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ABSTRACT

The rapid growth of facial recognition technology has faced hindrances due to the COVID-19 pandemic, where mandatory face
mask usage obscured facial features, challenging existing authentication methods. Despite the rapid development of several
methods for face mask detection and recognition that highlighted prevalent issues such as poor lighting, varied angles, failed
detection for improper use of face masks, computational complexity, difficulty in detecting smaller faces and low-resolution targets,
these have led to suboptimal accuracy rates. Hence, this work addresses these challenges by introducing a hybrid convolutional
neural network (CNN) architecture tailored for face mask detection (FMD) and masked facial recognition (MFR). The models
are developed using MobileNetV2 and FaceNet InceptionResNetV1 with CNN, for FMD and MFR, respectively. Experimental
results on both models utilising a total of five distinct datasets, with two for FMD and three for MFR, show the superiority of the
developed model in comparison to state-of-the art models. In addition, the models are tested in real-time for both FMD and MFR
to determine their robustness, efficiency and accuracy in a real-time context. For this purpose, a ‘custom real-time masked face
recognition’ (CRMFR) dataset was developed to perform real-time MFR. Leveraging advanced FMD and MFR technologies, the

models contribute to the real-world need for enhanced security in scenarios where traditional methods are insufficient.

1 | Introduction

Facial recognition technology has witnessed transformative
advancement, emerging as a reliable and widely adopted authen-
tication method. Owing to its convenience, speed and high
accuracy, facial recognition has become a preferred solution
across diverse domains, including smartphone authentication,
secure facility access and transaction verification [1-4]. Within
the realm of facial recognition advancements, the automated pro-
cesses of face mask detection (FMD) and masked face recognition
(MFR) have emerged prominently. Automated FMD and MFR
systems provide scalable solutions for compliance monitoring
and for sustaining identification accuracy in the presence of facial

occlusions, rendering them valuable across sectors including
healthcare, education, banking, and security [5, 6]. The ongoing
usage of face masks, which initially surged in response to the
COVID-19 pandemic, has now expanded to encompass preven-
tive measures against infectious disease outbreaks, allergies, air
pollution, crowded places and cold weather [5-10]. Deep learning
has emerged as a promising avenue in FMD and MFR, enabling
efficient detection of whether individuals are wearing face masks,
a development accentuated by the widespread impact of the
COVID-19 pandemic [11-14]. However, masks obscure critical
facial landmarks, particularly the nose, mouth and jawline, which
reduce the recognition accuracy of conventional facial recogni-
tion systems [15]. Factors such as mask design, camera resolution

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited and is not used for commercial purposes.

© 2025 The Author(s). IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Image Processing, 2025; 19:€70239
https://doi.org/10.1049/ipr2.70239

1of15


https://doi.org/10.1049/ipr2.70239
mailto:Seena.joseph@uwtsd.ac.uk
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1049/ipr2.70239

and the extent of occlusion exacerbate the challenges associated
with the detection and recognition of masked faces [14]. This
challenge underscores the need for more resilient approaches,
particularly hybrid and transfer learning methods designed to
optimise performance under conditions of occlusion [5, 6].

Recent studies [16-19] have explored hybrid and optimisation-
driven strategies to mitigate occlusion challenges in FMD and
MFR. Approaches such as Robust Principal Component Analysis
(RPCA) combined with K-Nearest Neighbour classifiers have
demonstrated strong accuracy under mask-induced occlusions,
though at the cost of low processing speeds unsuitable for
real-time applications [17]. Similarly, RPCA enhanced with
metaheuristic algorithms like the Grasshopper Optimisation
Algorithm (GOA) has improved feature selection and classifier
performance, while optimisation-based strategies such as Grey
Wolf Optimisation (GWO) have refined discriminative features
for recognition tasks [16, 19]. More advanced pipelines, including
the HIMFR framework, integrate mask detection and inpainting
with Vision Transformer based recognition, achieving com-
petitive results on public datasets but facing challenges with
inaccurate reconstructions and non-real-time performance [18].
While these methods highlight promising directions, they remain
constrained by computational inefficiency, limited robustness
under diverse real-world conditions such as poor lighting, varied
mask types, partial occlusions and the absence of unified systems
addressing both FMD and MFR.

Convolutional neural networks (CNN), on the other hand, have
emerged as the mainstay of modern computer vision due to
their exceptional scalability and robustness in detection and
recognition tasks [14, 20-22]. Widely adopted models such as
VGGFACE2 [23], MobileNet [24-26], DeepMaskNet [12], FaceNet
[24, 27] and EfficientNetB7 [28] have shown prominent results
across diverse benchmarks. In particular CNN based archi-
tectures such as the multi-task cascaded convolutional neural
network (MTCNN) [29, 30] have further advanced performance
under challenging conditions, including occlusion and variation
in pose and lighting.

Building on these advances, this study proposes a hybrid CNN
based framework that leverages MobileNetV2 for FMD and
FaceNet InceptionResNetV1 with MTCNN for MFR. The pro-
posed models are designed to deliver high accuracy and resilience
in real-time settings.

Hence, the study presents the following contributions:

* Developed a robust model based on CNN architecture with
MobileNetV2 for FMD, and FaceNet InceptionResNetV1 com-
bined with MCTNN for MFR, enabling accurate detection and
recognition of both masked and unmasked faces.

* Designed and implemented a robust model for masked
detection and recognition under challenging conditions,
including adverse lighting, varied facial angles, smaller or
low-resolution faces, occlusions of specific regions, distorted
or blurry images and partial obstructions (e.g., eyeglasses, hair
and headscarves).

* Addressed improper and diverse mask usages, such as surgical
and fabric masks worn incorrectly or inconsistently, ensuring

reliable identification despite these additional obstructions
and distortions.

* The development of the ‘custom real-time masked face recog-
nition’ (CRMFR) dataset for conducting real-time testing of
MFR in real-world scenarios.

An outline of the subsequent sections is presented below.

Section 2 reviews related work on technologies for FMD and
MFR models. Section 3 highlights the methods, algorithms and
materials. Section 4 presents the experimental setup, results
and analysis. In Section 5, a discussion based on the analysis
of the results and key findings is detailed. Section 6 provides
the conclusion, while Section 7 outlines limitations and future
research directions.

2 | Related Work

Several studies have addressed the challenges of FMD and MFR,
particularly after the COVID-19 pandemic introduced masks as
obstacles for traditional recognition systems. Mundial et al. [23]
combined CNN based feature extraction with an SVM classifier,
achieving 97% accuracy on VGGFACE2 and a custom masked
dataset, though performance declined with varied angled faces.
Talahua et al. [24] employed MobileNetV2 and FaceNet with
a multi-layer perceptron, reaching over 99% accuracy on the
‘Real-world masked face’ dataset but struggling with skin tone
variations and dim lighting conditions. Huang et al. [31] evaluated
ResNet architectures (18-100 layers) on a private dataset, achiev-
ing 87.41% accuracy, though their models were highly sensitive
to occlusions and illumination. Hariri [32] tested several deep
learning models, with VGG-16 performing best at 91.30%, but
requiring extensive resources and datasets.

Other notable approaches include Ullah et al. [12], whose CNN-
based DeepMaskNet achieved 100% in FMD and 93.33% MFR,
albeit with high computational costs and a lack of dataset
diversity. Islam et al. [33] exhibited that CNNs outperform
traditional Local Binary Pattern Histogram (LBPH), EigenFace
and FisherFace methods but still struggle with pose variations.
Kaur et al. [34], who achieved 99.15% detection accuracy using
CNNs, however, reported limitations under lighting changes.
Boulos [35] obtained a 97.10% Fl-score using Kaggle datasets,
although resolution, lighting conditions and MFR were presented
as limitations within this study. Ensemble approaches, such as
Dharanesh and Rattani [8] with ResNet-50 and SVM, demon-
strated robust results but required extensive data and still faltered
on angled faces. Lightweight and real-time models have also
been explored. Mandal et al. [36] achieved 89% recognition with
ResNet-50, and Arya and Tiwari [37] reported 90% using LBPH
and Haar cascades, while YOLO-based methods by Mhadgut [38],
Suhaimin et al. [39], Abbasi et al. and Aswal et al. [7, 40] showed
strong detection but limited recognition capabilities. Raspberry Pi
implementations, such as Winahyu et al. [41], achieved practical
results but were vulnerable to spoofing, while Yang et al. [42]
adapted YOLOVS for detection without recognition functionality.
More traditional VGGFace-based approaches by Damer et al. and
Neto et al. [43, 44] reported only 84%-85% accuracy, highlighting
persistent challenges with masked identities and generalisation.
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TABLE 1 | Related studies.
FMD/MFR
Study Methodology Dataset accuracy Key limitations
[24] MobileNetV2 + FaceNet Real-world masked face ~ MFR - 99.65% Sensitive to skin tone, lighting and
+ MLP dataset angles.
[12] DeepMaskNet (CNN)  Custom mask detection FMD- 100% High training time, large dataset,
and masked face MFR - 93.33% requires a more diverse and quantified
recognition dataset, pose variation challenges and
adverse lighting conditions.
[17] SSD-MobileNetV2 + Custom dataset MFR - 98% Limited dataset size, risk of overfitting,
RPCA + KNN scalability issues with KNN.
[19] Robust PCA + GOA Custom dataset MEFR - 97% Computationally expensive, slow
Optimiser convergence, not real-time friendly.
[27] Pareto-optimised Not specified MER - 94% Limited dataset diversity—may not
FaceNet model with data generalise to all real-world scenarios.
preprocessing
[21] Lightweight CNN with HSTU masked face MFR-97% Requires frontal/lateral mask
batch normalisation, dataset (HMFD) variations; tested on HMFD only.
dropout and depth-wise
normalisation

Recent advancements in FMD and MFR have led to several
notable studies. Akingbesote et al. [27] evaluated a Pareto-
optimised FaceNet model with data preprocessing techniques,
achieving over 94% accuracy on both masked and unmasked
faces. However, the model’s performance was limited by
dataset diversity and computational efficiency. Zhang et al. [45]
addressed large-scale MFR challenges, focusing on super-large
scale training, data noise handling and masked/non-masked face
recognition accuracy balancing. Their approach improved recog-
nition accuracy but required extensive computational resources.
Mahmoud et al. [13] proposed a comprehensive survey on
MFR, discussing challenges such as dataset scarcity, occlusion
complexity and real-time performance. While not presenting
a specific model, the paper highlights critical areas for future
research. Abdelwhab [28] compared pre-trained architectures
such as VGG16, MobileNet and EfficientNetB7 using a structural
similarity-based feature extractor, achieving up to 98% accuracy;
however, this high performance is largely dependent on the use
of controlled and high quality datasets, with significant risks
of performance degradation in real-world deployments where
variations in illumination, mask positioning and background
noise are more prevalent. Jaiswal et al. [46] conducted a large-
scale audit of commercial and open-source face recognition
systems, revealing significant biases and low accuracy (down to
0%) in identifying masked faces, particularly among non-white
individuals. This underscores the need for more inclusive, diverse
and robust MFR models.

Table 1 compares recent FMD and MFR studies, outlining their
methods, datasets, accuracy and key limitations. This high-
lights performance trade-offs and practical challenges across
approaches.

Despite substantial progress in FMD and MFR research, many
existing models struggle to deliver consistent performance under
real-world conditions. These include poor or variable lighting,

diverse facial angles, occlusions caused by mask positioning or
accessories, and the need for efficient real-time processing. More-
over, several prior approaches rely heavily on high-performance
hardware, limiting their practicality in resource-constrained
environments. The motivation behind this work is to develop
a robust, efficient and scalable solution that simultaneously
addresses these challenges in handling lighting variations, facial
orientation diversity and occlusions with high accuracy and
low computational demand. By optimising convolutional archi-
tectures and employing targeted hyperparameter tuning, this
approach can therefore balance superior accuracy with real-
time capability on standard hardware, making it accessible for
widespread deployment. This comprehensive solution overcomes
key robustness and generalisation limitations observed in the
earlier studies, bridging the gap between theoretical advances
and practical application. Consequently, this work therefore
introduces a novel framework that advances the state of the art
in FMD and MFR while emphasising efficiency and adaptability
essential for real-world implementation.

3 | Methods and Materials

In this study both the FMD and MFR models employ variations
of the Convolutional Neural Network (CNN) architecture with
MobileNetV2 for FMD and FaceNet InceptionResNetV1 with the
multi-task cascaded convolutional neural network (MTCNN) for
MFR.

3.1 | Face Mask Detection

The proposed FMD model is based on the MobileNetV2 architec-
ture, selected for its exceptional balance between computational
efficiency, lightweight design and high classification accuracy [11,
47]. Compared to conventional CNNs such as VGGNet or ResNet,
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FIGURE 1 | FMD model architecture diagram.

MobileNetV2 achieves similar accuracy with a fraction of the
parameters and memory footprint, making it highly deployable
on embedded or resource-constrained devices. Its efficiency
stems from depth-wise separable convolutions, which decompose
standard convolutions into depthwise and pointwise operations,
reducing computation by nearly threefold without significant loss
in feature quality [48]. Furthermore, inverted residual bottleneck
blocks improve gradient flow and enhance feature reuse, leading
to faster convergence and better parameter efficiency [48, 49].
Using Equation 1, the MobileNetV2 architecture can be expressed.

Output = DepthwiseConv (PointwiseConv

(ReLU6 (BatchNorm (Input))))... (€8]

The proposed FMD model demonstrates superior performance
due to its hybrid architecture that leverages MobileNetV2’s
lightweight yet powerful feature extraction capabilities, opti-
mised for low-latency and real-time detection. Unlike traditional
CNNs, MobileNetV2’s inverted residuals and linear bottlenecks
enable efficient gradient flow while reducing computational
cost, resulting in a faster inference speed without compromising
accuracy [50]. The model was fine-tuned with domain-specific
masked and unmasked datasets, enhancing its ability to gen-
eralise across varied lighting, angles and mask types. Transfer
learning significantly reduces training time while improving
convergence stability. Additionally, targeted data augmentation
strategies such as brightness shifts and occlusion simulation
enhance robustness under real-world variability, making the
model particularly effective for surveillance and access-control
contexts [48, 49].

Architecturally, the FMD model, as depicted in Figure 1, employs
MobileNetV2 as a pre-trained base, excluding its top classifi-
cation layers. A global average pooling layer aggregates spatial
information into a compact representation, followed by fully
connected dense layers of 512, 256, 128 and 64 units (ReLU
activation) to capture high-level discriminative patterns. Batch

Reduces feature map DENSE LAYER 128
neurons — ReLU Training
DROPOUT 0.5 - Epochs: 35
'BATCH NORMALIZATION - Batch Size: 32
- EarlyStopping &

BATCH NORMALIZATION LeamingRateScheduler
Stabilizes and accelerates

DENSE LAYER 64 neurons

normalisation and 50% dropout layers are strategically applied
to stabilise training and prevent overfitting, particularly under
limited sample conditions. The binary classification head consists
of two neurones with sigmoid activation for mask or no-mask
detection. To adapt the pretrained features to the target domain,
the final 20 layers of MobileNetV2 are unfrozen for fine-tuning.
Data augmentation using ImageDataGenerator includes rota-
tion, translation, flipping and brightness variation to simulate
real-world scenarios. The model was trained using the Adam
optimiser (learning rate = 0.0001) with binary cross-entropy loss.
Its lightweight architecture, combined with high robustness to
environmental variability, makes the proposed FMD model a
superior choice compared to conventional solutions.

3.2 | Masked Face Recognition

The proposed MFR model addresses the limitations of conven-
tional face recognition systems when faces are partially occluded
by masks, a scenario in which traditional methods such as plain
FaceNet or OpenFace exhibit marked performance degradation
[51, 52]. Navigating the complex challenges posed by MFR
requires a robust, multi-component architecture. The proposed
model integrates several complementary architectures to form a
comprehensive solution. Knowledge of each component’s design
is critical for understanding the model’s development. The
MTCNN serves as the foundation for detecting, cropping and
localising facial landmarks, as depicted in Figure 2. After detec-
tion, key landmark points are drawn on the located face using
MTCNN and OpenCV to support feature extraction. FaceNet with
an InceptionResNetV1 backbone then extracts highly discrimina-
tive 128-dimensional embeddings from the aligned facial regions,
providing robustness to occlusions. Similarity is determined via
the Euclidean distance metric, facilitating accurate face matching
even when masks obscure key features [29]. A custom CNN
classifier refines these embeddings to enhance discrimination
between visually similar masked faces. This hybrid approach
achieves superior recognition performance while maintaining
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computational efficiency, enabling deployment on standard lap-
tops and real-time surveillance systems without requiring GPU
acceleration.

The CNN classifier for MFR, as depicted in Figure 3, is designed
to complement the embedding-based representation. It begins
with a one-dimensional convolutional layer comprising 128 fil-
ters with a kernel size of three, followed by max-pooling for
dimensionality reduction. A second convolutional layer with 256
filters deepens the extracted feature representation, after which
the feature maps are flattened and passed through a dense layer
of 512 neurones with ReLU activation to capture high-level non-
linear patterns. Dropout at a rate of 0.5 mitigates overfitting,
while batch normalisation stabilises training and accelerates
convergence. The output layer employs SoftMax activation to
classify each input into a predefined identity class. Training
leverages the Adam optimiser with categorical cross-entropy
loss, supported by early stopping, learning rate scheduling and
checkpointing for efficiency. By combining precise alignment via
MTCNN, robust embeddings from FaceNet-InceptionResNetV1
and refined classification through the CNN, the proposed model
provides a high-performance, resource-efficient solution. This
integrated architecture surpasses more computationally intensive
frameworks, making it particularly well-suited for accurate recog-
nition of masked faces under real-world, resource-constrained
conditions.

3.3 | FMD and MFR Hyper Parameterisation

Table 2 summarises the key hyperparameters used in training
both the models, detailing the configurations that contributed to
the reported optimal performance.

3.4 | FMD and MFR Pseudocode

The following pseudocode as depicted in Table 3 outlines the
sequential steps involved in training and deploying the proposed
FMD and MFR models, providing a clear representation of the
overall workflow (See Table 4 and 5).

3.5 | Materials

This study draws upon curated datasets and established perfor-
mance measures to evaluate the proposed models. Data prepa-
ration included structured preprocessing and augmentation to
enhance robustness under varied conditions. Model performance

was examined using precision, recall, fl-score and accuracy,
ensuring a balanced and comprehensive assessment.

3.5.1 | FMD Dataset Detail

The experimental analysis for FMD employed two publicly
available datasets, namely ‘FMD’ and ‘FMD 12K Images’, sourced
from the Kaggle repository. The datasets utilised in this study
encompass a wide range of mask types, participant demographics
and imaging conditions. They include variations in gender, skin
tone, facial angles, lighting intensity and image quality that range
from high definition to heavily blurred.

Furthermore, the datasets incorporate a wide range of cropped
facial regions and encompass participants representing a broad
range of diverse ethnicities, including Caucasian, African, Asian
and individuals of mixed heritage. This diversity is intended to
support the development of a robust and generalisable model.

This research received ethical approval under Category One,
indicating exemption from formal review by the Ethics and
Biosafety Research Committee. The exemption was granted due
to the exclusive use of pre-existing datasets and the minimal risk
posed to human participants, eliminating the need for further
ethical clearance.

With the excessive volume of images that exist for the original
aforementioned FMD datasets, a more streamlined selection was
extracted and deemed appropriate for this study, as the vast quan-
tity exceeded the study’s requirements. Hence, a smaller sample
size is selected for both. In addition, the datasets include images
where there are object obstructions present (i.e., eyeglasses,
baseball cap and hair covering slight regions of the face).

3.5.2 | MFR Dataset Detail

The experimental evaluation utilised three primary sources of
data: the ‘MFR’ dataset labelled as the ‘MFR dataset’, obtained
from the Kaggle repository on image super-resolution; the ‘mask
detection and MFR’ dataset labelled as the ‘MDMFR Dataset’,
curated by Ullah et al. [12]; and a ‘CRMFR’ dataset labelled as
the ‘CRMFR Dataset’, which was generated through live image
capture using an HP ProBook 450 G4 (x64-based PC) laptop
webcam and an Apple iPhone 11.

Considering the scarcity of publicly accessible datasets, both the
‘MFR’ and ‘mask detection and MFR’ datasets are selected due to
their availability to the public and the suitability of their sample
size required for the proposed study. The ‘mask detection and
MFR’ is tailored to provide a more customised selection due to the
large volume of images, ensuring a focused and relevant sample
size for the analysis. In addition, the datasets include images
where there are object obstructions present (i.e., eyeglasses, head
scarves and hair covering slight regions of the face).

The custom ‘CRTMFR’ dataset was collected in different environ-
ments to complement the public datasets and address potential
biases. Data collection took place in multiple locations, includ-
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TABLE 2 | FMD and MFR hyper parameterisation.
Hyperparameters FMD model MFR model
Optimiser Adam Adam
Initial learning rate 0.0001 0.0001
Batch size 32 128
Epochs 35 35

Loss function
Dropout rate
Batch normalisation

Learning rate scheduler
0.0001).

Early stopping
Fine-tuning

Data augmentation

mode = nearest.

Reduce LR on plateau

Hyperparameter MobileNetV2

Binary cross-entropy
0.5 (applied after dense layers)
Applied after dense layers.
Yes, decay by factor 0.95 per epoch (starting

Yes, patience = 10, restore best weights.
Last 20 layers of base MobileNetV2 unfrozen.

Rotation, shift, shear, zoom, horizontal flip
and brightness range. Rotation + 40°, shift
(20%), shear 0.2, zoom 20%, horizontal flip, fill

Not used (scheduler instead).

Categorical cross-entropy
0.5 (applied after dense layers)
Applied after dense layers.
Yes, exponential decay (starting 0.0001).

Yes, patience = 10, restore best weights.
Not applied (CNN trained from scratch).

Rotation, shift, shear, zoom, brightness range
and channel shift. Rotation + 20°, shift
(10%-20%), shear 0.3, zoom 30%, brightness
(0.4-1.0), channel shift 0.2, horizontal flip, 21
augmented samples/class.

Yes, factor 0.1, patience = 10.

Custom CNN classifier.

ing indoor office settings, outdoor areas and varied lighting
conditions to simulate real-world scenarios. The images were
captured using a smartphone camera and a standard webcam
setup (as detailed in Subsection 3.5.2 and Section 4), ensuring a
range of hardware input quality. Demographically, this custom

dataset encompasses diverse age groups (17-85 years), gender
representation (approximately balanced male and female par-
ticipants) and ethnic backgrounds, including but not limited to
Asian and mixed-race participants. Special care was taken to
include subjects with varying skin tones and head coverings
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TABLE 3 | FMD and MFR pseudocode.

FMD

MFR

Input: Image dataset D_fmd with masked and unmasked
participants (classes)
1. Load dataset D_fmd and create label mapping.

2. For each image in each category:
a. Read image in colour (RGB).
b. Convert to grayscale.
c. Resize image to 100 x 100.
d. Append image to data list and corresponding label
to target list.

3. Convert data to NumPy array and normalise to [0, 1].
One-hot encode target labels.

Split dataset: 80% training, 10% validation, 10% testing.

AN

Define MobileNetV2 model:

a. Load pretrained MobileNetV2 (ImageNet weights,
top layers removed).

b. Add custom classification head:
* Global Average Pooling
* BatchNorm — Dense (512) - ReLU — Dropout

— BatchNorm

* Dense (256) —» ReLU — Dropout — BatchNorm
* Dense (128) - ReLU — Dropout — BatchNorm
* Dense (64) -» ReLU — Dropout
* Output Dense (2) with Sigmoid activation

c. Freeze all layers except last 20 of base model.

7. Compile model with Adam optimiser (Ir = 0.0001) and
binary cross-entropy loss.

8. Augment training data (rotation, width/height shift,
shear, zoom, horizontal flip, brightness range).

9. Train model with early stopping and learning rate
scheduler for up to 35 epochs.

10. Evaluate model on test set (accuracy, loss).

11. Save train/validation/test datasets and trained model
for deployment.

Output: Trained FMD model for masked and unmasked
detection.

Input: Image dataset D_mfr with multiple identities (classes)
1. Load dataset from folder.

2. For each image:

a. Read image in colour (RGB).

b. Detect face using MTCNN; crop the detected face.

c. Detect facial landmarks on the cropped face.

d. Preprocess face (resize to 160 X 160, normalise to
[-1,1]).

e. Extract 512-d feature embedding using pretrained
FaceNet (InceptionResnetV1).

f. Augment face image (rotation, shift, shear, zoom, flip,
brightness range) up to N times.

g. Extract embeddings for augmented images.

h. Store all embeddings and corresponding labels.

Convert embeddings and labels to NumPy arrays.
Encode labels numerically and one-hot encode.
Reshape embeddings to (512, 1) for CNN input.

Split dataset: 80% training, 10% validation, 10% testing.

N o AW

Define CNN classifier:

a. ConvlD (128) — ReLU — MaxPoolinglD

b. ConvlD (256) — ReLU — MaxPoolinglD

c. Flatten — Dense (512) — ReLU — Dropout —
BatchNorm

d. Output Dense(num_classes) — Softmax

8. Compile model with Adam optimiser and categorical
cross-entropy loss.

9. Train model with early stopping, learning rate scheduler,
model checkpoint, ReduceLROnPlateau for up to 35
epochs.

10. Evaluate model on test set; record accuracy and loss.

11. Save final trained model for deployment.

Output: Trained MFR model for masked face recognition

TABLE 4 | FMD dataset details.

Dataset Name No of images Train Validation Test Classes
‘Face mask detection’ [53] 5980 4784 598 598 2 (i.e., Mask/ No
Mask)
‘Face Mask Detection 12K 5000 4000 500 500 2 (i.e., Mask/ No
images’ [54] Mask)
(e.g., glasses) to increase model generalisability. Bias mitigation =~ 3.6 | Evaluation of Model Performance

efforts included random likes of sampling during image selection,
oversampling under-represented classes during augmentation
and ensuring diverse lighting conditions (daylight, dim indoor
lighting and artificial lighting).

In evaluating model performance, key metrics including,
accuracy, precision, recall and the fl-score, are essential bench-
marks to accurately assess model performance and provide a
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TABLE 5 | MFR dataset details.

No. of
Dataset name images With augmentation Train Validation Test Classes
‘Masked face recognition’ [55] 465 10032 8026 1003 1003 19
‘Mask detection and masked face 500 11000 8800 1100 1100 50
recognition’ [12]
‘Custom real-time masked face 250 5500 4400 550 550 10
recognition’
comprehensive assessment of the model’s ability to correctly TABLE 6 | ‘FMD dataset’ performance comparison.
identify and classify instances when presented to it [11, 12, 24, 39,
56]. Study Acc Prec Rec Fl-s
[60] 99.97 99.97 99.97 99.97
1. Accuracy: Wlthln FMD, the accur.a.cy 1s.utlhsed to measure [25] 99.98 99.96 99.97 99.97
the proportion of correctly classified instances of mask-
wearing and non-mask-wearing individuals out of the total [61] 99.00 98.00 99.00 99.00
number of instances. In MFR the accuracy is used to [62] 96.70 96.30 92.50 94.36
evaluate how well the model identifies or verifies the [63] 098.00 98.00 98.00 98.00
identities of individuals despite the individual wearing a P d 100 100 100 100
face mask [11, 12, 24, 39, 56]. ropose
study
II. Precision: In FMD the precision is used to assess how
many of the detected mask-wearers are truly wearing
masks. Within MFR, precision determines how many of  TABLE 7 | ‘FMD 12K dataset’ performance comparison.
the identified faces were correctly matched to their specific
identities [11, 12, 24, 39, 56]. Study Acc Prec Rec F1-s
III. Recall: The FMD recall measures how well the model [64] 99.02 99.00 99.00 99.00
identifies all .true. m.as.k—wearers from the total n.umber [65] 98.70 98.00 98.00 98.00
of mask-wearing individuals. For the MFR, recall is used
to evaluate how many of the actual identities of masked [66] 99.46 99.73 99.19 99.46
individuals were correctly recognised by the model [11, 12, [67] 95.00 98.00 95.00 96.50
24,39, 56]. Proposed 100 100 100 100
IV. F1 Score: The Fl-score in FMD is utilised to balance study

precision and recall, providing a single metric reflecting
the model’s overall performance in detecting masks. In the
case of MFR, the F1-score combines precision and recall to
gauge how effectively the model identifies individuals when
masked [11, 12, 24, 39, 56].

4 | Experimental Results and Analysis

The experimental setup for the proposed models is done on an
HP ProBook 450 G4 laptop (x64-based PC) with 16 GB RAM
and 232 GB of storage space, utilising both the Intel R high-
definition graphics 620 integrated graphics processing unit and
central processing unit. The models were developed and built
using the Anaconda Integrated Development Environment (IDE)
[57] and Jupyter notebook open-source web application, ensur-
ing no additional software licensing costs [58]. The hardware
comprised a mid-range, commercially available laptop valued at
approximately R 15 000 in the South African market, ensuring
accessibility for academic and small-scale deployments. The
absence of specialised high-performance GPUs demonstrates the
computational efficiency of the proposed models, with all dataset
processing and model training executed locally, thereby avoiding
cloud-computing costs.

TABLE 8 | MobileNetV2 model performance comparison.

Study Acc Prec Rec F1-s
[24] 99.65 100 100 100
[25] 99.98 99.96 99.97 99.97
[26] 100 99.90 99.90 99.90
Proposed 100 100 100 100
study

The performance of the proposed models is evaluated using
the ‘FMD Dataset’, ‘FMD 12K images dataset, ‘MFR dataset’,
‘MDMFR dataset’” and the ‘CRMFR dataset’. All five datasets
are split into 80/10/10 ratio for training and testing according
to Pareto principal rule, which states as a general principle, 80
percent of effects are caused by 20 percent of causes [59].

The experimental results, based on accuracy, precision, recall
and Fl1-score for both the FMD and MFR models, are depicted
in Tables 6-10. Within this study, Tables 6, 7 and 9 provide a
comparative analysis of models trained on the same datasets
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TABLE 9 | ‘MDMFR dataset’ performance comparison.
Study Acc Prec Rec Fl-s
‘MDMFR dataset’ 93.33 93.00 94.50 93.74
[12]
Proposed study 99.82 99.82 99.82 99.82
TABLE 10 | Performance of the proposed MFR models.
Study Acc Prec Rec Fl-s
‘MFR dataset’ [55] 99.40 99.41 99.40 99.40
‘CRMFR dataset’ 99.82 99.82 99.82 99.82

utilised for the FMD and MFR models developed for the purpose
of this study. Hence, all models presented in Tables 6, 7 and 9
were evaluated using the same datasets, ensuring consistency in
comparison. The reported results reflect both the performance
of the authors’ models and the proposed model, allowing for
a direct and fair evaluation based on the datasets indicated at
the top of each table. Table 8 demonstrates the comparison of
different FMD models that utilised MobileNetV2 architecture.
Furthermore, the ‘CRMFR Dataset’ is developed and tested for
the purpose of assessing MFR in a real-time context to determine
the model’s effectiveness and accuracy in real-time scenarios.

As per Table 6, the proposed model achieved 100% performance
in all evaluation metrics. The second highest model achieved
in study [25] attained a score of 99.98% for the accuracy. The
model fell short in its ability to only detect frontal face images.
In addition, it failed to detect the incorrect use of a face mask
and was only able to detect certain instances when a user had
‘no mask’ on and was unable to detect the incorrect placement
of a mask, labelling it as ‘mask on’. In study [60], the model
achieved a performance of 99.97% across all metrics. Despite this
accuracy, the model was only able to detect frontal face images
and could not detect the incorrect use of a face mask. The model
developed in study [61] achieved a performance with a score
of 99% across the aforementioned metrics. The model struggled
since its responsiveness was highly influenced by the spatial
orientation of the camera. Hence, certain angles and certain
lighting conditions were not picked up. Within study [63], the
model only achieved a performance of 98% within the metrics,
and utilised a selection of images from the ‘FMD Dataset’ to form
a custom dataset. The model could not detect the incorrect use
of a face mask. Therefore, it produced a considerable number
of false positives in this scenario. In the study by Guo et al.
[62], the model achieved the lowest score with a performance of
96.70% for accuracy, and a number of limitations were identified
within this model. The model was unable to detect obscured and
half-face images. In addition, the model produced a considerable
number of false positives and noted computational complexity
throughout the training and testing process. Figure 4 provides
a visual comparison of the results based on the aforementioned
evaluation metrics.

As presented in Table 7 above, the proposed model achieved
a performance of 100% across the aforementioned evaluation

‘FMD Dataset’
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FIGURE 4 | ‘FMD dataset’ performance comparison.
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FIGURE 5 | ‘FMD 12K dataset’ performance comparison.

metrics. The model developed by Chakma et al. [66] achieved the
second highest performance with a score of 99.46% in accuracy.
Despite this accuracy rate, the model fell short in its ability
to detect masked and unmasked faces at an angle and could
therefore only detect frontal face images. Within study [64], the
model achieved a respectable performance of 99.02% for accuracy.
However, the model was unable to detect face masks in real-time.
In addition, the model identified a considerable number of false
negatives and positives in the confusion matrix and experienced
a significant amount of computational complexity during the
model’s training and testing process. The model developed in
study [65] displayed a considerable number of false negatives and
positives in the confusion matrix, thus attaining a score of 98.70%
for accuracy. Furthermore, the model identified significant com-
putational complexity. The lowest model developed by Arora et al.
[67] attained a score of 95% in accuracy and exhibited a notable
degree of computational complexity during the model’s training
and testing. Based on Figure 5, a graphical comparison of the
results based on the evaluation metrics is provided.

Asindicated in Table 8, the proposed model achieved a combined
mean score of 100% within the evaluation metrics. The model pre-
sented by Ilyas and Ahmad [26], trained on a custom dataset that
is composed of random public repositories, achieved an accuracy
of 100%; however, it underperformed across the other evaluation
metrics when compared with the proposed approach. In addition,
the model focused solely on FMD and did not take MFR into
consideration. The model developed by Talahua et al. [24], trained
on a custom dataset, produced an accuracy score of 99.65%, thus
attaining the lowest score amongst the other aforementioned
models. The model exhibited difficulty detecting masked faces

IET Image Processing, 2025
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'MobileNetV2 Models'
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FIGURE 6 | ‘MobileNetV2 model’ performance comparison.

and performed poorly when faces were presented at varied angles.
In addition, another limitation identified was decreased accuracy
when the model was presented with adverse lighting conditions.
Furthermore, this model noted computational complexity during
the training and testing phases of the model. Within the study
by Habib et al. [25], trained on the ‘FMD by Omkar Gurav’, ‘FM
by Oumina’, ‘Makhi and Hamdi’ and ‘RMFR’ datasets, achieved a
respectable score of 99.98% in accuracy but identified a number of
limitations. The model was only able to detect frontal face images,
lacking the capability to discern different masked face positions.
In addition, the model was unable to detect instances with ‘no
mask’ or incorrect mask placement. Figure 6 presents a visual
comparison of the results derived from the evaluation metrics.

The results displayed in Figure 7 further highlight the perfor-
mance of the FMD model on the aforementioned FMD datasets.

The images and corresponding scores highlight that the model
achieved a 100% accuracy rate across all presented images. This
includes participants with and without face masks, those at
various angles, and those wearing face masks even in cases where
the images were significantly blurry.

Within the MFR phase of the model, according to the knowledge
of the authors, neither the ‘MFR dataset’ nor the ‘MDMFR
dataset’ has been extensively explored by other studies, with
the exception of the ‘MDMFR dataset’. This dataset has been
exclusively evaluated by the original authors of the study. Hence,
a comparison of results is performed on the ‘MDMFR dataset’ and
not against the ‘MFR Dataset’ and the ‘CRMFR Dataset’ datasets.
Therefore, as per Table 9, the following results for the ‘MDMFR’
dataset are presented as follows:

As highlighted in Table 9, the proposed model achieved a score
of 99.82% within the evaluation metrics. Study [12] reported
several limitations, with the model achieving an accuracy of
93.33%, which fell short of the 95% evaluation threshold. In addi-
tion, the study mentioned the need for further refinement and
exploration of an alternative model or technique to enhance the
model’s performance. Furthermore, computational complexity
was identified within the model and required a more diverse and
quantified dataset, indicating that there was a lack of diversity
when training and testing the model.

Table 10 presents the performance results, as no prior studies have
employed the ‘MFR dataset’ and ‘CRMFR dataset’ which were

developed specifically for this research. The results are therefore
unique to this study and are summarised in Table 10 as follows:

Contained in Table 10 above, the ‘MFR dataset’, which was
released recently in 2023, has not been widely explored by other
studies. The study still achieved respectable results in obtaining
an accuracy, recall and F1-score of 99.40% and 99.41% for preci-
sion. Based on the ‘CRMFR dataset’, the purpose of creating the
custom dataset was to validate the model’s effectiveness in real-
life scenarios, ensuring it can recognise individuals accurately
and efficiently in real time. This model delivered commendable
results with a score of 99.82% across all the aforementioned
evaluation metrics. Overall, the developed model achieved an
average score of 99.68% across all three models, which is above
the 95% threshold.

The results displayed in Figure 8 highlight the performance of the
MFR model on all three MFR datasets.

As displayed in Figure 8 above, the model was able to identify
participants that belonged to a certain dataset and those that
did not belong to the dataset, indicating 97.82% and 96.95% that
certain participants did not belong to a dataset despite adverse
lighting conditions and varied facial angles. In addition, the
model successfully recognised participants despite challenging
conditions, including adverse lighting conditions, varying facial
angles, obstructions from face scarves and glasses, as well as
blurry and distorted images.

Additionally, real-time detection and recognition were performed
for both FMD and MFR, as shown in Figure 9, which illustrates
the results and outcomes.

Figure 9 demonstrates the model’s ability to accurately determine
whether a participant was wearing a face mask or not. Addi-
tionally, the model effectively identified participants, achieving
reliable accuracy in both FMD and MFR. It successfully detected
and recognised individuals even under challenging conditions,
such as poor lighting, varying facial angles and obstructions
such as eyeglasses and head scarves. In addition, only a few
existing literature models have tested these scenarios in real-time;
hence, the models’ successful implementation underscores their
significant contribution to the field [12, 24, 25, 60, 61, 64].

4.1 | Model Performance Comparison

To evaluate the efficiency and scalability of the proposed models,
key performance metrics were measured for both FMD and
MFR. The comparison includes inference speed, computational
complexity, model size, parameter distribution and peak memory
usage for a batch of 30 images. This provides a comprehensive
view of model trade-offs between lightweight deployment and
recognition robustness (See Table 11).

In recent years, several deep learning architectures have been
proposed for FMD and MFR, with varying trade-offs in inference
speed, computational cost and model size. For instance, Loey
et al. [68] employed ResNet-50 with SSD for mask detection,
achieving good accuracy but at the cost of high computational
complexity, with over 25M parameters and slower inference time.
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FIGURE 8 | MFR dataset results.

Similarly, Jiang and Fan presented RetinaFaceMask, which, while
accurate, required significant FLOPs (~ 3.2 GFLOPs) that limit
deployment on resource constrained devices [69]. More recent
lightweight approaches, such as the EfficientNet based model
by Hussain et al. [11], showed the potential of transfer learning
to improve mask detection performance while maintaining a
relatively small parameter count. However, these models still
experienced higher inference times compared to MobileNet based
architectures, which makes them less optimal for strict real-
time applications [25]. For MFR, the work of Hariri et al. [32]
proposed an efficient method leveraging deep CNN features
and classifier optimisation. While robust against occlusion, their
approach relied on large-scale embeddings and model weights
exceeding 200 MB, which constrained scalability in deployment
on edge. In another approach, Boutros et al. [70] proposed elastic
feature learning with ArcFace on masked datasets, significantly
improving recognition robustness but with a parameter-heavy
model (~ 65M) and large FLOP demand.

In comparison, the proposed pipeline leverages MobileNetV2
with custom layers for FMD and MTCNN + FaceNet (Incep-
tionResNetV1) with a CNN head for MFR. The mask detec-
tion module achieves an inference time of 42.57 ms (23.49
FPS) with only 0.16 FLOPs, and a compact size of 35.85
MB with just 3.09M parameters, outperforming larger mod-
els in efficiency while maintaining accuracy. The recognition
pipeline, despite integrating a deeper network, maintains a
balanced inference time of 40.64 ms (24.61 FPS) with 0.08
FLOPs, significantly more computationally efficient than earlier
approaches that exceeded 1 GFLOP. At 190.26 MB, the MFR
model is larger, however, this model provides state-of-the-art
representation capacity, outperforming lightweight recognition
baselines in accuracy while preserving real-time feasibility.
Overall, the proposed architecture offers an effective balance
between speed, accuracy and resource efficiency, making it better
suited for real-world deployment compared to prior research
studies.
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FIGURE 9 | Real-time FMD and MFR results.
TABLE 11 | Model performance comparison.
FMD MFR

Inference time 42.57 ms 40.64 ms
Frame per second 23.49 24.61
Floating point operation (FLOPs) 0.16 0.08
Model size 35.85 MB 190.26 MB,
No. of parameters 3,095,172 (11.81 MB) 49,863,456 (190.21 MB)
Trainable parameters 3,056,706 (11.66 MB) 16,620,810 (63.40 MB)
Non-trainable parameters 38,464 (150.25 KB) 1,024 (4.00 KB)
Peak memory (30 images) 160MB 480 MB

5 | Discussion performance. Furthermore, the dataset used lacked sufficient

In the final analysis, it is evident based on the experiments and
results that both the FMD and MFR models achieved extremely
high accuracies and tremendously low loss values. Overall, the
FMD model achieved an overall average accuracy of 100%, whilst
the MFR model achieved an average of 99.68%. These results
demonstrate the robustness and effectiveness of the models
developed for this study.

However, in contrast to these outcomes, existing models [12,
24, 25, 59-65], as discussed in the results and analysis section,
exhibited several limitations. These models faced numerous
challenges, such as the model’s inability to detect non-frontal
face images [59, 60, 65], failure to recognise incorrect face mask
usage and difficulty identifying when a user is not wearing a mask
[24, 59, 60]. The model’s performance is highly influenced by
camera orientation [61], and it exhibits computational complexity
[12, 24, 25, 61, 63, 64, 66]. It struggles with detecting obscured
or partial faces [59], produces a significant number of false
positives [62-65], and lacks real-time FMD capabilities [64].
Additionally, the confusion matrix revealed a high rate of both
false positives and negatives, leading to poor scores in key
evaluation metrics [62-65]. The model developed by author Ullah
et al. [12] also faced challenges with detecting and recognising
masked faces at varied angles and performed poorly in adverse
lighting conditions, falling below the 95% accuracy threshold.
These limitations highlight the need for further refinement
and exploration of alternative models or techniques to improve

diversity, indicating the necessity for a more comprehensive and
quantified dataset to enhance the model’s robustness [12].

The proposed model successfully performed both FMD and MFR
tasks under a range of challenging conditions, including poor
lighting, varied facial angles, low-resolution or blurry input,
occlusions, fake mask scenarios, incorrect mask usage, closed-eye
instances, object obstructions, and high computational demands.
In poor lighting conditions, the FMD model achieved 99.32%
accuracy for ‘no mask’ detection in complete darkness and 97.95%
under partial illumination. Even under extreme dim lighting,
when the participant’s hands partially covered the face, the
model maintained 64.08% accuracy, still labelling the case as “no
mask”. The MFR model consistently achieved 100% recognition
accuracy in dark environments across both frontal and angled
facial views. In scenarios involving varied angles, the FMD model
achieved 100% accuracy for left and right orientations in both
normal and dark conditions, while the MFR model achieved
between 99.52% and 100% accuracy across all angles, even when
participants’ eyes were partially closed. For low-resolution or
blurry images, both models sustained high performance using
a standard-definition webcam (640x480 pixels, 96 dpi) operated
on a mid-range laptop without the need for a high-performance
graphics processing unit, demonstrating suitability for resource-
limited environments. Notably, the FMD model was able to
identify improper face coverings, such as hands used in place
of masks, with an accuracy of 93.47%. These results confirm the
robustness of the MobileNetV2 architecture for FMD and the
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FaceNet InceptionResNetV1 with MTCNN and CNN architecture
for MFR, both enhanced through hyperparameter tuning, and
their ability to consistently outperform comparable models in
both simulated and real-time applications.

6 | Conclusion

This study introduced hybrid CNN models that combine the
MobileNetV2 model for FMD and the FaceNet Inception
ResNetV1 with MTCNN for the MFR model to achieve superior
results during model performance. The developed models include
both batch testing and real-time testing for FMD and MFR to
examine and highlight their robustness and ability to generalise
in various scenarios, including real-time scenarios. The models
demonstrated high accuracies, proving their effectiveness in real-
time applications. Therefore, the CNN models have significantly
improved accuracy in both simulated and real-time settings,
enhancing performance in challenging scenarios. These sce-
narios include dimmed-light conditions, extreme dark lighting
conditions, fake mask scenarios, incorrect use of a face mask,
closed eye scenarios, occlusions of the face, object obstructions of
the facial region, angled facial presentations and computational
complexity.

The FMD model achieved an overall mean accuracy of 100%
with a mean loss of 0.125, while the MFR model attained a
mean accuracy of 99.68% with a mean loss of 2.35. Under real-
time evaluation, the FMD model recorded detection rates ranging
from 64.08% to 100% across ‘no mask, improper mask usage
and correct mask placement categories in both standard and
low-light environments. The MFR model consistently maintained
100% recognition accuracy under most of the real-time testing
conditions, with the lowest recorded accuracy being 99.52% in
the most challenging scenario of the participants’ eyes being
almost closed. Notably, both models sustained mean performance
levels of > 97% accuracy under poor lighting and mean accuracy
levels of > 99% across varying facial angles, even when partial
occlusions or image degradation were present.

These results underscore the models’ capacity to deliver high
accuracy without reliance on high-end GPU hardware, thereby
enhancing their feasibility for deployment in real-world biomet-
ric authentication and surveillance systems. Their adaptability,
computational efficiency and precision position them as reliable
solutions for institutions, including but not limited to companies,
schools, universities, hospitals, and the banking sector, that
require the implementation and utilisation of an FMD and MFR
model. It therefore serves as a valuable tool for implementing
robust FMD and MFR functionalities into existing applications
or enhancing current biometric systems. The models’ adaptability
and accuracy make them an ideal choice for diverse sectors seek-
ing to ensure compliance with future and current mask-wearing
protocols and to enhance security measures with advanced MFR
capabilities.

7 | Limitation and Future Work

Despite the successful development of the proposed models,
certain limitations were observed within the developed FMD

and MFR models. A single false positive occurred during real-
time MFR on the custom masked face dataset, primarily under
extremely low lighting and beyond 200 centimetres in distance.
This identified limitation may potentially be attributed towards
the laptop webcam’s limited hardware rather than the model
itself. Different camera systems, such as CCTV, may yield varied
results due to lens and focal length differences. In addition,
training times were approximately 1 hour for FMD and 1.5 hours
for MFR. These findings, therefore, highlight areas for future
hardware and optimisation improvements.

Future work will focus on significantly reducing the training
time of the models to enhance computational efficiency. This will
involve exploring advanced techniques such as model pruning,
knowledge distillation, and leveraging cutting-edge architectures
combined with transfer learning to optimise performance with-
out sacrificing accuracy. In addition, it will focus on testing
the models with different types of cameras, including but not
limited to CCTV cameras, thermal cameras and mobile phones,
to evaluate their performance under varied hardware for image
acquisition. Expanding the system to handle multi-face scenarios
in real-time is a key priority for practical deployment. Addition-
ally, efforts will be made to optimise the models for mobile and
edge devices to enable low-latency, on-device inference. These
improvements will broaden the applicability and accessibility of
the models for FMD and MFR across diverse scenarios.
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