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A B S T R A C T

Artificial Intelligence (AI) holds significant promise for healthcare but often struggles to transition from devel
opment to clinical integration. This paper argues that Learning Health Systems (LHS)—socio-technical ecosys
tems designed for continuous data-driven improvement—provide a potential “glide path” for safe, sustainable AI 
deployment. Just as modern aviation depends on instrument landing systems, the safe and effective integration of 
AI into healthcare requires the socio-technical infrastructure of LHSs, that enable iterative development and 
monitoring of AI tools, integrating clinical, technical, and ethical considerations through stakeholder collabo
ration. They address key challenges in AI implementation, including model generalizability, workflow integra
tion, and transparency, by embedding co-creation, real-world evaluation, and continuous learning into care 
processes. Unlike static deployments, LHSs support the dynamic evolution of AI systems, incorporating feedback 
and recalibration to mitigate performance drift and bias. Moreover, they embed governance and regulatory 
functions—clarifying accountability, supporting data and model provenance, and upholding FAIR (Findable, 
Accessible, Interoperable, Reusable) principles. LHSs also promote “human-in-the-loop” safety through struc
tured studies of human-AI interaction and shared decision-making. The paper outlines practical steps to align AI 
with LHS frameworks, including investment in data infrastructure, continuous model monitoring, and fostering a 
learning culture. Embedding AI in LHSs transforms implementation from a one-time event into a sustained, 
evidence-based learning process that aligns innovation with clinical realities, ultimately advancing patient care, 
health equity, and system resilience. The arguments build on insights from an international workshop hosted in 
2025, offering a strategic vision for the future of AI in healthcare.

1. Introduction

A health system becomes a Learning Health System (LHS) when it 
acquires the ability to continuously and systematically learn from its 
activities, and then apply the knowledge gained to improve the health of 
the individuals and populations it serves. The concept, first articulated 
by the U.S. Institute of Medicine (now National Academy of Medicine), 

envisions “a system in which science, informatics, incentives, and culture are 
aligned for continuous improvement and innovation, with best practices 
seamlessly embedded in the care process, patients and families as active 
participants, and new knowledge captured as an integral by-product of the 
care experience” [1,2]. Within an LHS every clinical interaction is an 
opportunity to learn by capturing data, analyzing them for insights, 
implementing interventions, and employing the measured outcomes of 
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these interventions as new data to form an ongoing cycle of improve
ment. LHSs rely on socio-technical infrastructure to provide people, 
policies, technologies, and processes as services to enable these 
improvement cycles to function continuously and with economies of 
scale [3].

Health and health care, as domains of human endeavour, have in 
recent years become a major focus for application of AI approaches in 
widely varying types and sizes [4]. There is broad consensus that the 
number of models developed and validated with retrospective data 
greatly exceeds the number that has found their way into routine 
deployment [5]. This is for good reason. Just as it is much easier to get 
an airplane off the ground than to land it safely in all weather conditions, 
it is much easier to develop and validate an AI model with retrospective 
data than it is to deploy the model in a real-world healthcare setting. The 
current state of AI can be seen, by analogy, as a sky overcrowded with 
models that were relatively easy to get off the ground, now seeking 
social and technical infrastructure that will enable them to safely “land” 
in the environment of health care, creating opportunities to improve 
human health while also providing evidence on effectiveness, economic 
viability and safety.

It is important to note that this pattern is not inherently problematic: 
in many scientific and methodological domains, only a subset of in
novations is intended for, or suitable for, real-world deployment. Early- 
stage methodological research necessarily produces far more ideas than 
ultimately reach clinical use. The challenge we highlight is therefore not 
the volume of unused models per se, but the absence of robust socio- 
technical infrastructure to support those models that are intended for 
translation into practice.

This paper posits that LHSs – inherently data-driven, iterative, and 
collaborative – provide the translational infrastructure needed for safely 
and most effectively deploying AI interventions in health, care, and 
wellbeing. It follows that AI interventions should consider LHSs as a 
potential glide path to a successful landing, and moreover, that in
stitutions seeking to realize the full promise of AI should take steps to 
adopt LHS principles and methods, and build LHS infrastructure.

To support our proposition, we demonstrate how LHS principles 
address the technical lifecycle of AI, from development to deployment 
and monitoring, while also addressing ethical, organisational, and 
governance needs. The sections below describe the LHS concept and 
infrastructure, survey current AI applications in health, and examine 
how LHSs can manage the AI lifecycle and governance. In this way we 
describe the glide path by which AI can deliver significant and lasting 
benefits for human health.

While we describe an idealised LHS in which these capabilities 
operate smoothly, real-world LHS maturity is highly variable. Many 
institutions implement only subsets of these features. Our aim is to 
illustrate the potential value of LHS-aligned processes for AI, even when 

implemented incrementally.
It is also important also to note, as will be discussed in more detail, 

that this paper presents a singular view of LHS that emphasises infra
structure and, as such, is most concordant with the integration of LHS 
and AI. There are, at this writing, several co-existing views of LHS [6], 
none of which have achieved the level of maturity and standardization 
of aviation's instrument landing system, and there are multiple barriers 
to LHS development that must be acknowledged [7]. It is possible, 
therefore, that recognized potential value of LHS-AI integration may 
drive development of LHS infrastructure as much as it drives successful 
AI deployment. Furthermore

2. Learning Health Systems

LHSs are healthcare ecosystems built to continuously learn and 
improve. At their core is a cyclical process that links clinical practice 
(“performance”) with the discovery and implementation of new 
knowledge (Fig. 1). In each cycle, data from routine practice are sys
tematically collected, analyzed to generate insights, and then translated 
into changes in care, which in turn produce new data – enabling ongoing 
improvement [8].

Crucially, LHS are not just about analytics or technology – they are 
socio-technical systems. This means they encompass people (patients, 
families, clinicians, researchers, administrators), processes (policies, 
governance, workflows), cultures, and technology (electronic health 
records, data warehouses, AI tools) working in concert. One key feature 
of LHS is the formation of a multi-stakeholder learning community that 
supports the process and gets readjusted at the start of each cycle. This 
community unites all relevant parties – for example, doctors, nurses, 
data scientists, implementation scientists, patients and their families, 
management and senior leadership teams, and health IT staff – who 
work collaboratively to identify problems and co-create solutions. Their 
shared goal is to improve a specific aspect of health (a “health problem 
of interest”), and they remain engaged through the entire cycle. This 
continuity of collaborative execution distinguishes LHS from traditional 
quality improvement efforts, where different teams of people might 
separately handle data analysis and implementation.

Another defining aspect of LHS is embracing uncertainty and 
learning from failure, e.g. when an intervention underperforms. Rather 
than assuming what better interventions are upfront, an LHS acknowl
edges knowledge gaps and undertakes rigorous discovery (e.g. analyzing 
data, for example via AI, to find what might work) before implementing 
any changes. This scientific mindset is built into clinical operations. 
Over time, multiple learning cycles can operate concurrently, supported 
by a socio-technical infrastructure that scales learning throughout an 
organization. Examples of such infrastructure include integrated data 
systems, interoperability standards, and policies for data governance 

Fig. 1.
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and ethics. Indeed, the vision is that a mature LHS will have many 
learning loops running (for different conditions or processes), all 
enabled by shared data and technology services.

3. AI applications in health

Artificial Intelligence (AI) offers unprecedented and multiple op
portunities to improve health and care [9], from enhancing diagnostics 
to personalizing treatments [10]. Yet, bridging the gap between prom
ising AI models and real-world impact has proven challenging [11,12]. 
Many AI systems that excel in retrospective studies or controlled settings 
fail to translate into routine practice, due to issues like data drift, 
workflow misalignment, additional data entry requirements, lack of 
clinician and patient trust, and the structural challenges of implement
ing change in health systems. For example, a fundamental problem is the 
“last mile” of implementation – integrating AI into complex, socio- 
technical health and care systems that have inherent variability, regu
lation and strict safety requirements [13]. This “last mile” is analogous 
to the final approach of an aircraft to a runway.

AI has rapidly become a focal point in digital health, with applica
tions spanning nearly every domain of biomedicine. Machine learning 
algorithms, especially deep learning models, now approach or exceed 
human-level performance in certain tasks like medical image interpre
tation [14]. For instance, AI models can detect diabetic retinopathy in 
retinal photos or classify skin lesions from images with high accuracy 
[15]. In radiology and pathology, AI aids in finding subtle anomalies on 
X-rays, CT scans, or biopsies [16]. Beyond imaging, predictive models 
are used for prognostics – estimating risk of outcomes such as sepsis, 
hospital readmission, or disease complications – by mining patterns in 
electronic health record (EHR) data [17]. There are demonstrated use 
cases across drug discovery (e.g. AI systems identifying new drug can
didates), virtual health assistants for patient triage or differential diag
nosis, robotics in surgery, and personalized medicine approaches 
combining genomics with AI [18]. Natural language processing (NLP) 
algorithms can sift through clinical notes to flag patients who meet 
criteria for clinical trials or who need follow-up care [19]. Meanwhile, 
optimization and scheduling algorithms improve operational effi
ciencies like patient flow and staffing [20]. In mental health, conver
sational AI chatbots are starting to provide cognitive behavioural 
therapy exercises or triage advice [21]. Indeed, AI is seen as a key 
enabler for healthcare's “quintuple aim” (enhancing patient experience, 
improving population health, reducing costs, improving provider work 
life, and achieving health equity) [22]. In the short term, AI can auto
mate high-volume repetitive tasks (like image screening). In the longer 
term, AI is anticipated to facilitate precision medicine – supporting 
training, education and tailoring care based on a patient's unique data 
profile.

Despite this promise, real-world adoption of AI in healthcare remains 
limited. While hundreds of AI systems have been published—including 
methodological models, simulation/training tools, and patient-facing 
clinical decision support systems—only a smaller subset are designed 
for, or appropriate for, routine clinical deployment [23]. These cate
gories serve different purposes, and low deployment rates should not be 
interpreted as failure for models whose aims are purely methodological 
or educational – thus lack of translation can reflect disciplinary or 
organisational priorities rather than technical shortcomings. However, 
the reasons for low uptake of models intended for frontline deployment 
are manifold. Generalizability is a major concern: an algorithm trained 
in one setting often performs worse when deployed elsewhere due to 
differences in patient populations or data coding [24]. Integration 
challenges frequently arise – AI tools must seamlessly fit into clinical 
workflows and EHR systems, which is non-trivial (poor integration was a 
key factor in the limited success of earlier decision support systems) 
[25]. Transparency and trust issues also hinder uptake: clinicians may be 
reluctant to rely on “black box” algorithms whose reasoning they cannot 
interrogate, especially if an AI might make errors that harm patients. 

Some AI interventions may produce marginal benefits at a vastly 
increased resource cost [26]. Threats to autonomy, intrinsic motivation, 
professional pride and skill are also important concerns when AI takes 
over complex judgement tasks [27].

Ethical issues such as bias, AI reflecting or even amplifying racial or 
gender disparities present in training data [28], and privacy concerns 
with patient data further complicate deployment. Moreover, healthcare 
regulators were designed for medicine safety, which in the UK have an 
average usage lifespan of 37 years, but the average medical device 
lifecycle is 18 months [29]. Health system functions including regula
tion, financial incentive and reimbursement structures, as well as the 
clinicians and managers that need to use new technologies, need to 
adapt to AI-based services and the rapid lifecycles of AI.

In practice, many health AI projects stall after proof-of-concept due 
to this socio-technical gap. Researchers have dubbed this the “last mile 
problem” of AI in health – moving from model development to sustained 
clinical use. It is here that LHSs offer a way forward. By design, an LHS 
provides an ecosystem that addresses data quality, workflow integra
tion, continuous evaluation, and stakeholder engagement – precisely the 
factors that determine whether an AI succeeds or fails in practice 
(Table 1).

A deeper issue that affects the translation of methodological work 
into practice, particularly in multidisciplinary teams, is the absence of 
shared incentives, language, and cross-disciplinary alignment between 
model development and clinical implementation. Thus the collaboration 
enabled by the LHS needs to be backed by the wider institutional 
recognition of success and reward that goes beyond traditional domain 

Table 1 
Main challenges associated with the “last mile” deployment of AI-based solu
tions and opportunities provided by LHSs.

Challenge Opportunity

Generalizability and 
data drift

Models trained in one setting 
often underperform 
elsewhere due to variations 
in population, coding 
practices, and clinical 
workflows.

LHSs embed feedback loops 
that monitor performance 
over time, enabling regular 
model updates and 
adaptation to local 
contexts.

Transparency and 
trust (“black-box” 
concern)

Lack of transparency and 
accountability reduces 
clinician and patient 
confidence in AI outputs.

Provenance tracking, open 
documentation, and 
participatory validation 
build trust and 
accountability.

Regulatory and 
lifecycle 
misalignment

Traditional approval 
pathways were designed for 
static medical devices, not 
continuously learning 
systems with short update 
cycles.

LHSs support iterative 
approval and oversight 
processes, aligning with 
evolving concepts of 
“continuously learning” AI 
regulation.

Responsibility and 
accountability 
ambiguity

When AI influences 
decisions, liability among 
clinicians, developers, and 
healthcare organizations is 
often unclear.

System-level provenance 
and reproducibility 
solutions allow for detail of 
human and software agents 
that participated in 
individual tasks.

Data governance and 
provenance 
limitations

Inconsistent recording of 
data lineage and model 
versioning complicates 
reproducibility and safe 
model updates.

Shared socio-technical 
infrastructures in the LHS 
enables consistent 
provenance capture and 
reporting

Cultural and 
organisational 
inertia

Risk-averse environments 
and lack of a learning 
culture inhibit 
experimentation, feedback, 
and iterative improvement.

LHS can be used as a 
framework to manage risk 
in introducing new data- 
driven initiatives

Model monitoring 
and maintenance 
gaps

Few institutions have 
structures for continuous 
evaluation, post-deployment 
surveillance, and 
performance recalibration.

LHSs embed ongoing 
evaluation and 
improvement cycles (“data 
→ knowledge → 
performance → data”), 
enabling AI to evolve safely 
over time.
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metrics.

4. Connecting AI and Learning Health Systems to promote model 
deployment and continuous improvement

Deploying AI in healthcare is not a one-off event but a lifecycle that 
spans development, implementation, evaluation, maintenance, and 
evolution. LHSs are uniquely equipped to manage this lifecycle in a 
sustainable way. In the sections that follow, we will illuminate the 
specific connections between them.

4.1. Co-creation and user-centered design

LHS cycles start with a multistakeholder learning community 
focused on a health problem. This naturally promotes and enables co- 
creation of AI solutions with people within health and care systems, 
patients, and AI end-users, as well as establishing whether such solutions 
are feasible in the given context. A recent review of LHS models shows 
the scope for more detailed stakeholder modelling to ensure equity [30]. 
Instead of tech companies or data scientists building algorithms in 
isolation, the LHS framework invites clinicians, patients, and other users 
to be part of the design and validation process. Such co-design was 
identified as a key enabler in nearly half of studies on clinical AI 
implementation [31]. By capturing user requirements and domain 
knowledge early, co-creation ensures the AI addresses real clinical needs 
and fits the local context. For example, if an LHS community decides to 
develop an AI tool to predict patient deterioration, healthcare pro
fessionals would contribute to defining what “deterioration” means in 
practice, what warning signs are actionable, and how alerts should be 
presented, and patients' and carers' perspectives would also be taken into 
account. This example points to the more general challenge (one that is 
especially salient for LHS) of how to account for diverse users who may 
have different conceptualisations of the domain, and more broadly, 
differing interests and perspectives that may not align. LHS could thus 
also benefit from AI support for multistakeholder deliberation and 
sense-making [32].

This participatory approach to development of AI tools improves the 
relevance, usability, and trustworthiness of said tools. The collective 
sense-making that occurs in participatory approaches also creates a 
shared purpose that helps drive adoption, bringing the whole learning 
community along the journey and leading to better implementation as 
well as better design [33]. It also streamlines workflow integration – 
since the future beneficiaries helped design the AI, they are more likely 
to adopt it and less likely to be surprised by its behavior. In essence, the 
LHS turns AI development into a cooperative learning process between 
humans and machines, rather than a vendor delivering a static product.

It is important to note that the level of required co-design varies by 
the type of AI tool. Systems used for internal operations—such as bed- 
capacity forecasting or scheduling optimisation—primarily require 
engagement with technical and operational experts rather than patients 
or frontline clinicians. In such cases, issues arise less from insufficient 
patient co-design and more from inadequate alignment with the 
expertise of operations researchers or systems engineers.

4.2. Planning for model evaluation and monitoring

Before an AI model is deployed into practice, there must be a plan for 
how its real-world performance will be evaluated and monitored. In the 
context of LHS, this planning process is collaborative and forward- 
looking. Through the co-creation process, clinicians, data scientists, 
administrators, and patients jointly define what “success” means and 
how it should be measured once the model is in use. Considerations 
could include evaluation on different subgroups in a heterogenous 
population, plans for managing data quality issues, and clinician 
behavior. Critically, evaluation of AI tools in deployment is often much 
more challenging than evaluating on a static dataset.

One key challenge is the delayed availability of outcome labels for an 
AI model. For example, if a diagnostic AI tool suggests an incorrect 
diagnosis to a patient with cancer based on a scan, the error may not 
come to light for months – or ever – if the patient does not return for a 
follow-up. Another subtle but significant challenge lies in the potential 
feedback loops created when AI predictions influence treatment de
cisions. Consider a model that uses an ECG to assess whether a patient is 
at risk for a condition that can only be confirmed by an echocardiogram 
[34]. If only patients predicted as high-risk receive an echocardiogram, 
then over time, the resulting dataset used to evaluate the model will 
become increasingly biased. Low-risk predictions may rarely be 
confirmed or refuted, making it difficult to identify false negatives. In 
other words, when models shape what data is collected later on, it can 
mask errors and distort performance estimates.

The LHS paradigm is uniquely positioned to plan for and manage 
these complexities, even though it does not automatically eliminate 
them. Evaluation plans may include a combination of quantitative 
metrics (e.g., accuracy, calibration, clinical utility), qualitative feedback 
(e.g. user satisfaction, clinician trust), and operational indicator (e.g. AI 
tool usage patterns, override patterns) – crucially, planned across cycles, 
acknowledging potential delays or drop-outs in outcome availability for 
certain actions. An LHS ensures that the evaluation is not a one-time 
audit, but an ongoing, structured process that ensures a responsible 
use of AI in healthcare. Specifically, bias arising from downstream ac
tions of model deployment affecting data used in re-training may be 
accounted for by data provenance and the ability of an LHS to monitor 
the entire cohort of patients over longer time periods. Furthermore, this 
multi-cycle capability also allows incorporation of methods to address 
selective labels and verification bias.

4.3. Managing model evolution

Once an AI approach is deployed, the work is not done – models must 
be updated over time. LHS are built for this continuous updating. Rather 
than freezing an algorithm after deployment, an LHS treats each use of 
the AI as an opportunity to improve it. For instance, the outcomes and 
errors of an AI's prediction(s) can be fed back as new training data (the 
“performance to data” part of the cycle) to recalibrate the model. This 
addresses problems such as model drift, where an AI's accuracy degrades 
as clinical practice or patient populations change. Apart from re- 
training, updates may include recalibration, threshold adjustment, 
feature review, changes in clinical workflow, or full redevelopment. In 
the LHS paradigm, model evolution can be governed by the learning 
community: they set criteria for when the model should be retrained, 
modified, or replaced, based on ongoing performance metrics or 
organisational criteria.

Crucially, LHS provides the regulatory, governance and infrastruc
ture to do this safely. The iterative loop (data → knowledge → practice) 
means that after each model update (knowledge), an intervention or 
evaluation occurs (practice), and only if the updated AI shows improved 
or at least non-inferior performance does it become fully adopted. This 
controlled evolution is aligned with emerging regulatory concepts of 
adaptive AI systems. In fact, regulators like the United States FDA are 
exploring lifecycle-based oversight via mechanisms like Predetermined 
Change Control Plans,1 which specify in advance the conditions under 
which a model may be updated. These approaches support structured, 
transparent, evidence-driven evolution, mirroring LHS formal learning 
cycles of planning, change, and evaluation that ensure the changes are 
evidence-based with documented provenance. If performance drops or 
unintended consequences emerge, the LHS can quickly revert or adjust 
the model in the next cycle. This alertness to emergent change stands in 

1 https://www.fda.gov/medical-devices/software-medical-device-samd/pre 
determined-change-control-plans-machine-learning-enabled-medical-devices- 
guiding-principles.
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contrast to static deployments, where an AI might quietly become unsafe 
due to model drift before anyone notices, e.g. as a consequence of sea
sonal variability in data. In a mature LHS with multiple cycles, AI models 
become living components of care pathways, continuously learning from 
new data under the watch of the learning community and data scientists.

An LHS, by definition, embeds continuous evaluation into its routine 
operation – “new knowledge is captured as an integral by-product of the care 
experience”. Every time an AI-driven intervention is applied, the LHS 
measures outcomes and compares them against expectations. This cre
ates a constant feedback loop to refine the AI and its integration into 
practice, either continuously or through a series of discrete steps. 
Traditional clinical trials or validations provide only a snapshot (criti
cally before deployment if this is a regulatory approval study) while a 
LHS enables ongoing real-world evaluation (akin to post-market sur
veillance in regulatory terms). For example, suppose an AI algorithm for 
sepsis early warning is rolled out in a hospital. In an LHS approach, the 
system would track metrics such as true/false alert rates, sepsis mor
tality, clinician response times, and any adverse events. These data are 
analyzed (perhaps by another AI or by the quality improvement team) to 
assess the AI's clinical utility and safety continuously [35]. If, say, false 
alarms are too frequent and causing alert fatigue, the learning commu
nity might decide to tweak the sensitivity threshold or incorporate an 
additional data input – effectively refining the model or its usage pro
tocol. This would then be tested in the next cycle and so on. Over time, 
the AI tool either improves or is retired if it cannot meet the desired 
outcomes, but importantly, this decision is driven by evidence gathered 
during routine practice. The LHS thus prevents the scenario of an AI 
being deployed and “forgotten.” It institutionalizes an evaluate-and- 
improve mentality, similar to the DevOps/MLOps approach in soft
ware where systems are constantly monitored and iterated, indeed 
regulation of AI does build upon these software quality approaches. In 
healthcare, such agility is rarely present outside of an LHS context. 
Through continuous improving, AI remains fit for purpose, and the health 
system avoids stagnation with outdated algorithms.

As AI capabilities evolve toward more agentic behaviours—includ
ing autonomous task execution, workflow orchestration, or proactive 
recommendations—model evolution becomes more than a technical 
update problem. Agentic systems require mechanisms to monitor goal- 
directed behavior, prevent unintended action sequences, and ensure 
alignment with clinical governance. LHSs offer a natural setting for such 
oversight, since their structured cycles of evidence generation, evalua
tion, and stakeholder governance are well-suited to managing dynamic, 
semi-autonomous AI tools.

5. Connecting Learning Health Systems and AI for regulation 
and governance

In addition to managing the more technical challenges discussed 
above, LHSs provide a framework for addressing regulatory and ethical 
challenges of AI in healthcare, such as ensuring clarity of responsibility, 
transparency of algorithms, tensions between commercial and open 
approaches, implementation accountability, provenance of data and 
models, and the role of humans-in-the-loop. How LHSs approach these 
challenges is deeply rooted in consensus LHS core values propounded in 
2012 [36] and, more recently in the LHS Core Commitments put forward 
by the National Academy of Medicine [37]. We discuss how these LHS 
principles help navigate these issues:

5.1. Transparency of responsibility

When AI systems assist in clinical decisions, it can become unclear 
who is responsible for the outcomes – the clinician user, the organization 
deploying the AI, or the developer of the algorithm. A LHS, by virtue of 
its collaborative structure, can make responsibility more transparent. 
The learning community overseeing an AI project within an LHS brings 
together all stakeholders to define roles and boundaries explicitly (e.g. 

who validates the model, who approves its use, and who responds to its 
recommendations). This shared governance means that responsibility is 
acknowledged at each stage: data collection (usually the health system's 
responsibility), model development (data scientists and developers), and 
clinical decision-making (clinicians guided by hospital policies). For 
instance, a hospital LHS might establish a committee (including clini
cians, AI specialists, and ethicists) that must sign off on any AI-derived 
protocol change, thereby clearly assigning accountability. Such struc
tures help avoid the “responsibility vacuum” that can occur with AI. 
Indeed, researchers implementing diagnostic LHS have flagged “medico- 
legal responsibility for generated evidence” as a significant challenge to be 
proactively addressed. By tackling this in the LHS governance (e.g. 
having legal/risk managers in the learning community discussions), the 
duties and liabilities of each party are delineated before deployment. 
Transparency is further enhanced by LHS documentation practices – 
every learning cycle produces artifacts (analysis reports, decision logs, 
implementation plans) that can be audited. This makes it clear why and 
by whom a certain AI-informed decision was made, a critical feature for 
accountability and regulatory compliance. Thus, embedding an LHS 
approach to the development and maintenance of hazard logs as 
required for medical devices (part of the NHS Data Security and Pro
tection Toolkit in the UK) can assist safe deployment of AI.

Since LHS emphasises learning and sharing knowledge, there is a 
philosophical alignment with open-source principles. Transparency is 
valued because it enables collective learning – an opaque algorithm is 
antithetical to the spirit of an LHS. Moreover, studies on AI enablers 
have noted that open-source software can improve transparency and 
accountability by allowing experts to identify vulnerabilities. Hybrid ap
proaches that blend open-source and commercial models, e.g. licensed 
extended versions with additional features, may help software com
panies to balance transparency with income generation to develop 
mature AI products.

5.2. Responsibility of implementation

Introducing an AI tool into clinical practice is an active intervention 
that requires oversight. Outside a LHS setting, this responsibility should 
fall to the designated Clinical Safety Officer, often leading to duplication 
and variability between organizations. In contrast, a LHS explicitly 
manages implementation as part of the learning cycle (the K2P phase, 
“Knowledge to Performance”). This means the learning community 
takes collective responsibility for how an AI is deployed – including 
training staff, integrating into workflows, setting guidelines for use, 
managing hazard logs and monitoring initial results [38]. Through 
shared implementation responsibility, the LHS helps cultivate trust and 
clinicians, patients and carers see that a reliable support system stands 
behind the AI, not just a vendor. It also ensures there is a defined 
responsible party to take action if the AI underperforms, causes harm or 
misfires. For example, an on-call data scientist to fix a bug or a clinician 
lead to issue a notice to stop using the tool if a safety issue arises. The 
LHS helps to clarify the responsibilities set out in a system's DCB 0129 
and DCB 0160 in the NHS, and equivalent on other health systems

5.3. Provenance, trust, and FAIRness

Provenance – the record of how data and models have been pro
cessed – is an essential component of accountability and trust. By 
capturing provenance throughout the research and implementation 
workflow, we embed mechanisms to verify trust in the system, for 
example through standards such as W3C PROV [39]. This is particularly 
relevant for AI, where complex data pipelines and model training pro
cesses can otherwise be opaque. In an LHS, every step of model devel
opment and deployment can be logged: which data were used for 
training, how they were pre-processed, which version of the algorithm 
was applied, who reviewed the outputs, and how the model was inte
grated into the clinical system. Such provenance metadata embedded 
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into the LHS creates a traceable audit trail. If an error or bias is 
discovered later (for example, the AI is less accurate for a certain sub
group of patients), one can trace back to see if the training data lacked 
diversity or if a certain parameter tweak led to the issue.

Understanding the provenance of our models is also key to over
coming the issue of model collapse. This concept, sometimes also 
referred to as the autophagia of AI, denotes the progressive degradation 
in performance, diversity, and fidelity of AI models when successive 
generations are trained—directly or indirectly—on outputs generated 
by their predecessors rather than on clean, human-authored data. The 
term draws from the analogy of low-background steel in nuclear science: 
just as post-1945 steel is contaminated by fallout, Internet content post- 
2022 is increasingly “polluted” by AI-generated material [40].

LHS emphasises robust data and knowledge management practices. 
The FAIR principles (Findable, Accessible, Interoperable, Reusable) 
have been advocated to maximize the utility of health data [41]. In an 
LHS, routine clinical data (from EHRs, devices, etc.) are continuously 
captured as a by-product of care and then made available for analysis in 
a privacy-conscious manner. Achieving this requires data interopera
bility across different sources and institutions – a challenge that LHS 
initiatives tackle by adopting common data standards and shared re
positories. By ensuring that data are FAIR, LHS make it easier to train 
and update AI models on comprehensive, real-world datasets. For 
example, a hospital network functioning as an LHS might implement 
standardized coding and open APIs that allow AI developers to reliably 
pull anonymized patient data for model development (with appropriate 
governance). Additionally, LHS data practices emphasize data quality 
and provenance, meaning each data point's origin and context are 
tracked. This is crucial for AI-ready data, a concept closely aligned with 
the FAIR principles, as models are highly sensitive to garbage-in/ 
garbage-out; an LHS will thus include processes to clean and validate 
data continuously. By underpinning AI with a strong data foundation, 
LHS reduces the risk of model bias and drift. Indeed, large-scale learning 
networks (such as those in some national LHS efforts) treat data as a 
shared asset for learning, which accelerates AI development while 
maintaining rigor in how data are used [42].

In LHSs, knowledge management is as important as data manage
ment. AI models can be viewed as exemplars of knowledge that can be 
represented as FAIR Digital objects [43], bringing many of the same 
benefits to model management that accrue to data by achieving the FAIR 
principles. Standards such as W3C DCAT provide foundational vocab
ularies for these metadata descriptions with specialised extensions, 
including Health-DCAT-AP, developed by the European Health Data 
Space initiative, to allow datasets, registries, biobanks, AI models, and 
associated digital services to be discovered, linked, and reused safely 
and lawfully across national and institutional boundaries. The move
ment to Mobilize Computable Biomedical Knowledge–with chapters in 
North America and the U.K and new chapters forming in continental 
Europe and Australasia—champions ecosystems of models and algo
rithms conforming to the FAIR principles [44].

Provenance also supports reproducible research, meaning that other 
sites or researchers can understand exactly how an AI result was ob
tained and attempt to reproduce or validate it. In regulatory terms, this 
aligns with requirements like the FDA's 21 CFR Part 11, which mandate 
the auditability of software used in clinical decisions [45]. Another 
relevant example is the ISO/DTS 23494–1, a biotechnology information 
standard, providing consistent documentation of the life-cycle of related 
research objects from the acquisition of a specimen to analytical pro
cedures and downstream data processing and analysis [46].

By embedding provenance capture into the LHS's data/AI pipeline, 
we can capture data that can then be used to develop methods and 
tooling (e.g. dashboards, audit trail viewers) to explain and justify AI- 
driven decisions in the health system when needed [47]. Such a mech
anism also helps avoid “algorithm creep,” where, over time no one re
members how or why the model does what it does; in an LHS, that 
institutional memory is preserved in the provenance logs. This level of 

transparency is a strong antidote to the black-box criticism of AI and is 
invaluable for governance, as it allows independent audits and contin
uous quality assurance of the AI process. While this may sometimes be 
seen as healthcare inertia slowing down rapid technology advancement, 
it is essential to ensuring these innovations are implemented in a sus
tainable manner.

5.4. Human-in-the-loop

A commonly touted principle for safe AI in healthcare is to keep a 
“human in the loop,” On the one hand, this principle can be interpreted as 
addressing the so called ‘value alignment problem’ - how to ensure that 
the AI support for decision making and planning is aligned with the 
evolving values, interests and preferences of human stakeholders. This 
issue is of particular relevance to LHS given: 1) the ever-increasing use of 
large language models for advice giving [48]; 2) the inherent diversity of 
stakeholders and hence the need to account for competing interests, and 
the fact that preferences may evolve and be shaped in response to the 
outcomes of interventions. Alignment can thus be supported by 
designing AI-stakeholder interactions so as to accommodate human in
puts that relate to preferences, while simultaneously leveraging AI ca
pabilities for information retrieval, analysis and arguments that guide 
shaping and elicitation of stakeholder preferences [49,50].

On the other hand, a more narrow interpretation of the human-in-the- 
loop principle mandates that clinicians retain final decision authority 
rather than allowing fully automated decisions [51]. Patients and the 
public also prefer a hybrid system rather than a doctor-only or AI-only 
approach [52]. While this is important, there is a risk that the human- 
in-the-loop paradigm becomes a fig leaf that obscures accountability. 
If an AI recommendation contributes to harm, and in the absence of 
shared governance such as the one promoted by LHS, the developer 
might blame the clinician for not overriding it, while the clinician might 
argue they trusted the system's regulatory-approved advice, thus sharing 
the blame [53]. LHS can not only establish the responsibility boundaries, 
but also treat human-AI interaction as part of the learning process. 
Instead of assuming the presence of a human automatically ensures 
safety, an LHS will rigorously study how humans and AI actually work 
together (the “human–AI team” dynamics). For example, the LHS might 
track when clinicians follow or contradict AI advice and the outcomes of 
each scenario [54]. This can reveal if the “human oversight” is effective 
or if, in practice, users either over-rely on the AI, leading to a form of 
automation bias, or ignore a useful tool. The learning community can 
then adjust training or system design accordingly – perhaps tightening 
the conditions under which the AI can act without human confirmation 
or conversely, simplifying the user interface so clinicians pay attention 
at the right moments. The LHS thus does not take human-in-the-loop for 
granted; it treats it as a factor to be studied and optimized. Moreover, by 
having a collective forum (the learning community) discuss incidents 
and near-misses, the LHS ensures that accountability is shared and les
sons are learned, rather than individual clinicians being unfairly blamed 
for systemic issues.

LHSs offer robust support for AI governance through promoting 
transparency (through open data/model practices and provenance 
tracking), clarifying accountability (through defined roles and contin
uous oversight), and improving trust (through co-creation, open review, 
and demonstrated safety in practice). By aligning the deployment of AI 
with an organization's learning and quality processes, LHS ensures that 
ethical principles and regulatory requirements are not an afterthought 
but an integral part of the AI lifecycle. This synergy addresses the oft- 
cited concerns about AI – from unclear liability to opaque algorithms 
– within the operational workflow of healthcare. The result is a more 
responsible innovation, where AI can be introduced and scaled in a 
manner that is transparent to users, acceptable to regulators, and ulti
mately safer for patients.

These issues intersect with emerging discussions around Sovereign 
AI, the principle that nations or health systems should retain strategic 
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control over critical data assets, model development pathways, and the 
computational infrastructure that underpins them. As AI capabilities 
become increasingly central to clinical operations and population health 
planning, LHSs provide a natural governance environment to mitigate 
risks associated with dependence on opaque, externally controlled AI 
ecosystems.

6. Way forward

While many existing frameworks focus on evaluating or deploying 
individual AI models, the distinctive contribution of this paper is to 
articulate a systems-level, reusable socio-technical approach. Rather 
than addressing adoption on a model-by-model basis, we argue for 
institutionalising AI deployment within an LHS, enabling repeatable, 
scalable, and cumulative learning across multiple AI tools. Now we 
outline five key steps to make this a reality:

6.1. Integrate AI initiatives into LHS frameworks, recognizing that LHS, 
too, is a work in progress

Healthcare organizations should embed AI within a formal LHS 
framework rather than handling them as isolated IT implementations. 
This means establishing multidisciplinary learning communities for 
each major AI intervention, responsible for guiding the project from 
inception through continuous monitoring. Clinicians, data scientists, IT, 
patients, and leadership must all have a seat at the table. By treating 
each AI deployment as a learning cycle, organizations will naturally 
address design, validation, implementation, and evaluation in one 
cohesive process rather than silos. This framework should also take ac
count of the relevant parts of risk classification and control actions for 
software as a medical device regulation (ISO14971 and IEC62304).

In this analysis, the authors have described a “frozen”, specific, and 
implicitly mature version of an LHS. This was by intention to offer the 
clearest portrayal of the potential benefits of AI and LHS integration. 
While the current state of LHS concepts and methods reflect 18 years of 
continuous development as reflected in part by a growing literature 
[55], their deployment within institutions is incomplete and slowed by a 
wide range of challenges [56,57]. It is important therefore, for those 
pursuing the integration proposed here, to assess the elements of LHS 
infrastructure that exist in an environment to be sure they exist in a 
sufficiently mature form to meet the demands AI will place upon them.

6.2. Invest in standards-based data infrastructure and FAIR data and 
knowledge practices

A critical enabler for both LHS and AI is a strong data backbone. 
Health systems (and their partners in government and industry) should 
invest in interoperable EHR systems, data warehouses, and registries 
that adhere to FAIR principles. The aim is to have common data models 
and exchange standards so that data from different sources can be 
pooled for machine learning and outcomes analysis. This poses 
numerous challenges. Although standards such as SNOMED CT [http 
s://www.snomed.org/] and HL7 FHIR [https://www.hl7.org/fhir/] 
are now quite mature, their implementation remains inconsistent and 
has not yet achieved the necessary level of semantic interoperability. 
Common internal data models such as openEHR [https://openehr.org/] 
have very little adoption by major EHR vendors and data aggregation 
formats like OMOP [https://www.ohdsi.org/data-standardization/] risk 
loss of context from rich clinical data and need aligning with data cat
alog standards such as W3C DCAT and Health-DCAT-AP. Another 
important aspect of this is utilising bound identifiers for the type and 
version of AI models used, supporting monitoring and transparency, 
relevant terms exist in the SNOMED-CT (UK version) ‘clinical observa
tion’ hierarchy. It also involves data governance that balances openness 
with privacy – for example, using federated learning or de-identified 
datasets within a secure data environment to allow AI training across 

institutions without exposing sensitive information. Provenance stan
dards such as W3C PROV and ISO/TS 23494–1:2023 allow dataset 
histories and audit traces to operate in a distributed environment. Na
tional and regional networks can amplify this by linking LHS across sites, 
creating learning networks where AI models and insights are shared for 
mutual benefit.

6.3. Establish continuous model monitoring and maintenance

Just as hospitals have pharmacovigilance programs to monitor drug 
safety, they should create AI-vigilance programs for deployed algo
rithms. Within the LHS, dedicate a team (or extend the duties of the 
learning community) to routinely review AI performance metrics, bias 
indicators, and user feedback. This team would manage model updates 
in a controlled way – analogous to software updates, but with clinical 
validation at each step. Regulators and payers should support this by 
allowing mechanisms for rapid update approval and reimbursement 
models that recognize the ongoing effort of maintaining AI systems 
(rather than a one-time purchase). In essence, make continuous learning 
a contractual and regulatory expectation for any AI used in patient care. 
This will enforce that AI systems remain safe and effective as conditions 
change.

6.4. Cultivate an ethical, responsible and learning culture

Technology alone cannot create an LHS– the culture of the organi
zation must value learning, transparency, and patient-centric innova
tion. Leadership should promote policies that encourage reporting of AI 
failures or near-misses without fear of blame (a just culture), echoing 
how morbidity and mortality conferences function for learning from 
clinical errors. Ethical principles like equity, accountability, and patient 
engagement should be baked into AI projects from the start. Concretely, 
this could involve establishing an ethics review board for algorithmic 
tools, including patient representatives to voice concerns and prefer
ences. It also means training clinicians about the basics of AI, not just 
how to use a particular tool but how to critically appraise and question it 
[58]. Over time, a learning culture will normalize the idea that AI in 
healthcare is always under evaluation and subject to improvement – 
much like any drug or clinical practice might be.

6.5. Encourage open collaboration and knowledge sharing

The ethos of an LHS is inherently collaborative and cumulative. 
Stakeholders should therefore publish and share methodologies and 
outcomes of AI implementations (successes and failures alike) in peer- 
reviewed literature or public forums, contributing to the global 
learning community. Initiatives like open-source algorithms, public 
challenge datasets, or shared benchmarking of AI on common tasks can 
accelerate collective progress [3]. Funding agencies and journals could 
incentivize this by requiring that AI tools coming out of publicly funded 
research be made available for evaluation in other LHS settings. In order 
to deliver a “human-in-the-loop” approach, we have to ensure the 
humans do not lose their skills, knowledge, and intuition, and our 
training programs should be adapted to reflect that ambition in the 
presence, or with assistance, of AI technologies.

7. Summary

Realizing the vision of LHSs is our best strategy for a future where AI 
plays a very strong role in transforming health and care rather than 
losing their traction after pilot studies. LHS offers the mechanisms and 
infrastructure to continuously align AI tools with clinical reality, correct 
their course when needed, and prove their value (or lack thereof) with 
rigorous outcome data. By following LHS principles – co-creation, 
continuous learning, and shared governance – healthcare can create a 
glide path for AI that avoids the booms and busts of hype cycles and 
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instead achieves steady, responsible innovation, moving from model-by- 
model adoption to system-based, reusable socio-technical adoption.

The journey forward will require commitment from all quarters: 
healthcare providers must embrace data-driven experimentation; AI 
developers must engage with healthcare's complexities; regulators must 
adapt to iterative improvement paradigms; and patients must be part
ners in the process. The reward for this collective effort is profound: a 
healthcare system that learns as it delivers care, constantly getting 
better, smarter, and more just – with AI as an ally rather than a threat. 
None of this implies that creating and operating LHSs is easy [7], but 
there is increasing evidence of effective real-world LHS implementation 
with an AI focus [59].

Returning to our metaphor in closing, it is unimaginable how modern 
aviation could function safely and efficiently without instrument land
ing systems (ILS). Both ILSs and LHSs are socio-technical systems built 
on infrastructure consisting of training people, consensus policies, 
established processes, and proven digital technologies. To us, it is 
equally unimaginable how AI can support healthcare safely and effi
ciently without being embedded in LHSs.
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