it 

to the controller. The controller calculates the total transmission time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 in the 

"controller—S1—S2—controller" path using the probe packet's timestamp and the 

time when the probe packet is received. b) Round-Trip Time (RTT) Measurement 

Between Controller and Switches: The controller generates an Echo Request 

message and sends it to switches S1 and S2, waiting for Echo Reply messages and 

recording the timestamps when the messages are received. Finally, it calculates the 

RTT. c) Link Latency Calculation: Based on the above measurements, we can use 

Equation (4) to calculate the latency between switches S1 and S2. This latency can 

be represented as the total time T_{delay} for the probe packet to be issued by the 

controller to S1, then from 𝑇𝑑𝑒𝑙𝑎𝑦, and finally back to the controller. 

𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2𝑇𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 − 
2 

(4) 

4.1.2 Intelligent routing algorithms 

4.1.2.1 Deep Reinforcement Learning Algorithms 

The framework of deep reinforcement learning (DRL) algorithms necessitates the 

creation of distinct state spaces, action spaces, and reward functions for a range of 

issues and use cases. The state space, action space, and reward function designs for 

the DRL-TP intelligent routing algorithm—which is based on the deep reinforcement 

learning framework—are explained in the following. 

State Space (S): The traffic matrix over interval t is shown by the symbol TM in the 

representation of the state space, S=TM. Equation illustrates that this matrix is made 

up of numerous two-dimensional matrices 𝑀|𝑉|×|𝑉|. 

1
𝑚𝑖𝑗 = 𝑤1 • + 𝑤2 • 𝐿𝑑𝑒𝑙𝑎𝑦𝑖𝑗 

+ 𝑤3 • 𝐿𝑙𝑜𝑠𝑠𝑖𝑗 
, 𝑖, 𝑗 = 1,2, … , |𝑉| (5)

𝐿𝑡𝑤𝑖𝑗 



 

       

   

      

       

       

        

      

   

   

 

        

        

           

       

       

       

       

         

        

       

            

      

 

          

     

Each element 𝑚𝑖𝑗 in the traffic matrix is constructed by aggregating information from 

six aspects of the network link: residual bandwidth (𝐿𝑏𝑤), delay (𝐿𝑑𝑒𝑙𝑎𝑦), packet loss 

rate (𝐿𝑙𝑜𝑠𝑠). These elements are combined using adjustable parameters ; 𝑤𝑙 ∈ [0,1], 𝑙 = 

1,2,3, which serve as weight factors for each component. Each network link information 

matrix includes link information between all switch nodes at the current time. The 

indices i and j represent the switch node names in the network topology, and |𝑉| 

denotes the number of switch nodes in the network topology. The structure of the traffic 

matrix is illustrated in Figure 15 Traffic matrix structure diagram. 

Figure 15 Traffic matrix structure diagram 

Forwarding link weights and forwarding paths make up the two main categories of 

actions in the action space. While storing a sizable action space is not necessary for 

the former, it still needs to be further transformed into forwarding paths using the 

appropriate techniques. The latter involves storing a huge action space, but it outputs 

forwarding paths immediately. Choosing a set of potential paths to serve as the action 

space is an efficient solution, as proven effective in studies [26][31][33][43]. The action 

space designed in this chapter improves upon the latter approach, directly outputting 

forwarding paths. Each action 𝑎𝑡 ∈ [0,1, … , 𝑘] corresponds to the selection of a 

forwarding path in state 𝑠𝑡 ∈ 𝑆, where = ⌈0.1 ⋅ |𝑉| ⋅ |𝑉|⌉ candidate path matrices 𝐶|𝑉|∝|𝑉| 

are composed. The paths from every source switch node to every destination switch 

node are included in each potential path matrix. From switch node i to switch node j, 

the 𝑝𝑎𝑡ℎ𝑖𝑗 = [𝑖, … , 𝑗] is represented by the entries in each potential path matrix. 

The reward value is used to provide feedback on the quality of actions supplied by 

the neural network, typically evaluating the current network conditions and the 



 

          

         

       

  

  

           

          

        

         

        

            

            

  

 

  

  

    

   

   

   

     

       

            

           

          

        

        

             

              

                     

 

       

actions taken by the agent. It can be set to optimize various objective functions as 

needed. In this method, average end-to-end delay, bandwith, and packet loss rate 

are used as the comprehensive evaluation metrics. The reward value is calculated 

as shown in Equation (6): 

𝑅 = 𝜑1 • 𝐿𝑏𝑤 − 𝜑2 • 𝐿𝑑𝑒𝑙𝑎𝑦 − 𝜑3 • 𝐿𝑙𝑜𝑠𝑠 (6) 

In Equation (6), 𝜑1, 𝜑2, and 𝜑3 are weight parameters, each ranging from 0 to 1. The 

calculation process can adjust these weights according to the importance of each 

performance metric. After calculating the reward value, the result is returned to the 

agent, which then adjusts the multipath routing link weights and traffic splitting ratios. 

During the model training convergence process, the reward value is accumulated 

over the increasing number of training steps. The rising trend of accumulated reward 

values and the total reward value can be used to judge the convergence efficiency 

of the training model. 

Algorithm 1: DQN Deep Reinforcement Learning Algorithm 

Input: Traffic matrix: TM 

Output: Forwarding paths for all source-destination pairs in the network 

1. Initialize policy network Q_policy and target network Q_target with weights θ, 

and experience pool M 

2. For episode = 1 to episodes do: 

3.  The agent obtains the initial state St 

4. While next_state St+1 is not final state do: 

5.  Update exploration parameter ε = ε - (steps * decay) 

6.  The agent selects action at for current state st based on: 

7.  The estimated reward R(st, at) 

8.  Store experience Experiences = (st, at, rt, st+1) into M 

9.  If len(M) >= batch then: 

10. Sample batch data randomly from M 

11.  Calculate pvalue and tvalue for the batch 

12. Execute gradient descent on (tvalue - pvalue)^2 to update Q_policy weights 

θ 

13.  If steps % freq == 0 then: 



 

               

 

       

        

    

  

 

  

        

   

         

      

     

     

         

         

         

          

        

       

           

      

             

   

  

            

          

   

            

      

         

        

14. Update Q_target network model parameters, θ_{target} ← τ * θ_{policy} 

+ (1-τ) * θ_{target} 

15.  End if 

16.  s_t ← s_{t+1} 

17. End while 

18. End for 

4.1.3 GRU 

Gated Recurrent Unit (GRU) [97] is a variant of the Long Short-Term Memory (LSTM) 

network. As shown inFigure 16 GRU structure diagram, the GRU consists of two 

special gates: the update gate and the reset gate. The GRU network model contains 

fewer parameters than the LSTM network model, which not only lowers the possibility 

of overfitting in the prediction model but also speeds up its convergence. This makes 

it more suitable to satisfy the intelligent routing algorithm's real-time traffic matrix 

acquisition needs, which are the focus of this research. As a result, GRU is used in 

this project as the network traffic state prediction model. The main functions of the 

two special gates in GRU are introduced below. The update gate can be z 𝑡 

understood as a combination of the forget gate and the input gate in LSTM. It 

determines which state information should be discarded or retained and the 

importance of that state information. As shown in equation (7), the update gate z𝑡 

takes the state information from the hidden layer at the previous time step and the 

current time step's input layer information [ℎ𝑡−1, 𝑋𝑡] and, through the sigmoid function 

σ, outputs a value between [0,1] to decide the extent to which the information in the 

cell state 𝑧𝑡 should be retained. 

𝑧𝑡 = 𝜎(𝑊𝑧 • [ℎ𝑡−1, 𝑋𝑡] + 𝜔𝑧) (7) 

The reset gate 𝑟𝑡 functions similarly to the update gate and is used to determine the 

next hidden state 𝑟𝑡. First, according to equation (8), it outputs a value between [0,1] 

to decide the retention level of 𝑟𝑡. Then, 𝑟𝑡 is used to reset the previous hidden state 

ℎ𝑡 − 1 to obtain the candidate hidden state, as shown in equation (9). The symbol ⊙ 

denotes element-wise multiplication of the corresponding values in the matrices, 

followed by summation. Finally, according to equation (10), the next hidden state ℎ𝑡 

is obtained and passed to the neurons in the next time step. This process continually 



 

     

  

  

  

  

   

 

     

     

       

      

   

          

        

      

  

 

  

  

    

 

updates the weight parameters of the GRU network model, thereby enhancing its 

ability to predict the network traffic state. 

1( [ , ])t r t tr h X  −=  (8) 

1tanh( [ , ])t h t t th r h X −=  (9) 

1(1 )t t t t th z h z h−= − + (10) 

Figure 16 GRU structure diagram 

Start by setting the essential hyperparameters, including the dimensions for the input, 

hidden, and output layers which are fundamental to the GRU algorithm's structure. The 

traffic matrix is then processed through time-series operations to generate input and 

target matrices, 𝑇𝑀𝑖𝑛𝑝𝑢𝑡 and 𝑀𝑡𝑎𝑟𝑔𝑒𝑡 for the GRU model. Gradient descent and 

backpropagation are used to update the weights and biases of the GRU model during 

training, and the mean squared loss function is employed to assess the model's 

effectiveness. Upon completion, the refined GRU model is employed to produce a 

forecasted traffic matrix, integral to the traffic matrix 𝑇𝑀 in Algorithm 1, thus enhancing 

the algorithm’s predictive accuracy and efficacy. 

Algorithm 2: Network traffic status prediction algorithm 

Input: Traffic matrix: TM 

Output: Forwarding paths for all source-destination pairs in the network 

1. Initialize GRU model weights. 



 

         

 

   

   

     

      

      

      

   

  

 

   

  

         

     

         

           

         

         

         

      

          

 

 

 

       

       

   

     

          

 

2. Split the time series data TM into input (TM_input) and target (TM_target) for 

training. 

3. For each episode from 1 to n: 

4. Initialize hidden state. 

5. For each time step from 0 to the length of TM_input: 

6.  Calculate output and update hidden state using the GRU model. 

7.  Compute loss as the difference between model output and the target data. 

8.  Update the model to minimize loss. 

9. End time step loop. 

10. End episode loop. 

4.2 DATA EVALUATION METHODS 

4.2.1 Data Collection 

The process of data collection involves gathering performance data from network 

simulations to ensure a comprehensive understanding of network behavior and 

performance under various conditions. In this study, data is collected using a structured 

approach. The experimental environment is constructed using Mininet 2.3.0 to build 

the SDN topology, with Ryu 4.34 serving as the SDN controller and Iperf for simulating 

data flows. The network setup includes a modified New York City Center network 

topology consisting of 14 nodes, each representing a switch supporting the OpenFlow 

protocol, with hosts mounted under each switch. The transmission links between 

switches have bandwidths randomly set between 15 and 100 Mbit to simulate a 

heterogeneous network environment. 

In order to quantify the network traffic matrix, data flows of evenly dispersed sizes are 

generated and sent with equal probability, yielding a total of 1458 traffic matrices. 

These matrices provide a comprehensive dataset for analysis, encompassing a variety 

of network link indicators such as bandwidth, delay, packet loss rate, used bandwidth, 

number of packet dropouts, and error rate. Throughput, latency, and packet loss rate 

are important performance data that are gathered and are essential for assessing how 

well the routing algorithms being studied work. 



 

  

 

          

        

      

     

 

 

     

   

       

            

      

  

 

       

         

      

       

     

 

 

        

      

     

       

         

 

 

      

   

          

 

 

4.2.2 Data Evaluation 

In this project, data evaluation involves analyzing the collected performance data to 

assess the effectiveness of different routing algorithms within a simulated network 

environment. The primary performance metrics considered are throughput, delay, and 

packet loss rate, which provide a comprehensive view of the network's operational 

efficiency and reliability under various routing strategies. 

Throughput is evaluated by measuring the total amount of data successfully 

transmitted across the network within a specified time period. This metric is crucial for 

understanding the network's capacity to handle high volumes of traffic and is calculated 

as the number of bytes sent from one switch to another, divided by the available 

bandwidth of the link. Higher throughput indicates better network performance and 

more efficient data handling. 

Delay is another critical metric, reflecting the time taken for data packets to travel from 

the source to the destination. It is measured using the SDN controller's link discovery 

protocol, which sends echo messages to switches to obtain timestamps. These 

timestamps help calculate the total transmission time for data packets across the 

network. Lower delay values are indicative of faster data transmission, which is 

essential for time-sensitive applications and services. 

Packet loss rate is measured by comparing the number of data packets sent with the 

number received across each network link. This metric highlights the reliability of the 

network in terms of data delivery. A higher packet loss rate suggests issues with 

network reliability and may indicate problems such as congestion or poor link quality. 

The packet loss rate is crucial for applications requiring high data integrity and minimal 

data loss during transmission. 

For data evaluation, multiple measurements are taken to ensure accuracy and 

reliability of the results. The average values of packet loss rate, throughput, and delay 

are calculated from these measurements to provide a more stable and accurate 

representation of the network's performance. 



 

       

      

        

        

      

   

 

   

           

          

             

       

     

     

        

          

          

        

        

 

By comparing these metrics across different routing algorithms, including the proposed 

DRL-TP intelligent routing algorithm and traditional algorithms like Dijkstra and OSPF, 

the project aims to demonstrate the improvements in network performance brought 

about by the DRL-TP algorithm. This comprehensive evaluation helps in identifying the 

strengths and weaknesses of each algorithm and provides insights into potential areas 

for further optimization and enhancement in network routing strategies. 

4.3 EXPERIMENTAL SETUP 

In this chapter, a SDN environment was set up on a system running Ubuntu 22.04 with 

8 GB of RAM and a quad-core processor. The setup involved the installation of Mininet 

2.2.1[101] for creating the SDN network topology, and Utilizing Ryu 4.28[102] as the 

SDN controller. To simulate network traffic transmission, Iperf[103] was used. the 

network traffic flows were generated with uniformly distributed sizes under equal 

probability conditions. A total of 1458 traffic matrices were collected. As shown in 

Figure 17, the Manhattan network was modified to create the network architecture 

utilized for the experiment. This topology comprised 14 nodes, each representing an 

OpenFlow 1.3-compatible switch, with a host connected to each switch. The bandwidth 

of the links between switches was arbitrarily chosen between 15 and 100 Mbit in order 

to meet the requirements of next-generation networking and create a heterogeneous 

network environment. 



 

    

 

         

      

          

      

   

 

       

 

       

    

 

        

  

        

 

         

 

Figure 17 Network Topology Diagram 

Mininet is an open-source tool used for studying and simulating SDN. It creates a highly 

configurable and extensible network environment by utilizing a custom Linux kernel 

and user-space programs. In Mininet, SDN elements and commands play crucial roles, 

enabling users to flexibly control and manage network behavior. The primary SDN 

components in Mininet include the OpenFlow controller, OpenFlow switches, and 

virtual machines. 

Users can utilize a range of commands in Mininet to configure and control these SDN 

elements. Some commonly used commands include: 

1. mn: Used to start the Mininet simulator. By specifying different parameters, 

users can configure the network topology, the number of nodes, link bandwidth, 

etc. 

2. controller: Adds a controller node to the network. Users can specify the IP 

address, port number, and type of controller (e.g., Floodlight, Ryu). 

3. switch: Adds an OpenFlow switch node to the network. Users specify the 

switch's IP address, port number, and the version of the OpenFlow protocol. 

4. host: Adds a virtual machine node to the network. Users specify the VM's IP 

address, MAC address, and the operating system and applications used. 



 

        

 

       

 

    

 

 

      

   

     

  

 

         

         

           

       

     

          

    

5. link: Creates network connections. Users specify the two nodes to be 

connected, as well as link bandwidth and delay parameters. 

6. run: Starts the simulation and begins executing defined applications or scripts, 

allowing various network experiments and tests. 

7. pingall, tracerouteall, etc.: These commands perform specific network 

measurement tasks, such as ping and traceroute, within the network. 

Through these commands, Mininet allows users to build various network topologies 

and configurations, making it a flexible tool for network research and experimentation. 

Mininet also supports the automation of complex network operations and management 

tasks using Python scripts. 

Mininet is an open-source network emulation platform that can run on VMware virtual 

machines [98] or Ubuntu systems. Installing Mininet requires a Linux environment. The 

installation files can be obtained from GitHub [99] using the command line: git clone 

git://github.com/mininet/mininet. After installation, the following command can be run 

for verification: sudo mn --test pingall. Upon executing this command, Mininet will 

automatically create a simple SDN topology network consisting of one switch and two 

hosts and verify the communication between the nodes. 

https://git://github.com/mininet/mininet


 

    

 

 

     

        

       

       

        

    

      

  

        

Figure 18 Installation verification of Mininet 

RYU: 

The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL 

initiates the Ryu controller and runs the main.py script. The parameter --observe-links 

enables the controller to monitor the status of all network links, including their creation, 

updates, and disconnections. The --k-paths=8 parameter allows the controller to 

compute up to eight shortest paths between nodes, while --algo=DRL indicates that 

network decisions and optimizations are guided by Deep Reinforcement Learning 

(DRL). Upon execution, the Ryu controller automatically connects to an already 

launched Mininet environment, where it actively monitors and manages network links. 

This setup significantly enhances the flexibility and efficiency of the network, making it 



 

   

 

   

 

 

         

       

          

       

     

       

     

     

 

           

       

          

      

  

particularly suitable for environments that demand dynamic and complex decision-

making support. 

Figure 19 Topology Management of Ryu 

Iperf: 

Iperf is a network performance testing tool based on TCP/IP and UDP/IP, which 

measures network bandwidth and quality through command-line mode. Compared to 

the ping command [100], Iperf operates at the transport layer and provides richer test 

statements for monitoring network performance quality. Depending on the network 

administrator's needs, different parameter commands can be used to gather statistics 

on network jitter, latency, packet loss rate, average transmission bandwidth, and time-

based transmission information. These statistics help determine network performance, 

monitor bandwidth usage, locate network transmission bottlenecks, and resolve 

network issues. 

To start the Iperf server on host h1, input the following command: iperf3 -s. This 

command launches the Iperf server, which begins listening on the default port 5201. 

Other hosts can connect to port 5201 to perform network performance tests with host 

h1. Once another host connects to this port, the Iperf server will automatically respond 

and commence testing. 



 

   

 

        

       

   

 

        

  

   

     

            

        

       

   

Figure 20 Launch the Iperf server 

To test the network connection quality between host h2 and host h1, including metrics 

such as bandwidth, latency, and packet loss rate, you can input the following command 

on host h2: h2 iperf3 -c h1 -u -t 10. 

Here’s a breakdown of the command: 

• -c option specifies that Iperf is running in client mode, connecting to the 

designated server, which in this case is host h1. 

• -u option indicates that the test will use the UDP protocol. 

• -t option sets the test duration to 10 seconds. 

During the test, host h2 will send UDP data packets to host h1. After the test is 

completed, Iperf will output the results, including information on bandwidth, latency, 

and packet loss rate, providing a comprehensive assessment of the network 

connection quality between the two hosts. 



 

   

 

    

      

         

          

        

    

             

      

        

          

 

 

  

          

       

  

       

   

  

            

       

Figure 21 Test results of Iperf 

In the test results, the Interval represents the time range of the test, which is from 0 to 

10 seconds; Transfer indicates the amount of data transmitted during this interval, 

which is 1.25 MBytes; Bitrate shows the transmission speed, with the network 

transmission rate between h1 and h2 being 1.05 Mbps; Jitter measures the average 

deviation of UDP packets arriving at the receiver, assessing the stability of packet 

arrival times—smaller values indicate less variation in delay and more reliable packet 

arrival times. In this test, the jitter between h1 and h2 is 0.011 ms, indicating that the 

packets arrived at the receiver with relatively stable timing and minimal delay variation. 

Lost/Total reflects the number of lost packets versus the total number of packets 

transmitted; in this test scenario, no packet loss occurred, meaning all packets were 

successfully transmitted. 

4.4 OPTIMIZATION ALGORITHM 

In this study, the optimization algorithm is a smart routing strategy based on DRL, 

aimed at real-time optimization of network traffic distribution to enhance overall 

network performance and efficiency. This algorithm is integrated into our Ryu network 

application, `DRLForwarding`, where it continuously monitors network conditions and 

dynamically adjusts routing decisions in response to changes. 

4.4.1 Network Monitoring and Data Collection 

The operation of the algorithm depends on real-time monitoring of the network state. 

The system regularly collects various metrics about the network, including link 



 

  

        

        

 

   

 

 

  

         

           

       

       

        

        

    

        

  

utilization, latency, packet loss, etc., which are provided by the management_module. 

The collected data are stored in a dictionary managed by traffic_matrix, where each 

key corresponds to a pair of source-destination addresses, and the value is the 

performance metrics of data flows through these links. 

Figure 22 Function get_traffic_matrix 

4.4.2 Evaluation and Decision-Making 

When the execute_drl_flag is activated, the optimization algorithm begins analyzing 

the collected data. First, the algorithm verifies the integrity and format of the data 

through the check_metric_is_format method, ensuring there is sufficient data to 

support the subsequent decision-making process. Once the data verification passes, 

the algorithm uses an instance of the DRL class, invoking its 

get_optimal_forwarding_path method to calculate the best forwarding paths. This 

calculation process considers multiple network performance metrics and uses 

reinforcement learning models to select the optimal solution among several possible 

routing options. 



 

   

 

Figure 23 Function _packet_in_handler 



 

   

 

   

 

  

  

 

 

  

Figure 24 Function optimal_routing_forwading 

Figure 25 Function get_optimal_forwarding_path 

4.4.3 Routing Updates 

The calculated optimal paths are then used to update the network's routing tables. 

This process is achieved by calling the install_flow method, which installs the 

necessary flow entries on relevant network devices based on the results. To increase 

the flexibility and responsiveness of routing decisions, the system can quickly re-

execute this optimization process upon detecting significant network status changes. 



 

   

 

   

 

    

Figure 26 Function install_flow_1 

Figure 27 Function install_flow_2 

CHAPTER 5 – RESULT AND ANALYSIS 



 

       

          

    

      

  

 

 

        

 

   

 

      

       

  

     

 

  

  

   

   

This chapter delves into the experimental setup, the results obtained from the 

application of the proposed model, and a detailed analysis of these results. The chapter 

is structured into four sections: Experimental Setup, Results and Analysis, Discussion, 

and Summary. This structure ensures a comprehensive understanding of the 

methodology, performance, and implications of the findings from the study. 

5.1 RESULTS AND ANALYSIS 

Firstly, it is required to analyze how the GRU network traffic state prediction algorithm 

affects the efficiency of SDN intelligent routing techniques. 

Figure 28 A comparison between the use of GRU and its absence 

Figure 28 clearly illustrates that the agents employing the GRU prediction algorithm 

achieve notably higher rewards compared to those not utilizing the GRU prediction 

algorithm. 

Table 4 Comparison of Reward Performance With and Without GRU Over 

Episodes 

Episodes Reward with 

(Normalized) 

GRU Reward without 

(Normalized) 

GRU 

0 40 40 

500 60 55 



 

   

   

   

 

           

       

       

           

         

       

 

 

      

    

    

      

    

        

        

              

        

         

       

    

1000 75 70 

1500 90 85 

2000 100 95 

The Table 4 displays the performance comparison of an agent in a root controller 

using a GRU versus not using it across 2000 episodes. Both strategies start with a 

similar reward score around 40. However, the agent using GRU shows a more 

pronounced improvement over time, achieving a higher normalized reward of 100 by 

the 2000th episode, while the agent without GRU reaches a score of 95. The 

progression suggests that employing a GRU in the controller enhances learning 

efficiency and overall reward attainment in this context. 

Value-based and policy-based approaches are the two main types of model-free DRL 

approaches. Probabilistically choosing actions, policy-based DRL algorithms perform 

best in high-dimensional, continuous action spaces, but they are prone to local 

convergence and ineffective policy evaluation. Conversely, value-based DRL 

algorithms select actions based on the highest value, allowing for swift adjustments in 

action strategies as state values evolve, thus achieving global convergence more 

rapidly and performing well in discrete action spaces. In this chapter, given the discrete 

nature of the action space, composed of candidate path matrices, and the need for 

SDN-based intelligent routing methods to make real-time optimal routing decisions, the 

DRL module within the DRLTP intelligent routing algorithm employs the value-based 

Dueling DQN algorithm. To validate this algorithm's performance in experimental 

settings, it is compared against the policy-based DDPG algorithms. 



 

   

 

 

   

    

 

  

 

   

   

   

   

   

 

          

      

        

Figure 29 Comparison of Dueling DQN and DDPG 

Table 5 Comparison of Dueling DQN and DDPG 

Episodes Dueling DQN Reward 

(Normalized) DQN 

DDPG Reward 

(Normalized) 

0 35 30 

500 45 42 

1000 50 45 

1500 55 50 

2000 55 45 

The Table 5 and Figure 29 presents a visual representation of the normalized reward 

trajectories of two reinforcement learning algorithms over 2000 episodes. Initially, 

Dueling DQN starts with a reward level around 35, suggesting an early phase of 



 

     

          

          

       

 

 

        

        

     

        

 

    

 

 

        

      

  

     

 

 

    

       

       

       

 

 

       

          

  

 

      

             

        

 

learning and adaptation, while DDPG begins at 30, indicating a potentially slower start. 

As the episodes progress, both algorithms demonstrate an upward trend in rewards, 

with Dueling DQN consistently outperforming DDPG by a margin of 3 to 5 points, which 

may reflect its more effective state value estimation or a superior policy gradient 

method. 

Around episode 1000, Dueling DQN peaks close to 50, showcasing its ability to 

leverage its architecture, which separately assesses the state's value and the 

advantages of different actions. This peak is followed by a decline, indicating 

encounters with new complexities or a shift in the balance of exploration and 

exploitation. However, Dueling DQN recovers and stabilizes at around 55 towards the 

final episodes, suggesting a better handling of environmental complexities and 

uncertainties. 

In contrast, DDPG exhibits sharper fluctuations and a significant drop after its peak, 

stabilizing at a lower reward level of about 45. This indicates a potential sensitivity to 

environmental stochasticity or suboptimal parameter settings for this task. The 

smoother performance curve of Dueling DQN might reflect the stability added by its 

architecture, leading to more consistent policy improvement. 

Overall, Dueling DQN not only achieves higher average performance but also exhibits 

greater stability compared to DDPG, which can be advantageous in real-world 

applications where consistent performance is crucial. The data provides valuable 

insights into the learning dynamics of both algorithms, highlighting areas for further 

refinement and potential applications. 

The Dijkstra, Open Shortest Path First (OSPF), and DRL-TP intelligent routing 

algorithms are the three that are compared in this chapter. The following is a summary 

of each algorithm's design principles: 

Dijkstra Routing Algorithm: When building an SDN network design, each switch 

node is given a link weight W of 1. The goal is to determine the best path for routing 

decisions, which is the route that requires the fewest hops between each source and 

destination switch node. 



 

 

    

      

          

   

 

     

         

     

      

      

          

  

 

   

 

   

  

  

 

 

 

  

 

    

    

OSPF Routing Algorithm: Utilizing the multi-threaded network measurement 

mechanism of SDN, this algorithm captures the latency of each link in real-time. Based 

on the latency data, it computes all potential paths from source to destination switch 

nodes, selecting the path with the fewest hops as the optimal routing path. 

Three metrics—network throughput, latency, and packet loss rate—created specifically 

for the SDN controller environment were used to assess how these three routing 

methods affected network performance. The comparative findings of network 

throughput under different traffic flow volumes are shown in Figure 30. The findings 

show that while the throughput for all three algorithms rises as the traffic flow size does, 

the DRL-TP intelligent routing algorithm's growth trend is noticeably more pronounced 

than Dijkstra's and OSPF's, indicating its higher adaptability and efficiency. 

Figure 30 Comparison of the network throughput 

Table 6 Throughput Comparison 

Sending Flow Size 

(Mbit/s) 

Dijkstra 

Throughput 

(Mbit/s) 

OSPF Throughput 

(Mbit/s) 

DRLA Throughput 

(Mbit/s) 

20 22 24 26 

40 35 38 40 



 

    

    

    

 

       

         

       

         

          

         

      

 

 

   

 

    

 

 

  

 
  

    

    

    

    

60 48 52 55 

80 62 67 72 

100 77 82 88 

This Table 6 illustrates the throughput performance of three different routing 

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20 

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both 

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network 

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s 

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size, 

demonstrating robust scalability and effective performance under increasing network 

loads. 

Figure 31 Comparison of the network delay 

Table 7 Delay Comparison 

Sending Flow 

Size (Mbit/s) 

Dijkstra Delay 

(ms) 
OSPF Delay (ms) DRLA Delay (ms) 

20 22 23 20 

40 24 25 22 

60 26 27 24 

80 28 30 26 



 

    

         

         

       

        

        

         

      

 

 

   

   

 

   

   

  

  

 

 

 

  

 

    

    

    

    

    

 

       

         

       

         

          

         

      

 

 

100 32 34 28 

The Table 7 shows that as the size of the sending traffic increases from 20 Mbit/s to 

100 Mbit/s, DRLA always shows the lowest latency, starting from 20 ms and increasing 

to a size of only 28 ms at the highest traffic, proving its superior efficiency in reducing 

the transmission time compared to Dijkstra and OSPF. Dijkstra's latency increases 

from 22 ms to 32 ms, while OSPF's latency is slightly higher, starting at 23 ms and 

increasing to 34 ms. This development suggests that DRLA may be able to better 

optimise for applications that require low latency, as it is able to better control the 

increase in latency even when the network is under increased load. 

Figure 30 demonstrates the trends in network throughput under three routing 

algorithms—Dijkstra, OSPF, and the DRL-TP intelligent routing algorithm—as the 

traffic flow increases. Notably, the throughput under the DRL-TP algorithm shows a 

significant increase compared to the Dijkstra and OSPF algorithms. 

Table 6 Throughput Comparison 

Sending Flow Size 

(Mbit/s) 

Dijkstra 

Throughput 

(Mbit/s) 

OSPF Throughput 

(Mbit/s) 

DRLA Throughput 

(Mbit/s) 

20 22 24 26 

40 35 38 40 

60 48 52 55 

80 62 67 72 

100 77 82 88 

This Table 6 illustrates the throughput performance of three different routing 

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20 

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both 

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network 

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s 

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size, 

demonstrating robust scalability and effective performance under increasing network 

loads. 



 

     

           

   

        

        

         

      

  

      

  

   

 

    

     

    

    

    

    

    

 

         

      

Figure 31 further compares these routing algorithms concerning network latency. The 

Dijkstra algorithm, which focuses solely on the shortest hop count for routing decisions, 

experiences an exponential increase in network latency as traffic flow increases due 

to congestion along the chosen paths. Since OSPF takes link delay into account and 

can dynamically modify routing based on the status of the connections, the latency 

under the OSPF algorithm is similar to that under the DRL-TP algorithm when the traffic 

flow ranges between 10Mbit/s and 40Mbit/s. However, the delay under OSPF rapidly 

surpasses the DRL-TP algorithm's as traffic volume increases. This happens as a 

result of OSPF's limited consideration of single link delay measurements while making 

routing decisions, which is insufficient in situations with significant traffic. 

Figure 32 Comparison of the network packet loss rate 

Table 8 Packet Loss Rate Comparison 

Sending Flow 

Size (Mbit/s) 

Dijkstra Packet 

Loss Rate (%) 

OSPF Packet 

Loss Rate (%) 

DRLA Packet 

Loss Rate (%) 

20 2 3 1 

40 3 4 2 

60 4 5 3 

80 6 7 4 

100 8 9 5 

This Table 8 shows a clear comparison of packet loss rates across three different 

routing algorithms—Dijkstra, OSPF, and DRLA—as network load increases. DRLA 



 

        

 

           

        

      

         

         

 

 

   

    

        

  

        

      

       

          

            

       

 

 

  

  

   

  

  

 

 

 

  

 

    

    

    

    

demonstrates the most efficient handling of network traffic, maintaining the lowest 

packet loss rate throughout all tested flow sizes. It starts at a 1% packet loss at a flow 

size of 20 Mbit/s and scales up to a 5% loss at 100 Mbit/s. In contrast, Dijkstra starts 

with a 2% loss rate and increases to 8%, while OSPF begins at 3% and reaches 9% 

under the same conditions. The increasing trend in packet loss rates as flow size 

increases illustrates the challenges each routing algorithm faces in managing higher 

network congestion, with DRLA showing a better performance in minimizing data loss 

across the network. 

The DRL-TP intelligent routing algorithm, by integrating multiple network metrics such 

as bandwidth, latency, and packet loss rates, effectively prevents routing congestion 

even under high traffic loads, significantly enhancing network performance. Figure 32 

compares the packet loss rates under the three algorithms. At traffic flows of 10Mbit/s 

to 20Mbit/s, the packet loss rates are similar across all algorithms since most links can 

handle the data packets normally. However, as traffic further increases, the routing 

choices based on the Dijkstra and OSPF algorithms lead to congestion, rapidly 

increasing packet loss rates. In contrast, the DRL-TP algorithm can adjust routing 

strategies in real-time according to the current network state, optimizing route selection, 

thus effectively controlling the increase in packet loss rates while boosting network 

throughput. 

5.2 DISCUSSION 

Analysis of data from Figure 30, 

Table 6 Throughput Comparison 

Sending Flow Size 

(Mbit/s) 

Dijkstra 

Throughput 

(Mbit/s) 

OSPF Throughput 

(Mbit/s) 

DRLA Throughput 

(Mbit/s) 

20 22 24 26 

40 35 38 40 

60 48 52 55 

80 62 67 72 



 

    

 

       

         

       

         

          

         

      

 

 

             

     

    

     

 

         

 

   

       

     

     

      

    

     

 

  

        

      

         

          

     

100 77 82 88 

This Table 6 illustrates the throughput performance of three different routing 

algorithms—Dijkstra, OSPF, and DRLA—as the sending flow size increases from 20 

Mbit/s to 100 Mbit/s. The table clearly shows that DRLA consistently outperforms both 

Dijkstra and OSPF across all flow sizes, indicating its higher efficiency in network 

resource management and routing optimization. DRLA's throughput starts at 26 Mbit/s 

at 20 Mbit/s of flow size and increases to 88 Mbit/s at 100 Mbit/s flow size, 

demonstrating robust scalability and effective performance under increasing network 

loads. 

Figure 31, and Figure 32 reveals that as traffic flow increases to 40Mbit/s, key 

performance metrics such as network throughput, latency, and packet loss all exhibit 

significant increases. This indicates that, within the SDN network topology constructed 

for this study, congestion becomes pronounced when traffic reaches 40Mbit/s, leading 

to the following conclusions: 

⚫ In the established SDN network architecture, increasing traffic to 40Mbit/s 

results in noticeable network congestion. 

⚫ Under conditions of significant congestion, traditional routing algorithms like 

Dijkstra and OSPF fail to effectively adjust their routing strategies, thereby 

degrading network performance. On the other hand, the intelligent routing 

algorithm DRL-TP, which is presented in this chapter, may dynamically modify 

routing strategies according to various connection metrics and continuously 

monitor network circumstances. This ability to maintain network performance 

even under severe congestion conditions demonstrates the efficiency and 

practicality of the DRL-TP algorithm. 

5.3 SUMMARY 

Network traffic is showing traits like diversification and explosive increase as SDN 

network scale keeps growing and a wide range of new network devices appear. To 

improve network efficiency and service quantity, it is essential to choose an intelligent 

routing strategy that is adaptive in real-time and tailored to the needs and conditions 

of SDN networks. In light of this, this chapter presents an SDN intelligent routing 



 

        

    

    

  

       

     

     

    

technique based on network traffic state prediction and Dueling DQN deep 

reinforcement learning. In order to obtain real-time network states, this approach 

makes use of a specifically created multi-threaded network measurement mechanism 

within SDN. The DRL-TP intelligent routing algorithm is then employed to produce the 

best routing paths on demand. The DRL-TP intelligent routing algorithm shows 

practical utility in addressing SDN network routing optimization difficulties by 

considerably improving network throughput, latency, and packet loss rates when 

compared to traditional routing algorithms like Dijkstra and OSPF. 



 

    
 

 

           

        

          

     

     

 

  

     

      

       

      

   

        

  

  

      

        

     

      

      

         

       

        

     

  

 

   

CHAPTER 6 - CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY 

The study has demonstrated the efficacy of utilizing Dueling DQN and real-time traffic 

predictions within a SDN framework to enhance routing optimization. This research 

confirms that integrating deep reinforcement learning with SDN capabilities not only 

optimizes network performance metrics such as throughput, latency, and packet loss 

but also enhances the adaptability of the network to dynamic conditions and traffic 

patterns. 

6.2 CONCLUSION 

The implementation of the DRL-TP model significantly improved network performance 

by dynamically adapting to varying network conditions without the need for manual 

intervention. The model successfully leveraged the centralized control and flexibility 

offered by SDN, alongside the predictive power of machine learning, to achieve 

substantial improvements over traditional routing methods. The experimental results 

validate the theoretical advantages proposed, underscoring the potential of combining 

SDN with advanced machine learning techniques for network management. 

6.3 LIMITATION AND RECOMMENDATION 

Despite its successes, the project recognizes limitations such as the need for extensive 

training data for the machine learning models and the potential scalability issues in 

larger or more complex network environments. Future research should focus on 

expanding the model’s applicability to broader network architectures and integrating 

additional network parameters to enhance prediction accuracy and decision-making. It 

is also recommended to explore the model's integration with emerging technologies 

like 5G and IoT and to consider the security implications of AI-driven network 

management. Further development should aim to address these limitations and verify 

the model's effectiveness in real-world scenarios, ensuring robustness and reliability 

in diverse networking contexts. 

CHAPTER 7 – REFLECTIONS 



 

       

      

      

  

 

           

       

       

        

 

 

 

    

       

     

 

 

 

       

     

       

 

 

         

 

       

        

        

 

 

This chapter offers a comprehensive reflection on the extent to which the aims and 

objectives of this research have been achieved. It evaluates the fulfillment of the 

objectives, discusses the effectiveness of approaches to address shortcomings, and 

consolidates the insights gained throughout the study. 

7.1 ACHIEVEMENT OF RESEARCH OBJECTIVES 

The primary aim of this research was to optimize network routing strategies in Software 

Defined Networking (SDN) environments through the application of Dueling Deep Q-

Networks (Dueling DQN) and real-time traffic prediction models. This aim was 

articulated through several specific objectives, each linked to the chapters that detailed 

their exploration and outcomes. 

Objective 1: Develop an enhanced routing strategy using Dueling DQN. 

Achievement: This objective was substantially achieved as detailed in Chapter 4, 

where the Dueling DQN model was successfully implemented and tested. The model 

demonstrated significant improvements in network throughput and latency compared 

to traditional methods. 

Objective 2: Integrate real-time traffic predictions with SDN control decisions. 

Achievement: As discussed in Chapter 4, the integration of traffic prediction 

mechanisms was effective, allowing for dynamic adjustments to routing strategies 

based on real-time data. This integration proved crucial in enhancing the adaptability 

of the network under varying traffic conditions. 

Objective 3: Assess the performance of the proposed solutions under different 

network conditions. 

Achievement: Covered in Chapter 5, this objective was met through rigorous testing 

and evaluation. The results confirmed that the proposed routing strategy performs 

robustly across a range of scenarios, marking a significant step towards reliable SDN 

operations. 

7.2 REFLECTION ON RESEARCH CONDUCT AND PROGRESS 



 

      

       

      

       

  

 

       

            

         

    

  

 

         

    

          

  

 

      

      

    

 

 

       

   

 

  

 

     

        

      

Throughout the course of this research, several challenges were encountered, 

particularly related to data collection and model training. The complexity of configuring 

an SDN environment that realistically simulates a dynamic network posed initial 

setbacks. However, these challenges were anticipated in the risk analysis phase, and 

the strategies for mitigating such issues proved mostly effective. 

Key strategies included the use of simulated environments to pre-test network 

configurations and adjustments to the training dataset to enhance the robustness and 

accuracy of the machine learning models. These approaches not only addressed the 

immediate challenges but also provided valuable learning experiences that enhanced 

the overall research process. 

Unexpectedly, the integration of real-time data into the learning model required more 

computational resources than initially estimated, leading to adjustments in resource 

allocation and project timelines. This issue was not fully anticipated in the risk analysis, 

highlighting a need for more comprehensive resource planning in future projects. 

7.3 KEY REFLECTIONS AND INSIGHTS 

One of the most significant insights from this research was the critical importance of 

flexibility in both the research approach and the technological solutions. Adapting 

quickly to technical challenges and changing project scopes was essential for 

maintaining progress towards the research objectives. 

Moreover, the research underscored the potential of machine learning in 

revolutionizing network management practices. The practical implications of this 

research suggest that further exploration and investment into AI-driven SDN solutions 

could yield substantial benefits for the field of network engineering. 

7.4 CONCLUSION 

In conclusion, this research project has largely met its initial objectives, providing a 

strong foundation for further exploration and development in the field of AI-enhanced 

network management. The experiences and challenges encountered have offered 



 

       

  

 

  

profound insights into both the potential and limitations of current technologies, guiding 

future studies towards more efficient and adaptable network solutions. 
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PROJECT MANAGEMENT 
In the comprehensive review of the project management for this research, an in-depth 

analysis was performed comparing the initial planning with the actual execution, as 

visualized in 

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the 

project's tasks, starting from background reading and systematically progressing 

towards the final submission. This plan was intended to provide a clear roadmap, 

designating significant time blocks to each essential phase such as proposal 

development, literature review, and experimental work. The design suggested a linear 

progression which aimed to maintain a steady pace throughout the project duration. 

Figure 33 and Figure 34. These Gantt charts provide a vivid illustration of the project's 

timeline and tasks, highlighting the adaptability and adjustments required throughout 

the course of the research. 

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the 

project's tasks, starting from background reading and systematically progressing 

towards the final submission. This plan was intended to provide a clear roadmap, 

designating significant time blocks to each essential phase such as proposal 

development, literature review, and experimental work. The design suggested a linear 

progression which aimed to maintain a steady pace throughout the project duration. 



 

   

 

      

       

  

         

      

         

 

Figure 33 Original Gantt Chart 

However, the actual progress chart (Figure 34) tells a different story—one of deviation 

and adaptation. Notable adjustments can be seen in the extension of phases such as 

"Model Design" and "Experimentation and Results Analysis." These phases extended 

beyond their originally allocated durations due to unexpected challenges such as data 

complexities and the intricacies involved in model validation. These issues were not 

fully anticipated at the project's outset and required on-the-fly adjustments to the 

schedule. 



 

   

 

        

     

        

   

  

 

     

      

        

      

   

   

 

Figure 34 Actual Gantt Chart 

Additionally, the approach to report writing was adapted significantly. Instead of a 

single phase, report writing was segmented into individual chapters, allowing for 

continuous revision and incorporation of new data and insights as the project 

progressed. This methodological adjustment was crucial for integrating evolving 

findings and ensuring the final report's accuracy and coherence. 

Risk management strategies also played a vital role in the project's execution. 

Identified risks such as data availability and computational resource constraints were 

addressed with pre-planned mitigation strategies, which included securing additional 

data sources and optimizing computational tasks. While these strategies were 

generally effective, the actual impact of data availability proved more challenging than 

expected, highlighting a need for more robust contingency planning. 



 

       

       

 

      

 

 

         

      

         

         

       

  

          

          

       

    

       

 

         

       

 

  

Reflecting on the overall project management, adaptability emerges as a critical theme. 

The ability to dynamically adjust project plans in response to unforeseen challenges 

was instrumental in driving the project toward its objectives. However, this experience 

also emphasized the need for more precise risk anticipation and enhanced 

contingency measures. 

The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the 

project's tasks, starting from background reading and systematically progressing 

towards the final submission. This plan was intended to provide a clear roadmap, 

designating significant time blocks to each essential phase such as proposal 

development, literature review, and experimental work. The design suggested a linear 

progression which aimed to maintain a steady pace throughout the project duration. 

Figure 33 and Figure 34 provided profound insights into the dynamic nature of 

managing a research project. It underscored the importance of flexibility, robust risk 

management, and the need for proactive problem-solving. These insights are 

invaluable for future research projects, offering lessons on better preparedness and 

adaptive strategies to efficiently handle the complexities and unpredictabilities inherent 

in substantial research endeavors. This reflective analysis not only highlights the 

successes and challenges of the project but also sets a foundation for future projects 

to build upon, ensuring they are better equipped to manage uncertainties and 

complexities effectively. 
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initial coding tests; 
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efficient debugging practices to 
maintain project timeline. 
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presentation by creating 
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Focused on how to effectively 
communicate complex technical 
details to a non-technical 
audience. 
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presentation; received 
feedback on project direction 
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Contemplated feedback 
regarding the integration of 
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2024-03-25 Revised project plan and 
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supervisor to incorporate 
new components. 

Assessed the impact of changes 
on the overall project scope and 
expected outcomes. 

2024-03-27 Began extensive data 
collection phase using both 
simulated and real-world 
data sources. 

Examined the consistency and 
quality of incoming data to 
ensure its suitability for model 
training. 

2024-03-29 Analyzed initial datasets and 
performed preliminary data 
cleansing and preparation. 

Recognized patterns and 
anomalies in the data that could 
influence model training and 
performance. 

2024-03-31 Engaged in detailed 
discussions with data 
scientists to optimize feature 
selection for the model. 

Weighed the benefits of 
including diverse features 
against the complexity they 
introduce to the model. 

2024-04-02 to 
2024-08-27 

Conducted iterative cycles of 
model refinement, testing, 
and validation. Continuously 
updated and revised the 
research manuscript. 

Adapted to new findings and 
maintained a focus on 
innovation and scientific 
accuracy in research. 
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GLOSSARY 

SDN (Software Defined Networking): A networking approach that allows network 

behavior to be controlled by software applications using open interfaces, separating 

the network's control logic from the underlying physical routers and switches. 

OpenFlow: A communication protocol that gives access to the forwarding plane of a 

network switch or router over the network. 

Ryu: An open-source network controller that manages devices in an SDN environment 

using OpenFlow protocol. 

Mininet: A network emulator that creates a virtual network on a single machine, used 

for developing and testing SDN applications. 

Dueling Deep Q-Networks (DDQN): An advanced reinforcement learning algorithm 

that helps in choosing actions to maximize the long-term reward in a given state of the 

environment. 

Network Throughput: Measures the rate of successful message delivery over a 

communication channel. 

Latency: The delay before a transfer of data begins following an instruction for its 

transfer. 

Packet Loss: Occurs when one or more packets of data travelling across a computer 

network fail to reach their destination. 

Topology Discovery: The method by which network devices and their connections are 

identified. 

Controller: In SDN, the central authority that directs traffic flows throughout the network 

based on a global view of the network state. 
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	CHAPTER 1 INTRODUCTION 
	The evolution of network infrastructure management has increasingly required the development of new technologies and methods that can keep pace with the growing complexity and dynamism of modern networks. Traditional Network Architecture (TNA) relies on rigid, hardware-centric configurations, making it less adaptable to the changing conditions and demands of network traffic. TNA typically employs static routing protocols which decide paths based predominantly on initial configurations and infrequently updat
	In contrast, Software Defined Networking (SDN) offers a transformative approach to network management. SDN separates the network's control plane from the data plane, centralizing control in a software-based controller. This architectural change introduces a level of flexibility and dynamism that cannot match. The central controller in an SDN can view and manage the network holistically, making real-time, informed decisions that adapt to changes in network traffic patterns and conditions. This model not only
	TNA
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	Comparing TNA and SDN, the latter's centralized control mechanism allows for a more nuanced and responsive management approach. SDN's ability to programmatically direct traffic and dynamically adjust to network conditions can significantly optimize the performance metrics of the network. This includes better utilization of bandwidth, minimized latency, and decreased packet loss, particularly in dynamic and complex network environments. 
	Moreover, the predictive capabilities that can be integrated into SDN, as explored in this project through the use of Dueling Deep Q-Networks (Dueling DQN) and real-time traffic predictions, enable preemptive adjustments to routing decisions. Such anticipatory measures are crucial in maintaining optimal network performance and can 
	greatly enhance the adaptability of SDN compared to the more reactive and less flexible TNA. This project proposes not just a shift from static to dynamic routing but a move towards intelligent, learning-driven network management that stands to redefine the standards of network performance and reliability. 
	1.1RESEARCH PROBLEM STATEMENT 
	The conventional routing algorithms employed in SDN environments are often rigid and unable to adapt dynamically to changing network conditions. While SDN offers the potential for more flexible and efficient network management, the existing routing methods do not fully adapt this flexibility, leading to suboptimal network performance and inefficiencies. Furthermore, the integration of advanced machine learning techniques with SDN routing strategies remains underexplored. This presents a significant gap in t
	1.2AIM 
	The aim of this project is to develop an optimized routing strategy specifically for SDN, aimed at enhancing the efficiency of network traffic management. The project seeks to implement and refine a routing optimization solution within a SDN framework, utilising the capabilities of Dueling DQN deep reinforcement learning and network traffic state prediction. This approach is designed to enhance network management by leveraging real-time global network topology and link status information, enabling a more re
	1.3OBJECTIVES 
	The objectives of the project are detailed as follows: 
	• 
	• 
	• 
	To conduct extensive research into existing literature concerning SDN and routing optimization techniques to provide a theoretical foundation for the proposed solution. 

	• 
	• 
	To adapt a suitable research methodology by identifying the appropriate simulation tools and statistical techniques for analyzing network performance, as well as outlining the criteria for model validation and evaluation, to ensure rigorous and reproducible results within the project. 

	• 
	• 
	To design and implement a routing optimization model that leverages Dueling DQN reinforcement learning combined with network traffic state predictions. 

	• 
	• 
	To evaluate the proposed model through experimental setups, comparing its performance against traditional routing methods and other SDN-based solutions to demonstrate its efficacy in real-world scenarios. 

	• 
	• 
	Analyze different network states and their impact on routing strategies, utilizing simulations to gauge performance improvements over traditional methods. 


	1.4SIGNIFICANCE/CONTRIBUTION OF THIS RESEARCH 
	This project substantially enhances the field of SDN by pioneering the innovative integration of Dueling DQN reinforcement learning with real-time network traffic predictions. Utilizing a blend of SDN capabilities, including centralized control, flexible management, and the integration of heterogeneous network data, the project develops a cutting-edge and comprehensive computational model for routing optimization. This holistic approach significantly boosts the accuracy and efficiency of routing decisions w
	1.5STRUCTURE OF THE PROJECT 
	The structure of this thesis is designed to systematically address the research objectives and provide a coherent flow of information and analysis: 
	Chapter One – Introduction This chapter provides a broad overview of the project, including the research problem statement, aims, and objectives. It sets the context for the research by discussing the need for optimized routing strategies in Software Defined Networking (SDN) and outlines the significance and potential contributions of the study. 
	Chapter Two – Review of Literature This chapter presents a thorough analysis of existing literature on SDN, covering fundamental concepts, architecture, and various controllers. It identifies gaps in current research and demonstrates how the project's approach can address these deficiencies. 
	Chapter Three – Research Methodology This chapter details the research methods used to achieve the objectives of the study. It describes the experimental design, data collection techniques, and analytical methods employed, ensuring that the research is reproducible and valid. 
	Chapter Four – Architectural Design and Modeling: This newly added chapter provides a detailed exposition of the architectural design and modeling processes for Software Defined Networking (SDN). It includes discussions on key technologies and design choices. 
	Chapter Five – RESULT AND ANALYSIS This chapter discusses the experimental setup, the processes involved in implementing the routing strategies, and an analysis of the results obtained. It evaluates the effectiveness of the proposed routing optimizations in real-world scenarios. 
	Chapter Six – Conclusions and Recommendations The final chapter synthesizes the findings of the research, discusses the implications, and offers conclusions based on the evidence gathered. It also provides recommendations for future research and practical applications of the study's outcomes. 
	Chapter Seven – References This chapter lists all the bibliographic references used throughout the thesis, providing a comprehensive resource for understanding the theoretical and empirical bases of the study. 
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	CHAPTER 2 -REVIEW OF LITERATURE 
	CHAPTER 2 -REVIEW OF LITERATURE 
	The purpose of this chapter is to conduct a thorough analysis of the existing body of literature related to SDN, with a focus on its architecture, control mechanisms, operational functions, routing capabilities, and limitations, as well as reviewing similar works in the field. This chapter seeks to identify key trends, debates, and gaps within these areas, examining both conventional network management strategies and advanced approaches enabled by SDN technology. The scope of literature reviewed extends fro
	2.1SOFTWARE DEFINED NETWORKING (SDN) 
	With the continuous development of information technology, the emergence of new network technologies such as big data[1], virtualization[2], and cloud computing[3] has progressively magnified the shortcomings of traditional network architectures. Due to their cumbersome network configurations, traditional networks impose heavy maintenance tasks on network administrators[4]. Additionally, the fixed topology of traditional networks limits their flexibility and scalability, greatly constraining network develop
	2 
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	2.1.1 SDN Fundamentals In traditional network architectures, the control plane and the data plane are tightly coupled within network devices, with each underlying device functioning as a complete and independent entity. This results in a fixed network topology and cumbersome network configurations, rendering the current network environment rather rigid. Additionally, the use of distributed routing algorithms[6] means that each router makes 
	independent routing decisions without considering other routers, a design approach that significantly complicates network upgrades. Furthermore, different types of network devices require distinct configuration tools, demanding a higher level of skill from network administrators. The maintenance of traditional networks consumes considerable time and effort, thereby increasing the total system costs, including acquisition, operational, and management expenses[7]. 
	Originating from the academic environment of Stanford University's network data forwarding project, the design philosophy of SDN is to decouple data forwarding from the network control plane, enhancing network flexibility[8]. This design facilitates programming of the underlying hardware through software modules of the controller, improving control effectiveness and enabling rational allocation of network resources according to user needs. In SDN, when determining data forwarding paths via the control plane
	Compared to conventional networking architectures, SDN offers distinct advantages. On one hand, within such an architecture, the hardware setup only needs to consider whether the storage and forwarding capacities meet the usage requirements, which can substantially reduce architectural costs[9]. On the other hand, it maintains the existing network infrastructure without the need for reconfiguration, thus simplifying the deployment process. Moreover, SDN architectures provide a faster response to business de
	2.1.2 SDN Basic Architecture The basic architecture of SDN comprises five main components: the data plane, southbound interfaces, control plane, northbound interfaces, and the application layer, as illustrated in [10]. The data plane primarily handles the forwarding and processing of data packets and is composed of underlying devices such as SDN 
	2.1.2 SDN Basic Architecture The basic architecture of SDN comprises five main components: the data plane, southbound interfaces, control plane, northbound interfaces, and the application layer, as illustrated in [10]. The data plane primarily handles the forwarding and processing of data packets and is composed of underlying devices such as SDN 
	Figure 1 

	switches and SDN routers. The southbound interfaces are specific protocols that facilitate communication between the control plane and the data plane. The control plane, the core of the SDN architecture, provides a global network view to the application layer and allocates flow tables to the devices in the data plane based on the business requirements of the application layer. Northbound interfaces are specific protocols that enable communication between the application layer and the control plane. The appl

	Figure 1 SDN Basic Architecture 
	Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies administration. 
	Software Defined Networking (SDN) separates network management (control plane) from the forwarding of data packets (data plane), allowing for centralized and programmable network traffic management, which increases flexibility and simplifies administration. 
	2 


	Figure
	1. Data Plane 
	1. Data Plane 
	The data plane, also known as the data layer, consists of various network devices such as routers, switches, and others that perform data forwarding based on control decisions[12]. The SDN data plane has the following three characteristics: 
	⚫
	⚫
	⚫
	⚫

	Programmability: The SDN data plane can be configured through programming, allowing network administrators to control and manage network traffic according to specific needs. This programmability not only enhances network flexibility but also enables better network management by administrators. 

	⚫
	⚫
	⚫

	Centralized Control: The control logic of the SDN data plane is centrally stored in the controller rather than being distributed across various network devices. This centralized control approach allows network administrators to achieve global control over the network state and allocate and optimize global network resources according to specific business requirements. 

	⚫
	⚫
	⚫

	Openness: The SDN data plane adopts open protocols such as OpenFlow, which facilitates easy integration with devices and software from other vendors, enhancing network interoperability and scalability. 


	The working principle of the SDN data plane is based on flow table[13] forwarding, similar to routing tables in traditional networks. A flow table consists of three parts: matching rules, actions, and counters. Matching rules refer to the values of various fields in the TCP/IP header, such as MAC address, source IP address, destination IP address, VLAN ID, etc. These specific values constitute a flow. The action part includes operations on the flow, such as forwarding packets to specified ports, discarding 

	2. Southbound Interfaces 
	2. Southbound Interfaces 
	Southbound interfaces are specific protocols for communication between the control layer and the data layer, providing the controller with the ability to control and manage network traffic. For example, using the uplink channel of a southbound interface, the controller can uniformly monitor and collect statistics on the information reported by underlying switching devices, thereby achieving link discovery. Using the downlink channel of a southbound interface, the controller can also uniformly control networ
	In SDN, the most widely used southbound interface standard is the OpenFlow protocol from the open-source community. The OpenFlow protocol provides convenient messaging mechanisms. For example, it generates event-based messages when ports 
	In SDN, the most widely used southbound interface standard is the OpenFlow protocol from the open-source community. The OpenFlow protocol provides convenient messaging mechanisms. For example, it generates event-based messages when ports 
	or links change; flow-based statistical messages during network monitoring by the controller; and Packet-in messages sent to the controller for processing when a switch does not know how to handle a new incoming packet. Besides the OpenFlow protocol, there are other southbound interface standards, such as Open vSwitch Database (OVSDB) [16], ForCES [17], and Programming Protocol-Independent Packet Processors (P4)[18]. OVSDB provides additional network management functions, allowing the creation of virtual sw


	3. Control Layer 
	3. Control Layer 
	The control layer is a critical component of the SDN architecture, responsible for controlling and managing the entire network. Its primary function is to act as a bridge between the application layer and the data layer, handling interactions between applications and underlying forwarding devices[19]. For example, it translates application layer policies into executable instructions for the data layer and provides relevant information from the data layer to applications. The SDN controller also enables cent
	Table 1 

	Table 1 Mainstream SDN Controllers 
	Controller 
	Controller 
	Controller 
	Southbound Interface 
	Programming Language 
	System Platform 
	Description 

	NOX 
	NOX 
	OpenFlow 
	C++ 
	Linux 
	The first SDN controller to support the 

	TR
	OpenFlow protocol 

	POX 
	POX 
	OpenFlow 
	Python 
	Linux, Mac OS, Windows 
	A Pythonbased SDN controller evolved from NOX, supporting the OpenFlow protocol 
	-


	Ryu 
	Ryu 
	OpenFlow, Netconf, OFconfig, etc. 
	-

	Python 
	Linux 
	Ryu is a lightweight, open-source SDN controller supporting OpenFlow v1.0, v2.0, and v3.0 

	Floodlight 
	Floodlight 
	OpenFlow 
	Java 
	Linux, Mac OS, Windows 
	Provides a general set of functions for controlling and querying OpenFlow networks, meeting various user network needs 


	4. 
	4. 
	4. 
	4. 
	Northbound Interfaces 

	Northbound interfaces are the connections between the control layer and the application layer in the SDN architecture. Their main function is to provide a standardized interface for applications, allowing them to manage and control the network through the SDN controller without directly accessing the underlying physical devices[20]. This standardized interface enables different applications to seamlessly communicate with the SDN, thereby achieving more flexible and programmable network management. For examp

	5. 
	5. 
	Application Layer 


	The application layer provides a platform for network administrators to implement control logic by configuring network devices to achieve specific network behaviors and functions. Typical SDN applications include intrusion detection systems, load balancing, traffic optimization, firewalls, and fine-grained access control [21]. SDN applications can also abstract and encapsulate their functions, providing northbound proxy interfaces. These encapsulated interfaces can be considered as higher-level northbound i
	2.1.3 SDN has many protocol standards in practical applications, among which the most popular protocol is OpenFlow [22]. OpenFlow is based on the concept of flow to establish and match rules. Through the OpenFlow protocol, the SDN controller can query, modify, and configure the status information of SDN switches, and update the network system status in real time. The main components of an OpenFlow switch include a secure channel, flow tables, and the OpenFlow protocol, as shown in 
	OpenFlow Protocol 
	Figure 

	Among these, the secure channel is the interface connecting the OpenFlow switch with the SDN controller, the flow table is a collection of forwarding policies, and the OpenFlow protocol is the standard protocol for interaction between the control layer and the data layer. 
	2. 

	Figure 2 OpenFlow Switch Architecture 
	Figure
	The OpenFlow protocol supports three types of interaction messages: Controller-to-Switch messages, asynchronous messages, and synchronous messages [23]. The controller sends Controller-to-Switch messages to the switch to query and modify the switch's status and configuration, some of which do not require a response from the switch. The switch sends asynchronous messages to the controller, providing real-time feedback on network update events and requesting new instructions. Asynchronous messages mainly incl
	The flow table mechanism is a critical component of the OpenFlow protocol, enabling the decoupling of the control layer and the data layer. With the evolution of OpenFlow versions, the structure and functionality of flow tables have continually been enriched. In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple flow tables, decomposing the flow table matching process into several steps and 
	The flow table mechanism is a critical component of the OpenFlow protocol, enabling the decoupling of the control layer and the data layer. With the evolution of OpenFlow versions, the structure and functionality of flow tables have continually been enriched. In OpenFlow 1.0[24], each OpenFlow switch maintains only one flow table and can communicate with only one controller. OpenFlow 1.1[25] upgraded to support multiple flow tables, decomposing the flow table matching process into several steps and 
	forming a pipeline processing method to avoid the excessive expansion of a single flow table. OpenFlow 1.2 introduced the TLV (Type-Length-Value) structure to define matching fields, enabling more keywords to be matched and allowing OpenFlow switches to communicate with multiple controllers. OpenFlow 1.3, the most stable version, enriched the structure of flow entries by adding priority, timeouts, and cookies, making packet matching more flexible and enabling timely cleanup of unused flow entries to reduce 

	The discussion in this section serves as a foundational background, setting the stage for exploring more advanced topics in SDN, including various types of controllers and the detailed operations of SDN networks. It emphasizes the transformative potential of SDN in adapting to the increasing complexity and requirements of modern network environments, thus framing the motivation for further innovations and research in network management. 
	2.1.4 
	Summary 

	2.2 TYPE OF CONTROLLERS 
	2.2.1 Ryu is an open-source project led by the Japanese company NTT, with its name meaning "flow" in Japanese. The project aims to provide a SDN operating system with logically centralized control capabilities. Ryu offers comprehensive API interfaces, enabling network application developers to easily create new management and control applications[28]. Written in Python and adhering to the Apache License, Ryu supports multiple versions of the OpenFlow protocol, including v1.0, v1.2, and v1.3. 
	RYU 

	The Ryu controller comprises a wide array of libraries and components designed for developing SDN applications[29]. These libraries encapsulate common functions distilled from the requirements of SDN controllers and can be directly invoked within components. Each component operates independently of others. Through these features, Ryu offers developers a flexible and scalable SDN development environment, enhancing the convenience and intelligence of network management and control. The libraries and component
	Figure 3. 

	Figure 3 Ryu library functions and components 
	Figure
	Libraries such as Netconf[30], OF-conf, and sflow[31] primarily facilitate the control functions for OpenFlow switches. Among the key components, OF-wire provides support for different versions of the OpenFlow protocol; Topology is responsible for building topology maps and tracking link status; and OF REST offers REST APIs for users to configure OpenFlow switches. The VRRP[32] component adds VRRP capabilities to OpenFlow switches, significantly enhancing network reliability. Additionally, Ryu can integrate
	2.2.1.1
	2.2.1.1
	Ryu Overall Architecture 

	The Ryu SDN framework primarily provides control capabilities, offering services to SDN applications through northbound REST APIs, enabling these applications to orchestrate and control network traffic[33]. Through southbound protocols such as OpenFlow, Ryu controls OpenFlow switches to facilitate traffic interaction. The Ryu SDN architecture serves as a pivotal bridge, acting as the control and exchange hub for northbound interfaces. The overall architecture of Ryu is illustrated in 
	Figure 4. 

	Figure 4 Ryu Overall Architecture 
	Figure
	The SDN application layer is broadly divided into three categories. The first category is the Operator, which controls and manages the SDN framework through RESTful management APIs. The second category is OpenStack cloud orchestration, which integrates with OpenStack using REST API for Quantum to manage and control the network. The third category is User apps, which control and manage the SDN framework through user-defined APIs via REST or RPC[34]. 
	The Ryu SDN framework layer is the core of the entire architecture, providing the infrastructure for developing, managing, and running SDN applications[35]. The main components and functionalities include Ryu applications, event dispatcher, libraries, OpenFlow parser/serializer, and protocol support modules. Ryu applications are specific SDN programs running on the Ryu framework that perform particular network management tasks. The event dispatcher is responsible for receiving, processing, and distributing 
	The Ryu SDN framework layer is the core of the entire architecture, providing the infrastructure for developing, managing, and running SDN applications[35]. The main components and functionalities include Ryu applications, event dispatcher, libraries, OpenFlow parser/serializer, and protocol support modules. Ryu applications are specific SDN programs running on the Ryu framework that perform particular network management tasks. The event dispatcher is responsible for receiving, processing, and distributing 
	applications to simplify the development process[36]. The OpenFlow parser/serializer handles OpenFlow protocol packets, performing parsing and generation to ensure communication between the controller and switches. The protocol support modules support various network protocols (e.g., OVSDB, VRRP), providing broader functionality and compatibility for network management[37]. 

	The OpenFlow switch layer comprises switches that support the OpenFlow protocol, serving as the infrastructure for network packet forwarding. OpenFlow switches communicate with the SDN controller via the OpenFlow protocol, receiving flow table instructions and executing corresponding forwarding operations to ensure efficient transmission of network data[38]. 

	2.2.1.2. 
	2.2.1.2. 
	2.2.1.2. 
	Ryu Workflow 

	Figure 5 Ryu Workflow 
	Figure
	The workflow of Ryu is illustrated in Upper-layer Ryu applications distribute and transmit events through SERVICE_BRICK[39]. The main purpose of 
	Figure 5. 

	SERVICE_BRICK is to implement modular design, enabling Ryu applications to be developed and maintained as independent service modules. Each SERVICE_BRICK is an independent service module responsible for specific functions or tasks and can communicate and collaborate with other modules through Ryu's service registration and discovery mechanisms. Moreover, SERVICE_BRICK is closely integrated with the event handling mechanism. Events are routed and tasks are distributed by registering callback functions that r
	OFPHandler[41] is the most fundamental subclass of RyuAPP. This class primarily handles the coordination of OpenFlow protocol tasks such as Hello Handler, Switch Features Handler, Port State Handler, and Echo Handler. OFPHandler instantiates an OpenFlow controller object, which in turn instantiates several dataplane objects corresponding to the number of connected switches, with each dataplane representing a single OpenFlow switch. 
	The Datapath communicates with OpenFlow switches by creating sockets[42] using the Stream server from the high-concurrency Python framework eventlet[43]. Eventlet provides an efficient network communication mechanism, enabling the dataplane to handle multiple concurrent connections and communications with switches effectively. Each dataplane object is responsible for receiving and processing OpenFlow messages sent from its corresponding switch and returning the processing results to the switch, thus facilit
	2.2.2 The Floodlight controller boasts excellent stability and portability, being compatible with various operating systems[44]. Therefore, this project utilizes Floodlight as the SDN controller. Floodlight interacts with upper-layer applications via Java interfaces or REST APIs, with its overall architecture illustrated in 
	Floodlight 
	Figure 6. 

	Figure 6 Architecture diagram of Floodlight 
	Figure
	Floodlight is composed of core service modules, regular application modules, and REST application modules[45]. The core service modules provide fundamental support services via Java interfaces and REST APIs to both the regular application modules and the REST application modules. The regular application modules depend on the core service modules and provide services to the REST application modules. The REST application modules rely on the REST APIs provided by the core service modules and regular applicatio
	Table 2. 

	Table 2 Floodlight Components 
	Component Type 
	Component Type 
	Component Type 
	Component Name 
	Function Description 

	TR
	Manages connections to 

	Core Service Module 
	Core Service Module 
	FloodlightProvider 
	switches 
	and 
	converts 

	TR
	OpenFlow messages into 


	DeviceManagerImpl 
	LinkDiscoveryManager 
	events that other modules can listen to. Manages low-level network devices such as switches and hosts. Manages link resources in the network and maintains link status in the OpenFlow network. 
	Table
	TR
	TopologyService 

	TR
	RestApiServer 

	Regular 
	Regular 
	Application 

	Module 
	Module 

	TR
	FlowCache 

	TR
	Forwarding 

	TR
	Firewall 


	Finds routes in the network, calculates network topology, and maintains topology information. 
	Provides REST API 
	services. 
	Integrates flow updates 
	and searches across 
	different modules. 
	Implements packet forwarding between two devices. Enforces access control on switches. 
	Creates 
	Creates 
	Creates 
	virtual 
	links 

	Circuit Pusher 
	Circuit Pusher 

	REST 
	REST 
	Application 
	between two devices. 

	Module 
	Module 
	Manages the OpenStack 

	TR
	OpenStack Quantum 
	network. 


	2.2.3 The NOX platform is based on a publish-subscribe model[47], using the observer pattern[48]. Components on NOX can subscribe to events generated by the network, allowing users to write various components to manage the OpenFlow network[49]. Currently, components on NOX are divided into three categories: Core apps, Net apps, and Web apps. Core apps provide some basic applications that other components can use. Net apps are network control-related applications, while Web apps offer some interfaces to web 
	NOX 

	As shown in components on NOX are divided into three categories: Core apps, Net apps, and Web apps. Core apps provide some basic applications that other components can use. Net apps are network control-related applications, while Web apps offer some interfaces to web services. Events are generally generated in two ways: one is directly from OpenFlow messages, such as Datapath_join_event when a switch joins, and Datapath_leave_event when a switch leaves. The other is generated by controller applications, suc
	Figure 7, 

	Figure 7 NOX Function Module Structure 
	Figure
	After a secure connection is established between the NOX controller and the underlying switches, the switches can send OpenFlow messages to the controller through this connection[51]. The OpenFlow protocol encapsulation and parsing module on the NOX controller encapsulates these messages, and the message distribution module delivers them to the upper-layer applications. Conversely, upperlayer applications can also send OpenFlow messages to the underlying switches via the OpenFlow protocol encapsulation and 
	-

	To develop new components on the NOX platform, it is essential to understand the basic structure of the components. A new component needs to inherit from the Component class and use REGISTER_COMPONENT to enable dynamic loading. During loading, the Configure and install methods are called to register events and their handlers. The events that the component needs to listen for are listed in the NOX.json file. Additionally, while creating the component, a meta.json file is needed to specify other components th
	To develop new components on the NOX platform, it is essential to understand the basic structure of the components. A new component needs to inherit from the Component class and use REGISTER_COMPONENT to enable dynamic loading. During loading, the Configure and install methods are called to register events and their handlers. The events that the component needs to listen for are listed in the NOX.json file. Additionally, while creating the component, a meta.json file is needed to specify other components th
	mibtransport, for further processing. If discovery returns STOP, the event will not be passed further[52]. 

	2.2.4 Mininet Mininet is a virtualization network emulation tool developed by Stanford University based on the Linux Container architecture [53]. It can create a highly flexible custom virtual network consisting of hosts, switches, controllers, and links. Mininet uses the Linux [54] kernel to virtualize multiple hosts and simulates SDN switches using the OpenFlow protocol. The network topology can be defined and configured using Python 
	[55] scripts, allowing users to quickly create custom topologies for testing and developing network applications. 
	Mininet offers three types of command parameters: network construction startup parameters, internal interactive commands, and external runtime parameters. Network construction startup parameters can be used to set the topology structure, switch types, and link attributes. Internal interactive commands allow interaction with virtual nodes, such as adding or removing nodes. External runtime parameters mainly control the runtime environment of Mininet, such as setting log outputs. These command parameters can 
	Additionally, Mininet provides many practical tools, such as traffic generators and packet capture tools, to facilitate network traffic monitoring and testing. One of Mininet's greatest advantages is its flexibility and customizability. It not only supports OpenFlow but also other southbound interface protocols, enabling the creation of highly controllable network environments. Therefore, Mininet has been widely used in network research, including areas such as network security and cloud computing. In the f
	This section underscores the diversity and adaptability of SDN controllers in meeting the needs of various networking scenarios, emphasizing their role in enabling efficient network management through centralized control mechanisms. 
	2.2.5 
	Summary 

	2.3OPERATIONS OF SDN 
	2.3.1 In the SDN network architecture, centralized and dynamic network topology information management technology [56] effectively decouples the control plane from the data plane. This is achieved through the use of a central controller that allows for highly flexible, real-time, and centralized control over the entire network structure. This management model endows the SDN controller with the ability to obtain and maintain a comprehensive view of the network, accurately describing the interconnections, top
	SDN Link Topology Discovery Technology 

	Moreover, this centralized management approach enables the SDN controller to perform intelligent path calculations, selecting the optimal transmission path based on the current topology and traffic conditions, thereby achieving efficient traffic scheduling and maximizing network performance. Additionally, the scope of SDN topology information management includes timely response to various topology events, continuous network monitoring, and in-depth analysis. This provides multi-dimensional support for stabl
	The controller plays the role of storing information about core network components, including detailed locations of individual switches and the link parameters that form the 
	topology data of interconnections between switches[58]. The controller aggregates network-wide topology information through active collection or passive reception and properly stores this data. Additionally, the controller adheres to a predefined update strategy, regularly refreshing and calibrating the maintained topology information to ensure real-time tracking and accurate understanding of network state changes, as illustrated in 
	Figure 8. 

	Figure 8 Topological Discovery Classification 
	Figure
	2.3.2 The link topology discovery mechanism in SDN involves the controller identifying the link status between switches on the data plane[59]. By obtaining link connection status information, the controller can effectively support various network service functions. In Ethernet, link topology discovery typically relies on the Link Layer Discovery Protocol (LLDP)[60], where Ethernet switches exchange relevant link and port information. However, in the SDN architecture, since data plane switches are responsibl
	Link Topology Discovery Technology 

	When a switch connects to the network, it sends an initialization signal to the controller, containing the OpenFlow version number and details of each port. Once the controller successfully responds and establishes a connection with the switch, it deploys topology discovery rules on the switch. First, upon receiving a Packet-out message from the controller, the switch forwards it to the connected switch port. Second, upon receiving a message from another switch, the switch adds its relevant information to t
	Subsequently, the controller sends LLDP packets to each port of the switch. The switch, following the first rule, forwards this packet through the specified port. When the target neighboring switch receives the packet, it follows the second rule, encapsulating the LLDP content into a Packet-in message and adding its switch ID and receiving port ID information. The switch then sends this Packet-in message back to the controller. If the target switch is not directly connected to the controller, the Packet-in 
	2.3.3 This section highlights the capabilities of SDN to facilitate real-time, accurate network management and adjustments, which are essential for optimizing network performance and reliability. 
	Summary 

	2.4SDN ROUTING 
	This section will separately introduce the SDN routing mechanism, the current research status of SDN intelligent routing optimization based on supervised learning, and SDN intelligent routing optimization based on reinforcement learning. On this basis, the research processes and advantages and disadvantages of these methods will be summarized. 
	2.4.1 Traditional routing technologies achieve the exchange and sharing of routing information through the establishment of routing tables and routing protocols[63]. In the SDN network architecture, the controller uses southbound interface protocols to uniformly distribute forwarding rules to switches, thus enabling routing transmission between switches. Based on the method of path transmission, SDN routing mechanisms can be divided into shortest path routing and multipath routing, as detailed below: 
	SDN-Based Routing Mechanisms 

	(1)
	(1)
	(1)
	 Shortest Path Routing Current mainstream SDN controllers, such as RYU[64], Floodlight[65], and POX[66], provide comprehensive data forwarding modules and typically use the Dijkstra[67] algorithm to find the shortest path. Data packets can be forwarded from the source node to the destination node using the shortest path determined by the Dijkstra algorithm. This method is simple and easy to implement. However, it overly relies on the shortest path for packet forwarding, which can lead to link congestion whe

	(2)
	(2)
	 Multipath Routing Multipath routing seeks to find multiple paths that meet the constraint conditions based on network traffic distribution and service traffic demands, and uses these paths for balanced transmission of network traffic. The goal is to improve network performance in terms of transmission delay, throughput, and link utilization, and to avoid link congestion. Li Daoquan et al. [68] proposes an SDN multipath routing load balancing strategy based on traffic distribution propensity. When data flow


	elephant flows and mouse flows based on traffic characteristics, combines group tables to optimize the communication mode between the controller and switches in the SDN architecture, reduces packet processing delay, and improves overall network performance. Zhou Jie[71] proposes an SDN-based multipath load balancing algorithm, which selects the optimal path based on link weights and traffic thresholds and makes real-time adjustments. Compared to traditional routing algorithms, it significantly improves band
	2.4.2 Supervised learning is a labeled learning technique that establishes a system model based on given data and labels, completing training based on the mapping relationship between input and output, and subsequently predicting results by inputting new data into the system model[72]. Common supervised learning methods include neural networks[73], Support Vector Machines (SVM)[74], K-Nearest Neighbor (KNN)[74], random forests[75], and decision trees[76]. SDN routing optimization based on supervised learnin
	SDN Routing Optimization Based on Supervised Learning 

	Raikar et al.[77] propose SDN routing optimization based on machine learning, using three different supervised learning models: SVM, nearest centroid, and naive Bayes for data traffic classification in SDN architecture applications. By capturing network traffic trajectories to generate traffic features and sending them to the classifier for prediction, the results show that the prediction accuracy of SVM is 92.3%, nearest centroid is 91.02%, and naive Bayes is 96.79%. Xin et al.[78] propose a novel incremen
	study a routing decision scheme based on deep belief networks, used for backbone network routing optimization. Compared with traditional routing schemes, it converges faster and has lower information exchange costs. Modi and Swain[80] propose a deep learning routing algorithm based on CNN. This algorithm outputs intelligent paths by online training traffic patterns. Compared to the traditional routing algorithm OSPF, the average network throughput nearly doubled, and the average network throughput increased
	The above-mentioned SDN routing optimization methods based on supervised learning, especially neural networks, have improved network performance such as transmission delay, throughput, and packet loss rate in SDN routing optimization. However, the training process requires a large amount of labeled data, which demands high computational complexity. The accuracy, generalization, and fault tolerance of routing still need improvement. 
	2.4.3 Reinforcement learning is an important branch and effective tool of machine learning. Deep reinforcement learning is based on the fundamental theory of reinforcement learning, using deep neural networks to replace traditional decision functions, leveraging the powerful fitting capabilities of deep neural networks to train the learning process[82]. In the SDN routing optimization process based on reinforcement learning, network topology, traffic matrices, and other factors are regarded as network state
	SDN Routing Optimization Based on Reinforcement Learning 

	Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM. This mechanism improves throughput and reduces latency through continuous-time black-box optimization. Experimental results show that DROM has good convergence and effectiveness, providing better routing configuration than existing solutions. Xu et 
	Yu et al.[83] propose a deep reinforcement learning mechanism for SDN called DROM. This mechanism improves throughput and reduces latency through continuous-time black-box optimization. Experimental results show that DROM has good convergence and effectiveness, providing better routing configuration than existing solutions. Xu et 
	al.[84] propose a DRL-based routing method for experience-driven networks, DRL-TE, to solve traffic engineering problems. DRL-TE jointly learns the dynamic network environment and makes decisions under the guidance of deep neural networks. Experimental results show that DRL-TE is robust to network changes, significantly reducing end-to-end delay and continuously improving network utility while providing better throughput. Ding et al.[85] study a routing selection method based on deep reinforcement learning 

	Sun et al.[86] propose an intelligent routing technology based on deep reinforcement learning called SmartPath. By dynamically collecting network states and using deep reinforcement learning to automatically generate routing policies, SmartPath ensures that routing policies can dynamically adapt to network traffic changes. Experimental results show that SmartPath can dynamically update network routing without relying on manual traffic modeling, reducing average end-to-end transmission delay by at least 10% 
	-

	The above intelligent routing algorithms have certain advantages in network performance such as delay, throughput, and link utilization when facing small network state inputs. However, in the complex network environment with continuously expanding network scale, these intelligent routing algorithms often have low convergence efficiency, and network performance such as average end-to-end delay and throughput still need improvement. Additionally, these intelligent routing algorithms have weak generalization c
	2.4.4 Zhao et al.[91] designed an intelligent routing method based on deep reinforcement learning, which effectively alleviates network congestion and achieves network load balancing. Chen et al.[92] addressed the issue of modeling complex and dynamic networks by proposing a deep reinforcement learning algorithm based on DDPG (Deep Deterministic Policy Gradient). This algorithm divides the network into uplink and downlink, introducing multiple new features to form the state space. The action space consists 
	SDN Routing Optimization Based on Deep Reinforcement Learning Algorithms 

	The CFR-RL algorithm selects some critical flows for rerouting, while most flows are forwarded by equal-cost multi-path (ECMP), effectively solving the problem of decreased network service quality and interference caused by frequent rerouting. Fu et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low latency and low packet loss for mouse flows and high throughput and low packet loss for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement 
	The CFR-RL algorithm selects some critical flows for rerouting, while most flows are forwarded by equal-cost multi-path (ECMP), effectively solving the problem of decreased network service quality and interference caused by frequent rerouting. Fu et al.[93] proposed a deep Q-learning reinforcement learning method to achieve low latency and low packet loss for mouse flows and high throughput and low packet loss for elephant flows in data center networks. Liu et al.[94] designed a deep reinforcement 
	learning routing algorithm, considering the SDN controller cache as a key factor affecting routing strategies. By restructuring the cache and bandwidth with quantifiable scores to reduce latency, this algorithm forms a multi-dimensional state space, improving network throughput and robustness. Hossain et al.[95] designed an intelligent situational awareness routing algorithm that uses intelligent sensing algorithms to reduce the impact on application-driven program QoS when the network is under attack, effe

	By combining deep learning and reinforcement learning techniques, the previously mentioned algorithms efficiently overcome the drawbacks of Q-table-based approaches. They also speed up model convergence and improve the system's capacity to manage and adjust to intricate, high-dimensional dynamic network environments, ultimately leading to improved network performance. These techniques, however, do not take into account how intelligent routing optimization algorithms might be affected by alterations in netwo
	Section 2.4 addresses the strategies and technologies used in SDN routing, including the implementation of machine learning techniques to enhance routing decisions. 
	2.4.5 
	Summary 

	2.5CHAPTER SUMMARY 
	This chapter has systematically explored the various dimensions of Software Defined Networking (SDN), from its fundamental architecture to advanced routing optimization techniques. SDN's flexibility and efficiency over traditional network architectures are evident, with its ability to adapt quickly to new business demands and manage network traffic dynamically. The exploration of SDN controllers and their distinctive features underscores the diversity of options available for network customization and optim
	This chapter has systematically explored the various dimensions of Software Defined Networking (SDN), from its fundamental architecture to advanced routing optimization techniques. SDN's flexibility and efficiency over traditional network architectures are evident, with its ability to adapt quickly to new business demands and manage network traffic dynamically. The exploration of SDN controllers and their distinctive features underscores the diversity of options available for network customization and optim
	focusing on automation and intelligent decision-making to enhance performance metrics. 

	This chapter addresses the limitations of traditional routing methods that rely on limited network link information for routing decisions, have poor adaptability to dynamic and complex network changes, and lack flexibility in adjusting routing strategies. The method it suggests is based on Dueling DQN reinforcement learning and network traffic state prediction (DRL-TP, Deep Reinforcement Learning-Network Traffic State Prediction), and it is an SDN intelligent routing technique. By acquiring global network l


	CHAPTER 3 -RESEARCH METHODOLOGY 
	CHAPTER 3 -RESEARCH METHODOLOGY 
	This section outlines the experimental and theoretical methods employed to assess the performance and efficacy of Dueling DQN and GRU-based SDN routing strategies. 
	3.1RESEARCH METHOD 
	In this project, we employ a multifaceted research method that integrates Software Defined Networking (SDN) and advanced reinforcement learning techniques, specifically Dueling Deep Q-Networks (Dueling DQN), to enhance routing decisions through intelligent traffic prediction. Our project design capitalizes on the flexibility of SDN which separates the control and data planes, enabling centralized network traffic management. The Dueling DQN approach optimizes routing by distinguishing between state values an
	We conduct experiments in a simulated network environment using tools like Mininet and the Ryu SDN controller, which facilitate the testing of our model under various traffic scenarios. Traffic matrices are collected to provide real-time and historical data for training the Dueling DQN model and evaluating network performance against traditional and other RL-based methods. The effectiveness of our proposed method is measured through key performance indicators including throughput, latency, and packet loss. 
	The research strategy is experimental. Our results are analyzed to refine the Dueling DQN model, ensuring it effectively aligns with actual network dynamics. Additionally, scalability and robustness tests are carried out to confirm the model's efficacy in larger and more complex networks, as well as its resilience in adverse network conditions. This comprehensive approach not only advances the field of network management but also offers practical insights into the deployment of machine learning techniques w
	The research onion framework illustrated in the encapsulates the comprehensive methodology adopted for this project, structured across several layers. Each layer represents a specific stage of the research process, detailing the underlying 
	The research onion framework illustrated in the encapsulates the comprehensive methodology adopted for this project, structured across several layers. Each layer represents a specific stage of the research process, detailing the underlying 
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	philosophies, approaches, strategies, choices, time horizons, and techniques and procedures. 

	Figure 9 Layers of the Onion Diagram for Research Methodology 
	Figure
	The project adopts a realism approach, suitable for quantitative analysis of observable phenomena within predefined frameworks. The research utilizes this philosophy to leverage its structured, objective nature, ensuring rigorous quantification of network performance metrics. Challenges associated with a potentially narrow scope are mitigated by incorporating diverse network scenarios. 
	3.1.1 
	Philosophy 

	The research follows a deductive approach, starting with the hypothesis that the 
	3.1.2 
	Approaches 

	Dueling DQN-based 
	Dueling DQN-based 
	Dueling DQN-based 
	intelligent routing 
	method 
	will 
	outperform 
	traditional 
	routing 

	methods. The hypothesis is then tested through systematic experiments. 
	methods. The hypothesis is then tested through systematic experiments. 

	3.1.3 Strategies 
	3.1.3 Strategies 

	Experiment: 
	Experiment: 
	The 
	primary 
	strategy 
	involves 
	conducting 
	experiments 
	to 
	collect 


	performance data of different routing algorithms under various network conditions. These experiments are designed to provide empirical evidence supporting the hypothesis. Software Development: A significant part of the research involves developing software for implementing and testing the proposed DRL-TP intelligent routing algorithm. 
	3.1.4 Choices Mixed Methods: Although primarily quantitative, the project also involves some qualitative assessment of the algorithms' performance to provide a comprehensive evaluation. 
	3.1.5 Time Horizons Cross-sectional: The experiments are conducted at specific intervals, providing snapshots of the network performance at various points in time. This approach helps in understanding the immediate impact of the routing algorithms. 
	Data Collection and Evaluation: Data is collected through network simulations, using tools like Mininet and Ryu to create the SDN environment and Iperf to generate traffic. The collected data includes metrics such as throughput, delay, and packet loss rate. 
	3.1.6 
	Techniques and Procedures 

	Alternative Algorithms: In case the Dueling DQN-based approach does not perform as expected, alternative DRL algorithms such as PPO (Proximal Policy Optimization) or A3C (Asynchronous Advantage Actor-Critic) will be considered. Extended Data Collection: If initial data collection proves insufficient or inconclusive, additional data collection phases will be implemented to ensure robust and comprehensive results. 
	3.1.7 
	Contingency Plans 

	Hybrid Methods: Combining DRL with other machine learning techniques, such as supervised learning for specific sub-tasks, to enhance overall performance. Simulation Environment Adjustments: Modifying the network simulation environment to include different types of network traffic and topologies to test the robustness of the proposed routing algorithm under various conditions. Expert Review: Engaging domain experts to review methodology and results, providing insights and recommendations to address potential
	3.1.8 Risks and Limitations The main risks involve the potential discrepancies between simulated environments and real-world network operations. Strategies to counteract these risks include rigorous scenario testing and validation against baseline models. Validity, Reliability, Generalisability 
	-

	⚫
	⚫
	⚫
	⚫

	Validity: The experimental setup is designed to accurately reflect realistic network behaviors. 
	-


	⚫
	⚫
	⚫

	Reliability: Consistency of results will be ensured through replication of experiments and methodological transparency. 

	⚫
	⚫
	⚫

	Generalisability: Results will be discussed in terms of their applicability to similar technological environments and configurations. 
	-



	The Gantt chart for the SDN Routing Strategy Project, as shown in visualizes the project timeline and the scheduling of different phases from April 2024 through September 2024. The project begins with Data Collection in April, followed by the development of the Dueling DQN model in late April and early May. Experiment setup occurs briefly in mid-May. Testing and evaluation is the longest phase, starting in late May and continuing through mid-July. Data Analysis is scheduled for July, overlapping slightly wi
	Figure 10, 
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	3.2RESEARCH MATERIALS 
	3.2.1 Hardware Devices Computer Cluster: The experiments were conducted on a cluster composed of multiple high-performance computers, each equipped with an Intel Core i9 processor and 32GB RAM. These computers were interconnected via Gigabit Ethernet to simulate high traffic and high throughput conditions in a real network environment. The high processing power and large memory capacity of the computer cluster ensure that complex network simulations and large-scale data processing can be performed efficient
	3.2.2 Network Devices OpenFlow Switches: Hardware switches supporting the OpenFlow protocol were used to construct the experimental network topology. These switches are highly programmable and can flexibly forward and process data packets according to instructions from the control plane. By using OpenFlow switches, precise control and management of network traffic can be achieved, effectively verifying the performance of the intelligent routing algorithm under various network conditions. 
	3.3CHAPTER SUMMARY 
	This chapter provided a detailed description of the research materials, including the datasets, software, and hardware used in this project. The justification for the chosen materials emphasized their relevance and suitability for the research objectives, ensuring that the project is based on high-quality, reliable data and state-of-the-art computational tools. Ethical considerations were addressed, ensuring compliance with data usage guidelines and ethical standards. This comprehensive approach to selectin

	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING 
	CHAPTER 4 – ARCHITECTURAL DESIGN AND MODELING 
	4.1 ARCHITECTURE AND MODEL DESIGN" 
	This section introduces the architecture and modeling of SDN-based intelligent routing optimization, as well as the detailed design process of intelligent routing algorithms. 
	4.1.1 OpenFlow switches are equipped with various counters to record statistical information such as the number of different types of packets, byte counts, and time information, as shown in These counters include per-port, per-flow table, and per-flow entry statistics. The controller can periodically query and retrieve counter statistics from OpenFlow switches using statistics messages defined by the OpenFlow protocol. This statistical information is very useful for network performance monitoring and troubl
	Parameter Collection Design 
	Table 3. 

	Table 3 Counters in OpenFlow 
	Type 
	Type 
	Type 
	Content 
	Bit Width 

	TR
	Active Entries 
	32 

	Per Flow Table 
	Per Flow Table 
	Packet Lookups 
	64 

	TR
	Packet Matches 
	64 

	TR
	Received Packet Count 
	64 

	Per Flow Entry 
	Per Flow Entry 
	Received Packet Byte Count 
	64 

	Duration (seconds) 
	Duration (seconds) 
	32 

	Duration (nanoseconds) 
	Duration (nanoseconds) 
	32 


	4.1.1.1 
	4.1.1.1 
	4.1.1.1 
	Measuring link packet loss and throughput 

	Port-Stats messages can be utilized to measure link packet loss rate and link throughput. There are two types of Port-Stats messages: Port-Stats-Request 
	Port-Stats messages can be utilized to measure link packet loss rate and link throughput. There are two types of Port-Stats messages: Port-Stats-Request 
	messages, which are used by the SDN controller to request port statistics from the switch, and Port-Stats-Reply messages, which are used by the switch to respond to the SDN controller. Specifically, the switch reads the counters of the specified port, obtains the port's statistics, encapsulates them in the message, and then sends the message to the SDN controller. In OpenFlow 1.3, the formats of Port-Stats-Request and Port-Stats-Reply messages are shown in and respectively. The controller can obtain the por
	Figure 11 
	Figure 12, 
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	Figure 11 Port-Stats-Request Message Format in OpenFlow 1.3 
	Figure
	Figure
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3 
	Figure 12 Port-Stats-Reply Message Format in OpenFlow 1.3 


	Packet loss rate is a crucial indicator of network performance. It can be used to assess the quality and stability of the network, as well as for troubleshooting and performance optimization. 
	Figure
	Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to measure link packet loss rate 
	Figure 13 Schematic diagram of OpenFlow-based Port-Stats messages to measure link packet loss rate 


	Packet loss rate is a crucial indicator of network performance. It can be used to 
	assess the quality and stability of the network, as well as for troubleshooting and 
	performance optimization. Suppose we measure the packet loss rate of the link 
	from switch S1 to switch S2 in the network topology shown in To obtain 
	Figure 13. 

	the number of packets sent by port 1 of S1 (s1_tx_packets) and the number of 
	𝑠1

	packets received by port 2 of S2 (𝑠2_𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠), the OpenFlow-defined Port
	s2
	-

	Stats-Request statistic message can be used. The controller can periodically send 
	statistic requests to the OpenFlow switches to retrieve the statistics of the specified 
	ports. Then, the packet loss rate over the interval between two query periods can 
	be calculated using Equation (1). To achieve periodic polling, a timer can be used 
	to set the query interval, triggering the query operation when the timer expires. 
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	Figure

	𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠()−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠() In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)and iquery intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the (i-1)query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets sent by switch 
	𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠()−𝑡x_p𝑎𝑐𝑘𝑒𝑡𝑠() In the formula, Loss(i-1,i) represents the packet loss rate between the (i-1)and iquery intervals; 𝑟𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets received by switch S2 at the (i-1)query; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠() denotes the number of packets sent by switch 
	𝑠1
	𝑖
	𝑠1
	𝑖−1
	th 
	th 
	𝑠2
	𝑖−1
	th 
	𝑠I
	𝑖
	th 
	𝑠I
	𝑖

	S1 at the iquery; 𝑡𝑥_𝑝𝑎𝑐𝑘𝑒𝑡𝑠()denotes the number of packets sent by switch S1 at the (i-1)query. 
	th 
	𝑠1
	𝑖−1
	th 


	By measuring throughput, the transmission capacity, data processing capability, and transmission quality of the network can be evaluated, thus determining whether the network meets business requirements. When measuring the link throughput of switches, the SDN controller periodically sends Port-Stats-Request messages to the specified switches and retrieves the received/sent byte counts (rx_bytes/tx_bytes) and port duration (duration_sec and duration_nsec) from the switches' Port-Stats-Reply messages. Using f
	th 
	th 

	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑠𝑒𝑐 + 𝑑𝑢𝑟𝑎𝑡𝑖𝑜n_𝑛sec ∗ 10(2) In these formulas, duration refers to the port's duration; duration_sec represents the port's duration in seconds; duration_nsec represents the port's duration in milliseconds. 
	−9 

	𝑏𝑦𝑡𝑒𝑠𝑖−𝑏𝑦𝑡𝑒𝑠()
	𝑖−1

	𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑡𝑝𝑢𝑡(𝑖 − 1, 𝑖) = (3)
	𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖−𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛() 
	𝑖−1

	In the formula, Throughput(i-1,i) represents the throughput during the (i-1)and iquery intervals; bytesi denotes the total number of received and transmitted bytes at the iquery; 𝑏𝑦𝑡𝑒𝑠() denotes the total number of received and transmitted bytes at 
	th 
	th 
	th 
	𝑖−1

	the (i-1)query. 
	th 


	4.1.1.2 
	4.1.1.2 
	4.1.1.2 
	Measuring link latency 

	In an SDN network, an important metric for evaluating link performance is the transmission latency between switches. However, because OpenFlow switches do not include timestamps in regular packets, it is not possible to measure transmission latency passively as in traditional IP networks. Therefore, an active measurement method is required, which involves generating and sending probe packets between switches to address this issue. These probe packets contain information about the sending and receiving times
	Measurement of latency in software-defined data center networks using Packet-Out and Packet-In messages operates on the principle illustrated in The controller sends a probe packet to switch S1 and issues a rule for S1 to forward the probe packet to S2. If S2 receives the probe packet but does not have a corresponding forwarding rule, it will return the probe packet to the controller. By calculating the total transmission time of the probe packet in the path, the controller can determine the transmission la
	Figure 14 Schematic 
	for measuring delay based on Packet-Out and Packet-In messages. 

	To measure the transmission latency between switches, the controller sends probe packets and measures the total time these packets take to travel through the path. However, because there is also latency in communication between the controller and the switches, it is necessary to send communication messages and measure the round-trip time (RTT) between the controller and each switch. Finally, by calculating the difference between these times, the controller can obtain the final link latency result. 
	Figure
	Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In messages 
	Figure 14 Schematic for measuring delay based on Packet-Out and Packet-In messages 


	The detailed steps to measure the latency of the link from S1 to S2 are as follows: a) Probe Packet Transmission Time 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 :To obtain the probe packet transmission time 𝑇, the controller generates a probe packet containing the target forwarding port of switch S1 and the sending timestamp, recording the transmission path and sending time. These packets are encapsulated in a Packet-Out message and sent to switch S1. Switch S1 forwards the packet to the designated port, from where switch S2 receives
	𝑡𝑟𝑎𝑣𝑒𝑙
	𝑡𝑟𝑎𝑣𝑒𝑙 
	𝑑𝑒𝑙𝑎𝑦

	𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2
	𝑅𝑇𝑇𝑠1+𝑅𝑇𝑇𝑠2

	𝑑𝑒𝑙𝑎𝑦 𝑡𝑟𝑎𝑣𝑒𝑙 
	𝑇
	= 𝑇
	− 
	2 
	(4) 

	4.1.2 
	Intelligent routing algorithms 


	4.1.2.1 
	4.1.2.1 
	Deep Reinforcement Learning Algorithms 

	The framework of deep reinforcement learning (DRL) algorithms necessitates the creation of distinct state spaces, action spaces, and reward functions for a range of issues and use cases. The state space, action space, and reward function designs for the DRL-TP intelligent routing algorithm—which is based on the deep reinforcement learning framework—are explained in the following. 
	State Space (S): The traffic matrix over interval t is shown by the symbol TM in the representation of the state space, S=TM. Equation illustrates that this matrix is made up of numerous two-dimensional matrices 𝑀||||. 
	𝑉
	×
	𝑉

	1
	1

	𝑚= 𝑤• + 𝑤• 𝐿+ 𝑤• 𝐿, 𝑖, 𝑗 = 1,2, … , |𝑉| (5)
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	𝑡𝑤
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	Each element 𝑚in the traffic matrix is constructed by aggregating information from 𝑏𝑑𝑒𝑙𝑎𝑦rate (𝐿). These elements are combined using adjustable parameters ; 𝑤∈ [0,1], 𝑙 = 1,2,3, which serve as weight factors for each component. Each network link information matrix includes link information between all switch nodes at the current time. The indices i and j represent the switch node names in the network topology, and |𝑉| denotes the number of switch nodes in the network topology. The structure of th
	𝑖𝑗 
	six aspects of the network link: residual bandwidth (𝐿
	𝑤), delay (𝐿
	), packet loss 
	𝑙𝑜𝑠𝑠
	𝑙 
	Figure 15 Traffic matrix structure diagram. 

	Figure
	Figure 15 Traffic matrix structure diagram 
	Figure 15 Traffic matrix structure diagram 


	Forwarding link weights and forwarding paths make up the two main categories of actions in the action space. While storing a sizable action space is not necessary for the former, it still needs to be further transformed into forwarding paths using the appropriate techniques. The latter involves storing a huge action space, but it outputs forwarding paths immediately. Choosing a set of potential paths to serve as the action space is an efficient solution, as proven effective in studies [26][31][33][43]. The 
	𝑡 
	𝑡 
	𝑉
	∝
	𝑉

	are composed. The paths from every source switch node to every destination switch node are included in each potential path matrix. From switch node i to switch node j, the 𝑝𝑎𝑡ℎ𝑗 = [𝑖,…,𝑗] is represented by the entries in each potential path matrix. 
	𝑖

	The reward value is used to provide feedback on the quality of actions supplied by the neural network, typically evaluating the current network conditions and the 
	actions taken by the agent. It can be set to optimize various objective functions as needed. In this method, average end-to-end delay, bandwith, and packet loss rate are used as the comprehensive evaluation metrics. The reward value is calculated as shown in Equation (6): 
	𝑏𝑤 𝑑𝑒𝑙𝑎𝑦 𝑙𝑜𝑠𝑠 In Equation (6), 𝜑, 𝜑, and 𝜑are weight parameters, each ranging from 0 to 1. The calculation process can adjust these weights according to the importance of each performance metric. After calculating the reward value, the result is returned to the agent, which then adjusts the multipath routing link weights and traffic splitting ratios. During the model training convergence process, the reward value is accumulated over the increasing number of training steps. The rising trend of 
	𝑅 = 𝜑
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	− 𝜑
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	Algorithm 1: DQN Deep Reinforcement Learning Algorithm 
	Input: Traffic matrix: TM Output: Forwarding paths for all source-destination pairs in the network 
	1. 
	1. 
	1. 
	Initialize policy network Q_policy and target network Q_target with weights θ, and experience pool M 

	2. 
	2. 
	For episode = 1 to episodes do: 

	3. 
	3. 
	 The agent obtains the initial state St 

	4. 
	4. 
	While next_state St+1 is not final state do: 

	5. 
	5. 
	 Update exploration parameter ε = ε -(steps * decay) 

	6. 
	6. 
	 The agent selects action at for current state st based on: 

	7. 
	7. 
	 The estimated reward R(st, at) 

	8. 
	8. 
	 Store experience Experiences = (st, at, rt, st+1) into M 

	9. 
	9. 
	 If len(M) >= batch then: 

	10. 
	10. 
	Sample batch data randomly from M 

	11. 
	11. 
	 Calculate pvalue and tvalue for the batch 

	12. 
	12. 
	12. 
	Execute gradient descent on (tvalue -pvalue)^2 to update Q_policy weights 

	θ 

	13. 
	13. 
	 If steps % freq == 0 then: 

	14. 
	14. 
	Update Q_target network model parameters, θ_{target} ← τ * θ_{policy} 


	+ (1-τ) * θ_{target} 
	15. 
	15. 
	15. 
	 End if 

	16. 
	16. 
	 s_t ← s_{t+1} 

	17. 
	17. 
	End while 

	18. 
	18. 
	End for 


	4.1.3 GRU Gated Recurrent Unit (GRU) [97] is a variant of the Long Short-Term Memory (LSTM) network. As shown the GRU consists of two special gates: the update gate and the reset gate. The GRU network model contains fewer parameters than the LSTM network model, which not only lowers the possibility of overfitting in the prediction model but also speeds up its convergence. This makes it more suitable to satisfy the intelligent routing algorithm's real-time traffic matrix acquisition needs, which are the focu
	inFigure 16 GRU structure diagram, 

	𝑡 understood as a combination of the forget gate and the input gate in LSTM. It determines which state information should be discarded or retained and the importance of that state information. As shown in equation (7), the update gate ztakes the state information from the hidden layer at the previous time step and the current time step's input layer information [ℎ, 𝑋] and, through the sigmoid function 
	z 
	𝑡 
	𝑡−1
	𝑡

	σ, outputs a value between [0,1] to decide the extent to which the information in the 
	cell state 𝑧should be retained. 
	𝑡 

	𝑧𝑡 =𝜎(𝑊𝑧•[ℎ𝑡−1,𝑋𝑡]+𝜔𝑧) (7) 
	The reset gate 𝑟functions similarly to the update gate and is used to determine the 
	𝑡 

	next hidden state 𝑟. First, according to equation (8), it outputs a value between [0,1] 
	𝑡

	to decide the retention level of 𝑟. Then, 𝑟is used to reset the previous hidden state 
	𝑡
	𝑡 

	ℎ−1 to obtain the candidate hidden state, as shown in equation (9). The symbol ⊙ 
	𝑡 

	denotes element-wise multiplication of the corresponding values in the matrices, 
	followed by summation. Finally, according to equation (10), the next hidden state ℎ
	𝑡 

	is obtained and passed to the neurons in the next time step. This process continually 
	is obtained and passed to the neurons in the next time step. This process continually 
	updates the weight parameters of the GRU network model, thereby enhancing its ability to predict the network traffic state. 

	(8) (9) (10) 
	Figure 16 GRU structure diagram 
	Figure 16 GRU structure diagram 


	Figure
	Start by setting the essential hyperparameters, including the dimensions for the input, hidden, and output layers which are fundamental to the GRU algorithm's structure. The traffic matrix is then processed through time-series operations to generate input and target matrices, 𝑇𝑀and 𝑀for the GRU model. Gradient descent and 
	𝑖𝑛𝑝𝑢𝑡 
	𝑡𝑎𝑟𝑔𝑒𝑡 

	backpropagation are used to update the weights and biases of the GRU model during training, and the mean squared loss function is employed to assess the model's effectiveness. Upon completion, the refined GRU model is employed to produce a forecasted traffic matrix, integral to the traffic matrix 𝑇𝑀 in Algorithm 1, thus enhancing 
	the algorithm’s predictive accuracy and efficacy. 
	Algorithm 2: Network traffic status prediction algorithm 
	Input: Traffic matrix: TM Output: Forwarding paths for all source-destination pairs in the network 
	1. 
	1. 
	1. 
	Initialize GRU model weights. 

	2. 
	2. 
	Split the time series data TM into input (TM_input) and target (TM_target) for training. 

	3. 
	3. 
	For each episode from 1 to n: 

	4. 
	4. 
	Initialize hidden state. 

	5. 
	5. 
	For each time step from 0 to the length of TM_input: 

	6. 
	6. 
	 Calculate output and update hidden state using the GRU model. 

	7. 
	7. 
	 Compute loss as the difference between model output and the target data. 

	8. 
	8. 
	 Update the model to minimize loss. 

	9. 
	9. 
	End time step loop. 

	10. 
	10. 
	End episode loop. 


	4.2 DATA EVALUATION METHODS 
	4.2.1 Data Collection The process of data collection involves gathering performance data from network simulations to ensure a comprehensive understanding of network behavior and performance under various conditions. In this study, data is collected using a structured approach. The experimental environment is constructed using Mininet 2.3.0 to build the SDN topology, with Ryu 4.34 serving as the SDN controller and Iperf for simulating data flows. The network setup includes a modified New York City Center net
	In order to quantify the network traffic matrix, data flows of evenly dispersed sizes are generated and sent with equal probability, yielding a total of 1458 traffic matrices. These matrices provide a comprehensive dataset for analysis, encompassing a variety of network link indicators such as bandwidth, delay, packet loss rate, used bandwidth, number of packet dropouts, and error rate. Throughput, latency, and packet loss rate are important performance data that are gathered and are essential for assessing
	4.2.2 Data Evaluation 
	In this project, data evaluation involves analyzing the collected performance data to assess the effectiveness of different routing algorithms within a simulated network environment. The primary performance metrics considered are throughput, delay, and packet loss rate, which provide a comprehensive view of the network's operational efficiency and reliability under various routing strategies. 
	Throughput is evaluated by measuring the total amount of data successfully transmitted across the network within a specified time period. This metric is crucial for understanding the network's capacity to handle high volumes of traffic and is calculated as the number of bytes sent from one switch to another, divided by the available bandwidth of the link. Higher throughput indicates better network performance and more efficient data handling. 
	Delay is another critical metric, reflecting the time taken for data packets to travel from the source to the destination. It is measured using the SDN controller's link discovery protocol, which sends echo messages to switches to obtain timestamps. These timestamps help calculate the total transmission time for data packets across the network. Lower delay values are indicative of faster data transmission, which is essential for time-sensitive applications and services. 
	Packet loss rate is measured by comparing the number of data packets sent with the number received across each network link. This metric highlights the reliability of the network in terms of data delivery. A higher packet loss rate suggests issues with network reliability and may indicate problems such as congestion or poor link quality. The packet loss rate is crucial for applications requiring high data integrity and minimal data loss during transmission. 
	For data evaluation, multiple measurements are taken to ensure accuracy and reliability of the results. The average values of packet loss rate, throughput, and delay are calculated from these measurements to provide a more stable and accurate representation of the network's performance. 
	By comparing these metrics across different routing algorithms, including the proposed DRL-TP intelligent routing algorithm and traditional algorithms like Dijkstra and OSPF, the project aims to demonstrate the improvements in network performance brought about by the DRL-TP algorithm. This comprehensive evaluation helps in identifying the strengths and weaknesses of each algorithm and provides insights into potential areas for further optimization and enhancement in network routing strategies. 
	4.3 EXPERIMENTAL SETUP 
	In this chapter, a SDN environment was set up on a system running Ubuntu 22.04 with 8 GB of RAM and a quad-core processor. The setup involved the installation of Mininet 2.2.1[101] for creating the SDN network topology, and Utilizing Ryu 4.28[102] as the SDN controller. To simulate network traffic transmission, Iperf[103] was used. the network traffic flows were generated with uniformly distributed sizes under equal probability conditions. A total of 1458 traffic matrices were collected. As shown in the Man
	Figure 17, 

	Figure
	Figure 17 Network Topology Diagram 
	Figure 17 Network Topology Diagram 


	Mininet is an open-source tool used for studying and simulating SDN. It creates a highly configurable and extensible network environment by utilizing a custom Linux kernel and user-space programs. In Mininet, SDN elements and commands play crucial roles, enabling users to flexibly control and manage network behavior. The primary SDN components in Mininet include the OpenFlow controller, OpenFlow switches, and virtual machines. Users can utilize a range of commands in Mininet to configure and control these S
	1. 
	1. 
	1. 
	mn: Used to start the Mininet simulator. By specifying different parameters, users can configure the network topology, the number of nodes, link bandwidth, etc. 

	2. 
	2. 
	controller: Adds a controller node to the network. Users can specify the IP address, port number, and type of controller (e.g., Floodlight, Ryu). 

	3. 
	3. 
	switch: Adds an OpenFlow switch node to the network. Users specify the switch's IP address, port number, and the version of the OpenFlow protocol. 

	4. 
	4. 
	host: Adds a virtual machine node to the network. Users specify the VM's IP address, MAC address, and the operating system and applications used. 

	5. 
	5. 
	link: Creates network connections. Users specify the two nodes to be connected, as well as link bandwidth and delay parameters. 

	6. 
	6. 
	run: Starts the simulation and begins executing defined applications or scripts, allowing various network experiments and tests. 

	7. 
	7. 
	pingall, tracerouteall, etc.: These commands perform specific network measurement tasks, such as ping and traceroute, within the network. 


	Through these commands, Mininet allows users to build various network topologies and configurations, making it a flexible tool for network research and experimentation. Mininet also supports the automation of complex network operations and management tasks using Python scripts. 
	Mininet is an open-source network emulation platform that can run on VMware virtual machines [98] or Ubuntu systems. Installing Mininet requires a Linux environment. The installation files can be obtained from GitHub [99] using the command line: git clone . After installation, the following command can be run for verification: sudo mn --test pingall. Upon executing this command, Mininet will automatically create a simple SDN topology network consisting of one switch and two hosts and verify the communicatio
	git://github.com/mininet/mininet

	Figure
	Figure 18 Installation verification of Mininet 
	Figure 18 Installation verification of Mininet 


	RYU: 
	The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL initiates the Ryu controller and runs the main.py script. The parameter --observe-links enables the controller to monitor the status of all network links, including their creation, updates, and disconnections. The --k-paths=8 parameter allows the controller to compute up to eight shortest paths between nodes, while --algo=DRL indicates that network decisions and optimizations are guided by Deep Reinforcement Learning (DRL). Upon exe
	The command sudo ryu-manager main.py --observe-links --k-paths=8 --algo=DRL initiates the Ryu controller and runs the main.py script. The parameter --observe-links enables the controller to monitor the status of all network links, including their creation, updates, and disconnections. The --k-paths=8 parameter allows the controller to compute up to eight shortest paths between nodes, while --algo=DRL indicates that network decisions and optimizations are guided by Deep Reinforcement Learning (DRL). Upon exe
	particularly suitable for environments that demand dynamic and complex decisionmaking support. 
	-


	Figure
	Figure 19 Topology Management of Ryu 
	Figure 19 Topology Management of Ryu 


	Iperf: Iperf is a network performance testing tool based on TCP/IP and UDP/IP, which measures network bandwidth and quality through command-line mode. Compared to the ping command [100], Iperf operates at the transport layer and provides richer test statements for monitoring network performance quality. Depending on the network administrator's needs, different parameter commands can be used to gather statistics on network jitter, latency, packet loss rate, average transmission bandwidth, and timebased trans
	-

	Figure
	Figure 20 Launch the Iperf server 
	Figure 20 Launch the Iperf server 


	To test the network connection quality between host h2 and host h1, including metrics such as bandwidth, latency, and packet loss rate, you can input the following command on host h2: h2 iperf3 -c h1 -u -t 10. 
	Here’s a breakdown of the command: 
	• -c option specifies that Iperf is running in client mode, connecting to the 
	designated server, which in this case is host h1. 
	• -u option indicates that the test will use the UDP protocol. 
	• -t option sets the test duration to 10 seconds. During the test, host h2 will send UDP data packets to host h1. After the test is completed, Iperf will output the results, including information on bandwidth, latency, and packet loss rate, providing a comprehensive assessment of the network connection quality between the two hosts. 
	Figure
	Figure 21 Test results of Iperf 
	Figure 21 Test results of Iperf 


	In the test results, the Interval represents the time range of the test, which is from 0 to 10 seconds; Transfer indicates the amount of data transmitted during this interval, which is 1.25 MBytes; Bitrate shows the transmission speed, with the network transmission rate between h1 and h2 being 1.05 Mbps; Jitter measures the average deviation of UDP packets arriving at the receiver, assessing the stability of packet arrival times—smaller values indicate less variation in delay and more reliable packet arriva
	4.4 OPTIMIZATION ALGORITHM 
	In this study, the optimization algorithm is a smart routing strategy based on DRL, aimed at real-time optimization of network traffic distribution to enhance overall network performance and efficiency. This algorithm is integrated into our Ryu network application, `DRLForwarding`, where it continuously monitors network conditions and dynamically adjusts routing decisions in response to changes. 
	The operation of the algorithm depends on real-time monitoring of the network state. The system regularly collects various metrics about the network, including link 
	The operation of the algorithm depends on real-time monitoring of the network state. The system regularly collects various metrics about the network, including link 
	4.4.1 
	Network Monitoring and Data Collection 

	utilization, latency, packet loss, etc., which are provided by the management_module. The collected data are stored in a dictionary managed by traffic_matrix, where each key corresponds to a pair of source-destination addresses, and the value is the performance metrics of data flows through these links. 

	Figure
	Figure 22 Function get_traffic_matrix 
	Figure 22 Function get_traffic_matrix 


	When the execute_drl_flag is activated, the optimization algorithm begins analyzing the collected data. First, the algorithm verifies the integrity and format of the data through the check_metric_is_format method, ensuring there is sufficient data to support the subsequent decision-making process. Once the data verification passes, the algorithm uses an instance of the DRL class, invoking its get_optimal_forwarding_path method to calculate the best forwarding paths. This calculation process considers multip
	4.4.2 
	Evaluation and Decision-Making 

	Figure
	Figure 23 Function _packet_in_handler 
	Figure 23 Function _packet_in_handler 
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	Figure 25 Function get_optimal_forwarding_path 
	Figure
	The calculated optimal paths are then used to update the network's routing tables. This process is achieved by calling the install_flow method, which installs the necessary flow entries on relevant network devices based on the results. To increase 
	4.4.3 
	Routing Updates 

	the flexibility and responsiveness of routing decisions, the system can quickly reexecute this optimization process upon detecting significant network status changes. 
	-

	Figure
	Figure 26 Function install_flow_1 
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	Figure 27 Function install_flow_2 
	Figure
	CHAPTER 5 – RESULT AND ANALYSIS 
	This chapter delves into the experimental setup, the results obtained from the application of the proposed model, and a detailed analysis of these results. The chapter is structured into four sections: Experimental Setup, Results and Analysis, Discussion, and Summary. This structure ensures a comprehensive understanding of the methodology, performance, and implications of the findings from the study. 
	5.1 RESULTS AND ANALYSIS 
	Firstly, it is required to analyze how the GRU network traffic state prediction algorithm affects the efficiency of SDN intelligent routing techniques. 
	Figure 28 A comparison between the use of GRU and its absence 
	Figure
	clearly illustrates that the agents employing the GRU prediction algorithm achieve notably higher rewards compared to those not utilizing the GRU prediction algorithm. 
	clearly illustrates that the agents employing the GRU prediction algorithm achieve notably higher rewards compared to those not utilizing the GRU prediction algorithm. 
	Figure 28 



	Table 4 Comparison of Reward Performance With and Without GRU Over Episodes 
	Episodes 
	Episodes 
	Episodes 
	Reward with (Normalized) 
	GRU 
	Reward without (Normalized) 
	GRU 

	0 
	0 
	40 
	40 

	500 
	500 
	60 
	55 


	1000 
	1000 
	1000 
	75 
	70 

	1500 
	1500 
	90 
	85 

	2000 
	2000 
	100 
	95 


	The displays the performance comparison of an agent in a root controller using a GRU versus not using it across 2000 episodes. Both strategies start with a similar reward score around 40. However, the agent using GRU shows a more pronounced improvement over time, achieving a higher normalized reward of 100 by the 2000th episode, while the agent without GRU reaches a score of 95. The progression suggests that employing a GRU in the controller enhances learning efficiency and overall reward attainment in this
	Table 4 

	Value-based and policy-based approaches are the two main types of model-free DRL approaches. Probabilistically choosing actions, policy-based DRL algorithms perform best in high-dimensional, continuous action spaces, but they are prone to local convergence and ineffective policy evaluation. Conversely, value-based DRL algorithms select actions based on the highest value, allowing for swift adjustments in action strategies as state values evolve, thus achieving global convergence more rapidly and performing 
	Figure
	Figure 29 Comparison of Dueling DQN and DDPG 
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	Table 5 Comparison of Dueling DQN and DDPG 
	Episodes 
	Episodes 
	Episodes 
	Dueling DQN Reward (Normalized) DQN 
	DDPG Reward (Normalized) 

	0 
	0 
	35 
	30 

	500 
	500 
	45 
	42 

	1000 
	1000 
	50 
	45 

	1500 
	1500 
	55 
	50 

	2000 
	2000 
	55 
	45 


	The and presents a visual representation of the normalized reward trajectories of two reinforcement learning algorithms over 2000 episodes. Initially, Dueling DQN starts with a reward level around 35, suggesting an early phase of 
	The and presents a visual representation of the normalized reward trajectories of two reinforcement learning algorithms over 2000 episodes. Initially, Dueling DQN starts with a reward level around 35, suggesting an early phase of 
	Table 5 
	Figure 29 

	learning and adaptation, while DDPG begins at 30, indicating a potentially slower start. As the episodes progress, both algorithms demonstrate an upward trend in rewards, with Dueling DQN consistently outperforming DDPG by a margin of 3 to 5 points, which may reflect its more effective state value estimation or a superior policy gradient method. 

	Around episode 1000, Dueling DQN peaks close to 50, showcasing its ability to leverage its architecture, which separately assesses the state's value and the advantages of different actions. This peak is followed by a decline, indicating encounters with new complexities or a shift in the balance of exploration and exploitation. However, Dueling DQN recovers and stabilizes at around 55 towards the final episodes, suggesting a better handling of environmental complexities and uncertainties. 
	In contrast, DDPG exhibits sharper fluctuations and a significant drop after its peak, stabilizing at a lower reward level of about 45. This indicates a potential sensitivity to environmental stochasticity or suboptimal parameter settings for this task. The smoother performance curve of Dueling DQN might reflect the stability added by its architecture, leading to more consistent policy improvement. 
	Overall, Dueling DQN not only achieves higher average performance but also exhibits greater stability compared to DDPG, which can be advantageous in real-world applications where consistent performance is crucial. The data provides valuable insights into the learning dynamics of both algorithms, highlighting areas for further refinement and potential applications. 
	The Dijkstra, Open Shortest Path First (OSPF), and DRL-TP intelligent routing algorithms are the three that are compared in this chapter. The following is a summary of each algorithm's design principles: 
	Dijkstra Routing Algorithm: When building an SDN network design, each switch node is given a link weight W of 1. The goal is to determine the best path for routing decisions, which is the route that requires the fewest hops between each source and destination switch node. 
	OSPF Routing Algorithm: Utilizing the multi-threaded network measurement mechanism of SDN, this algorithm captures the latency of each link in real-time. Based on the latency data, it computes all potential paths from source to destination switch nodes, selecting the path with the fewest hops as the optimal routing path. 
	Three metrics—network throughput, latency, and packet loss rate—created specifically for the SDN controller environment were used to assess how these three routing methods affected network performance. The comparative findings of network throughput under different traffic flow volumes are shown in The findings show that while the throughput for all three algorithms rises as the traffic flow size does, the DRL-TP intelligent routing algorithm's growth trend is noticeably more pronounced than Dijkstra's and O
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	100 Mbit/s, DRLA always shows the lowest latency, starting from 20 ms and increasing to a size of only 28 ms at the highest traffic, proving its superior efficiency in reducing the transmission time compared to Dijkstra and OSPF. Dijkstra's latency increases from 22 ms to 32 ms, while OSPF's latency is slightly higher, starting at 23 ms and increasing to 34 ms. This development suggests that DRLA may be able to better optimise for applications that require low latency, as it is able to better control the in
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	further compares these routing algorithms concerning network latency. The Dijkstra algorithm, which focuses solely on the shortest hop count for routing decisions, experiences an exponential increase in network latency as traffic flow increases due to congestion along the chosen paths. Since OSPF takes link delay into account and can dynamically modify routing based on the status of the connections, the latency under the OSPF algorithm is similar to that under the DRL-TP algorithm when the traffic flow rang
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	This shows a clear comparison of packet loss rates across three different routing algorithms—Dijkstra, OSPF, and DRLA—as network load increases. DRLA 
	Table 8 

	demonstrates the most efficient handling of network traffic, maintaining the lowest packet loss rate throughout all tested flow sizes. It starts at a 1% packet loss at a flow size of 20 Mbit/s and scales up to a 5% loss at 100 Mbit/s. In contrast, Dijkstra starts with a 2% loss rate and increases to 8%, while OSPF begins at 3% and reaches 9% under the same conditions. The increasing trend in packet loss rates as flow size increases illustrates the challenges each routing algorithm faces in managing higher n
	The DRL-TP intelligent routing algorithm, by integrating multiple network metrics such as bandwidth, latency, and packet loss rates, effectively prevents routing congestion even under high traffic loads, significantly enhancing network performance. compares the packet loss rates under the three algorithms. At traffic flows of 10Mbit/s to 20Mbit/s, the packet loss rates are similar across all algorithms since most links can handle the data packets normally. However, as traffic further increases, the routing 
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	and reveals that as traffic flow increases to 40Mbit/s, key performance metrics such as network throughput, latency, and packet loss all exhibit significant increases. This indicates that, within the SDN network topology constructed for this study, congestion becomes pronounced when traffic reaches 40Mbit/s, leading to the following conclusions: 
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	In the established SDN network architecture, increasing traffic to 40Mbit/s results in noticeable network congestion. 
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	Under conditions of significant congestion, traditional routing algorithms like Dijkstra and OSPF fail to effectively adjust their routing strategies, thereby degrading network performance. On the other hand, the intelligent routing algorithm DRL-TP, which is presented in this chapter, may dynamically modify routing strategies according to various connection metrics and continuously monitor network circumstances. This ability to maintain network performance even under severe congestion conditions demonstrat


	5.3 SUMMARY 
	Network traffic is showing traits like diversification and explosive increase as SDN network scale keeps growing and a wide range of new network devices appear. To improve network efficiency and service quantity, it is essential to choose an intelligent routing strategy that is adaptive in real-time and tailored to the needs and conditions of SDN networks. In light of this, this chapter presents an SDN intelligent routing 
	Network traffic is showing traits like diversification and explosive increase as SDN network scale keeps growing and a wide range of new network devices appear. To improve network efficiency and service quantity, it is essential to choose an intelligent routing strategy that is adaptive in real-time and tailored to the needs and conditions of SDN networks. In light of this, this chapter presents an SDN intelligent routing 
	technique based on network traffic state prediction and Dueling DQN deep reinforcement learning. In order to obtain real-time network states, this approach makes use of a specifically created multi-threaded network measurement mechanism within SDN. The DRL-TP intelligent routing algorithm is then employed to produce the best routing paths on demand. The DRL-TP intelligent routing algorithm shows practical utility in addressing SDN network routing optimization difficulties by considerably improving network t

	CHAPTER 6 -CONCLUSIONS AND RECOMMENDATIONS 
	6.1SUMMARY 
	The study has demonstrated the efficacy of utilizing Dueling DQN and real-time traffic predictions within a SDN framework to enhance routing optimization. This research confirms that integrating deep reinforcement learning with SDN capabilities not only optimizes network performance metrics such as throughput, latency, and packet loss but also enhances the adaptability of the network to dynamic conditions and traffic patterns. 
	6.2 CONCLUSION 
	The implementation of the DRL-TP model significantly improved network performance by dynamically adapting to varying network conditions without the need for manual intervention. The model successfully leveraged the centralized control and flexibility offered by SDN, alongside the predictive power of machine learning, to achieve substantial improvements over traditional routing methods. The experimental results validate the theoretical advantages proposed, underscoring the potential of combining SDN with adv
	6.3 LIMITATION AND RECOMMENDATION 
	Despite its successes, the project recognizes limitations such as the need for extensive training data for the machine learning models and the potential scalability issues in larger or more complex network environments. Future research should focus on 
	expanding the model’s applicability to broader network architectures and integrating 
	additional network parameters to enhance prediction accuracy and decision-making. It is also recommended to explore the model's integration with emerging technologies like 5G and IoT and to consider the security implications of AI-driven network management. Further development should aim to address these limitations and verify the model's effectiveness in real-world scenarios, ensuring robustness and reliability in diverse networking contexts. 
	CHAPTER 7 – REFLECTIONS 
	This chapter offers a comprehensive reflection on the extent to which the aims and objectives of this research have been achieved. It evaluates the fulfillment of the objectives, discusses the effectiveness of approaches to address shortcomings, and consolidates the insights gained throughout the study. 
	7.1ACHIEVEMENT OF RESEARCH OBJECTIVES 
	The primary aim of this research was to optimize network routing strategies in Software Defined Networking (SDN) environments through the application of Dueling Deep Q-Networks (Dueling DQN) and real-time traffic prediction models. This aim was articulated through several specific objectives, each linked to the chapters that detailed their exploration and outcomes. 
	Objective 1: Develop an enhanced routing strategy using Dueling DQN. 
	Achievement: This objective was substantially achieved as detailed in Chapter 4, where the Dueling DQN model was successfully implemented and tested. The model demonstrated significant improvements in network throughput and latency compared to traditional methods. 
	Objective 2: Integrate real-time traffic predictions with SDN control decisions. 
	Achievement: As discussed in Chapter 4, the integration of traffic prediction mechanisms was effective, allowing for dynamic adjustments to routing strategies based on real-time data. This integration proved crucial in enhancing the adaptability of the network under varying traffic conditions. 
	Objective 3: Assess the performance of the proposed solutions under different network conditions. 
	Achievement: Covered in Chapter 5, this objective was met through rigorous testing and evaluation. The results confirmed that the proposed routing strategy performs robustly across a range of scenarios, marking a significant step towards reliable SDN operations. 
	7.2REFLECTION ON RESEARCH CONDUCT AND PROGRESS 
	7.2REFLECTION ON RESEARCH CONDUCT AND PROGRESS 
	Throughout the course of this research, several challenges were encountered, particularly related to data collection and model training. The complexity of configuring an SDN environment that realistically simulates a dynamic network posed initial setbacks. However, these challenges were anticipated in the risk analysis phase, and the strategies for mitigating such issues proved mostly effective. 

	Key strategies included the use of simulated environments to pre-test network configurations and adjustments to the training dataset to enhance the robustness and accuracy of the machine learning models. These approaches not only addressed the immediate challenges but also provided valuable learning experiences that enhanced the overall research process. 
	Unexpectedly, the integration of real-time data into the learning model required more computational resources than initially estimated, leading to adjustments in resource allocation and project timelines. This issue was not fully anticipated in the risk analysis, highlighting a need for more comprehensive resource planning in future projects. 
	7.3KEY REFLECTIONS AND INSIGHTS 
	One of the most significant insights from this research was the critical importance of flexibility in both the research approach and the technological solutions. Adapting quickly to technical challenges and changing project scopes was essential for maintaining progress towards the research objectives. 
	Moreover, the research underscored the potential of machine learning in revolutionizing network management practices. The practical implications of this research suggest that further exploration and investment into AI-driven SDN solutions could yield substantial benefits for the field of network engineering. 
	7.4CONCLUSION 
	In conclusion, this research project has largely met its initial objectives, providing a strong foundation for further exploration and development in the field of AI-enhanced network management. The experiences and challenges encountered have offered 
	In conclusion, this research project has largely met its initial objectives, providing a strong foundation for further exploration and development in the field of AI-enhanced network management. The experiences and challenges encountered have offered 
	profound insights into both the potential and limitations of current technologies, guiding future studies towards more efficient and adaptable network solutions. 
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	In the comprehensive review of the project management for this research, an in-depth analysis was performed comparing the initial planning with the actual execution, as visualized in 
	and These Gantt charts provide a vivid illustration of the project's timeline and tasks, highlighting the adaptability and adjustments required throughout the course of the research. 
	The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the 
	project's tasks, starting from background reading and systematically progressing 
	towards the final submission. This plan was intended to provide a clear roadmap, 
	designating significant time blocks to each essential phase such as proposal 
	development, literature review, and experimental work. The design suggested a linear 
	progression which aimed to maintain a steady pace throughout the project duration. 
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	However, the actual progress chart tells a different story—one of deviation and adaptation. Notable adjustments can be seen in the extension of phases such as "Model Design" and "Experimentation and Results Analysis." These phases extended beyond their originally allocated durations due to unexpected challenges such as data complexities and the intricacies involved in model validation. These issues were not fully anticipated at the project's outset and required on-the-fly adjustments to the schedule. 
	(Figure 34) 

	Figure
	Figure 34 Actual Gantt Chart 
	Figure 34 Actual Gantt Chart 


	Additionally, the approach to report writing was adapted significantly. Instead of a single phase, report writing was segmented into individual chapters, allowing for continuous revision and incorporation of new data and insights as the project progressed. This methodological adjustment was crucial for integrating evolving findings and ensuring the final report's accuracy and coherence. 
	Risk management strategies also played a vital role in the project's execution. Identified risks such as data availability and computational resource constraints were addressed with pre-planned mitigation strategies, which included securing additional data sources and optimizing computational tasks. While these strategies were generally effective, the actual impact of data availability proved more challenging than expected, highlighting a need for more robust contingency planning. 
	Reflecting on the overall project management, adaptability emerges as a critical theme. The ability to dynamically adjust project plans in response to unforeseen challenges was instrumental in driving the project toward its objectives. However, this experience also emphasized the need for more precise risk anticipation and enhanced contingency measures
	. 

	and provided profound insights into the dynamic nature of managing a research project. It underscored the importance of flexibility, robust risk management, and the need for proactive problem-solving. These insights are invaluable for future research projects, offering lessons on better preparedness and adaptive strategies to efficiently handle the complexities and unpredictabilities inherent in substantial research endeavors. This reflective analysis not only highlights the successes and challenges of the 
	The initial Gantt chart (Figure 33) outlined a structured and sequential approach to the 
	project's tasks, starting from background reading and systematically progressing 
	towards the final submission. This plan was intended to provide a clear roadmap, 
	designating significant time blocks to each essential phase such as proposal 
	development, literature review, and experimental work. The design suggested a linear 
	progression which aimed to maintain a steady pace throughout the project duration. 
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	2024-02-19 
	2024-02-19 
	Initiated background reading on SDN and its routing mechanisms. 
	Focused on understanding the limitations of current systems. 

	2024-02-21 
	2024-02-21 
	Continued literature review, focusing on challenges in dynamic routing. 
	Noticed significant gaps in realtime adaptability of models. 
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	2024-02-23 
	2024-02-23 
	Began drafting the research proposal. 
	Considering the integration of Dueling Deep Q-Networks. 

	2024-02-25 
	2024-02-25 
	Refined the proposal, focusing on real-time traffic prediction integration. 
	Explored traffic prediction models for potential integration. 

	2024-02-27 
	2024-02-27 
	Submitted the proposal and began setting up Mininet simulation environment. 
	Contemplated the setup challenges. 

	2024-03-01 
	2024-03-01 
	Started first set of experiments to test basic SDN controller functionality. 
	Assessed initial results against theoretical expectations. 

	2024-03-03 
	2024-03-03 
	Adjusted experimental parameters based on findings and reran simulations. 
	Reflected on the importance of fine-tuning network parameters. 

	2024-03-05 
	2024-03-05 
	Conducted extensive tests on the DDQN model under stress conditions. 
	Observed model adaptability to sudden network load changes. 
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	2024-03-07 
	Compiled results and began drafting report sections on methodology and early findings. 
	Considered how to present complex concepts clearly. 
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	2024-03-09 
	Peer-reviewed draft chapters and incorporated feedback. 
	Valued peer feedback for enhancing content clarity. 
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	Peer-reviewed the draft chapters and incorporated feedback. 
	Recognized the value of peer feedback in clarifying and enhancing the report's content. 

	2024-03-13 
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	Explored the relationship between network traffic variability and algorithmic responsiveness. 
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	Received valuable insights on potential scalability issues of the proposed model. 
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	Began coding the modified routing algorithms using Python and the Ryu controller. 
	Considered the trade-offs between complexity of code and performance efficiency. 

	2024-03-19 
	2024-03-19 
	Troubleshooted issues from initial coding tests; implemented optimizations. 
	Reflected on the necessity of efficient debugging practices to maintain project timeline. 

	2024-03-21 
	2024-03-21 
	Prepared for mid-project presentation by creating slides and rehearsing key points. 
	Focused on how to effectively communicate complex technical details to a non-technical audience. 

	2024-03-23 
	2024-03-23 
	Delivered mid-project presentation; received feedback on project direction and methodology. 
	Contemplated feedback regarding the integration of additional predictive metrics in the model. 

	2024-03-25 
	2024-03-25 
	Revised project plan and timeline in consultation with supervisor to incorporate new components. 
	Assessed the impact of changes on the overall project scope and expected outcomes. 

	2024-03-27 
	2024-03-27 
	Began extensive data collection phase using both simulated and real-world data sources. 
	Examined the consistency and quality of incoming data to ensure its suitability for model training. 
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	Analyzed initial datasets and performed preliminary data cleansing and preparation. 
	Recognized patterns and anomalies in the data that could influence model training and performance. 
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	Weighed the benefits of including diverse features against the complexity they introduce to the model. 
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	Submitted the final thesis. 
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	GLOSSARY 
	GLOSSARY 
	SDN (Software Defined Networking): A networking approach that allows network behavior to be controlled by software applications using open interfaces, separating the network's control logic from the underlying physical routers and switches. 
	OpenFlow: A communication protocol that gives access to the forwarding plane of a network switch or router over the network. 
	Ryu: An open-source network controller that manages devices in an SDN environment using OpenFlow protocol. 
	Mininet: A network emulator that creates a virtual network on a single machine, used for developing and testing SDN applications. 
	Dueling Deep Q-Networks (DDQN): An advanced reinforcement learning algorithm that helps in choosing actions to maximize the long-term reward in a given state of the environment. 
	Network Throughput: Measures the rate of successful message delivery over a communication channel. 
	Latency: The delay before a transfer of data begins following an instruction for its transfer. 
	Packet Loss: Occurs when one or more packets of data travelling across a computer network fail to reach their destination. 
	Topology Discovery: The method by which network devices and their connections are identified. 
	Controller: In SDN, the central authority that directs traffic flows throughout the network based on a global view of the network state. 





