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ABSTRACT 
The rapid growth of facial recognition technology has faced hindrances due to the COVID-1  pandemic, where mandatory face 

mask usage obscured facial features, challenging existing authentication methods. Despite the rapid development of several 
methods for face mask detection and recognition that highlighted prevalent issues such as poor lighting, varied angles, failed 

detection for improper use of face masks, computational complexity, difficulty in detecting smaller faces and low-resolution targets, 
these have led to suboptimal accuracy rates. Hence, this work addresses these challenges by introducing a hybrid convolutional 
neural network (CNN) architecture tailored for face mask detection (FMD) and masked facial recognition (MFR). The models 
are developed using MobileNetV2 and FaceNet InceptionResNetV1 with CNN, for FMD and MFR, respectively. Experimental 
results on both models utilising a total of five distinct datasets, with two for FMD and three for MFR, show the superiority of the 

developed model in comparison to state-of-the art models. In addition, the models are tested in real-time for both FMD and MFR 

to determine their robustness, efficiency and accuracy in a real-time context. For this purpose, a ‘custom real-time masked face 

recognition’ (CRMFR) dataset was developed to perform real-time MFR. Leveraging advanced FMD and MFR technologies, the 

models contribute to the real-world need for enhanced security in scenarios where traditional methods are insufficient. 

Introduction 

Facial recognition technology has witnessed transformative 
advancement, emerging as a reliable and widely adopted authen-
tication method. Owing to its convenience, speed and high 
accuracy, facial recognition has become a preferred solution 
across diverse domains, including smartphone authentication, 
secure facility access and transaction verification [1–4]. Within 
the realm of facial recognition advancements, the automated pro-
cesses of face mask detection (FMD) and masked face recognition 
(MFR) have emerged prominently. Automated FMD and MFR 
systems provide scalable solutions for compliance monitoring 
and for sustaining identification accuracy in the presence of facial 

occlusions, rendering them valuable across sectors including 
healthcare, education, banking, and security [5, 6]. The ongoing 
usage of face masks, which initially surged in response to the 
COVID-1  pandemic, has now expanded to encompass preven-
tive measures against infectious disease outbreaks, allergies, air 
pollution, crowded places and cold weather [5–10]. Deep learning 
has emerged as a promising avenue in FMD and MFR, enabling 
efficient detection of whether individuals are wearing face masks, 
a development accentuated by the widespread impact of the 
COVID-1  pandemic [11–14]. However, masks obscure critical 
facial landmarks, particularly the nose, mouth and jawline, which 
reduce the recognition accuracy of conventional facial recogni-
tion systems [15]. Factors such as mask design, camera resolution 
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and the extent of occlusion exacerbate the challenges associated 
with the detection and recognition of masked faces [14]. This 
challenge underscores the need for more resilient approaches, 
particularly hybrid and transfer learning methods designed to 
optimise performance under conditions of occlusion [5, 6]. 

Recent studies [16–1 ] have explored hybrid and optimisation-
driven strategies to mitigate occlusion challenges in FMD and 
MFR. Approaches such as Robust Principal Component Analysis 
(RPCA) combined with K-Nearest Neighbour classifiers have 
demonstrated strong accuracy under mask-induced occlusions, 
though at the cost of low processing speeds unsuitable for 
real-time applications [17]. Similarly, RPCA enhanced with 
metaheuristic algorithms like the Grasshopper Optimisation 
Algorithm (GOA) has improved feature selection and classifier 
performance, while optimisation-based strategies such as Grey 
Wolf Optimisation (GWO) have refined discriminative features 
for recognition tasks [16, 1 ]. More advanced pipelines, including 
the HiMFR framework, integrate mask detection and inpainting 
with Vision Transformer based recognition, achieving com-
petitive results on public datasets but facing challenges with 
inaccurate reconstructions and non-real-time performance [18]. 
While these methods highlight promising directions, they remain 
constrained by computational inefficiency, limited robustness 
under diverse real-world conditions such as poor lighting, varied 
mask types, partial occlusions and the absence of unified systems 
addressing both FMD and MFR. 

Convolutional neural networks (CNN), on the other hand, have 
emerged as the mainstay of modern computer vision due to 
their exceptional scalability and robustness in detection and 
recognition tasks [14, 20–22]. Widely adopted models such as 
VGGFACE2 [23], MobileNet [24–26], DeepMaskNet [12], FaceNet 
[24, 27] and EfficientNetB7 [28] have shown prominent results 
across diverse benchmarks. In particular CNN based archi-
tectures such as the multi-task cascaded convolutional neural 
network (MTCNN) [2 , 30] have further advanced performance 
under challenging conditions, including occlusion and variation 
in pose and lighting. 

Building on these advances, this study proposes a hybrid CNN 
based framework that leverages MobileNetV2 for FMD and 
FaceNet InceptionResNetV1 with MTCNN for MFR. The pro-
posed models are designed to deliver high accuracy and resilience 
in real-time settings. 

Hence, the study presents the following contributions: 

∙ Developed a robust model based on CNN architecture with 
MobileNetV2 for FMD, and FaceNet InceptionResNetV1 com-
bined with MCTNN for MFR, enabling accurate detection and 
recognition of both masked and unmasked faces. 

∙ Designed and implemented a robust model for masked 
detection and recognition under challenging conditions, 
including adverse lighting, varied facial angles, smaller or 
low-resolution faces, occlusions of specific regions, distorted 
or blurry images and partial obstructions (e.g., eyeglasses, hair 
and headscarves). 

∙ Addressed improper and diverse mask usages, such as surgical 
and fabric masks worn incorrectly or inconsistently, ensuring 

reliable identification despite these additional obstructions 
and distortions. 

∙ The development of the ‘custom real-time masked face recog-
nition’ (CRMFR) dataset for conducting real-time testing of 
MFR in real-world scenarios. 

An outline of the subsequent sections is presented below. 

Section 2 reviews related work on technologies for FMD and 
MFR models. Section 3 highlights the methods, algorithms and 
materials. Section 4 presents the experimental setup, results 
and analysis. In Section 5, a discussion based on the analysis 
of the results and key findings is detailed. Section 6 provides 
the conclusion, while Section 7 outlines limitations and future 
research directions. 

2 Related Work 

Several studies have addressed the challenges of FMD and MFR, 
particularly after the COVID-1  pandemic introduced masks as 
obstacles for traditional recognition systems. Mundial et al. [23] 
combined CNN based feature extraction with an SVM classifier, 
achieving  7% accuracy on VGGFACE2 and a custom masked 
dataset, though performance declined with varied angled faces. 
Talahua et al. [24] employed MobileNetV2 and FaceNet with 
a multi-layer perceptron, reaching over   % accuracy on the 
‘Real-world masked face’ dataset but struggling with skin tone 
variations and dim lighting conditions. Huang et al. [31] evaluated 
ResNet architectures (18–100 layers) on a private dataset, achiev-
ing 87.41% accuracy, though their models were highly sensitive 
to occlusions and illumination. Hariri [32] tested several deep 
learning models, with VGG-16 performing best at  1.30%, but 
requiring extensive resources and datasets. 

Other notable approaches include Ullah et al. [12], whose CNN-
based DeepMaskNet achieved 100% in FMD and  3.33% MFR, 
albeit with high computational costs and a lack of dataset 
diversity. Islam et al. [33] exhibited that CNNs outperform 
traditional Local Binary Pattern Histogram (LBPH), EigenFace 
and FisherFace methods but still struggle with pose variations. 
Kaur et al. [34], who achieved   .15% detection accuracy using 
CNNs, however, reported limitations under lighting changes. 
Boulos [35] obtained a  7.10% F1-score using Kaggle datasets, 
although resolution, lighting conditions and MFR were presented 
as limitations within this study. Ensemble approaches, such as 
Dharanesh and Rattani [8] with ResNet-50 and SVM, demon-
strated robust results but required extensive data and still faltered 
on angled faces. Lightweight and real-time models have also 
been explored. Mandal et al. [36] achieved 8 % recognition with 
ResNet-50, and Arya and Tiwari [37] reported  0% using LBPH 
and Haar cascades, while YOLO-based methods by Mhadgut [38], 
Suhaimin et al. [3 ], Abbasi et al. and Aswal et al. [7, 40] showed  
strong detection but limited recognition capabilities. Raspberry Pi 
implementations, such as Winahyu et al. [41], achieved practical 
results but were vulnerable to spoofing, while Yang et al. [42] 
adapted YOLOv5 for detection without recognition functionality. 
More traditional VGGFace-based approaches by Damer et al. and 
Neto et al. [43, 44] reported only 84%–85% accuracy, highlighting 
persistent challenges with masked identities and generalisation. 
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TABLE 1 Related studies. 

Study Methodology Dataset 
FMD/MFR 
accuracy Key limitations 

[24] MobileNetV2 + FaceNet 
+ MLP 

Real-world masked face 
dataset 

MFR -   .65% Sensitive to skin tone, lighting and 
angles. 

[12] DeepMaskNet (CNN) Custom mask detection 
and masked face 

recognition 

FMD- 100% 
MFR -  3.33% 

High training time, large dataset, 
requires a more diverse and quantified 
dataset, pose variation challenges and 

adverse lighting conditions. 
[17] SSD-MobileNetV2 + 

RPCA + KNN 
Custom dataset MFR -  8% Limited dataset size, risk of overfitting, 

scalability issues with KNN. 
[1 ] Robust PCA + GOA 

Optimiser 
Custom dataset MFR -  7% Computationally expensive, slow 

convergence, not real-time friendly. 
[27] Pareto-optimised 

FaceNet model with data 
preprocessing 

Not specified MFR -  4% Limited dataset diversity—may not 
generalise to all real-world scenarios. 

[21] Lightweight CNN with 
batch normalisation, 

dropout and depth-wise 
normalisation 

HSTU masked face 
dataset (HMFD) 

MFR- 7% Requires frontal/lateral mask 
variations; tested on HMFD only. 

Recent advancements in FMD and MFR have led to several 
notable studies. Akingbesote et al. [27] evaluated a Pareto-
optimised FaceNet model with data preprocessing techniques, 
achieving over  4% accuracy on both masked and unmasked 
faces. However, the model’s performance was limited by 
dataset diversity and computational efficiency. Zhang et al. [45] 
addressed large-scale MFR challenges, focusing on super-large 
scale training, data noise handling and masked/non-masked face 
recognition accuracy balancing. Their approach improved recog-
nition accuracy but required extensive computational resources. 
Mahmoud et al. [13] proposed a comprehensive survey on 
MFR, discussing challenges such as dataset scarcity, occlusion 
complexity and real-time performance. While not presenting 
a specific model, the paper highlights critical areas for future 
research. Abdelwhab [28] compared pre-trained architectures 
such as VGG16, MobileNet and EfficientNetB7 using a structural 
similarity-based feature extractor, achieving up to  8% accuracy; 
however, this high performance is largely dependent on the use 
of controlled and high quality datasets, with significant risks 
of performance degradation in real-world deployments where 
variations in illumination, mask positioning and background 
noise are more prevalent. Jaiswal et al. [46] conducted a large-
scale audit of commercial and open-source face recognition 
systems, revealing significant biases and low accuracy (down to 
0%) in identifying masked faces, particularly among non-white 
individuals. This underscores the need for more inclusive, diverse 
and robust MFR models. 

Table 1 compares recent FMD and MFR studies, outlining their 
methods, datasets, accuracy and key limitations. This high-
lights performance trade-offs and practical challenges across 
approaches. 

Despite substantial progress in FMD and MFR research, many 
existing models struggle to deliver consistent performance under 
real-world conditions. These include poor or variable lighting, 

diverse facial angles, occlusions caused by mask positioning or 
accessories, and the need for efficient real-time processing. More-
over, several prior approaches rely heavily on high-performance 
hardware, limiting their practicality in resource-constrained 
environments. The motivation behind this work is to develop 
a robust, efficient and scalable solution that simultaneously 
addresses these challenges in handling lighting variations, facial 
orientation diversity and occlusions with high accuracy and 
low computational demand. By optimising convolutional archi-
tectures and employing targeted hyperparameter tuning, this 
approach can therefore balance superior accuracy with real-
time capability on standard hardware, making it accessible for 
widespread deployment. This comprehensive solution overcomes 
key robustness and generalisation limitations observed in the 
earlier studies, bridging the gap between theoretical advances 
and practical application. Consequently, this work therefore 
introduces a novel framework that advances the state of the art 
in FMD and MFR while emphasising efficiency and adaptability 
essential for real-world implementation. 

3 Methods and Materials 

In this study both the FMD and MFR models employ variations 
of the Convolutional Neural Network (CNN) architecture with 
MobileNetV2 for FMD and FaceNet InceptionResNetV1 with the 
multi-task cascaded convolutional neural network (MTCNN) for 
MFR. 

3.1 Face Mask Detection 

The proposed FMD model is based on the MobileNetV2 architec-
ture, selected for its exceptional balance between computational 
efficiency, lightweight design and high classification accuracy [11, 
47]. Compared to conventional CNNs such as VGGNet or ResNet, 
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FIGURE 1 FMD model architecture diagram. 

MobileNetV2 achieves similar accuracy with a fraction of the 
parameters and memory footprint, making it highly deployable 
on embedded or resource-constrained devices. Its efficiency 
stems from depth-wise separable convolutions, which decompose 
standard convolutions into depthwise and pointwise operations, 
reducing computation by nearly threefold without significant loss 
in feature quality [48]. Furthermore, inverted residual bottleneck 
blocks improve gradient flow and enhance feature reuse, leading 
to faster convergence and better parameter efficiency [48, 4 ]. 
Using Equation 1, the MobileNetV2 architecture can be expressed. 

������ =  ���ℎ�������� (������������� 

(����6 (����ℎ���� (�����)))) . . .  (1) 

The proposed FMD model demonstrates superior performance 
due to its hybrid architecture that leverages MobileNetV2’s 
lightweight yet powerful feature extraction capabilities, opti-
mised for low-latency and real-time detection. Unlike traditional 
CNNs, MobileNetV2’s inverted residuals and linear bottlenecks 
enable efficient gradient flow while reducing computational 
cost, resulting in a faster inference speed without compromising 
accuracy [50]. The model was fine-tuned with domain-specific 
masked and unmasked datasets, enhancing its ability to gen-
eralise across varied lighting, angles and mask types. Transfer 
learning significantly reduces training time while improving 
convergence stability. Additionally, targeted data augmentation 
strategies such as brightness shifts and occlusion simulation 
enhance robustness under real-world variability, making the 
model particularly effective for surveillance and access-control 
contexts [48, 4 ]. 

Architecturally, the FMD model, as depicted in Figure 1, employs 
MobileNetV2 as a pre-trained base, excluding its top classifi-
cation layers. A global average pooling layer aggregates spatial 
information into a compact representation, followed by fully 
connected dense layers of 512, 256, 128 and 64 units (ReLU 
activation) to capture high-level discriminative patterns. Batch 

normalisation and 50% dropout layers are strategically applied 
to stabilise training and prevent overfitting, particularly under 
limited sample conditions. The binary classification head consists 
of two neurones with sigmoid activation for mask or no-mask 
detection. To adapt the pretrained features to the target domain, 
the final 20 layers of MobileNetV2 are unfrozen for fine-tuning. 
Data augmentation using ImageDataGenerator includes rota-
tion, translation, flipping and brightness variation to simulate 
real-world scenarios. The model was trained using the Adam 
optimiser (learning rate = 0.0001) with binary cross-entropy loss. 
Its lightweight architecture, combined with high robustness to 
environmental variability, makes the proposed FMD model a 
superior choice compared to conventional solutions. 

3.2 Masked Face Recognition 

The proposed MFR model addresses the limitations of conven-
tional face recognition systems when faces are partially occluded 
by masks, a scenario in which traditional methods such as plain 
FaceNet or OpenFace exhibit marked performance degradation 
[51, 52]. Navigating the complex challenges posed by MFR 
requires a robust, multi-component architecture. The proposed 
model integrates several complementary architectures to form a 
comprehensive solution. Knowledge of each component’s design 
is critical for understanding the model’s development. The 
MTCNN serves as the foundation for detecting, cropping and 
localising facial landmarks, as depicted in Figure 2. After detec-
tion, key landmark points are drawn on the located face using 
MTCNN and OpenCV to support feature extraction. FaceNet with 
an InceptionResNetV1 backbone then extracts highly discrimina-
tive 128-dimensional embeddings from the aligned facial regions, 
providing robustness to occlusions. Similarity is determined via 
the Euclidean distance metric, facilitating accurate face matching 
even when masks obscure key features [2 ]. A custom CNN 
classifier refines these embeddings to enhance discrimination 
between visually similar masked faces. This hybrid approach 
achieves superior recognition performance while maintaining 
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FIGURE 2 MTCNN three step process. 

computational efficiency, enabling deployment on standard lap-
tops and real-time surveillance systems without requiring GPU 
acceleration. 

The CNN classifier for MFR, as depicted in Figure 3, is designed 
to complement the embedding-based representation. It begins 
with a one-dimensional convolutional layer comprising 128 fil-
ters with a kernel size of three, followed by max-pooling for 
dimensionality reduction. A second convolutional layer with 256 
filters deepens the extracted feature representation, after which 
the feature maps are flattened and passed through a dense layer 
of 512 neurones with ReLU activation to capture high-level non-
linear patterns. Dropout at a rate of 0.5 mitigates overfitting, 
while batch normalisation stabilises training and accelerates 
convergence. The output layer employs SoftMax activation to 
classify each input into a predefined identity class. Training 
leverages the Adam optimiser with categorical cross-entropy 
loss, supported by early stopping, learning rate scheduling and 
checkpointing for efficiency. By combining precise alignment via 
MTCNN, robust embeddings from FaceNet-InceptionResNetV1 
and refined classification through the CNN, the proposed model 
provides a high-performance, resource-efficient solution. This 
integrated architecture surpasses more computationally intensive 
frameworks, making it particularly well-suited for accurate recog-
nition of masked faces under real-world, resource-constrained 
conditions. 

3.3 FMD and MFR Hyper Parameterisation 

Table 2 summarises the key hyperparameters used in training 
both the models, detailing the configurations that contributed to 
the reported optimal performance. 

3.4 FMD and MFR Pseudocode 

The following pseudocode as depicted in Table 3 outlines the 
sequential steps involved in training and deploying the proposed 
FMD and MFR models, providing a clear representation of the 
overall workflow (See Table 4 and 5). 

3.5 Materials 

This study draws upon curated datasets and established perfor-
mance measures to evaluate the proposed models. Data prepa-
ration included structured preprocessing and augmentation to 
enhance robustness under varied conditions. Model performance 

was examined using precision, recall, f1-score and accuracy, 
ensuring a balanced and comprehensive assessment. 

3.5.1 FMD Dataset Detail 

The experimental analysis for FMD employed two publicly 
available datasets, namely ‘FMD’ and ‘FMD 12K Images’, sourced 
from the Kaggle repository. The datasets utilised in this study 
encompass a wide range of mask types, participant demographics 
and imaging conditions. They include variations in gender, skin 
tone, facial angles, lighting intensity and image quality that range 
from high definition to heavily blurred. 

Furthermore, the datasets incorporate a wide range of cropped 
facial regions and encompass participants representing a broad 
range of diverse ethnicities, including Caucasian, African, Asian 
and individuals of mixed heritage. This diversity is intended to 
support the development of a robust and generalisable model. 

This research received ethical approval under Category One, 
indicating exemption from formal review by the Ethics and 
Biosafety Research Committee. The exemption was granted due 
to the exclusive use of pre-existing datasets and the minimal risk 
posed to human participants, eliminating the need for further 
ethical clearance. 

With the excessive volume of images that exist for the original 
aforementioned FMD datasets, a more streamlined selection was 
extracted and deemed appropriate for this study, as the vast quan-
tity exceeded the study’s requirements. Hence, a smaller sample 
size is selected for both. In addition, the datasets include images 
where there are object obstructions present (i.e., eyeglasses, 
baseball cap and hair covering slight regions of the face). 

3.5.2 MFR Dataset Detail 

The experimental evaluation utilised three primary sources of 
data: the ‘MFR’ dataset labelled as the ‘MFR dataset’, obtained 
from the Kaggle repository on image super-resolution; the ‘mask 
detection and MFR’ dataset labelled as the ‘MDMFR Dataset’, 
curated by Ullah et al. [12]; and a ‘CRMFR’ dataset labelled as 
the ‘CRMFR Dataset’, which was generated through live image 
capture using an HP ProBook 450 G4 (x64-based PC) laptop 
webcam and an Apple iPhone 11. 

Considering the scarcity of publicly accessible datasets, both the 
‘MFR’ and ‘mask detection and MFR’ datasets are selected due to 
their availability to the public and the suitability of their sample 
size required for the proposed study. The ‘mask detection and 
MFR’ is tailored to provide a more customised selection due to the 
large volume of images, ensuring a focused and relevant sample 
size for the analysis. In addition, the datasets include images 
where there are object obstructions present (i.e., eyeglasses, head 
scarves and hair covering slight regions of the face). 

The custom ‘CRTMFR’ dataset was collected in different environ-
ments to complement the public datasets and address potential 
biases. Data collection took place in multiple locations, includ-
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FIGURE 3 MFR model architecture diagram. 

TABLE 2 FMD and MFR hyper parameterisation. 

Hyperparameters FMD model MFR model 

Optimiser Adam Adam 

Initial learning rate 0.0001 0.0001 
Batch size 32 128 

Epochs 35 35 
Loss function Binary cross-entropy Categorical cross-entropy 

Dropout rate 0.5 (applied after dense layers) 0.5 (applied after dense layers) 
Batch normalisation Applied after dense layers. Applied after dense layers. 
Learning rate scheduler Yes, decay by factor 0. 5 per epoch (starting Yes, exponential decay (starting 0.0001). 

0.0001). 
Early stopping Yes, patience = 10, restore best weights. Yes, patience = 10, restore best weights. 
Fine-tuning Last 20 layers of base MobileNetV2 unfrozen. Not applied (CNN trained from scratch). 
Data augmentation Rotation, shift, shear, zoom, horizontal flip Rotation, shift, shear, zoom, brightness range 

and brightness range. Rotation ± 40◦, shift and channel shift. Rotation ± 20◦, shift 
(20%), shear 0.2, zoom 20%, horizontal flip, fill (10%–20%), shear 0.3, zoom 30%, brightness 

mode = nearest. (0.4–1.0), channel shift 0.2, horizontal flip, 21 
augmented samples/class. 

Reduce LR on plateau Not used (scheduler instead). Yes, factor 0.1, patience = 10. 
Hyperparameter MobileNetV2 Custom CNN classifier. 

ing indoor office settings, outdoor areas and varied lighting dataset encompasses diverse age groups (17–85 years), gender 
conditions to simulate real-world scenarios. The images were representation (approximately balanced male and female par-
captured using a smartphone camera and a standard webcam ticipants) and ethnic backgrounds, including but not limited to 
setup (as detailed in Subsection 3.5.2 and Section 4), ensuring a Asian and mixed-race participants. Special care was taken to 
range of hardware input quality. Demographically, this custom include subjects with varying skin tones and head coverings 
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TABLE 3 FMD and MFR pseudocode. 

FMD MFR 

Input: Image dataset D_fmd with masked and unmasked Input: Image dataset D_mfr with multiple identities (classes) 
participants (classes) 1. Load dataset from folder. 
1. Load dataset D_fmd and create label mapping. 

2. For each image in each category: 
a. Read image in colour (RGB). 
b. Convert to grayscale. 
c. Resize image to 100 × 100. 
d. Append image to data list and corresponding label 

to target list. 

3. Convert data to NumPy array and normalise to [0, 1]. 

4. One-hot encode target labels. 

5. Split dataset: 80% training, 10% validation, 10% testing. 

6. Define MobileNetV2 model: 
a. Load pretrained MobileNetV2 (ImageNet weights, 

top layers removed). 
b. Add custom classification head: 

∙ Global Average Pooling 
∙ BatchNorm → Dense (512) → ReLU → Dropout 
→ BatchNorm 

∙ Dense (256) → ReLU → Dropout → BatchNorm 
∙ Dense (128) → ReLU → Dropout → BatchNorm 
∙ Dense (64) → ReLU → Dropout 
∙ Output Dense (2) with Sigmoid activation 

c. Freeze all layers except last 20 of base model. 

7. Compile model with Adam optimiser (lr = 0.0001) and 
binary cross-entropy loss. 

8. Augment training data (rotation, width/height shift, 
shear, zoom, horizontal flip, brightness range). 

 . Train model with early stopping and learning rate 
scheduler for up to 35 epochs. 

10. Evaluate model on test set (accuracy, loss). 

11. Save train/validation/test datasets and trained model 
for deployment. 

Output: Trained FMD model for masked and unmasked 
detection. 

2. For each image: 
a. Read image in colour (RGB). 
b. Detect face using MTCNN; crop the detected face. 
c. Detect facial landmarks on the cropped face. 
d. Preprocess face (resize to 160 × 160, normalise to 

[−1,1]). 
e. Extract 512-d feature embedding using pretrained 

FaceNet (InceptionResnetV1). 
f. Augment face image (rotation, shift, shear, zoom, flip, 

brightness range) up to N times. 
g. Extract embeddings for augmented images. 
h. Store all embeddings and corresponding labels. 

3. Convert embeddings and labels to NumPy arrays. 

4. Encode labels numerically and one-hot encode. 

5. Reshape embeddings to (512, 1) for CNN input. 

6. Split dataset: 80% training, 10% validation, 10% testing. 

7. Define CNN classifier: 
a. Conv1D (128) → ReLU → MaxPooling1D 
b. Conv1D (256) → ReLU → MaxPooling1D 
c. Flatten → Dense (512) → ReLU → Dropout → 

BatchNorm 
d. Output Dense(num_classes) → Softmax 

8. Compile model with Adam optimiser and categorical 
cross-entropy loss. 

 . Train model with early stopping, learning rate scheduler, 
model checkpoint, ReduceLROnPlateau for up to 35 
epochs. 

10. Evaluate model on test set; record accuracy and loss. 

11. Save final trained model for deployment. 

Output: Trained MFR model for masked face recognition 

TABLE 4 FMD dataset details. 

Dataset Name No of images Train Validation Test Classes 

‘Face mask detection’ [53] 

‘Face Mask Detection 12K 
images’ [54] 

5 80 

5000 

4784 

4000 

5 8 

500 

5 8 

500 

2 (i.e., Mask/ No 
Mask) 

2 (i.e., Mask/ No 
Mask) 

(e.g., glasses) to increase model generalisability. Bias mitigation 
efforts included random likes of sampling during image selection, 
oversampling under-represented classes during augmentation 
and ensuring diverse lighting conditions (daylight, dim indoor 
lighting and artificial lighting). 

3.  Evaluation of Model Performance 

In evaluating model performance, key metrics including, 
accuracy, precision, recall and the f1-score, are essential bench-
marks to accurately assess model performance and provide a 
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4 

TABLE 5 MFR dataset details. 

Dataset name 
No. of 
images With augmentation Train Validation Test Classes 

‘Masked face recognition’ [55] 
‘Mask detection and masked face 
recognition’ [12] 
‘Custom real-time masked face 
recognition’ 

465 

500 

250 

10032 

11000 

5500 

8026 

8800 

4400 

1003 

1100 

550 

1003 

1100 

550 

1  

50 

10 

comprehensive assessment of the model’s ability to correctly 
identify and classify instances when presented to it [11, 12, 24, 3 , 
56]. 

I. Accuracy: Within FMD, the accuracy is utilised to measure 
the proportion of correctly classified instances of mask-
wearing and non-mask-wearing individuals out of the total 
number of instances. In MFR the accuracy is used to 
evaluate how well the model identifies or verifies the 
identities of individuals despite the individual wearing a 
face mask [11, 12, 24, 3 , 56]. 

II. Precision: In FMD the precision is used to assess how 
many of the detected mask-wearers are truly wearing 
masks. Within MFR, precision determines how many of 
the identified faces were correctly matched to their specific 
identities [11, 12, 24, 3 , 56]. 

III. Recall: The FMD recall measures how well the model 
identifies all true mask-wearers from the total number 
of mask-wearing individuals. For the MFR, recall is used 
to evaluate how many of the actual identities of masked 
individuals were correctly recognised by the model [11, 12, 
24, 3 , 56]. 

IV. F1 Score: The F1-score in FMD is utilised to balance 
precision and recall, providing a single metric reflecting 
the model’s overall performance in detecting masks. In the 
case of MFR, the F1-score combines precision and recall to 
gauge how effectively the model identifies individuals when 
masked [11, 12, 24, 3 , 56]. 

Experimental Results and Analysis 

The experimental setup for the proposed models is done on an 
HP ProBook 450 G4 laptop (x64-based PC) with 16 GB RAM 
and 232 GB of storage space, utilising both the Intel R high-
definition graphics 620 integrated graphics processing unit and 
central processing unit. The models were developed and built 
using the Anaconda Integrated Development Environment (IDE) 
[57] and Jupyter notebook open-source web application, ensur-
ing no additional software licensing costs [58]. The hardware 
comprised a mid-range, commercially available laptop valued at 
approximately R 15 000 in the South African market, ensuring 
accessibility for academic and small-scale deployments. The 
absence of specialised high-performance GPUs demonstrates the 
computational efficiency of the proposed models, with all dataset 
processing and model training executed locally, thereby avoiding 
cloud-computing costs. 

TABLE   ‘FMD dataset’ performance comparison. 

Study Acc Prec Rec F1-s 

[60]   . 7   . 7   . 7   . 7 

[25]   . 8   . 6   . 7   . 7 

[61]   .00  8.00   .00   .00 

[62]  6.70  6.30  2.50  4.36 

[63]  8.00  8.00  8.00  8.00 

Proposed 100 100 100 100 
study 

TABLE 7 ‘FMD 12K dataset’ performance comparison. 

Study Acc Prec Rec F1-s 

[64]   .02   .00   .00   .00 

[65]  8.70  8.00  8.00  8.00 

[66]   .46   .73   .1    .46 

[67]  5.00  8.00  5.00  6.50 

Proposed 100 100 100 100 
study 

TABLE 8 MobileNetV2 model performance comparison. 

Study Acc Prec Rec F1-s 

[24]   .65 100 100 100 

[25]   . 8   . 6   . 7   . 7 

[26] 100   . 0   . 0   . 0 

Proposed 100 100 100 100 
study 

The performance of the proposed models is evaluated using 
the ‘FMD Dataset’, ‘FMD 12K images dataset’, ‘MFR dataset’, 
‘MDMFR dataset’ and the ‘CRMFR dataset’. All five datasets 
are split into 80/10/10 ratio for training and testing according 
to Pareto principal rule, which states as a general principle, 80 
percent of effects are caused by 20 percent of causes [5 ]. 

The experimental results, based on accuracy, precision, recall 
and F1-score for both the FMD and MFR models, are depicted 
in Tables 6–10. Within this study, Tables 6, 7 and   provide a 
comparative analysis of models trained on the same datasets 
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TABLE 9 ‘MDMFR dataset’ performance comparison. 

Study Acc Prec Rec F1-s 

‘MDMFR dataset’ 
[12] 
Proposed study 

 3.33 

  .82 

 3.00 

  .82 

 4.50 

  .82 

 3.74 

  .82 

TABLE 10 Performance of the proposed MFR models. 

Study Acc Prec Rec F1-s 

‘MFR dataset’ [55]   .40   .41   .40   .40 

‘CRMFR dataset’   .82   .82   .82   .82 

utilised for the FMD and MFR models developed for the purpose 
of this study. Hence, all models presented in Tables 6, 7 and   
were evaluated using the same datasets, ensuring consistency in 
comparison. The reported results reflect both the performance 
of the authors’ models and the proposed model, allowing for 
a direct and fair evaluation based on the datasets indicated at 
the top of each table. Table 8 demonstrates the comparison of 
different FMD models that utilised MobileNetV2 architecture. 
Furthermore, the ‘CRMFR Dataset’ is developed and tested for 
the purpose of assessing MFR in a real-time context to determine 
the model’s effectiveness and accuracy in real-time scenarios. 

As per Table 6, the proposed model achieved 100% performance 
in all evaluation metrics. The second highest model achieved 
in study [25] attained a score of   . 8% for the accuracy. The 
model fell short in its ability to only detect frontal face images. 
In addition, it failed to detect the incorrect use of a face mask 
and was only able to detect certain instances when a user had 
‘no mask’ on and was unable to detect the incorrect placement 
of a mask, labelling it as ‘mask on’. In study [60], the model 
achieved a performance of   . 7% across all metrics. Despite this 
accuracy, the model was only able to detect frontal face images 
and could not detect the incorrect use of a face mask. The model 
developed in study [61] achieved a performance with a score 
of   % across the aforementioned metrics. The model struggled 
since its responsiveness was highly influenced by the spatial 
orientation of the camera. Hence, certain angles and certain 
lighting conditions were not picked up. Within study [63], the 
model only achieved a performance of  8% within the metrics, 
and utilised a selection of images from the ‘FMD Dataset’ to form 
a custom dataset. The model could not detect the incorrect use 
of a face mask. Therefore, it produced a considerable number 
of false positives in this scenario. In the study by Guo et al. 
[62], the model achieved the lowest score with a performance of 
 6.70% for accuracy, and a number of limitations were identified 
within this model. The model was unable to detect obscured and 
half-face images. In addition, the model produced a considerable 
number of false positives and noted computational complexity 
throughout the training and testing process. Figure 4 provides 
a visual comparison of the results based on the aforementioned 
evaluation metrics. 

As presented in Table 7 above, the proposed model achieved 
a performance of 100% across the aforementioned evaluation 

FIGURE 4 ‘FMD dataset’ performance comparison. 

FIGURE 5 ‘FMD 12K dataset’ performance comparison. 

metrics. The model developed by Chakma et al. [66] achieved the 
second highest performance with a score of   .46% in accuracy. 
Despite this accuracy rate, the model fell short in its ability 
to detect masked and unmasked faces at an angle and could 
therefore only detect frontal face images. Within study [64], the 
model achieved a respectable performance of   .02% for accuracy. 
However, the model was unable to detect face masks in real-time. 
In addition, the model identified a considerable number of false 
negatives and positives in the confusion matrix and experienced 
a significant amount of computational complexity during the 
model’s training and testing process. The model developed in 
study [65] displayed a considerable number of false negatives and 
positives in the confusion matrix, thus attaining a score of  8.70% 
for accuracy. Furthermore, the model identified significant com-
putational complexity. The lowest model developed by Arora et al. 
[67] attained a score of  5% in accuracy and exhibited a notable 
degree of computational complexity during the model’s training 
and testing. Based on Figure 5, a graphical comparison of the 
results based on the evaluation metrics is provided. 

As indicated in Table 8, the proposed model achieved a combined 
mean score of 100% within the evaluation metrics. The model pre-
sented by Ilyas and Ahmad [26], trained on a custom dataset that 
is composed of random public repositories, achieved an accuracy 
of 100%; however, it underperformed across the other evaluation 
metrics when compared with the proposed approach. In addition, 
the model focused solely on FMD and did not take MFR into 
consideration. The model developed by Talahua et al. [24], trained 
on a custom dataset, produced an accuracy score of   .65%, thus 
attaining the lowest score amongst the other aforementioned 
models. The model exhibited difficulty detecting masked faces 
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FIGURE   ‘MobileNetV2 model’ performance comparison. 

and performed poorly when faces were presented at varied angles. 
In addition, another limitation identified was decreased accuracy 
when the model was presented with adverse lighting conditions. 
Furthermore, this model noted computational complexity during 
the training and testing phases of the model. Within the study 
by Habib et al. [25], trained on the ‘FMD by Omkar Gurav’, ‘FM 
by Oumina’, ‘Makhi and Hamdi’ and ‘RMFR’ datasets, achieved a 
respectable score of   . 8% in accuracy but identified a number of 
limitations. The model was only able to detect frontal face images, 
lacking the capability to discern different masked face positions. 
In addition, the model was unable to detect instances with ‘no 
mask’ or incorrect mask placement. Figure 6 presents a visual 
comparison of the results derived from the evaluation metrics. 

The results displayed in Figure 7 further highlight the perfor-
mance of the FMD model on the aforementioned FMD datasets. 

The images and corresponding scores highlight that the model 
achieved a 100% accuracy rate across all presented images. This 
includes participants with and without face masks, those at 
various angles, and those wearing face masks even in cases where 
the images were significantly blurry. 

Within the MFR phase of the model, according to the knowledge 
of the authors, neither the ‘MFR dataset’ nor the ‘MDMFR 
dataset’ has been extensively explored by other studies, with 
the exception of the ‘MDMFR dataset’. This dataset has been 
exclusively evaluated by the original authors of the study. Hence, 
a comparison of results is performed on the ‘MDMFR dataset’ and 
not against the ‘MFR Dataset’ and the ‘CRMFR Dataset’ datasets. 
Therefore, as per Table  , the following results for the ‘MDMFR’ 
dataset are presented as follows: 

As highlighted in Table  , the proposed model achieved a score 
of   .82% within the evaluation metrics. Study [12] reported  
several limitations, with the model achieving an accuracy of 
 3.33%, which fell short of the  5% evaluation threshold. In addi-
tion, the study mentioned the need for further refinement and 
exploration of an alternative model or technique to enhance the 
model’s performance. Furthermore, computational complexity 
was identified within the model and required a more diverse and 
quantified dataset, indicating that there was a lack of diversity 
when training and testing the model. 

Table 10 presents the performance results, as no prior studies have 
employed the ‘MFR dataset’ and ‘CRMFR dataset’ which were 

developed specifically for this research. The results are therefore 
unique to this study and are summarised in Table 10 as follows: 

Contained in Table 10 above, the ‘MFR dataset’, which was 
released recently in 2023, has not been widely explored by other 
studies. The study still achieved respectable results in obtaining 
an accuracy, recall and F1-score of   .40% and   .41% for preci-
sion. Based on the ‘CRMFR dataset’, the purpose of creating the 
custom dataset was to validate the model’s effectiveness in real-
life scenarios, ensuring it can recognise individuals accurately 
and efficiently in real time. This model delivered commendable 
results with a score of   .82% across all the aforementioned 
evaluation metrics. Overall, the developed model achieved an 
average score of   .68% across all three models, which is above 
the  5% threshold. 

The results displayed in Figure 8 highlight the performance of the 
MFR model on all three MFR datasets. 

As displayed in Figure 8 above, the model was able to identify 
participants that belonged to a certain dataset and those that 
did not belong to the dataset, indicating  7.82% and  6. 5% that 
certain participants did not belong to a dataset despite adverse 
lighting conditions and varied facial angles. In addition, the 
model successfully recognised participants despite challenging 
conditions, including adverse lighting conditions, varying facial 
angles, obstructions from face scarves and glasses, as well as 
blurry and distorted images. 

Additionally, real-time detection and recognition were performed 
for both FMD and MFR, as shown in Figure  , which illustrates 
the results and outcomes. 

Figure   demonstrates the model’s ability to accurately determine 
whether a participant was wearing a face mask or not. Addi-
tionally, the model effectively identified participants, achieving 
reliable accuracy in both FMD and MFR. It successfully detected 
and recognised individuals even under challenging conditions, 
such as poor lighting, varying facial angles and obstructions 
such as eyeglasses and head scarves. In addition, only a few 
existing literature models have tested these scenarios in real-time; 
hence, the models’ successful implementation underscores their 
significant contribution to the field [12, 24,  25, 60, 61, 64]. 

4.1 Model Performance Comparison 

To evaluate the efficiency and scalability of the proposed models, 
key performance metrics were measured for both FMD and 
MFR. The comparison includes inference speed, computational 
complexity, model size, parameter distribution and peak memory 
usage for a batch of 30 images. This provides a comprehensive 
view of model trade-offs between lightweight deployment and 
recognition robustness (See Table 11). 

In recent years, several deep learning architectures have been 
proposed for FMD and MFR, with varying trade-offs in inference 
speed, computational cost and model size. For instance, Loey 
et al. [68] employed ResNet-50 with SSD for mask detection, 
achieving good accuracy but at the cost of high computational 
complexity, with over 25M parameters and slower inference time. 
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FIGURE 7 FMD dataset results. 

FIGURE 8 MFR dataset results. 

Similarly, Jiang and Fan presented RetinaFaceMask, which, while 
accurate, required significant FLOPs (∼ 3.2 GFLOPs) that limit 
deployment on resource constrained devices [6 ]. More recent 
lightweight approaches, such as the EfficientNet based model 
by Hussain et al. [11], showed the potential of transfer learning 
to improve mask detection performance while maintaining a 
relatively small parameter count. However, these models still 
experienced higher inference times compared to MobileNet based 
architectures, which makes them less optimal for strict real-
time applications [25]. For MFR, the work of Hariri et al. [32] 
proposed an efficient method leveraging deep CNN features 
and classifier optimisation. While robust against occlusion, their 
approach relied on large-scale embeddings and model weights 
exceeding 200 MB, which constrained scalability in deployment 
on edge. In another approach, Boutros et al. [70] proposed elastic 
feature learning with ArcFace on masked datasets, significantly 
improving recognition robustness but with a parameter-heavy 
model (∼ 65M) and large FLOP demand. 

In comparison, the proposed pipeline leverages MobileNetV2 
with custom layers for FMD and MTCNN + FaceNet (Incep-
tionResNetV1) with a CNN head for MFR. The mask detec-
tion module achieves an inference time of 42.57 ms (23.4  
FPS) with only 0.16 FLOPs, and a compact size of 35.85 
MB with just 3.0 M parameters, outperforming larger mod-
els in efficiency while maintaining accuracy. The recognition 
pipeline, despite integrating a deeper network, maintains a 
balanced inference time of 40.64 ms (24.61 FPS) with 0.08 
FLOPs, significantly more computationally efficient than earlier 
approaches that exceeded 1 GFLOP. At 1 0.26 MB, the MFR 
model is larger, however, this model provides state-of-the-art 
representation capacity, outperforming lightweight recognition 
baselines in accuracy while preserving real-time feasibility. 
Overall, the proposed architecture offers an effective balance 
between speed, accuracy and resource efficiency, making it better 
suited for real-world deployment compared to prior research 
studies. 
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FIGURE 9 Real-time FMD and MFR results. 

TABLE 11 Model performance comparison. 

FMD MFR 

Inference time 42.57 ms 40.64 ms 
Frame per second 23.4  24.61 
Floating point operation (FLOPs) 0.16 0.08 

Model size 35.85 MB 1 0.26 MB, 
No. of parameters 3,0 5,172 (11.81 MB) 4 ,863,456 (1 0.21 MB) 
Trainable parameters 3,056,706 (11.66 MB) 16,620,810 (63.40 MB) 
Non-trainable parameters 38,464 (150.25 KB) 1,024 (4.00 KB) 
Peak memory (30 images) 160MB 480 MB 

Discussion 

In the final analysis, it is evident based on the experiments and 
results that both the FMD and MFR models achieved extremely 
high accuracies and tremendously low loss values. Overall, the 
FMD model achieved an overall average accuracy of 100%, whilst 
the MFR model achieved an average of   .68%. These results 
demonstrate the robustness and effectiveness of the models 
developed for this study. 

However, in contrast to these outcomes, existing models [12, 
24, 25, 5 –65], as discussed in the results and analysis section, 
exhibited several limitations. These models faced numerous 
challenges, such as the model’s inability to detect non-frontal 
face images [5 , 60, 65], failure to recognise incorrect face mask 
usage and difficulty identifying when a user is not wearing a mask 
[24, 5 , 60]. The model’s performance is highly influenced by 
camera orientation [61], and it exhibits computational complexity 
[12, 24, 25, 61, 63, 64, 66]. It struggles with detecting obscured 
or partial faces [5 ], produces a significant number of false 
positives [62–65], and lacks real-time FMD capabilities [64]. 
Additionally, the confusion matrix revealed a high rate of both 
false positives and negatives, leading to poor scores in key 
evaluation metrics [62–65]. The model developed by author Ullah 
et al. [12] also faced challenges with detecting and recognising 
masked faces at varied angles and performed poorly in adverse 
lighting conditions, falling below the  5% accuracy threshold. 
These limitations highlight the need for further refinement 
and exploration of alternative models or techniques to improve 

performance. Furthermore, the dataset used lacked sufficient 
diversity, indicating the necessity for a more comprehensive and 
quantified dataset to enhance the model’s robustness [12]. 

The proposed model successfully performed both FMD and MFR 
tasks under a range of challenging conditions, including poor 
lighting, varied facial angles, low-resolution or blurry input, 
occlusions, fake mask scenarios, incorrect mask usage, closed-eye 
instances, object obstructions, and high computational demands. 
In poor lighting conditions, the FMD model achieved   .32% 
accuracy for ‘no mask’ detection in complete darkness and  7. 5% 
under partial illumination. Even under extreme dim lighting, 
when the participant’s hands partially covered the face, the 
model maintained 64.08% accuracy, still labelling the case as “no 
mask”. The MFR model consistently achieved 100% recognition 
accuracy in dark environments across both frontal and angled 
facial views. In scenarios involving varied angles, the FMD model 
achieved 100% accuracy for left and right orientations in both 
normal and dark conditions, while the MFR model achieved 
between   .52% and 100% accuracy across all angles, even when 
participants’ eyes were partially closed. For low-resolution or 
blurry images, both models sustained high performance using 
a standard-definition webcam (640×480 pixels,  6 dpi) operated 
on a mid-range laptop without the need for a high-performance 
graphics processing unit, demonstrating suitability for resource-
limited environments. Notably, the FMD model was able to 
identify improper face coverings, such as hands used in place 
of masks, with an accuracy of  3.47%. These results confirm the 
robustness of the MobileNetV2 architecture for FMD and the 
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FaceNet InceptionResNetV1 with MTCNN and CNN architecture 
for MFR, both enhanced through hyperparameter tuning, and 
their ability to consistently outperform comparable models in 
both simulated and real-time applications. 

  Conclusion 

This study introduced hybrid CNN models that combine the 
MobileNetV2 model for FMD and the FaceNet Inception 
ResNetV1 with MTCNN for the MFR model to achieve superior 
results during model performance. The developed models include 
both batch testing and real-time testing for FMD and MFR to 
examine and highlight their robustness and ability to generalise 
in various scenarios, including real-time scenarios. The models 
demonstrated high accuracies, proving their effectiveness in real-
time applications. Therefore, the CNN models have significantly 
improved accuracy in both simulated and real-time settings, 
enhancing performance in challenging scenarios. These sce-
narios include dimmed-light conditions, extreme dark lighting 
conditions, fake mask scenarios, incorrect use of a face mask, 
closed eye scenarios, occlusions of the face, object obstructions of 
the facial region, angled facial presentations and computational 
complexity. 

The FMD model achieved an overall mean accuracy of 100% 
with a mean loss of 0.125, while the MFR model attained a 
mean accuracy of   .68% with a mean loss of 2.35. Under real-
time evaluation, the FMD model recorded detection rates ranging 
from 64.08% to 100% across ‘no mask,’ improper mask usage 
and correct mask placement categories in both standard and 
low-light environments. The MFR model consistently maintained 
100% recognition accuracy under most of the real-time testing 
conditions, with the lowest recorded accuracy being   .52% in 
the most challenging scenario of the participants’ eyes being 
almost closed. Notably, both models sustained mean performance 
levels of ≥  7% accuracy under poor lighting and mean accuracy 
levels of ≥   % across varying facial angles, even when partial 
occlusions or image degradation were present. 

These results underscore the models’ capacity to deliver high 
accuracy without reliance on high-end GPU hardware, thereby 
enhancing their feasibility for deployment in real-world biomet-
ric authentication and surveillance systems. Their adaptability, 
computational efficiency and precision position them as reliable 
solutions for institutions, including but not limited to companies, 
schools, universities, hospitals, and the banking sector, that 
require the implementation and utilisation of an FMD and MFR 
model. It therefore serves as a valuable tool for implementing 
robust FMD and MFR functionalities into existing applications 
or enhancing current biometric systems. The models’ adaptability 
and accuracy make them an ideal choice for diverse sectors seek-
ing to ensure compliance with future and current mask-wearing 
protocols and to enhance security measures with advanced MFR 
capabilities. 

7 Limitation and Future Work 

Despite the successful development of the proposed models, 
certain limitations were observed within the developed FMD 

and MFR models. A single false positive occurred during real-
time MFR on the custom masked face dataset, primarily under 
extremely low lighting and beyond 200 centimetres in distance. 
This identified limitation may potentially be attributed towards 
the laptop webcam’s limited hardware rather than the model 
itself. Different camera systems, such as CCTV, may yield varied 
results due to lens and focal length differences. In addition, 
training times were approximately 1 hour for FMD and 1.5 hours 
for MFR. These findings, therefore, highlight areas for future 
hardware and optimisation improvements. 

Future work will focus on significantly reducing the training 
time of the models to enhance computational efficiency. This will 
involve exploring advanced techniques such as model pruning, 
knowledge distillation, and leveraging cutting-edge architectures 
combined with transfer learning to optimise performance with-
out sacrificing accuracy. In addition, it will focus on testing 
the models with different types of cameras, including but not 
limited to CCTV cameras, thermal cameras and mobile phones, 
to evaluate their performance under varied hardware for image 
acquisition. Expanding the system to handle multi-face scenarios 
in real-time is a key priority for practical deployment. Addition-
ally, efforts will be made to optimise the models for mobile and 
edge devices to enable low-latency, on-device inference. These 
improvements will broaden the applicability and accessibility of 
the models for FMD and MFR across diverse scenarios. 
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