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Artificial Intelligence (AI) holds significant promise for healthcare but often struggles to transition from devel-
opment to clinical integration. This paper argues that Learning Health Systems (LHS)—socio-technical ecosys-
tems designed for continuous data-driven improvement—provide a potential “glide path” for safe, sustainable Al
deployment. Just as modern aviation depends on instrument landing systems, the safe and effective integration of
Al into healthcare requires the socio-technical infrastructure of LHSs, that enable iterative development and
monitoring of Al tools, integrating clinical, technical, and ethical considerations through stakeholder collabo-
ration. They address key challenges in Al implementation, including model generalizability, workflow integra-
tion, and transparency, by embedding co-creation, real-world evaluation, and continuous learning into care
processes. Unlike static deployments, LHSs support the dynamic evolution of Al systems, incorporating feedback
and recalibration to mitigate performance drift and bias. Moreover, they embed governance and regulatory
functions—clarifying accountability, supporting data and model provenance, and upholding FAIR (Findable,
Accessible, Interoperable, Reusable) principles. LHSs also promote “human-in-the-loop” safety through struc-
tured studies of human-Al interaction and shared decision-making. The paper outlines practical steps to align Al
with LHS frameworks, including investment in data infrastructure, continuous model monitoring, and fostering a
learning culture. Embedding Al in LHSs transforms implementation from a one-time event into a sustained,
evidence-based learning process that aligns innovation with clinical realities, ultimately advancing patient care,
health equity, and system resilience. The arguments build on insights from an international workshop hosted in
2025, offering a strategic vision for the future of Al in healthcare.

1. Introduction

A health system becomes a Learning Health System (LHS) when it
acquires the ability to continuously and systematically learn from its
activities, and then apply the knowledge gained to improve the health of
the individuals and populations it serves. The concept, first articulated
by the U.S. Institute of Medicine (now National Academy of Medicine),
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envisions “a system in which science, informatics, incentives, and culture are
aligned for continuous improvement and innovation, with best practices
seamlessly embedded in the care process, patients and families as active
participants, and new knowledge captured as an integral by-product of the
care experience” [1,2]. Within an LHS every clinical interaction is an
opportunity to learn by capturing data, analyzing them for insights,
implementing interventions, and employing the measured outcomes of
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these interventions as new data to form an ongoing cycle of improve-
ment. LHSs rely on socio-technical infrastructure to provide people,
policies, technologies, and processes as services to enable these
improvement cycles to function continuously and with economies of
scale [3].

Health and health care, as domains of human endeavour, have in
recent years become a major focus for application of Al approaches in
widely varying types and sizes [4]. There is broad consensus that the
number of models developed and validated with retrospective data
greatly exceeds the number that has found their way into routine
deployment [5]. This is for good reason. Just as it is much easier to get
an airplane off the ground than to land it safely in all weather conditions,
it is much easier to develop and validate an Al model with retrospective
data than it is to deploy the model in a real-world healthcare setting. The
current state of Al can be seen, by analogy, as a sky overcrowded with
models that were relatively easy to get off the ground, now seeking
social and technical infrastructure that will enable them to safely “land”
in the environment of health care, creating opportunities to improve
human health while also providing evidence on effectiveness, economic
viability and safety.

It is important to note that this pattern is not inherently problematic:
in many scientific and methodological domains, only a subset of in-
novations is intended for, or suitable for, real-world deployment. Early-
stage methodological research necessarily produces far more ideas than
ultimately reach clinical use. The challenge we highlight is therefore not
the volume of unused models per se, but the absence of robust socio-
technical infrastructure to support those models that are intended for
translation into practice.

This paper posits that LHSs — inherently data-driven, iterative, and
collaborative — provide the translational infrastructure needed for safely
and most effectively deploying Al interventions in health, care, and
wellbeing. It follows that AI interventions should consider LHSs as a
potential glide path to a successful landing, and moreover, that in-
stitutions seeking to realize the full promise of Al should take steps to
adopt LHS principles and methods, and build LHS infrastructure.

To support our proposition, we demonstrate how LHS principles
address the technical lifecycle of Al, from development to deployment
and monitoring, while also addressing ethical, organisational, and
governance needs. The sections below describe the LHS concept and
infrastructure, survey current Al applications in health, and examine
how LHSs can manage the Al lifecycle and governance. In this way we
describe the glide path by which AI can deliver significant and lasting
benefits for human health.

While we describe an idealised LHS in which these capabilities
operate smoothly, real-world LHS maturity is highly variable. Many
institutions implement only subsets of these features. Our aim is to
illustrate the potential value of LHS-aligned processes for Al, even when

Integrate External Evidence

Analyze Data

D2K:

Data to
Knowledge

Any

Discovery

Assemble Data

Capture Practice
as Data

Fig. 1.

Health Problem
of Interest

Artificial Intelligence In Medicine 173 (2026) 103346

implemented incrementally.

It is also important also to note, as will be discussed in more detail,
that this paper presents a singular view of LHS that emphasises infra-
structure and, as such, is most concordant with the integration of LHS
and AL There are, at this writing, several co-existing views of LHS [6],
none of which have achieved the level of maturity and standardization
of aviation's instrument landing system, and there are multiple barriers
to LHS development that must be acknowledged [7]. It is possible,
therefore, that recognized potential value of LHS-AI integration may
drive development of LHS infrastructure as much as it drives successful
Al deployment. Furthermore

2. Learning Health Systems

LHSs are healthcare ecosystems built to continuously learn and
improve. At their core is a cyclical process that links clinical practice
(“performance”) with the discovery and implementation of new
knowledge (Fig. 1). In each cycle, data from routine practice are sys-
tematically collected, analyzed to generate insights, and then translated
into changes in care, which in turn produce new data — enabling ongoing
improvement [8].

Crucially, LHS are not just about analytics or technology — they are
socio-technical systems. This means they encompass people (patients,
families, clinicians, researchers, administrators), processes (policies,
governance, workflows), cultures, and technology (electronic health
records, data warehouses, Al tools) working in concert. One key feature
of LHS is the formation of a multi-stakeholder learning community that
supports the process and gets readjusted at the start of each cycle. This
community unites all relevant parties — for example, doctors, nurses,
data scientists, implementation scientists, patients and their families,
management and senior leadership teams, and health IT staff — who
work collaboratively to identify problems and co-create solutions. Their
shared goal is to improve a specific aspect of health (a “health problem
of interest”), and they remain engaged through the entire cycle. This
continuity of collaborative execution distinguishes LHS from traditional
quality improvement efforts, where different teams of people might
separately handle data analysis and implementation.

Another defining aspect of LHS is embracing uncertainty and
learning from failure, e.g. when an intervention underperforms. Rather
than assuming what better interventions are upfront, an LHS acknowl-
edges knowledge gaps and undertakes rigorous discovery (e.g. analyzing
data, for example via Al, to find what might work) before implementing
any changes. This scientific mindset is built into clinical operations.
Over time, multiple learning cycles can operate concurrently, supported
by a socio-technical infrastructure that scales learning throughout an
organization. Examples of such infrastructure include integrated data
systems, interoperability standards, and policies for data governance
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and ethics. Indeed, the vision is that a mature LHS will have many
learning loops running (for different conditions or processes), all
enabled by shared data and technology services.

3. Al applications in health

Artificial Intelligence (AI) offers unprecedented and multiple op-
portunities to improve health and care [9], from enhancing diagnostics
to personalizing treatments [10]. Yet, bridging the gap between prom-
ising AI models and real-world impact has proven challenging [11,12].
Many Al systems that excel in retrospective studies or controlled settings
fail to translate into routine practice, due to issues like data drift,
workflow misalignment, additional data entry requirements, lack of
clinician and patient trust, and the structural challenges of implement-
ing change in health systems. For example, a fundamental problem is the
“last mile” of implementation — integrating AI into complex, socio-
technical health and care systems that have inherent variability, regu-
lation and strict safety requirements [13]. This “last mile” is analogous
to the final approach of an aircraft to a runway.

AT has rapidly become a focal point in digital health, with applica-
tions spanning nearly every domain of biomedicine. Machine learning
algorithms, especially deep learning models, now approach or exceed
human-level performance in certain tasks like medical image interpre-
tation [14]. For instance, AI models can detect diabetic retinopathy in
retinal photos or classify skin lesions from images with high accuracy
[15]. In radiology and pathology, Al aids in finding subtle anomalies on
X-rays, CT scans, or biopsies [16]. Beyond imaging, predictive models
are used for prognostics — estimating risk of outcomes such as sepsis,
hospital readmission, or disease complications — by mining patterns in
electronic health record (EHR) data [17]. There are demonstrated use
cases across drug discovery (e.g. Al systems identifying new drug can-
didates), virtual health assistants for patient triage or differential diag-
nosis, robotics in surgery, and personalized medicine approaches
combining genomics with AI [18]. Natural language processing (NLP)
algorithms can sift through clinical notes to flag patients who meet
criteria for clinical trials or who need follow-up care [19]. Meanwhile,
optimization and scheduling algorithms improve operational -effi-
ciencies like patient flow and staffing [20]. In mental health, conver-
sational AI chatbots are starting to provide cognitive behavioural
therapy exercises or triage advice [21]. Indeed, Al is seen as a key
enabler for healthcare's “quintuple aim” (enhancing patient experience,
improving population health, reducing costs, improving provider work
life, and achieving health equity) [22]. In the short term, Al can auto-
mate high-volume repetitive tasks (like image screening). In the longer
term, Al is anticipated to facilitate precision medicine - supporting
training, education and tailoring care based on a patient's unique data
profile.

Despite this promise, real-world adoption of Al in healthcare remains
limited. While hundreds of Al systems have been published—including
methodological models, simulation/training tools, and patient-facing
clinical decision support systems—only a smaller subset are designed
for, or appropriate for, routine clinical deployment [23]. These cate-
gories serve different purposes, and low deployment rates should not be
interpreted as failure for models whose aims are purely methodological
or educational — thus lack of translation can reflect disciplinary or
organisational priorities rather than technical shortcomings. However,
the reasons for low uptake of models intended for frontline deployment
are manifold. Generalizability is a major concern: an algorithm trained
in one setting often performs worse when deployed elsewhere due to
differences in patient populations or data coding [24]. Integration
challenges frequently arise — Al tools must seamlessly fit into clinical
workflows and EHR systems, which is non-trivial (poor integration was a
key factor in the limited success of earlier decision support systems)
[25]. Transparency and trust issues also hinder uptake: clinicians may be
reluctant to rely on “black box” algorithms whose reasoning they cannot
interrogate, especially if an AI might make errors that harm patients.
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Some Al interventions may produce marginal benefits at a vastly
increased resource cost [26]. Threats to autonomy, intrinsic motivation,
professional pride and skill are also important concerns when Al takes
over complex judgement tasks [27].

Ethical issues such as bias, Al reflecting or even amplifying racial or
gender disparities present in training data [28], and privacy concerns
with patient data further complicate deployment. Moreover, healthcare
regulators were designed for medicine safety, which in the UK have an
average usage lifespan of 37 years, but the average medical device
lifecycle is 18 months [29]. Health system functions including regula-
tion, financial incentive and reimbursement structures, as well as the
clinicians and managers that need to use new technologies, need to
adapt to Al-based services and the rapid lifecycles of Al

In practice, many health Al projects stall after proof-of-concept due
to this socio-technical gap. Researchers have dubbed this the “last mile
problem” of Al in health — moving from model development to sustained
clinical use. It is here that LHSs offer a way forward. By design, an LHS
provides an ecosystem that addresses data quality, workflow integra-
tion, continuous evaluation, and stakeholder engagement — precisely the
factors that determine whether an AI succeeds or fails in practice
(Table 1).

A deeper issue that affects the translation of methodological work
into practice, particularly in multidisciplinary teams, is the absence of
shared incentives, language, and cross-disciplinary alignment between
model development and clinical implementation. Thus the collaboration
enabled by the LHS needs to be backed by the wider institutional
recognition of success and reward that goes beyond traditional domain

Table 1

Main challenges associated with the “last mile” deployment of Al-based solu-
tions and opportunities provided by LHSs.

Challenge

Opportunity

Generalizability and
data drift

Transparency and
trust (“black-box”
concern)

Regulatory and
lifecycle
misalignment

Responsibility and
accountability
ambiguity

Data governance and
provenance
limitations

Cultural and
organisational
inertia

Model monitoring
and maintenance

gaps

Models trained in one setting
often underperform
elsewhere due to variations
in population, coding
practices, and clinical
workflows.

Lack of transparency and
accountability reduces
clinician and patient
confidence in Al outputs.

Traditional approval
pathways were designed for
static medical devices, not
continuously learning
systems with short update
cycles.

When Al influences
decisions, liability among
clinicians, developers, and
healthcare organizations is
often unclear.

Inconsistent recording of
data lineage and model
versioning complicates
reproducibility and safe
model updates.
Risk-averse environments
and lack of a learning
culture inhibit
experimentation, feedback,
and iterative improvement.
Few institutions have
structures for continuous
evaluation, post-deployment
surveillance, and
performance recalibration.

LHSs embed feedback loops
that monitor performance
over time, enabling regular
model updates and
adaptation to local
contexts.

Provenance tracking, open
documentation, and
participatory validation
build trust and
accountability.

LHSs support iterative
approval and oversight
processes, aligning with
evolving concepts of
“continuously learning” Al
regulation.

System-level provenance
and reproducibility
solutions allow for detail of
human and software agents
that participated in
individual tasks.

Shared socio-technical
infrastructures in the LHS
enables consistent
provenance capture and
reporting

LHS can be used as a
framework to manage risk
in introducing new data-
driven initiatives

LHSs embed ongoing
evaluation and
improvement cycles (“data
— knowledge —
performance — data™),
enabling Al to evolve safely
over time.
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metrics.

4. Connecting Al and Learning Health Systems to promote model
deployment and continuous improvement

Deploying Al in healthcare is not a one-off event but a lifecycle that
spans development, implementation, evaluation, maintenance, and
evolution. LHSs are uniquely equipped to manage this lifecycle in a
sustainable way. In the sections that follow, we will illuminate the
specific connections between them.

4.1. Co-creation and user-centered design

LHS cycles start with a multistakeholder learning community
focused on a health problem. This naturally promotes and enables co-
creation of Al solutions with people within health and care systems,
patients, and Al end-users, as well as establishing whether such solutions
are feasible in the given context. A recent review of LHS models shows
the scope for more detailed stakeholder modelling to ensure equity [30].
Instead of tech companies or data scientists building algorithms in
isolation, the LHS framework invites clinicians, patients, and other users
to be part of the design and validation process. Such co-design was
identified as a key enabler in nearly half of studies on clinical Al
implementation [31]. By capturing user requirements and domain
knowledge early, co-creation ensures the Al addresses real clinical needs
and fits the local context. For example, if an LHS community decides to
develop an Al tool to predict patient deterioration, healthcare pro-
fessionals would contribute to defining what “deterioration” means in
practice, what warning signs are actionable, and how alerts should be
presented, and patients' and carers' perspectives would also be taken into
account. This example points to the more general challenge (one that is
especially salient for LHS) of how to account for diverse users who may
have different conceptualisations of the domain, and more broadly,
differing interests and perspectives that may not align. LHS could thus
also benefit from AI support for multistakeholder deliberation and
sense-making [32].

This participatory approach to development of Al tools improves the
relevance, usability, and trustworthiness of said tools. The collective
sense-making that occurs in participatory approaches also creates a
shared purpose that helps drive adoption, bringing the whole learning
community along the journey and leading to better implementation as
well as better design [33]. It also streamlines workflow integration —
since the future beneficiaries helped design the Al, they are more likely
to adopt it and less likely to be surprised by its behavior. In essence, the
LHS turns AI development into a cooperative learning process between
humans and machines, rather than a vendor delivering a static product.

It is important to note that the level of required co-design varies by
the type of Al tool. Systems used for internal operations—such as bed-
capacity forecasting or scheduling optimisation—primarily require
engagement with technical and operational experts rather than patients
or frontline clinicians. In such cases, issues arise less from insufficient
patient co-design and more from inadequate alignment with the
expertise of operations researchers or systems engineers.

4.2. Planning for model evaluation and monitoring

Before an Al model is deployed into practice, there must be a plan for
how its real-world performance will be evaluated and monitored. In the
context of LHS, this planning process is collaborative and forward-
looking. Through the co-creation process, clinicians, data scientists,
administrators, and patients jointly define what “success” means and
how it should be measured once the model is in use. Considerations
could include evaluation on different subgroups in a heterogenous
population, plans for managing data quality issues, and clinician
behavior. Critically, evaluation of Al tools in deployment is often much
more challenging than evaluating on a static dataset.
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One key challenge is the delayed availability of outcome labels for an
Al model. For example, if a diagnostic Al tool suggests an incorrect
diagnosis to a patient with cancer based on a scan, the error may not
come to light for months — or ever - if the patient does not return for a
follow-up. Another subtle but significant challenge lies in the potential
feedback loops created when Al predictions influence treatment de-
cisions. Consider a model that uses an ECG to assess whether a patient is
at risk for a condition that can only be confirmed by an echocardiogram
[34]. If only patients predicted as high-risk receive an echocardiogram,
then over time, the resulting dataset used to evaluate the model will
become increasingly biased. Low-risk predictions may rarely be
confirmed or refuted, making it difficult to identify false negatives. In
other words, when models shape what data is collected later on, it can
mask errors and distort performance estimates.

The LHS paradigm is uniquely positioned to plan for and manage
these complexities, even though it does not automatically eliminate
them. Evaluation plans may include a combination of quantitative
metrics (e.g., accuracy, calibration, clinical utility), qualitative feedback
(e.g. user satisfaction, clinician trust), and operational indicator (e.g. Al
tool usage patterns, override patterns) — crucially, planned across cycles,
acknowledging potential delays or drop-outs in outcome availability for
certain actions. An LHS ensures that the evaluation is not a one-time
audit, but an ongoing, structured process that ensures a responsible
use of Al in healthcare. Specifically, bias arising from downstream ac-
tions of model deployment affecting data used in re-training may be
accounted for by data provenance and the ability of an LHS to monitor
the entire cohort of patients over longer time periods. Furthermore, this
multi-cycle capability also allows incorporation of methods to address
selective labels and verification bias.

4.3. Managing model evolution

Once an Al approach is deployed, the work is not done — models must
be updated over time. LHS are built for this continuous updating. Rather
than freezing an algorithm after deployment, an LHS treats each use of
the Al as an opportunity to improve it. For instance, the outcomes and
errors of an Al's prediction(s) can be fed back as new training data (the
“performance to data” part of the cycle) to recalibrate the model. This
addresses problems such as model drift, where an AI's accuracy degrades
as clinical practice or patient populations change. Apart from re-
training, updates may include recalibration, threshold adjustment,
feature review, changes in clinical workflow, or full redevelopment. In
the LHS paradigm, model evolution can be governed by the learning
community: they set criteria for when the model should be retrained,
modified, or replaced, based on ongoing performance metrics or
organisational criteria.

Crucially, LHS provides the regulatory, governance and infrastruc-
ture to do this safely. The iterative loop (data — knowledge — practice)
means that after each model update (knowledge), an intervention or
evaluation occurs (practice), and only if the updated Al shows improved
or at least non-inferior performance does it become fully adopted. This
controlled evolution is aligned with emerging regulatory concepts of
adaptive Al systems. In fact, regulators like the United States FDA are
exploring lifecycle-based oversight via mechanisms like Predetermined
Change Control Plans,’ which specify in advance the conditions under
which a model may be updated. These approaches support structured,
transparent, evidence-driven evolution, mirroring LHS formal learning
cycles of planning, change, and evaluation that ensure the changes are
evidence-based with documented provenance. If performance drops or
unintended consequences emerge, the LHS can quickly revert or adjust
the model in the next cycle. This alertness to emergent change stands in

1 https://www.fda.gov/medical-devices/software-medical-device-samd/pre
determined-change-control-plans-machine-learning-enabled-medical-devices-
guiding-principles.
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contrast to static deployments, where an Al might quietly become unsafe
due to model drift before anyone notices, e.g. as a consequence of sea-
sonal variability in data. In a mature LHS with multiple cycles, Al models
become living components of care pathways, continuously learning from
new data under the watch of the learning community and data scientists.

An LHS, by definition, embeds continuous evaluation into its routine
operation — “new knowledge is captured as an integral by-product of the care
experience”. Every time an Al-driven intervention is applied, the LHS
measures outcomes and compares them against expectations. This cre-
ates a constant feedback loop to refine the Al and its integration into
practice, either continuously or through a series of discrete steps.
Traditional clinical trials or validations provide only a snapshot (criti-
cally before deployment if this is a regulatory approval study) while a
LHS enables ongoing real-world evaluation (akin to post-market sur-
veillance in regulatory terms). For example, suppose an Al algorithm for
sepsis early warning is rolled out in a hospital. In an LHS approach, the
system would track metrics such as true/false alert rates, sepsis mor-
tality, clinician response times, and any adverse events. These data are
analyzed (perhaps by another Al or by the quality improvement team) to
assess the Al's clinical utility and safety continuously [35]. If, say, false
alarms are too frequent and causing alert fatigue, the learning commu-
nity might decide to tweak the sensitivity threshold or incorporate an
additional data input — effectively refining the model or its usage pro-
tocol. This would then be tested in the next cycle and so on. Over time,
the Al tool either improves or is retired if it cannot meet the desired
outcomes, but importantly, this decision is driven by evidence gathered
during routine practice. The LHS thus prevents the scenario of an Al
being deployed and “forgotten.” It institutionalizes an evaluate-and-
improve mentality, similar to the DevOps/MLOps approach in soft-
ware where systems are constantly monitored and iterated, indeed
regulation of AI does build upon these software quality approaches. In
healthcare, such agility is rarely present outside of an LHS context.
Through continuous improving, Al remains fit for purpose, and the health
system avoids stagnation with outdated algorithms.

As Al capabilities evolve toward more agentic behaviours—includ-
ing autonomous task execution, workflow orchestration, or proactive
recommendations—model evolution becomes more than a technical
update problem. Agentic systems require mechanisms to monitor goal-
directed behavior, prevent unintended action sequences, and ensure
alignment with clinical governance. LHSs offer a natural setting for such
oversight, since their structured cycles of evidence generation, evalua-
tion, and stakeholder governance are well-suited to managing dynamic,
semi-autonomous Al tools.

5. Connecting Learning Health Systems and Al for regulation
and governance

In addition to managing the more technical challenges discussed
above, LHSs provide a framework for addressing regulatory and ethical
challenges of Al in healthcare, such as ensuring clarity of responsibility,
transparency of algorithms, tensions between commercial and open
approaches, implementation accountability, provenance of data and
models, and the role of humans-in-the-loop. How LHSs approach these
challenges is deeply rooted in consensus LHS core values propounded in
2012 [36] and, more recently in the LHS Core Commitments put forward
by the National Academy of Medicine [37]. We discuss how these LHS
principles help navigate these issues:

5.1. Transparency of responsibility

When Al systems assist in clinical decisions, it can become unclear
who is responsible for the outcomes — the clinician user, the organization
deploying the Al or the developer of the algorithm. A LHS, by virtue of
its collaborative structure, can make responsibility more transparent.
The learning community overseeing an Al project within an LHS brings
together all stakeholders to define roles and boundaries explicitly (e.g.
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who validates the model, who approves its use, and who responds to its
recommendations). This shared governance means that responsibility is
acknowledged at each stage: data collection (usually the health system's
responsibility), model development (data scientists and developers), and
clinical decision-making (clinicians guided by hospital policies). For
instance, a hospital LHS might establish a committee (including clini-
cians, Al specialists, and ethicists) that must sign off on any Al-derived
protocol change, thereby clearly assigning accountability. Such struc-
tures help avoid the “responsibility vacuum” that can occur with Al
Indeed, researchers implementing diagnostic LHS have flagged “medico-
legal responsibility for generated evidence” as a significant challenge to be
proactively addressed. By tackling this in the LHS governance (e.g.
having legal/risk managers in the learning community discussions), the
duties and liabilities of each party are delineated before deployment.
Transparency is further enhanced by LHS documentation practices —
every learning cycle produces artifacts (analysis reports, decision logs,
implementation plans) that can be audited. This makes it clear why and
by whom a certain Al-informed decision was made, a critical feature for
accountability and regulatory compliance. Thus, embedding an LHS
approach to the development and maintenance of hazard logs as
required for medical devices (part of the NHS Data Security and Pro-
tection Toolkit in the UK) can assist safe deployment of Al

Since LHS emphasises learning and sharing knowledge, there is a
philosophical alignment with open-source principles. Transparency is
valued because it enables collective learning — an opaque algorithm is
antithetical to the spirit of an LHS. Moreover, studies on Al enablers
have noted that open-source software can improve transparency and
accountability by allowing experts to identify vulnerabilities. Hybrid ap-
proaches that blend open-source and commercial models, e.g. licensed
extended versions with additional features, may help software com-
panies to balance transparency with income generation to develop
mature Al products.

5.2. Responsibility of implementation

Introducing an Al tool into clinical practice is an active intervention
that requires oversight. Outside a LHS setting, this responsibility should
fall to the designated Clinical Safety Officer, often leading to duplication
and variability between organizations. In contrast, a LHS explicitly
manages implementation as part of the learning cycle (the K2P phase,
“Knowledge to Performance”). This means the learning community
takes collective responsibility for how an Al is deployed — including
training staff, integrating into workflows, setting guidelines for use,
managing hazard logs and monitoring initial results [38]. Through
shared implementation responsibility, the LHS helps cultivate trust and
clinicians, patients and carers see that a reliable support system stands
behind the AL not just a vendor. It also ensures there is a defined
responsible party to take action if the Al underperforms, causes harm or
misfires. For example, an on-call data scientist to fix a bug or a clinician
lead to issue a notice to stop using the tool if a safety issue arises. The
LHS helps to clarify the responsibilities set out in a system's DCB 0129
and DCB 0160 in the NHS, and equivalent on other health systems

5.3. Provenance, trust, and FAIRness

Provenance - the record of how data and models have been pro-
cessed — is an essential component of accountability and trust. By
capturing provenance throughout the research and implementation
workflow, we embed mechanisms to verify trust in the system, for
example through standards such as W3C PROV [39]. This is particularly
relevant for AI, where complex data pipelines and model training pro-
cesses can otherwise be opaque. In an LHS, every step of model devel-
opment and deployment can be logged: which data were used for
training, how they were pre-processed, which version of the algorithm
was applied, who reviewed the outputs, and how the model was inte-
grated into the clinical system. Such provenance metadata embedded
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into the LHS creates a traceable audit trail. If an error or bias is
discovered later (for example, the Al is less accurate for a certain sub-
group of patients), one can trace back to see if the training data lacked
diversity or if a certain parameter tweak led to the issue.

Understanding the provenance of our models is also key to over-
coming the issue of model collapse. This concept, sometimes also
referred to as the autophagia of Al, denotes the progressive degradation
in performance, diversity, and fidelity of AI models when successive
generations are trained—directly or indirectly—on outputs generated
by their predecessors rather than on clean, human-authored data. The
term draws from the analogy of low-background steel in nuclear science:
just as post-1945 steel is contaminated by fallout, Internet content post-
2022 is increasingly “polluted” by Al-generated material [40].

LHS emphasises robust data and knowledge management practices.
The FAIR principles (Findable, Accessible, Interoperable, Reusable)
have been advocated to maximize the utility of health data [41]. In an
LHS, routine clinical data (from EHRs, devices, etc.) are continuously
captured as a by-product of care and then made available for analysis in
a privacy-conscious manner. Achieving this requires data interopera-
bility across different sources and institutions — a challenge that LHS
initiatives tackle by adopting common data standards and shared re-
positories. By ensuring that data are FAIR, LHS make it easier to train
and update AI models on comprehensive, real-world datasets. For
example, a hospital network functioning as an LHS might implement
standardized coding and open APIs that allow AI developers to reliably
pull anonymized patient data for model development (with appropriate
governance). Additionally, LHS data practices emphasize data quality
and provenance, meaning each data point's origin and context are
tracked. This is crucial for Al-ready data, a concept closely aligned with
the FAIR principles, as models are highly sensitive to garbage-in/
garbage-out; an LHS will thus include processes to clean and validate
data continuously. By underpinning Al with a strong data foundation,
LHS reduces the risk of model bias and drift. Indeed, large-scale learning
networks (such as those in some national LHS efforts) treat data as a
shared asset for learning, which accelerates Al development while
maintaining rigor in how data are used [42].

In LHSs, knowledge management is as important as data manage-
ment. Al models can be viewed as exemplars of knowledge that can be
represented as FAIR Digital objects [43], bringing many of the same
benefits to model management that accrue to data by achieving the FAIR
principles. Standards such as W3C DCAT provide foundational vocab-
ularies for these metadata descriptions with specialised extensions,
including Health-DCAT-AP, developed by the European Health Data
Space initiative, to allow datasets, registries, biobanks, Al models, and
associated digital services to be discovered, linked, and reused safely
and lawfully across national and institutional boundaries. The move-
ment to Mobilize Computable Biomedical Knowledge-with chapters in
North America and the U.K and new chapters forming in continental
Europe and Australasia—champions ecosystems of models and algo-
rithms conforming to the FAIR principles [44].

Provenance also supports reproducible research, meaning that other
sites or researchers can understand exactly how an Al result was ob-
tained and attempt to reproduce or validate it. In regulatory terms, this
aligns with requirements like the FDA's 21 CFR Part 11, which mandate
the auditability of software used in clinical decisions [45]. Another
relevant example is the ISO/DTS 23494-1, a biotechnology information
standard, providing consistent documentation of the life-cycle of related
research objects from the acquisition of a specimen to analytical pro-
cedures and downstream data processing and analysis [46].

By embedding provenance capture into the LHS's data/Al pipeline,
we can capture data that can then be used to develop methods and
tooling (e.g. dashboards, audit trail viewers) to explain and justify Al-
driven decisions in the health system when needed [47]. Such a mech-
anism also helps avoid “algorithm creep,” where, over time no one re-
members how or why the model does what it does; in an LHS, that
institutional memory is preserved in the provenance logs. This level of
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transparency is a strong antidote to the black-box criticism of Al and is
invaluable for governance, as it allows independent audits and contin-
uous quality assurance of the AI process. While this may sometimes be
seen as healthcare inertia slowing down rapid technology advancement,
it is essential to ensuring these innovations are implemented in a sus-
tainable manner.

5.4. Human-in-the-loop

A commonly touted principle for safe Al in healthcare is to keep a
“human in the loop, ” On the one hand, this principle can be interpreted as
addressing the so called ‘value alignment problem’ - how to ensure that
the AI support for decision making and planning is aligned with the
evolving values, interests and preferences of human stakeholders. This
issue is of particular relevance to LHS given: 1) the ever-increasing use of
large language models for advice giving [48]; 2) the inherent diversity of
stakeholders and hence the need to account for competing interests, and
the fact that preferences may evolve and be shaped in response to the
outcomes of interventions. Alignment can thus be supported by
designing Al-stakeholder interactions so as to accommodate human in-
puts that relate to preferences, while simultaneously leveraging Al ca-
pabilities for information retrieval, analysis and arguments that guide
shaping and elicitation of stakeholder preferences [49,50].

On the other hand, a more narrow interpretation of the human-in-the-
loop principle mandates that clinicians retain final decision authority
rather than allowing fully automated decisions [51]. Patients and the
public also prefer a hybrid system rather than a doctor-only or Al-only
approach [52]. While this is important, there is a risk that the human-
in-the-loop paradigm becomes a fig leaf that obscures accountability.
If an Al recommendation contributes to harm, and in the absence of
shared governance such as the one promoted by LHS, the developer
might blame the clinician for not overriding it, while the clinician might
argue they trusted the system's regulatory-approved advice, thus sharing
the blame [53]. LHS can not only establish the responsibility boundaries,
but also treat human-Al interaction as part of the learning process.
Instead of assuming the presence of a human automatically ensures
safety, an LHS will rigorously study how humans and AI actually work
together (the “human-AI team” dynamics). For example, the LHS might
track when clinicians follow or contradict Al advice and the outcomes of
each scenario [54]. This can reveal if the “human oversight” is effective
or if, in practice, users either over-rely on the Al leading to a form of
automation bias, or ignore a useful tool. The learning community can
then adjust training or system design accordingly — perhaps tightening
the conditions under which the AI can act without human confirmation
or conversely, simplifying the user interface so clinicians pay attention
at the right moments. The LHS thus does not take human-in-the-loop for
granted; it treats it as a factor to be studied and optimized. Moreover, by
having a collective forum (the learning community) discuss incidents
and near-misses, the LHS ensures that accountability is shared and les-
sons are learned, rather than individual clinicians being unfairly blamed
for systemic issues.

LHSs offer robust support for Al governance through promoting
transparency (through open data/model practices and provenance
tracking), clarifying accountability (through defined roles and contin-
uous oversight), and improving trust (through co-creation, open review,
and demonstrated safety in practice). By aligning the deployment of Al
with an organization's learning and quality processes, LHS ensures that
ethical principles and regulatory requirements are not an afterthought
but an integral part of the Al lifecycle. This synergy addresses the oft-
cited concerns about Al - from unclear liability to opaque algorithms
— within the operational workflow of healthcare. The result is a more
responsible innovation, where Al can be introduced and scaled in a
manner that is transparent to users, acceptable to regulators, and ulti-
mately safer for patients.

These issues intersect with emerging discussions around Sovereign
Al the principle that nations or health systems should retain strategic
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control over critical data assets, model development pathways, and the
computational infrastructure that underpins them. As Al capabilities
become increasingly central to clinical operations and population health
planning, LHSs provide a natural governance environment to mitigate
risks associated with dependence on opaque, externally controlled Al
ecosystems.

6. Way forward

While many existing frameworks focus on evaluating or deploying
individual AI models, the distinctive contribution of this paper is to
articulate a systems-level, reusable socio-technical approach. Rather
than addressing adoption on a model-by-model basis, we argue for
institutionalising AI deployment within an LHS, enabling repeatable,
scalable, and cumulative learning across multiple Al tools. Now we
outline five key steps to make this a reality:

6.1. Integrate Al initiatives into LHS frameworks, recognizing that LHS,
too, is a work in progress

Healthcare organizations should embed AI within a formal LHS
framework rather than handling them as isolated IT implementations.
This means establishing multidisciplinary learning communities for
each major Al intervention, responsible for guiding the project from
inception through continuous monitoring. Clinicians, data scientists, IT,
patients, and leadership must all have a seat at the table. By treating
each AI deployment as a learning cycle, organizations will naturally
address design, validation, implementation, and evaluation in one
cohesive process rather than silos. This framework should also take ac-
count of the relevant parts of risk classification and control actions for
software as a medical device regulation (ISO14971 and IEC62304).

In this analysis, the authors have described a “frozen”, specific, and
implicitly mature version of an LHS. This was by intention to offer the
clearest portrayal of the potential benefits of AI and LHS integration.
While the current state of LHS concepts and methods reflect 18 years of
continuous development as reflected in part by a growing literature
[55], their deployment within institutions is incomplete and slowed by a
wide range of challenges [56,57]. It is important therefore, for those
pursuing the integration proposed here, to assess the elements of LHS
infrastructure that exist in an environment to be sure they exist in a
sufficiently mature form to meet the demands AI will place upon them.

6.2. Invest in standards-based data infrastructure and FAIR data and
knowledge practices

A critical enabler for both LHS and Al is a strong data backbone.
Health systems (and their partners in government and industry) should
invest in interoperable EHR systems, data warehouses, and registries
that adhere to FAIR principles. The aim is to have common data models
and exchange standards so that data from different sources can be
pooled for machine learning and outcomes analysis. This poses
numerous challenges. Although standards such as SNOMED CT [http
s://www.snomed.org/] and HL7 FHIR [https://www.hl7.org/fhir/]
are now quite mature, their implementation remains inconsistent and
has not yet achieved the necessary level of semantic interoperability.
Common internal data models such as openEHR [https://openehr.org/]
have very little adoption by major EHR vendors and data aggregation
formats like OMOP [https://www.ohdsi.org/data-standardization/] risk
loss of context from rich clinical data and need aligning with data cat-
alog standards such as W3C DCAT and Health-DCAT-AP. Another
important aspect of this is utilising bound identifiers for the type and
version of AI models used, supporting monitoring and transparency,
relevant terms exist in the SNOMED-CT (UK version) ‘clinical observa-
tion’ hierarchy. It also involves data governance that balances openness
with privacy - for example, using federated learning or de-identified
datasets within a secure data environment to allow Al training across
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institutions without exposing sensitive information. Provenance stan-
dards such as W3C PROV and ISO/TS 23494-1:2023 allow dataset
histories and audit traces to operate in a distributed environment. Na-
tional and regional networks can amplify this by linking LHS across sites,
creating learning networks where Al models and insights are shared for
mutual benefit.

6.3. Establish continuous model monitoring and maintenance

Just as hospitals have pharmacovigilance programs to monitor drug
safety, they should create Al-vigilance programs for deployed algo-
rithms. Within the LHS, dedicate a team (or extend the duties of the
learning community) to routinely review Al performance metrics, bias
indicators, and user feedback. This team would manage model updates
in a controlled way - analogous to software updates, but with clinical
validation at each step. Regulators and payers should support this by
allowing mechanisms for rapid update approval and reimbursement
models that recognize the ongoing effort of maintaining Al systems
(rather than a one-time purchase). In essence, make continuous learning
a contractual and regulatory expectation for any Al used in patient care.
This will enforce that Al systems remain safe and effective as conditions
change.

6.4. Cultivate an ethical, responsible and learning culture

Technology alone cannot create an LHS- the culture of the organi-
zation must value learning, transparency, and patient-centric innova-
tion. Leadership should promote policies that encourage reporting of Al
failures or near-misses without fear of blame (a just culture), echoing
how morbidity and mortality conferences function for learning from
clinical errors. Ethical principles like equity, accountability, and patient
engagement should be baked into Al projects from the start. Concretely,
this could involve establishing an ethics review board for algorithmic
tools, including patient representatives to voice concerns and prefer-
ences. It also means training clinicians about the basics of Al, not just
how to use a particular tool but how to critically appraise and question it
[58]. Over time, a learning culture will normalize the idea that Al in
healthcare is always under evaluation and subject to improvement —
much like any drug or clinical practice might be.

6.5. Encourage open collaboration and knowledge sharing

The ethos of an LHS is inherently collaborative and cumulative.
Stakeholders should therefore publish and share methodologies and
outcomes of Al implementations (successes and failures alike) in peer-
reviewed literature or public forums, contributing to the global
learning community. Initiatives like open-source algorithms, public
challenge datasets, or shared benchmarking of AI on common tasks can
accelerate collective progress [3]. Funding agencies and journals could
incentivize this by requiring that Al tools coming out of publicly funded
research be made available for evaluation in other LHS settings. In order
to deliver a “human-in-the-loop” approach, we have to ensure the
humans do not lose their skills, knowledge, and intuition, and our
training programs should be adapted to reflect that ambition in the
presence, or with assistance, of Al technologies.

7. Summary

Realizing the vision of LHSs is our best strategy for a future where Al
plays a very strong role in transforming health and care rather than
losing their traction after pilot studies. LHS offers the mechanisms and
infrastructure to continuously align Al tools with clinical reality, correct
their course when needed, and prove their value (or lack thereof) with
rigorous outcome data. By following LHS principles — co-creation,
continuous learning, and shared governance - healthcare can create a
glide path for Al that avoids the booms and busts of hype cycles and


https://www.snomed.org/
https://www.snomed.org/
https://www.hl7.org/fhir/
https://openehr.org/
https://www.ohdsi.org/data-standardization/

V. Curcin et al.

instead achieves steady, responsible innovation, moving from model-by-
model adoption to system-based, reusable socio-technical adoption.

The journey forward will require commitment from all quarters:
healthcare providers must embrace data-driven experimentation; Al
developers must engage with healthcare's complexities; regulators must
adapt to iterative improvement paradigms; and patients must be part-
ners in the process. The reward for this collective effort is profound: a
healthcare system that learns as it delivers care, constantly getting
better, smarter, and more just — with Al as an ally rather than a threat.
None of this implies that creating and operating LHSs is easy [7], but
there is increasing evidence of effective real-world LHS implementation
with an Al focus [59].

Returning to our metaphor in closing, it is unimaginable how modern
aviation could function safely and efficiently without instrument land-
ing systems (ILS). Both ILSs and LHSs are socio-technical systems built
on infrastructure consisting of training people, consensus policies,
established processes, and proven digital technologies. To us, it is
equally unimaginable how Al can support healthcare safely and effi-
ciently without being embedded in LHSs.
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